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Abstract 

The stability of dual-phase oxygen transport membranes consisting of 70 vol.% (Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 and 

30 vol.% MnCo2O4 (10Sc1YSZ-MCO (70-30 vol.%)) was investigated in simulated oxy-fuel power plant flue-gas 

(250 ppm SO2, H2O, balance CO2). Additionally, the influence of catalytic porous backbones on the performance 

of the membrane was studied in the same conditions. The chemical stability of the dual-phase membrane was 

investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The tests 

performed before and after the exposure to the simulated flue gas showed excellent chemical stability. 

Electrochemical impedance spectroscopy (EIS) measurements were performed on activated and non-activated 

porous catalytic backbones made of: (i) 8YSZ, (ii) 8YSZ-MCO (40-60 vol.%), (iii) 10Sc1YSZ-MCO (40-60 

vol.%), (iv) 10Sc1YSZ-MCO (70-30 vol.%), and (v) Ce0.8Tb0.2O2-δ (CTO) - NiFe2O4 (NFO) (40-60 vol.%) to 

achieve a better understanding of the oxygen surface reactions (especially in SO2 and CO2 containing 

atmospheres). The lowest polarization resistances (Rp) were found for 10Sc1YSZ-MCO (40-60 vol.%) and CTO-

NFO (40-60 vol.%) porous backbones. Oxygen permeation tests realized on 10Sc1YSZ-MCO membranes 

demonstrated that the catalytic porous backbones can significantly influence the oxygen permeation flux, and 

improvements of up to 55 % were achieved. Both EIS and oxygen permeation measurements showed a significant 

influence of SO2 on the oxygen oxidation/reduction reactions (increase of Rp, decrease of oxygen permeation 

fluxes) due to SO2 adsorption and blocking of active sites for the oxygen reactions. Nevertheless, no 

microstructural degradation was found after SO2 exposure and initial Rp values and oxygen permeation fluxes 

could be recovered in most cases. 
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Highlights 

• 10Sc1YSZ-MCO membranes are stable under oxy-fuel relevant conditions. 

• A catalytic porous backbone on the membrane improves the efficiency to transport oxygen. 

• Oxygen fluxes-up to 0.28 mLN cm-2 min-1 (850 °C, air/Ar) measured. 

 



1. Introduction 

The reduction of CO2 emissions is currently an important challenge for the society. This mission can be achieved 

by introducing gas separation techniques to capture and store CO2 from large point sources like fossil fuel power 

plants, steel plants or cement kilns. Among the available technologies for Carbon Capture and Storage (CCS), 

oxy-fuel combustion is a promising option. This approach uses pure oxygen to combust the fossil fuel, resulting 

in flue-gases consisting mainly of CO2 (90-95 %) and steam [1][2]. Typically, cryogenic air separation units 

(ASUs) are used to produce the required oxygen. While this technique is mature, the process is particularly 

expensive and consumes a considerable amount of energy [3][4]. Ceramic oxygen transport membranes (OTMs) 

that supply the oxygen needed for the combustion process may, when thermally integrated, operate more 

efficiently, using less energy [5][6][7]. 

OTMs are typically formed by Mixed Ionic Electronic Conductors (MIEC), which allow oxygen diffusion through 

vacancies in the crystal lattice and simultaneous transport of electrons in the opposite direction. The membranes 

are fully dense which results in a high selectivity in the separation. An oxygen partial pressure differential between 

an oxidizing gas (air at 0.21 atm) and a reducing gas (recirculated flue gas at pO2 ≈ 10-2 atm [8]) exists across the 

membrane, providing a driving force for the oxygen separation allowing oxygen ion transport from the high 

oxygen partial pressure side to the low oxygen partial pressure side. Membranes based on single MIEC materials 

can achieve high oxygen fluxes [9][10][11][12][13][14][15][16][17][18][19], however most of the promising 

materials are not chemically stable under atmosphere containing CO2 and SO2 [12][20][21][22][23][24][25][26], 

which is particularly required for oxy-fuel combustion applications. Dual-phase composites consisting of separated 

ionic and electronic conductor phases are a promising alternative approach to ensure high oxygen flux and 

chemical stability in realistic power plant conditions.  

