
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/158850

Munera, S.; Aleixos Borrás, MN.; Besada, C.; Gómez-Sanchis, J.; Salvador, A.; Cubero, S.;
Talens Oliag, P.... (2019). Discrimination of astringent and deastringed hard "Rojo Brillante"
persimmon fruit using a sensory threshold by means of hyperspectral imaging. Journal of
Food Engineering. 263:173-180. https://doi.org/10.1016/j.jfoodeng.2019.06.008

https://doi.org/10.1016/j.jfoodeng.2019.06.008

Elsevier



1 

Discrimination of astringent and deastringed hard ‘Rojo Brillante’ 1 

persimmon fruit using a sensory threshold by means of hyperspectral 2 

imaging 3 

4 

Sandra Munera
a
, Nuria Aleixos

b
, Cristina Besada

c
, Juan Gómez-Sanchís

d
 Alejandra 5 

Salvador
e
, Sergio Cubero

f 
, Pau Talens

g
, José Blasco

h
* 6 

a) 
Centro de Agroingeniería. Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. 7 

Moncada-Náquera Km 4.5, 46113, Moncada, Valencia (Spain). *Corresponding author: 8 

blasco_josiva@gva.es Tel.: +34 961465315 9 

b)
 Departamento de Ingeniería Gráfica. Universitat Politècnica de València. Camino de Vera, 10 

s/n, 11 46022 Valencia (Spain). 11 

c)
 Centro de Poscosecha. Instituto Valenciano de Investigaciones Agrarias (IVIA). Ctra. 12 

Moncada-Náquera Km 4.5, 46113, Moncada, Valencia (Spain). 13 

d)
 Departamento de Ingeniería Electrónica. Universitat de València. Av. Universitat, s/n, 46100 14 

Burjassot, Valencia (Spain). 15 

e)
 Departamento de Tecnología de Alimentos. Universitat Politècnica de València. Camino de 16 

Vera, s/n, 46022 Valencia (Spain). 17 

18 

Abstract 19 

Persimmon fruit cv. ‘Rojo Brillante’ is an astringent cultivar due to its content of soluble 20 

tannins, which are insolubilised during the ripening of the fruit. Traditionally, the consumption 21 

of this cultivar has only been possible when the fruit is overripe and the texture is soft. 22 

Postharvest treatments based on exposing fruits to high CO2 concentrations allow astringency 23 

removal while preserving high flesh firmness. However, the effectiveness of this treatment is 24 

controlled by means of slow destructive methods. The aim of this work is to study the 25 

application of hyperspectral imaging in the spectral range 450-1040 nm to discriminate 26 

astringent (A) and deastringed (DA) fruits non-destructively. To separate both type of fruit, it 27 

was used a threshold of soluble tannins based on sensorial perception (0.04 % of fresh weight). 28 

The spectral information from three different areas of each fruit (calyx, middle and apex) was 29 
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used to build models to predict the soluble tannins (ST) content using partial least squares 30 

regression (PLS-R). The results using this method indicated that it was not possible to 31 

accurately discriminate fruit with levels of ST below 0.04 %, especially in the case of DA fruits 32 

(42.2%). Thus, another classification models were performed using partial least squares 33 

discriminant analysis (PLS-DA) that included other properties in order to discriminate between 34 

A and DA using the ST threshold. The most accurate models using all and optimal wavelengths 35 

selected were those which focused on the middle and apex areas of the fruit, a correct 36 

classification rate of 87.0% being achieved for A fruits and above 84.4% for DA fruits. To date, 37 

there are only subjective and destructive analytical methods to monitor the effectiveness of the 38 

astringency removal treatments in persimmon. The results obtained in this study indicate that 39 

hyperspectral images can therefore be considered as an objective and non-destructive alternative 40 

in the control of this process. 41 

42 

Keywords: Diospyros kaki; astringency; soluble tannins; computer vision; chemometrics 43 

44 

Abbreviations 45 

A = astringent 46 

CV = cross validation 47 

CI = colour index 48 

DA = deastringed 49 

F = firmness 50 

LV = latent variable 51 

PLS-R = partial least squares regression 52 

PLS-DA = partial least squares discriminant analysis 53 

RMSE = root mean squared error 54 

R
2
 = coefficient of determination 55 

RPD = ratio of performance to deviation 56 

ST = soluble tannins 57 
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TSS = total soluble solids 58 
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1. INTRODUCTION59 

Spain is the number one producer of persimmon fruit (Diospyros kaki) in Europe and the 60 

third largest producer in the world, after China and South Korea (FAOSTAT, 2016). In the last 61 

twenty years, the land area devoted to cultivating this crop has risen from 2,000 to 14,000 ha, 62 

and production has increased from 33 to 310 thousand tons (FAOSTAT, 2016). Part of this 63 

growth is due to the increase in the production of the ‘Rojo Brillante’ cultivar in the 64 