Dual-phase membranes consisting of a thin (7 µm) dense layer made of 70 vol.% of (Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 

(10Sc1YSZ) as ionic conductor and 30 vol.% of MnCo2O4 (MCO) as electronic conductor, supported on a 

(Y2O3)0.03(ZrO2)0.97 (3YSZ) porous support, were developed and tested in a previous study [27]. The study showed 



the excellent stability of the asymmetric membrane in CO2 containing atmosphere and oxygen permeation fluxes 

as high as 1.41 mlN min-1 cm-2 and 2.23 mlN min-1 cm-2 were obtained at 940 ºC in air/N2 and O2/N2 atmospheres, 

respectively. 

Assuming that the oxygen flux produced by the membrane is in direct proportion with its thickness, thin 

asymmetric membranes are advantageous to minimize the resistance arising from bulk diffusion. In this case, other 

mechanisms such as catalytic surface exchange and gaseous transport become limiting factors of the oxygen 

separation as reported in literature [27]. Consequently, further improvement of the catalytic activity at the surface 

is required. In order to enhance the surface exchange kinetics, electro-catalytic materials (referred as catalytic 

porous backbones throughout this study) can be applied on both sides of the membrane [28]. 

The present article studies the stability of 10Sc1YSZ-MCO dual-phase membranes and the influence of catalytic 

porous backbones on the oxygen permeation under conditions relevant for oxy-fuel combustion. The stability of a 

7 µm thick asymmetric membrane was evaluated by a 170 h long test performed in simulated oxy-fuel power plant 

flue-gas (250 ppm SO2 + 5 % O2 + 3 % H2O balanced in CO2 [8]). Several characterization techniques (X-ray 

diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM)) were used to verify the possible 

utilization of the membrane for direct application in oxy-fuel power plants. To further improve the membrane 

performance, five catalytic porous backbone materials; (i) (Y2O3)0.08(ZrO2)0.92 (8YSZ), (ii) 8YSZ-MCO (40-60 

vol.%), (iii) 10Sc1YSZ-MCO (40-60 vol.%), (iv) 10Sc1YSZ-MCO (70-30 vol.%), and (v) Ce0.8Tb0.2O2-δ (CTO)-

NiFe2O4 (NFO) (40-60 vol.%) were prepared, and characterized by electrochemical impedance spectroscopy 

(EIS). The impact of the catalytic activation of the backbones (infiltration of electro-catalytic solutions) on the 

efficiency of the oxygen separation was investigated and the oxygen permeation was measured in simulated oxy-

fuel conditions (sweep gas: CO2 + SO2 + Ar). 

2. Experimental 

2.1. Preparation of porous backbones  



Five screen-printable inks made of  (i) 8YSZ, (ii) 8YSZ-MCO (40-60 vol.%), (iii) 10Sc1YSZ-MCO (40-60 vol.%), 

(iv) 10Sc1YSZ-MCO (70-30 vol.%), and (v) CTO-NFO (40-60 vol.%) were prepared by milling the powders with 

a 6 wt.% ethylcellulose-terpineol solution in a 1:1 weight ratio by using a triple roll mill. The 8YSZ powder used 

to prepare the ink (i) was purchased from Tosoh (Japan). The composite powders (ii), (iii), and (iv) were prepared 

by milling 8YSZ (Tosoh, Japan), MCO (Marion Technologies, France) and 10Sc1YSZ (Daiichi Kigenso Kagaku 

Kogyo Co. Ltd, Japan) commercial powders in ethanol using zirconia balls for 24 h. CTO-NFO (40-60 vol.%) was 

prepared by one pot Pechini method as described by Garcia-Fayos et al. in a previous study [29].  

2.2. Membranes fabrication 

Thin (7 µm) asymmetric supported membranes made of 70 vol.% of 10Sc1YSZ and 30 vol.% of MCO were 

prepared to study the thermochemical stability of the membrane under oxy-fuel power plants conditions. More 

robust membranes of 0.5 mm thick able to support higher pressure were required for oxygen permeation tests. This 

section describes the fabrication processes of these two membrane architectures. 

2.2.1. Thick symmetric membrane 

The ionic (10Sc1YSZ, Daiichi Kigenso Kagaku Kogyo Co. Ltd, Japan) and electronic (MnCo2O4, Marion 

Technologies, France) conductors were blended in a 70-30 vol.% ratio to form the 10Sc1YSZ-MCO composite 

material. The particle size of the powders was adjusted to the submicron range by 24 h of ball-milling in ethanol. 

After drying, the composite powder was uniaxially pressed on a 26 mm diameter steel die (50 MPa) to form green 

disks. The disks were sintered at 1250 ºC for 6 h in air, and afterwards polished down to 0.5 mm by using SiC 

polishing papers. In-house made inks of (i) 8YSZ, (ii) 10Sc1YSZ-MCO (70-30 vol.%) and (iii) CTO-NFO (40-60 

vol.%) were screen-printed on both sides of the membranes to serve as catalytic porous backbones. However, one 

of the membrane was kept without backbone coatings. To obtain similar porosity for all catalytic porous backbones 

and therefore be able to compare their performances while neglecting the gas diffusion parameter, the coated 

membranes were calcined at different temperatures and the porosity of the backbones was checked by SEM. Thus, 



the 8YSZ porous backbone was formed at 1150 ºC, CTO-NFO at 1100ºC, while 10Sc1YSZ-MCO were treated at 

975 ºC (2 h in air). To overcome slow surface exchange/reaction kinetics, the backbones were infiltrated by a 2 M 

precursor solution of Ce-Pr catalyst (molar ratio 1:1) prepared by dilution of Ce and Pr nitrates in ethanol/water. 

Figure 1 presents schematic illustrations of the thick symmetrical membranes tested. 

 

Figure 1: Schematic illustrations of the 0.5 mm thick 10Sc1YSZ-MCO symmetrical membranes prepared for oxygen permeation 
measurements. Each membrane was coated with a different backbone material: a) 8YSZ, b) 10Sc1YSZ-MCO, c) CTO-NFO and d) no 

coatings. 

2.2.2. Thin asymmetric membrane 

As presented Figure 2, the asymmetric membrane consists of a three distinct layers: a 300 µm thick porous support 

(3YSZ + 20 vol.% of Al2O3), a 10 µm thick porous 8YSZ inter-layer and a thin (7 µm) 10Sc1YSZ-MCO dense 

layer (post-sintering thicknesses). All layers were manufactured separately by tape-casting. Then, the green tapes 

were assembled by lamination at 135 °C and disks were cut out using a stamping tool. A two-step sintering 

including a peak temperature at 1225 °C (3 min) and a dwell temperature of 1090 °C (6 h) was used to develop 

the asymmetric membranes. The complete manufacturing procedure of the 10Sc1YS-MCO asymmetric 

membranes was detailed in a previous study [27]. 



 

Figure 2: Schematic illustration of the thin asymmetric 10Sc1YSZ-MCO membrane used for the long-term stability test in oxy-fuel 
conditions. 

 

2.3. Characterization 

2.3.1. Thermochemical stability test and material characterization 

The thermochemical stability of a 7 µm thin asymmetric membrane was studied in a quartz horizontal testing unit. 

The testing unit was installed in an oven and heated up to 850 ºC in wet N2 (3 % H2O). When the temperature was 

reached, the gas composition was switched to a gaseous mixture containing 250 ppm of SO2 and 5 % of O2 

balanced in CO2. The gaseous mixture was provided by a pre-mixed gas cylinder (Linde). Wet gas conditions (3 

% H2O) were supplied by bubbling the gas stream through water at room temperature. The asymmetric membrane 

was in direct contact with the gas mixture flowing at 10 mlN min-1 for 170 h. After the exposure of the membrane 

to the gas atmosphere, the testing unit was cooled down in wet N2 by natural convection (20-25 °C min-1). 

To compare the microstructure of the tested asymmetric membrane with a similar untested membrane, X-ray 

diffraction (XRD), Raman spectroscopy and scanning electron microscopy with energy-dispersive X-ray 

spectroscopy (SEM-EDX) analyses were performed.  



The XRD measurements were carried out using a PANalytical Cubix fast diffractometer, using CuKα1 radiation 

(λ = 1.5406 Å) and a X’Celerator detector in Bragg−Brentano geometry. XRD patterns recorded in the 2θ range 

from 10° to 90° were analyzed using X’Pert Highscore Plus software.  

SEM-EDX analyses were performed using a ZEISS Ultra55 field emission scanning electron microscope.  