Mediterranean area. This cultivar, like other persimmon cultivars, is astringent at harvest and 65 

must be subjected to post-harvest treatments to remove astringency. The development of the de-66 

astringency methods based on high CO2 concentrations allowed removal of the astringency 67 

while preserving high flesh F (Arnal and Del Río, 2003), which has facilitated a rapid 68 

commercial expansion of this crop. Nowadays ‘Rojo Brillante’ persimmon is one of the most 69 

appreciated persimmon cultivars worldwide. 70 

The conditions considered as standard for the complete elimination of astringency in this 71 

cultivar are 95% CO2 for 18-24 h at 20ºC. Under these conditions, the ST, responsible for 72 

astringency, are polymerised by the acetaldehyde produced to form insoluble compounds, which 73 

are non-astringent (Matsuo and Itoo, 1982; Taira et al., 1997; Salvador et al., 2008). However, 74 

the treatment may not be completely effective when the conditions of the process are not well 75 

controlled (Arnal & Del Río, 2003). In addition, the effectiveness of the treatment is also 76 

severely affected by the physiological state of the fruit. Small changes in the cellular structure 77 

can make the diffusion of CO2 through the spaces difficult, the result being a low rate of 78 

anaerobic respiration and consequently less accumulation of acetaldehyde. This, in turn, leads to 79 

a lesser reduction of the ST (Salvador et al., 2007). 80 

To commercialise this fruit, it is necessary to guarantee the complete removal of the 81 

astringency, since the presence of any astringency in the fruit can cause rejection by the 82 

consumer that will in turn affect future sales. The control of residual astringency in the fruits 83 

after the treatments can be performed destructively by measuring ST in the fruit using the 84 

Folin–Denis method (Arnal and Del Río, 2004). However, in addition to being destructive, this 85 

method is slow and requires specialised equipment and personnel. An alternative is based on the 86 
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reaction of the ST with FeCl3. Tannic acid complexes with ferric iron may consist of large 87 

highly coloured molecules that behave as colloids. Mixing them gives rise to a ferric complex 88 

that causes an intense black colour. The intensity of the black stain observed after impregnating 89 

a slice of the flesh with FeCl3 reveals the presence of ST in the fruit and its intensity depends on 90 

their level (Gorini and Testoni, 1988; Munera et al., 2017). Although this method is faster and 91 

easier than the analytical determination of ST, it is still destructive and subjective. Therefore, it 92 

is necessary to search for new rapid, reliable and non-destructive techniques. 93 

An alternative is based on the use of optical methods. Hyperspectral imaging is a promising 94 

optical technique for quality inspection of agricultural and food products that incorporates the 95 

main advantages of spectroscopy and imaging (Lorente et al., 2012). Thus, hyperspectral 96 

imaging can simultaneously acquire spectral and spatial information. In addition, the equipment 97 

used can be sensitive to different regions of the electromagnetic spectrum, such as the 98 

ultraviolet or infrared regions (Gomez-Sanchís et al., 2014; Cortés et al., 2018). Their use has 99 

been widely studied to control the quality of fruit and vegetables during postharvest, for 100 

example to discriminate similar cultivars of nectarines with different properties (Munera et al., 101 

2018), to discriminate gluten-free oats from cereals with gluten (Erkinbaev, Henderson and 102 

Paliwal, 2017), to detect decay lesions in citrus fruits (Folch-Fortuny et al., 2016) or mechanical 103 

damage in potatoes (López-Maestresalas et al., 2016). In recent years, several studies have been 104 

conducted to predict the content of ST or to assess the astringency in different varieties of 105 

persimmon fruit using spectroscopy (Zhang et al., 2013; Noypitak et al., 2015; Altieri et al., 106 

2017; Cortés et al., 2017) and hyperspectral imaging (Munera et al., 2017). These works 107 

included the study of the best area of the fruit to measure the astringency, since the internal 108 

distribution may vary from the calyx area to the bottom. Most of the studies report successful 109 

prediction or classification models but they are not useful for precise prediction in fruits with 110 

low ST content, since they achieved limits of detection much higher than the minimum content 111 

of ST (0.10 %) that causes a sensation of astringency for most cultivars (Vidrih et al., 1994; 112 

Antoniolli et al., 2000; Antoniolli et al., 2003).  113 
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In the case of ‘Rojo Brillante’, ST values above 0.06% can produce sensory astringency 114 

(Besada et al., 2010). Throughout the season, fruits of this cultivar exhibit high astringency at 115 

harvest time with an ST content of between 0.80% and 0.40% (Salvador et al., 2007). Only 116 

when the fruit is over-ripe (which causes the total loss of F) does the loss of sensorial 117 

astringency occur. In that moment, the ST is around 0.04% (Tessmer et al., 2016). In other 118 

studies in which the de-astringency treatment with high CO2 concentration has been applied, an 119 

effective treatment has been associated with ST values of 0.01-0.03% (Salvador et al., 2007; 120 

Salvador et al., 2008; Besada et al., 2008). 121 

Hence, the main objective of this work was to study the application of hyperspectral 122 

imaging to predict the ST content in persimmon fruits and to discriminate astringent (A) from 123 

deastringed (DA) persimmons using 0.04 % of ST as the threshold. Moreover, in order to 124 

establish a practical tool for use in industry, another goal is to determine which part of the fruit 125 

is the most appropriate to measure, as well as to reduce the amount of spectral information 126 

generated and speed up this process. 127 

128 

2. MATERIAL AND METHODS129 

2.1 Fruit samples and experimental design 130 

In this study, 300 persimmon fruits cv. ‘Rojo Brillante’ with similar size and no signs of 131 

external defects were analysed. In order to obtain fruit with different degrees of ripeness, 100 132 

fruits were harvested every week over three consecutive weeks. The fruits were collected from 133 

an orchard in L'Alcúdia (Valencia, Spain) at commercial maturity. The maturity index used for 134 

harvesting was the external colour index (CI) of the fruit. The CI commonly employed for ‘Rojo 135 

Brillante’ is CI = (1000a)/(Lb), where L, a and b are the colour coordinates in HunterLab colour 136 

space (Salvador et al., 2007). The average CI of the fruit at each harvest was 2.5, 3.9 and 9.3, 137 

respectively. 138 

In each harvest, three homogeneous lots of fruit were submitted to different treatments to 139 

obtain fruit with different levels of ST, as follows: i) de-astringency treatment for 24 hours (40 140 

fruits); ii) de-astringency treatment for 12 hours (30 fruits); and iii) no de-astringency treatment 141 
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(30 fruits). In all cases, the de-astringency treatment was applied under standard conditions 142 

(95% CO2, at 20ºC, 90% RH). Hyperspectral images and the reference analyses were performed 143 

within 8 h after the treatment. 144 

145 

2.2 Hyperspectral imaging acquisition 146 

The hyperspectral imaging system consisted of an industrial camera (CoolSNAP ES, 147 

Photometrics, AZ, USA) coupled to two liquid-crystal tuneable filters (Varispec VIS-07 and 148 

NIR-07, Cambridge Research & Instrumentation, Inc., MA, USA). The camera was configured 149 

to acquire images with a size of 1392 × 1040 pixels and a spatial resolution of 0.14 mm/pixel. 150 

The working spectral range was defined between 450 nm and 1040 nm, capturing images every 151 

10 nm. Thus, hypercubes with 60 images were captured. In order to avoid problems of 152 

unfocused images due to the refraction of light across this wide spectral range, the focus was 153 

adjusted on the central band of the acquisition interval (740 nm) and the images were captured 154 

using lenses capable of covering the whole spectral range without going out of focus (Xenoplan 155 

1.4/23, Schneider Optics, Hauppauge, NY, USA). To optimise the dynamic range of the camera, 156 

prevent the images from saturated regions and correct the spectral sensitivity of the different 157 

elements of the system, the maximum integration time of each band was calibrated by capturing 158 

the averaged grey level of a white reference standard (Spectralon 99%, Labsphere, Inc, NH, 159 

USA), corresponding to 90 % of the dynamic range of the camera. 160 

The scene was illuminated using diffuse light from twelve halogen spotlights (37 W) 161 

(Eurostar IR Halogen MR16. Ushio America, Inc., CA, USA) powered by direct current (12 V) 162 

and arranged equidistant from each other inside a hemispherical aluminium diffuser. The inner 163 

surface of the aluminium diffuser was painted white with a rough texture to maximise its 164 

reflectivity and minimise directional reflections, which could cause bright spots, the result being 165 

highly homogeneous light. 166 

The fruits were introduced manually into a fruit holder in three different positions so as to 167 

obtain images from the top part of the fruit, the side, and the bottom. In this study, we have 168 

referred these areas as calyx, middle and apex areas respectively (Figure 1). Thus, three 169 
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hyperspectral images were acquired for each fruit using customised software developed at IVIA, 170 

a total of 900 images being obtained. 171 

 172 

2.3 Reference analysis  173 

The skin colour of each fruit was measured using a colorimeter (CR-300, Konica Minolta 174 

Inc., Tokyo, Japan). The mean value of the L, a and b colour coordinates (HunterLab colour 175 

space) was obtained as the average of three measurements in different parts of the fruit. The 176 

total colour difference (ΔE) between A and DA fruits was calculated by Equation (1): 177 

 178 

             
          

          
              (1) 179 

 180 

The F of the flesh was determined by means of a universal testing machine (4301, Instron 181 

Engineering Corp., MA, USA) equipped with an 8-mm puncture probe. The crosshead speed 182 

during testing was 1 mm/s. During the test, the force increased smoothly until it decreased 183 

drastically when the flesh was broken, and then the maximum peak force was registered. The 184 

results were expressed as the load (in N) required to break the flesh of the fruit on both sides 185 

after peel removal. 186 

In order to assess the astringency of the fruits, each fruit was divided into two halves: one 187 

half was pressed against a 10 × 10 cm filter paper soaked in a 5% FeCl3 solution, which 188 

produced a dark print whose distribution and intensity gave information about the ST content in 189 

the flesh (Figure 2). The other half was used to obtain the ST content by the Folin-Denis method 190 

(Taira, 1995) based on the reduction of the Folin-Ciocalteu reagent by ST in alkaline solution 191 

(Arnal and Del Río, 2004). Taking into account the heterogeneous distribution of the tannins in 192 

the flesh (Figure 2), the samples for destructive analysis were taken from the lower part and 193 

near the apex, since the tannins take longer to be removed in this part.  194 

The ANOVA, followed by Tukey's honestly significant difference test, was conducted using 195 

the software Statgraphics (Manugistics Corp., Rockville, USA) to find significant differences in 196 

the results of the physicochemical analysis related to the length of the de-astringency treatment. 197 
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The groups of samples met the following three requirements: i) the observations being tested are198 

independent within and among the groups; ii) the groups associated with each mean in the test 199 

are normally distributed; and iii) there is equal within-group variance across the groups 200 

associated to each mean in the test (homogeneity of variance). 201 

202 

2.4 Image pre-processing 203 

The reflectance captured by the camera is influenced by the intensity of the incoming light, 204 

the sensitivity of the sensor of the camera and the sensitivity of the LCFT, at the different 205 

wavelengths (Geladi, 2007). Thus, there is a need to correct these effects to obtain the true 206 

reflectance of the sample. This is done using a reflectance standard (Spectralon 99%, Labsphere, 207 

Inc, NH, USA) through Equation (2) (Gat, 2000): 208 

209 

           
    

      
           

                      

                           
        (2) 210 

211 

where     is the reflectance of the fruit, ρ
Ref

(λ) is the standard reflectance of the white reference 212 

target (99 % in this work), R(x,y,λ) is the radiance of the fruit captured by the CCD sensor of the 213 

camera, Rwhite(x,y,λ) is the radiance captured by the CCD of the white reference target, and 214 