Raman spectra were measured with a Renishaw inVia Raman spectrometer equipped with a Leica DMLM 

microscope and a 514-nm Ar+ ion laser as an excitation source. A x50 objective of 8-mm optical length was used 

to focus the depolarized laser beam on a spot of about 3 µm in diameter. The Raman scattering was collected with 

a charged coupled device (CCD) array detector. 

2.3.2. Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS) measurements were performed on 1 mm thick fully dense 

Ce0.8Gd0.2O2-δ (GDC) electrolytes sintered at X ºC for Y h and coated on both sides by the studied backbone 

materials: (i) 8YSZ, (ii) 8YSZ-MCO (40-60 vol.%), (iii) 10Sc1YSZ-MCO (40-60 vol.%), (iv) 10Sc1YSZ-MCO 

(70-30 vol.%), and (v) CTO-NFO (40-60 vol.%). As stated in the section 2.2.1., to obtain similar porosity for all 

catalytic layers the coated GDC electrolytes were calcined at different temperatures. The performance of the 

backbones was investigated with and without infiltrations of a homemade catalytic solution of Ce and Pr nitrates 

(excepting 8YSZ, only tested with catalyst infiltrations because it is a purely ionic conductor). The catalyst 

infiltration was identically processed for all backbones. The infiltrated backbones were treated at 850 ºC for 2 h in 

air. Finally, a top gold mesh was painted on the surfaces of all samples in order to ensure proper current collection 

during the EIS measurements.  

The symmetrical cells were tested by means of electrochemical impedance spectroscopy in a two-point 

configuration. Input signal was 0 V DC – 20 mV AC amplitude in the 0.01 – 3·105 Hz frequency range. This signal 

was generated by a Solartron 1470E and a 1455A FRA module equipment. EIS measurements were performed at 

850 ºC, under several atmospheres ((i) 21 % O2 in N2, (ii) 5 % O2 in N2, (iii) 5 % O2 in CO2 and (iv) 250 ppm SO2 



+ 5 % O2 in CO2). In all cases, the total gas flow remained constant (100 ml·min-1). Zview™ 2 fitting programme 

was employed to analyze the impedance spectra. 

2.3.3. Oxygen permeation tests 

Oxygen permeation tests were carried out in a lab-scale quartz reactor (Figure 3). Synthetic air (21 %, vol. O2) 

was fed with a flow rate of 100 mLN min-1, while argon, CO2 and SO2 mixtures were used as sweep gases on the 

permeate side in a 4-end mode configuration with a flow rate of 150 mLN min-1. The flow rates were controlled by 

mass flow controllers. Both streams were fed at atmospheric pressure. The temperature was measured by a 

thermocouple attached to the membrane. A PID controller maintained the temperature within 2 ºC of the set point. 

Gas-tight sealing was achieved using O-rings with tailored alloys for sealing at 850 ºC. The permeate was analyzed 

at steady state by online gas chromatography using a micro-GC Varian CP-4900 equipped with Molsieve5A, Pora-

Plot-Q glass capillary, and CP-Sil modules. Oxygen concentration was calculated from the O2 signal area and its 

response factor previously calibrated. The total oxygen permeation was calculated as the product of the O2 

concentration (%𝑂𝑂2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and the sweep flow (𝑛̇𝑛′′). The oxygen permeation flux (𝐽𝐽𝑂𝑂2) was then determined 

from the division of the total oxygen permeation by the effective area (𝐴𝐴) of the membrane as: 

𝐽𝐽𝑂𝑂2 = %𝑂𝑂2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙
𝑛̇𝑛′′ 
𝐴𝐴

 (1) 

To ensure leak free conditions the nitrogen concentration in the permeate gas was continuously controlled. Oxygen 

related to minor leaks was removed from 𝐽𝐽𝑂𝑂2  calculation by taking into account the presence of N2 in the permeate 

stream. Therefore, the permeating oxygen (%𝑂𝑂2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎) was calculated as: 

%𝑂𝑂2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = %𝑂𝑂2,𝐺𝐺𝐺𝐺 − �0.21
0.79

∙ %𝑁𝑁2,𝐺𝐺𝐺𝐺� (2) 

where %𝑂𝑂2,𝐺𝐺𝐺𝐺 and %𝑁𝑁2,𝐺𝐺𝐺𝐺 are the percentages of oxygen and nitrogen measured by the gas chromatography in 

the permeate, respectively. 



 

Figure 3: Schematic illustration of the lab-scale quartz reactor used for the oxygen permeation tests. 