Rblack(x,y,λ) is the radiance captured by the CCD while avoiding any light source in order to 215 

quantify the electronic noise of the CCD. 216 

The average reflectance spectrum of each area of each fruit was determined by averaging 217 

the relative reflectance spectra of all pixels included in the fruit area. This process was 218 

performed using a binary mask. To do so, a threshold was established between the background 219 

and the fruit at the wavelength of the greatest contrast between the two regions (700 nm). This 220 

provided an easy way to remove the background of the image from the fruit. In the case of the 221 

calyx view, this also allowed the leaves to be removed from the analyses. As the contrast was so 222 

high, the segmentation was quite accurate. 223 
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These operations were performed using HYPER-Tools (Mobaraki and Amigo, 2018) 224 

working under MATLAB R2017b (The MathWorks, Inc., MA, USA).  225 

 226 

2.5 Multivariate data analysis 227 

After the analysis of the ST content and knowing which fruit was A and DA, the spectra 228 

were randomly partitioned into two sets. For each area of the persimmon fruit, 201 fruit spectra 229 

(107 A and 94 DA) were used to calibrate the models and 99 fruit spectra (54 A and 45 DA) 230 

were used for independent validation or test set. 231 

PLS-R was used to quantify the ST content and PLS-DA was used to classify the fruits as A 232 

and DA according to the threshold value of 0.04% (Tesmeer et al., 2016). A model using the 233 

spectral information of each area (calyx, middle and apex) was performed.  234 

Previously, the mean spectrum of each area of the persimmon fruit was filtered using the 235 

Savitzky-Golay second derivative (3-point smoothing window, second-order polynomial) to 236 

remove both additive and multiplicative effects, and pre-treated using standard normal variate to 237 

remove the scatter (Rinnan et al., 2009). Later, each resulting spectrum was normalised by mean 238 

centre. A 10-fold CV was used to obtain the optimal number of LVs as well as an estimation of 239 

the error rate of the models. The PLS-R models were evaluated by the R
2
 and the RMSE 240 

between the predicted and the measured value of the reference parameter for calibration, CV 241 

and prediction.  Furthermore, the RPD, defined as the ratio between the standard deviation of 242 

the reference data and RMSEP, was used (Williams, 1987). The results of the PLS-DA models 243 

were expressed as the percentage of correct classification (percentage of A or DA fruits 244 

correctly classified) and total accuracy (percentage of all fruits correctly classified) for 245 

calibration, CV and prediction.  246 

In order to reduce the dimensionality of the hyperspectral images, the vector of regression 247 

coefficients was used. This method measures the association between each wavelength and the 248 

response (i.e. A and DA class) obtained by the PLS-DA model (Mehmood et al., 2012). The 249 

wavelengths with a high absolute value are selected, since they make the highest contribution to 250 

the classification, and those with a smaller absolute value are ignored. 251 



11 

The spectral pre-processing was carried out using HYPER-Tools (Mobaraki and Amigo, 252 

2018) and the PLS models were performed using MATLAB R2017b (The MathWorks, Inc., 253 

MA, USA). 254 

255 

3. RESULTS AND DISCUSSION256 

3.1 Reference analysis 257 

In general, the ST content in the fruits ranged from 1.18 % (non-treated fruits) to 0.01 % 258 

(fruit treated for 24 hours), while those fruits that were non-treated presented ST values from 259 

0.37 % to 1.18 %, depending on the time of harvesting (Table 1). 260 

261 

Table 1. Soluble tannins content and quantification of astringent and deastringed fruits 262 

Harvest 
Treatment 

duration 

Soluble tannins (%) 
#A #DA 

Min Mean Max 

1 

0h 0.37 0.69
b
 0.98 

48 52 12h 0.02 0.09
e

0.33 

24h 0.01 0.02
f
 0.03 

2 

0h 0.45 0.61
c
 0.77 

53 47 12h 0.01 0.11
e

0.31 

24h 0.02 0.03
f
 0.04 

3 

0h 0.66 0.91
a
 1.18 

60 40 12h 0.10 0.37
d

0.66 

24h 0.02 0.03
f
 0.04 

Total 0.01 0.32 1.18 161 139 

Different letters indicate significant differences between groups (p-value<0.05), according to 263 

Tukey’s (HSD) test. Min = minimum; Max = maximum; #A = number of astringent fruits; 264 

#DA = number of deastringed fruits 265 

266 

Thus, the mean value of the fruits collected in different moments was statistically different. 267 

The CO2 treatment for 12 hours resulted in fruits with a wide range of ST values between 0.66 268 

% and 0.01 %. This meant that part of the fruits could already be consumed while others still 269 

needed more hours of treatment. In this case, the mean values of the three harvests were also 270 

statistically different. When the treatment was applied for 24 hours, all fruits reached an eatable 271 



12 

stage and no statistical differences were found among the three times of harvesting. Using the 272 

threshold of 0.04% for the ST value, a total of 161 fruits were considered as A and 139 as DA 273 

(Table 1). 274 

The application of a de-astringency treatment with CO2 does not usually have any effect on 275 

the colour in the early stages of ripeness. Only slight differences could be observed between A 276 

and DA fruit coordinates (Table 2). Although significant differences were found between L and 277 

b, they are barely perceptible to the human eye. According to the International Commission on 278 

Illumination (CIE), the value of ΔE obtained (1.9) indicates that, in general, the colour 279 

difference between the two classes of fruits is minimally perceptible (Mokrzycki and Tatol, 280 

2011). 281 

282 

Table 2. Skin colour of astringent and deastringed fruits 283 

(*) indicate significant differences between groups (p-value<0.05). Min = minimum; Max = 284 
maximum; A = astringent; DA = deastringed; CI = colour index 285 

286 

As in the case of the colour, CO2 treatment does not usually affect the F of the fruit in the 287 

early stages of ripeness. However, it does give rise to a significant degree of softening in the 288 

following stages. These changes in firmness are related to the changes that take place in the cell 289 

structure (Salvador et al., 2007). Here, the mean value of the F was reduced from 47.3 N in A 290 

fruits to 43.7 N in DA fruits (Table 3). 291 

292 

Table 3. Flesh firmness of astringent and deastringed fruits 293 

L (*) a b (*) 
ΔE 

CI 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

A 56.0 62.8 67.9 1.9 11.7 25.6 32.6 37.1 41.0 
1.9 

-0.03 5.1 13.5 

DA 56.8 62.2 67.5 -2.25 13.4 30.5 32.3 36.7 41.7 -1.08 5.9 14.7 

Flesh firmness (N) (*) 

Min Mean Max 

A 37.4 47.3 58.9 

DA 29.9 43.7 54.5 
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(*) indicate significant differences between groups (p-value<0.05). Min = minimum; Max = 294 
maximum; A = astringent; DA = deastringed  295 

296 

297 

3.2 Spectral analysis 298 

The average spectra obtained for each measured area of A and DA fruits are illustrated in 299 

Figure 3. The spectra of all fruits followed a similar pattern in each area. Slight differences were 300 

present in the VIS region around 460 nm, 550-600 nm and 650-710 nm, where carotenoids, 301 

anthocyanins, chlorophylls and other pigments are responsible for fruit colour (Rajkumar et al., 302 

2012). In the NIR region, some differences were found, especially in the apex area, around 750 303 

nm, where a water absorption peak (OH second overtone) is observed (Siedliska et al., 2018; 304 

Williams and Norris, 1987). Noypitak et al. (2015) indicated that phenolic compounds are 305 

located between 940-1000 nm and the absorption peak of tannic acid is seen at 996 nm. In this 306 

case, slight differences were found close to these wavelengths between the A and DA spectra. 307 

However, it is not clear whether this corresponded to the ST content because a water absorption 308 

peak (third overtone of OH stretching vibration) dominates this part of the spectrum (Nicolaï et 309 

al., 2007). 310 

311 

3.3 Prediction of soluble tannins content 312 

PLS-R models were performed to quantify the content of ST in each fruit using the spectral 313 

range of 450-1050 nm. Table 4 shows the results of the prediction of ST content obtained for 314 

the three areas of the fruit that were measured. 315 

The optimal model was chosen when the number of LV yields the lowest RMSE for 316 

calibration and CV. Therefore, 15 LVs were determined for the calibration of the model of the 317 

calyx area, 12 for the middle area model and 13 for the apex area model. The model using the 318 

spectra obtained from the calyx area achieved the lowest R
2
 (0.49) while the highest RMSE 319 

(0.25 %) was obtained in the test set. In contrast, the model built for the middle area offered 320 

better results, with an R
2
 of 0.69 and an RMSE of 0.19 %, while the model obtained for the apex 321 

area achieved the highest R
2
 and the lowest RMSE of 0.73 and 0.18 %, respectively. The RPD 322 
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values indicate that only the models that used measurements obtained in the middle and apex 323 

areas could discriminate between low and high ST values (RPD values between 1.5 and 2) 324 

(Nicolai et al., 2007). However, in all cases, the RMSE value was higher than the 0.04 % 325 

threshold, which means that the models were not altogether useful for accurate prediction in 326 

fruits with extremely low ST content. 327 

328 

Table 4. Results of calibration and validation of the models to predict the ST content using 329 

hyperspectral imaging and the different areas of the fruit 330 

Area #LV 
Calibration Cross validation Prediction 

R
2
 RMSE R

2
 RMSE R

2
 RMSE RPD 

Calyx 15 0.71 0.18 0.54 0.23 0.49 0.25 1.4 

Middle 12 0.71 0.17 0.60 0.21 0.69 0.19 1.8 

Apex 13 0.76 0.16 0.64 0.20 0.73 0.18 1.9 

#LV = number of latent variables 331 

332 

The scientific literature contains other studies that achieve findings similar to ours but using 333 

mostly spectroscopy instead of hyperspectral imaging. For example, Noypitak et al. (2015) used 334 

interactance mode in the evaluation of ST using different areas of persimmons cv. ‘Xichu’, 335 

achieving, as best result, an R
2
 of 0.93 and a high RMSE of 0.22 % but using the calyx area. 336 

However, the higher R
2
 was probably achieved because most of the persimmons used had very 337 

low (0.02 %) or very high (1.6 %) tannin contents and only a few samples had intermediate 338 

values. In the case of ‘Rojo Brillante’, Cortés et al. (2017) developed models using spectra pre-339 

treated with different techniques, achieving better results in terms of R
2
 (0.91) and RMSE, 340 

above 0.08 %, using six measurement points distributed throughout the fruit.. In this case, the 341 

ST content ranged from 0.023 to 0.75 but DA fruit were 20 %, while in our case they represent 342 

46 % of the fruit in the models. Moreover, most of the error is introduced by fruits with very 343 

low ST values. Alitieri et al. (2017) also achieved a good prediction result with an R
2
 higher 344 

than 0.98 but in the cross validation set and using fruits with ST content values between 0.1 % 345 
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and 1.7 %, which should be considered as astringent in all cases from a commercial point of 346 

view. 347 

Figure 4 shows the prediction performance of the model using the test set and the data 348 

captured in the apex area. Taking into account the threshold of 0.04 %, only 77.8 % of A fruits 349 

and 42.2 % of DA fruits were correctly predicted. These results are clearly low and below those 350 

expected. Thus, the direct prediction of very low values of ST content (such as 0.04 %) does not 351 

seem to be possible with the procedure followed. This is probably because the concentration of 352 