3. Results and discussion 

3.1. Thermochemical stability in oxy-fuel conditions 

To investigate the applicability of the membrane in oxy-fuel power plants, the effects on the membrane of a gas 

stream containing CO2, SO2 and H2O were studied.  

In this section, post mortem analyses (XRD, Raman spectroscopy and SEM) of a membrane exposed to a 

continuous flow of simulated oxy-fuel power plant flue-gas (250 ppm of SO2, 5 % of O2, 3 % of H2O balanced 

with CO2) during 170 h at 850 ˚C are presented and compared to an untested sample. 

Figure 4 shows the XRD diffractograms of the treated and untreated 10Sc1YSZ-MCO membranes. Both 

diffractograms are comparable, additional diffraction peaks related to the formation of new crystalline phases 

could not be observed, and all observed peaks belong to 10Sc1YSZ [30][31][32] or MnCo2O4 (JCPDS card No. 

23-1237). 



 

Figure 4: XRD diffractograms of treated and untreated 10Sc1YSZ-MCO membranes and XRD patterns of 10Sc1YSZ and MnCo2O4. 

Knowing that it is difficult/not possible to detect very low amounts of crystalline phases or non-crystalline 

phases with XRD analysis, additional Raman spectroscopy was performed (Figure 5). This technique is well 

suited for the detection of small amount of carbonates or sulfates, however no additional peaks were found in 

the spectra of the treated membrane, suggesting that the exposure to the different gases did not create any new 

phases.  



 

Figure 5: Raman spectra of treated and untreated 10Sc1YSZ-MCO membranes. 

Figure 6 shows SEM images of the cross-sections of treated and untreated membranes. No evidence of 

interface reactions or cracks in the dense membrane layer during the long-term exposure was found. The 

10Sc1YSZ-MCO layer remains fully dense and well attached to the porous supporting layers. Neither carbon 

nor sulfur were detected by EDX analysis, thus discarding the presence of carbonates or sulfates in the treated 

membrane. 

Overall, the combined analyses confirmed the stability of the composite material and the membrane assembly 

at 850 °C under conditions relevant for oxy-fuel combustion. 



 

Figure 6: SEM images of cross-sections of 10Sc1YSZ-MCO asymmetric membranes (a) exposed to a continuous flow of CO2 with 250 
ppm of SO2, 5 % of O2, and 3 % of H2O during 170 h and (b) unexposed. 

3.2. Characterization of catalytic porous backbones by electrochemical impedance spectroscopy 

EIS measurements were performed on dense Ce0.8Gd0.2O2-δ symmetrical cells and results were processed to obtain 

the resistances associated to the porous backbones. Only the contributions in the negative imaginary part were 

taken into account to calculate these resistances. The values were corrected by the area of the porous backbones 

and the resulting values were divided by two, since both surfaces of the cells were coated. The final numbers 

correspond to the polarization resistance (Rp) of the porous backbones. Rp can give an idea of the conductivity of 

every catalytic system (the lower the Rp, the higher the conductivity of the porous backbone). In this section the 

Rp of the different catalytic porous backbones are compared. The influence of the ionic conductivity, the electronic 

conductivity, the catalytic activation and the impurities (SO2, CO2 and H2O) on the Rp are discussed. 

Electrical and ionic conductivities of the relevant materials are summarized in Table 1. 

Figure 7 and Figure 8 present the Rp of the porous backbones with and without catalyst infiltrations. Due to a lack 

of an electronic conducting phase, the 8YSZ porous backbones cannot efficiently catalyze the oxygen 

oxidation/reduction reactions. Consequently, cells coated with 8YSZ backbones were only tested with Ce-Pr 

catalyst infiltrations (Figure 8).  



Table 1: Electrical and ionic conductivities of materials used to prepare the porous backbones. 

 Material 

Electrical conductivity 

(S cm-1) 

in air 

Ionic conductivity (S cm-1) 

 in air 
Ref 

Ionic 

conducting 

materials 

(Y2O3)0.08(ZrO2)0.92 (8YSZ) - 0.030 (850 °C) [33] 

(Y2O3)0.01(Sc2O3)0.10(ZrO2)0.89 

(10Sc1YSZ) 
- 0.072 (840 °C)  [34] 

Ce0.8Tb0.2O2-δ (CTO) - 0.035 (800 °C) [35] 

Electronic 

conducting 

materials 

MnCo2O4 (MCO) 60 (800 °C) - [36] 

NiFe2O4 (NFO) 0.26 (800 °C) - [36] 

 

3.2.1. Influence of ionic conductivity, electronic conductivity, and catalyst activation on polarization 

resistances 

The influence of the ionic conductivity on the ability of the backbones to transport oxygen can be evaluated by 

comparing the Rp of 8YSZ-MCO (40-60 vol.%) and 10Sc1YSZ-MCO (40-60 vol.%) composites. Indeed, with 

0.072 S cm-1 at 840˚C, [34] 10Sc1YSZ presents 2 times higher ionic conductivity than 8YSZ (0.030 S cm-1 at 

850˚C [33]). The experiments showed that the ionic conductivity of the porous backbones significantly influences 

the Rp, especially when the backbones are not infiltrated. Thus, the 10Sc1YSZ-MCO (40-60 vol.%) porous 

backbone presents Rp values approximately 8 times lower than the 8YSZ-MCO (40-60 vol.%) porous backbone 

(Figure 7). Similar conclusions can be drawn for the activated porous backbones (Figure 8), even though the 

difference between the 8YSZ-MCO (40-60 vol.%) and the 10Sc1YSZ-MCO (40-60 vol.%) porous backbone is 

not as pronounced (2 times lower).  

The influence of the electronic conductivity on the Rp can be noticed by varying the content of the electronic 

conducting phase in the composite. In this study, the ratio of ionic/electronic conductors of the 10Sc1YSZ-MCO 

composite was varied. The increase of MCO resulted in a significant decrease in Rp for both activated and non-



activated backbones. As expected, the highest Rp among the activated backbones was obtained for the 8YSZ 

backbone. The 10Sc1YSZ-MCO (70-30 vol.%) composite presents the second highest Rp of the tested backbones. 

As shown in the Bode plot (Figure 9.a), processes contributing to the high frequencies part of the spectra are 

mainly responsible for the large Rp value. These processes are related to the transport of species through the 

10Sc1YSZ-MCO/Ce-doped material interface [37], which could indicate that a lack of electronic conductivity 

limits the performance of this backbone. When the content of the electronic conducting phase was increased from 

30 % to 60 %, lower Z’’ values were obtained (Figures 9.a and 9.b) resulting to 3 to 7 times lower Rp, underlining 

the conclusions drawn above.  

The infiltration of nano-particulate Ce and Pr catalysts into the porous catalytic backbones increases the catalytic 

surface area for oxygen oxidation/reduction reactions and therefore improves the ability of the backbones to 

incorporate and transport oxygen. Consequently, in every studied atmospheres activated porous catalytic 

backbones present lower Rp than non-activated backbones. The largest improvement was observed for the two 

backbones having the lowest ionic conductivity (8YSZ-MCO (40-60 vol.%) and CTO-NFO (40-60 vol.%)), see 

ionic conductivities Table 1). 

To resume, EIS measurements showed that the material serving as porous catalytic backbone should preferably 

have a good ionic conductivity and a good electronic conductivity. To illustrate this importance, Figure 10 presents 

the reaction mechanism of the oxygen reduction reaction (ORR) taking place in the porous catalytic backbone at 

the high PO2 side (feed side). Two cases are distinguished: (i) a membrane coated with a porous backbone made 

of a composite of a good ionic conductor and a good electronic conductor (e.g. 10Sc1YSZ-MCO, CTO-NFO) and 

(ii) a membrane coated with a porous backbone made of a single ionic conducting phase (e.g. 8YSZ). As described 

by the Equation 3, the ORR requires oxygen gas (O2) and electrons (e-) to form oxide ions (O2-). Once the oxygen 

ions are formed, a percolating ionic conducting phase is required to lead them to the membrane and therefore allow 

the oxygen permeation. Consequently, a good mix of ionic and electronic conducting phases is beneficial to 

increase the number of triple phase boundary. Figure 10 illustrates the difference of area available for the ORR if 



a mixed ionic and electronic conductive (MIEC) material or a purely ionic conductive material is used as porous 

catalytic backbone. For the MIEC material, the area for the ORR is extended along the entire surface of the 

backbone, while for a purely ionic conducting material only the interface of the porous backbone and the dense 

membrane layer is suitable for the reaction. The oxygen oxidation reaction (OOR) reforming the gas after the 

permeation of the oxide ions through the membrane requires also the triple phase boundary zones and could have 

been taken as an example in the same way that the ORR. In this sense, the composites having the most beneficial 

mixed of ionic and electronic conductivity (10Sc1YSZ-MCO (40-60 vol.%) and CTO-NFO (40-60 vol.%)) are 

therefore the two most suitable porous catalytic backbones among the tested candidates to transport oxygen. 