ST is correlated with other major biochemical constituents such as pigments, water or other 353 

soluble solids like sugars that can mask the detection of constituents when the content is very 354 

low (Nicolaï et al., 2007). For this reason, a different approach to measuring astringency other 355 

than the direct estimation of ST was required. PLS-DA models were then developed to 356 

maximise the separation between classes A and DA, not only with respect to the differences in 357 

ST content, but also to capture the information contained in the spectra related to other 358 

properties that can contribute to make each class different. 359 

360 

3.4 Detection of astringent and deastringed fruits  361 

As in the prediction of ST content, the calyx, middle and apex areas were tested to 362 

distinguish A and DA fruits using PLS-DA models. The results of the classification models 363 

using hyperspectral imaging are presented in Table 5. 364 

The calibration of the calyx and apex area models was performed using 18 LVs, while for 365 

the middle area model only 13 LVs were necessary. Furthermore, the internal CV of the middle 366 

area model presented the highest precision (86.6 %), then the apex area (82.6 %) and the calyx 367 

area model presented the lowest results, 78.1 %. This fact agrees with the previous results of the 368 

quantification of ST content, where the calyx area was the least precise part for this purpose. 369 

The middle and calyx area models correctly classified more A fruits, 89.7 % and 78.5 % 370 

than DA fruits, 83.0 % and 77.7 %, respectively. In the case of the apex area, more DA fruits 371 

were correctly classified: 83.0 % versus 82.2 %. 372 
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The mean spectrum of each fruit of the test set was classified using the previously calibrated 373 

models. As in the calibration and CV, the model using the calyx area presented less precision, 374 

correctly classifying 83.3 % of A fruits and 77.8 % of DA fruits, and showing a total accuracy 375 

of 80.8 %. In the case of the middle and apex areas, their prediction showed similar results with 376 

87.0 % of A fruits and 91.1 % and 88.9 % DA fruits being classified correctly. Therefore, the 377 

total accuracy of the middle and apex area models, 88.9 % and 87.9 %, was higher than that of 378 

the calyx area. This fact agrees with the results obtained in the quantification of ST, where the 379 

calyx area was the least accurate area for this purpose (Table 4). 380 

381 

Table 5. Results of the classifications using the calyx, middle and apex areas and all 382 

wavelengths 383 

Area #LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 

(%) 

Acc 

(%) 
#A #DA 

CC 

(%) 

Acc 

(%) 
#A #DA 

CC 

(%) 

Acc 

(%) 

Calyx 18 
A 95 12 88.8 

89.1 
84 23 78.5 

78.1 
45 9 83.3 80.8 

DA 10 84 89.4 21 73 77.7 10 35 77.8 

Middle 13 
A 101 7 94.4 

91.5 
96 11 89.7 

86.6 
47 7 87.0 

88.9 
DA 11 83 88.3 16 78 83.0 4 41 91.1 

Apex 18 
A 100 6 93.5 

91.0 
88 19 82.2 

82.6 
47 7 87.0 

87.9 
DA 11 83 88.3 16 78 83.0 5 40 88.9 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 384 

deastringed fruits; CC = correct classification; Acc = accuracy 385 

386 

Previous studies have been conducted to classify the fruits according to their astringency 387 

using spectral information. It is noteworthy that the best results in terms of ST prediction have 388 

been reported when values of ST content are high (Zhang et al., 2013; Altieri et al., 2017; 389 

Cortés et al., 2017, Munera et al., 2017). In this line, Noypitak et al. (2015) reported on a model 390 

in which a classification accuracy of 97.1% was achieved, assuming that the persimmon with an 391 

ST content lower than 0.8% is non-astringent. However, as mentioned in the introduction 392 

section, the threshold of ST to detect astringency is not established and is highly dependent not 393 
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only on the cultivar but also on the consumer’s country of origin (Antoniolli et al., 2000; 394 

Antoniolli et al., 2002; Yamada et al., 2002; Tessmer et al 2016). In ‘Rojo Brillante’ persimmon 395 

it has been widely reported that sensorial astringency loss occurs when tannin content is lower 396 

than 0.04% (Salvador et al 2007; Tessmer et al 2016). This means that the predictive models 397 

previously reported would not be valid for this cultivar. In the present study the threshold 398 

applied was 0.04% to guarantee the complete non-astringency of the fruits. Although the result 399 

of the ST predictive model might seem a priori unsatisfactory (42.2 % of DA fruits correctly 400 

classified), this is the first work in which such a low ST threshold has been established to 401 

guarantee the non-astringency of the fruits. The results reveal that the higher the established ST 402 

threshold is, the better the results provided by the predictive models are. This fact leads us to 403 

think that other attributes, besides the ST content, may influence the spectral response of 404 

persimmon.  405 

Salvador et al. (2007) evaluated the physiological and structural changes that occur after 406 

407 the deastringency treatment with high CO2 concentrations in persimmon 'Rojo Brillante' 

at different maturity stages. Some of the reported changes may affect the spectral information. 408 

this way, a decline in the TSS, measured as ºBrix, occurs after deastringency treatment 409 

concomitant to the drop in ST as a response to the deastringency process. On the other hand, 410 