Oxygen reduction reaction:  𝑂𝑂2 + 4𝑒𝑒− = 2𝑂𝑂2−  (3) 

3.2.2. Influence of oxy-fuel conditions on the polarization resistances 

As described in section 2.3.2., EIS measurements were performed at 850 ºC under clean conditions and under oxy-

fuel combustion conditions. A strong influence of SO2 on the oxygen oxidation/reduction reactions was observed. 

As shown by Figure 9, SO2 enlarges the magnitude of resistive processes appearing at low frequencies, probably 

due to SO2 adsorption leading to the blocking of active sites for the oxygen reactions [29]. Depending on the 

materials, the Rp of activated backbones are 2.5 to 10 times larger in contact to SO2 than in air, and 2.5 to 6 times 

larger for non-activated backbones. Nevertheless, the material structure of the backbones was not irreversibly 

altered upon sulfur exposure and most of the initial Rp values were recovered after a short time in clean atmosphere 

(5 % O2 in N2). 

 



 

 

Figure 7: Representation of the polarization resistances associated to 8YSZ-MCO (40-60 vol.%), 10Sc1YSZ-MCO (70-30 vol.%), 
10Sc1YSZ-MCO (40-60 vol.%) and CTO-NFO (40-60 vol.%) non-infiltrated porous backbones. 

 

 

Figure 8: Representation of the polarization resistances associated to 8YSZ, 8YSZ-MCO (40-60 vol.%), 10Sc1YSZ-MCO (70-30 vol.%), 
10Sc1YSZ-MCO (40-60 vol.%) and CTO-NFO (40-60 vol.%) porous backbones infiltrated by a Ce-Pr nitrates based catalytic solution. 



 

Figure 9: Bode plots for the 10Sc1YSZ-MCO (70-30 vol.%) porous backbone (a) and the 10Sc1YSZ-MCO (40-60 vol.%) porous backbone 
(b) infiltrated by a Ce-Pr nitrates based catalytic solution. Measurements were performed at 850˚C under different atmospheres. 

 

 

Figure 10: Schematic illustrations of the mechanism of the oxygen reduction reaction considering two cases: (a) a membrane coated with 
a composite porous backbone formed by a good ionic and a good electronic conductor, and (b) a membrane coated with a purely ionic 

conducting porous backbone (single-phase). 

 

3.3. Oxygen permeation tests 



Figure 11 shows the oxygen permeation flux through 10Sc1YSZ-MCO symmetrical membranes coated with 

different porous backbones (Figure 11.a: 8YSZ, 11.b: 10Sc1YSZ-MCO (70-30 vol.%) and 11.c: CTO-NFO (40-

60 vol.%)) and uncoated (Figure 11.d). The tests were performed at 850 ̊ C using different sweep gases. They were 

sequenced as: (i) test in Ar (150 mlN min-1, 2 h, black symbols), (ii) test in 70 % Ar + 30 % CO2 (150 mlN min-1, 

12 h, red symbols), (iii) test in 70 % Ar + 30 % CO2 + 250 ppm of SO2 (150 mlN min-1, 12 h, blue symbols) and 

(iv) recovery step in Ar (150 mlN min-1, black symbols). Air was used as a feed gas for the complete duration of 

the tests and was fed at 100 mlN min-1.  