411 after the CO2 treatment a significant increase in pH is observed. This rise in the pH value is 

also related to the process by which soluble tannins, the acid components, become insoluble 412 

the application of the treatment. It is noteorthy          that the measurements of soluble solids in 413 

persimmon are related to ST, but also to sugars and acids, are located between 720 nm and 820 414 

nm, phenolic compounds are between 940 nm and 1000 nm, and the tannic acid peaks at 996 415 

nm. 416 

In addition, it must be taken into account that the cellular microstructure can have an 417 

important effect on the spectral response. Hence, it has been reported that the deastringency 418 

process causes important changes in the cell microstructure. The insolubilisation of tannins 419 

occurs inside the vacuoles of tannin cells, which appeared to be filled with an insoluble material 420 

(like a compact mass) (Salvador et al., 2007). Thus, depending on the level of insolubilisation 421 
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during the deastringency treatment, the number of cells in the parenchyma containing insoluble 422 

423 material will be greater or lower. Moreover, the CO2 applied, in addition to triggering 

the insolubilisation of tannins, also brings about a progressive degradation of the 

parenchyma 

424 

structure, affecting the cell walls and integrity of the cell membranes. The adhesion bonds 425 

between some cells are lost in certain areas and the intercellular spaces are filled with a soluble 426 

material. This effect becomes greater as the treatment time increases (Salvador et al 2007; 427 

Novillo et al., 2014). It should be noted that the declining firmness that occurs during the 428 

maturity process of persimmon fruit has been associated with a gradual loss of parenchyma 429 

structure due to degradation of the cell wall and membrane (Salvador et al., 2007; Tessmer et 430 

431 al., 2016). In the same way, the effect of high concentrations of CO2 on the cellular structure 

is related to a loss of firmness.  432 

433 These structural changes associated with both the maturity stage and the CO2 

treatment may have an important effect on the spectra, since firmness is related to the water 

content in the 

434 

cells (water absorption peaks at 750 nm and 970 nm) and the structural status of the 435 

parenchyma. This may have an influence on the way the light interacts with the cells and is 436 

transmitted through the fruit and hence the spectral response received by the spectrometer, 437 

which allowed A fruits to be separated from DA fruits. 438 

439 Regarding the colour, the treatment with CO2 did not cause any great changes in fruit 

skin for the earlier stages of fruit maturity, although small differences were observed in the last 

stage 

440 

due to changes in carotenoids, anthocyanins and chlorophylls related to wavelengths 450–720 441 

nm, 460 nm, 550–600 nm and 650–710 nm (Rajkumar et al., 2012). However, since the colour 442 

has not previously been evaluated to detect the astringency of the 'Rojo Brillante' persimmon, a 443 

PLS-DA model was calibrated using the HunterLab colour coordinates L, a, b. As a result, 66.7 444 

% of A and 33.6 % of DA fruits were correctly classified, showing a total precision of 52.5 % 445 

(Table 6). This result indicates that traditional colour measures are not useful for the 446 

discrimination of A and DA fruits. However, from the results obtained using hyperspectral 447 

images, it is possible to present an alternative to those methods that are destructive, need 448 

chemical analysis, are subjective and only allow the inspection of a few samples per batch. 449 
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450 

Table 6. Results of the classification of A and DA fruits using the colour information. 451 

#LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 

(%) 

Acc 

(%) 
#A #DA 

CC 

(%) 

Acc 

(%) 
#A #DA 

CC 

(%) 

Acc 

(%) 

2 
A 78 29 72.9 

57.2 
77 30 72.0 

58.7 
36 18 66.7 

52.5 
DA 57 37 39.4 53 41 43.6 29 16 35.6 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 452 

deastringed fruits; CC = correct classification; Acc = accuracy 453 

454 

3.4.1 Selection of optimal wavelengths 455 

In order to reduce the complexity of the system, the number of wavelengths used should be 456 

reduced because a large number of wavelengths increases the acquisition time while it reduces 457 

the performance of classifiers (Friedman, 1994). Numerous techniques have been employed to 458 

deal with this issue, such as restricting the information to just a few bands which reveal the most 459 

variability and therefore the most significant information in the hyperspectral image (Du and 460 

Sun, 2006). In this study, the vector of the regression coefficients was used. A total of 23 461 

optimal wavelengths were selected in the vector of each area, all of them being located across 462 

the VIS and NIR region (Figure 5). 463 

The high number of wavelengths selected indicated that there are no specific ones that can 464 

be specifically linked to the tannins or other particular constituents related to astringency. 465 

Hyperspectral images show a high degree of collinearity and redundant information and this 466 

selection is probably a reduction of this information. More than half of the selected wavelengths 467 

for the three areas are located in the VIS region, which is related to the carotenoids, 468 

anthocyanins, chlorophylls and other pigments responsible for fruit colour, as previously 469 

commented. Several wavelengths were selected near the water absorption peaks, around 750 nm 470 

(first overtone of OH) and 970 nm (third overtone of OH) (Siedliska et al., 2018; Nicolaï et al., 471 

2007; Williams and Norris, 1987). Other selected wavelengths are located around 850 nm, 472 

which is assigned to the absorption of acids and sugars (Yang et al., 2015). As commented 473 

earlier, phenolic compounds are located between 940–1000 nm and the absorption peak of 474 
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tannic acid is seen at 996 nm (Noypitak et al., 2015). Several selected wavelengths are located 475 

in this region but it is not clear whether this corresponded to the ST content or to the water 476 

absorption peak. 477 

The optimised classification models were built using the selected wavelengths as input. 478 