In clean conditions (sweep gas: Ar, phase (i)) the membrane with CTO-NFO backbones presents the highest 

oxygen permeation flux (0.28 mlN min-1 cm-2), while the uncoated one displays the lowest performance (0.18 mlN 

min-1 cm-2). The results observed during phase (i) are in accordance with the results of the EIS measurements: the 

backbone having the lowest polarization resistance (CTO-NFO) presents the highest oxygen permeation flux. All 

membranes displayed a stable flux in 30 % CO2 (phase (ii)). Nevertheless, when the sweep gas was switched from 

30 % CO2 to 250 ppm SO2 in 70 % Ar + 30 % CO2, the oxygen permeation fluxes dropped around 0.10 mlN min-

1 cm-2 no matters the catalytic backbone coated. The loss of permeation can be ascribed to the fact that SO2 affects 

the oxygen permeation due to competitive adsorption phenomena on the membrane surfaces [29]. Despite this 

drop, the oxygen permeation flux is still acceptable when compared with the dramatic oxygen permeation 

degradations of state-of-the-art oxygen membranes when exposed to sulfur and carbon dioxide containing 

environments [25][26][38][39]. For example, BSCF membranes show very high oxygen permeability when He is 

used as a sweep gas (2.76 mLN cm-2 min-1 at 900 °C), but the oxygen flux drops near zero when changing the 

sweep gas to pure CO2 [25]. Significant degradations of the oxygen permeability were also observed with LSCF 

membranes exposed to SO2. Gao et al. reported an oxygen permeability drop of 80 % after exposure to SO2 [26]. 

Finally, when returning to clean conditions (phase (iv)), oxygen permeation flux can be recovered reflecting thus 

the stability of the materials. Only the membrane coated with the CTO-NFO porous catalytic backbones do not 



recover the initial oxygen permeability (65 % recovery). This result could be the consequence of a delamination 

of the porous catalytic backbone due to the different material used in the membrane and in the backbone. 

 

Figure 11: Oxygen permeation flux of 0.5 mm thick 10Sc1YSZ-MCO (70-30 vol.%) membranes as a function of the time. Graphs (a), (b) 
and (c) display the performances of membranes coated with infiltrated (Ce-Pr catalyst) porous catalytic backbones made of 8YSZ, 
10Sc1YSZ-MCO (70-30 vol.%), and CTO-NFO (40-60 vol.%), respectively. The graph (d) shows the performance of an uncoated 

membrane. The tests were performed in 4 different sweep gas atmosphere: (i) Ar, (ii) 70 % Ar + 30 % CO2, (iii) 70 % Ar + 30 % CO2 + 
250 ppm SO2 and (iv) Ar (recovery step).  

Conclusion 

The stability of a 7 µm thick 10Sc1YSZ-MCO (70-30 vol.%) dual-phase membrane was studied in simulated oxy-

fuel combustion conditions (250 ppm SO2, 3 % H2O, 5 % O2 balanced with CO2). The results of the tests underlined 

the excellent stability of the membrane in SO2 and CO2 containing atmospheres. To achieve a better understanding 

of the oxygen surface reactions (especially in SO2 and CO2 containing atmospheres), electrochemical impedance 

spectroscopy (EIS) measurements were performed on porous catalytic backbones consisting of: (i) 8YSZ, (ii) 

8YSZ-MCO (40-60 vol.%), (iii) 10Sc1YSZ-MCO (40-60 vol.%), (iv) 10Sc1YSZ-MCO (70-30 vol.%), and (v) 



Ce0.8Tb0.2O2-δ (CTO) - NiFe2O4 (NFO) (40-60 vol.%). The lowest polarization resistances (Rp) were acquired with 

10Sc1YSZ-MCO (40-60 vol.%) and CTO-NFO (40-60 vol.%) porous backbones, demonstrating the importance 

of a mixed ionic and electronic conductivity in the performance of catalytic porous backbones. Oxygen permeation 

tests were realized on three 10Sc1YSZ-MCO membranes coated with different porous backbones ((i) 8YSZ, (ii) 

10Sc1YSZ-MCO (70-30 vol.%) and (iii) CTO-NFO (40-60 vol.%)) which were infiltrated with Ce and Pr nano-

particulate catalysts and on an uncoated 10Sc1YSZ-MCO membrane. The CTO-NFO activated backbone 

increased the oxygen permeation flux about 55 % (0.28 mLN cm-2 min-1, 850 °C, air/Ar) compared to the membrane 

with no coatings (0.18 mLN cm-2 min-1, 850 °C, air/Ar). A significant influence of SO2 on the oxygen 

oxidation/reduction reactions was observed, as Rp and the oxygen permeability of the samples exposed to 250 ppm 

of SO2 were significantly affected. Nevertheless, no microstructural degradation was found after SO2 exposure and 

initial Rp/oxygen permeation fluxes could be recovered in most of the cases.  
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