Results of the calibration are presented in Table 7. The models for the calyx and apex areas 479 

were performed using 15 and 13 LVs, while only eight LVs were necessary to build the model 480 

for the middle area. In this case, the increased accuracy in CV made the results more similar in 481 

the calibration of the models. As in the case of the models built using the full spectra, the 482 

internal CV of the middle area presented the highest accuracy (88.1%), then the apex area with 483 

83.1% and the calyx area model presented the lowest results with only 78.6% of total accuracy. 484 

In all cases, A fruits were detected better than DA fruits, which is in line with the principal aim 485 

of detecting astringent fruits among those that have been submitted to a CO2 treatment. 486 

As in the classification performed using all wavelengths, the class of each fruit in the test set 487 

was predicted by introducing the mean spectrum of the fruit into the previously optimised 488 

models. In the case of the middle and apex areas, their prediction of A fruits showed similar 489 

results between areas and using all and the optimal wavelengths, resulting in a correct 490 

classification of 87.0% of A fruits. However, precision was lower for both areas in DA fruits, 491 

with respect to the previous models, i.e. 86.7 %and 84.4% of DA fruits. Therefore, the total 492 

accuracy of the middle and apex area models was 86.9% and 85.9%. Despite the reduction in 493 

precision in the classification of DA fruits using fewer wavelengths, this is more desirable than 494 

the contrary. If a DA fruit is classified as A, it can be treated again with CO2, but if an A fruit is 495 

classified as DA, this fruit goes directly to the consumer. In the case of the calyx area model, 496 

81.5% of A and 82.2% of DA fruits were classified correctly. The total accuracy was a little 497 

higher than when using all the wavelengths (81.8%), although it was again the least accurate of 498 

the three areas.  499 

500 

Table 7. Results of the classification using the calyx, middle and apex areas and optimal 501 

wavelengths selected 502 
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Area #V #LV Class 

Calibration Cross Validation Prediction 

#A #DA 
CC 

(%) 

Acc 

(%) 
#A DA 

CC 

(%) 

A 

(%) 
#A #DA 

CC 

(%) 

Acc 

(%) 

Calyx 23 15 
A 90 17 84.1 

82.6 
89 18 83.1 

78.6 
44 10 81.5 

81.8 
DA 18 76 80.9 25 69 73.4 8 37 82.2 

Middle 23 8 
A 97 10 90.7 

90.0 
96 11 89.7 

88.1 
47 7 87.0 

86.9 
DA 10 84 89.4 13 81 86.2 6 39 86.7 

Apex 23 13 
A 94 13 87.9 

86.6 
91 16 85.0 

83.1 
47 7 87.0 

85.9 
DA 14 80 85.1 18 76 80.9 7 38 84.4 

#LV = number of latent variables; #A = number of astringent fruits; #DA = number of 503 

deastringed fruits; CC = correct classification; Acc = accuracy 504 

505 

4. CONCLUSIONS506 

The capability of VIS-NIR hyperspectral imaging to discriminate A and DA hard ‘Rojo 507 

Brillante’ persimmon fruits was investigated. Furthermore, as ST are heterogeneously 508 

distributed in the flesh of persimmon fruit, an individual study of three different areas of the 509 

fruit was carried out in order to find the most suitable to maximise the accuracy of the models. 510 

The prediction of ST content in the fruits was performed using PLS-R models. The results 511 

obtained indicated that the model using the spectra of the apex area was the most accurate, R
2
 of 512 

0.71 with an RMSE of 0.18 and RPD 1.9. However, only 77.8% of A fruits and 42.2% of DA 513 

fruits were correctly classified using PLS-R when the threshold of 0.04% was applied which 514 

was clearly insufficient. Therefore, PLS-DA models were performed in order to maximise the 515 

separation between A and DA classes, which led to an improvement in the results. The most 516 

accurate models were those performed using middle and apex area spectra (88.9% and 87.9%), 517 

with a correct classification of 87.0% of A fruits and 91.1% and 88.9% of DA fruits, 518 

respectively. When the discrimination of the fruit was performed using colour information, the 519 

accuracy in the classification was only 66.7% for A and 33.6% for DA fruits. 520 

To reduce the huge amount of data captured by the hyperspectral systems, the vector of the 521 

regression coefficients of the PLS-DA model of each area was used to identify the optimal 522 

wavelengths. As when using all wavelengths, the most accurate models were those involving 523 
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the middle and apex areas and 23 optimal wavelengths (86.9% and 85.9%), also with a correct 524 

classification of 87.0% of A fruits and 86.7% and 84.4% of DA fruits, respectively. 525 

According to these results, hyperspectral imaging combined with multivariate analysis has a 526 

great potential as a tool for rapid and non-destructive control of effectiveness of the astringency 527 

removal treatment applied to persimmon cv. ‘Rojo Brillante’. Nevertheless, the results of this 528 

study need further experimentation on a larger set of fruits grown in different areas and 529 

harvested at different stages of ripeness before this could be effectively implemented in an in-530 

line system. 531 
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FIGURES 670 

 671 

Figure 1. Hyperspectral images of the three areas of persimmon fruit acquired at 710 nm. 672 

 673 

Figure 2. Example of external and internal appearance of the fruit before and after de-674 

astringency treatment. Visualisation of the distribution of ST using the alternative method of 675 

foils soaked in FeCl3. A = astringent; DA = deastringed 676 

 677 

Figure 3. Mean pre-treated spectra of each area of astringent (A) and deastringed (DA) fruits. 678 

 679 

Figure 4. Prediction of the soluble tannins content in test set fruit using the apex area.  680 

The red lines indicate the threshold value of 0.04% 681 

 682 

Figure 5. Regression coefficients vector of the PLS-DA model of each area with the optimal 683 

wavelengths selected.  684 
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