

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/158936

Andújar, FJ.; Coll, S.; Alonso Díaz, M.; Martínez-Rubio, J.; López Rodríguez, PJ.; Sánchez,
JL.; Alfaro, FJ.... (2019). Energy efficient torus networks with on/off links. Journal of Parallel
and Distributed Computing. 130:37-49. https://doi.org/10.1016/j.jpdc.2019.03.015

https://doi.org/10.1016/j.jpdc.2019.03.015

Elsevier

Energy Efficient Torus Networks with On/Off Links

Francisco J. Andújara, Salvador Collb, Marina Alonsoc, Juan-Miguel
Mart́ınezc, Pedro Lópezc, José L. Sánchezd, Francisco J. Alfarod, Raúl

Mart́ıneze

aDepartamento de Informática, Universidad de Valladolid, Valladolid, Spain
bInstituto de Instrumentación para Imagen Molecular (I3M), Universitat Politècnica de

València, Valencia, Spain
cDepartment of Computer Engineering, Universitat Politècnica de València, Valencia,

Spain
dComputing System Department, University of Castilla-La Mancha, Albacete, Spain

eAmazon Lab126, Cupertino, California, United States

Email addresses: fandujarm@infor.uva.es (Francisco J. Andújar), scoll@upv.es
(Salvador Coll), malonso@upv.es (Marina Alonso), jmmr@upv.es (Juan-Miguel
Mart́ınez), plopez@upv.es (Pedro López), jose.sgarcia@uclm.es (José L. Sánchez),
fco.alfaro@uclm.es (Francisco J. Alfaro), raumar@amazon.com (Raúl Mart́ınez)

Preprint submitted to Journal of Parallel and Distributed Computing

Abstract

Future exascale computing systems will require energy and performance ef-
ficient interconnection networks to respond to the high data movement de-
mands of new applications, such as those coming from big-data and artificial
intelligence areas. The network structure plays a major role in the overall
interconnect performance, for this reason torus is a common topology used in
the current largest supercomputers. There are several proposals to improve
energy efficiency of interconnection networks. However, few works combine
both energy and performance, and sometimes they are treated as opposed
issues. In this paper, we try to determine which torus network configuration
offers the best performance/energy ratio when high-radix switches are used
to build the interconnect system. The performance/energy evaluation has
been performed by trace-driven simulation under realistic scenarios, where
several mixes of scientific applications share a supercomputer system and are
scheduled to be executed with the available resources at each moment.

Keywords: Interconnection networks; energy and performance evaluation;
energy consumption; power consumption; n-dimensional torus; port
aggregation

2

1. Introduction

One of the most popular topologies in the largest current supercomputers
is the k-ary n-cube, also known as n-dimensional torus [1]. The torus topol-
ogy has a fixed switch radix that facilitates the network fabric implementa-
tion, it is scalable and has a linear cost of expansion. Moreover, the torus
provides multiple paths for every pair of source/destination nodes in such a
way that fault tolerance and load balancing become feasible. For these rea-
sons, several commercial interconnection systems allow to implement a torus
network.

For example, 3D tori are supported by EXTOLL switches [2] and the
interconnection network of the Cray CS Series supercomputers [3], while the
interconnection network of the IBM Blue Gene/Q [4] implements a 5D torus.
In November 2018, there are two supercomputer machines using the torus
topology in the top ten Top500 list [5] and seven in the top ten Graph500
list [6].

For a given size, the performance of a torus interconnection network di-
rectly depends on its number of dimensions. The higher the number of di-
mensions, the lower the distances among nodes and therefore, the higher the
network performance. The path diversity is also increased [7, 1], improving
the efficiency of adaptive routing algorithms.

However, as shown in the previous examples, commercial torus networks
usually have a low number of dimensions, since wiring becomes more complex
as the number of dimensions increases. Indeed, Dally [8] and Agarwal [9]
showed that under fixed bisection and chip packaging, lower radix networks
offer lower packet latency. Scott and Goodman [10] introduced link pipelining
in the network model, favoring a slightly higher dimensionality for large
networks. In addition, multiple scientific applications use 3D mathematical
models, whose communication patterns naturally fit in a 3-dimensional torus.
The combination of ease of wiring with the use of 3D models makes low
dimensional tori very appropriate topologies for designing an interconnection
network.

Currently, switches with a high number of ports (i.e. high-degree switches)
are commercially available [11, 12]. Network designers can take advantage
of these high-degree switches to build low dimensional tori using the link
aggregation concept (also denoted as link trunking). This concept consists
of connecting every pair of adjacent switches by means of two or more phys-
ical channels. Two design approaches are possible. On one hand, we can

3

combine several physical channels to work as a single wider physical link,
therefore increasing the channel bandwidth. For example, the 4X QDR links
on Mellanox products are composed of four QDR lanes [13] and therefore,
four flits of the same packet are transmitted in parallel by the 4X link. On
the other hand, we can use the channels as independent links, i.e. the ports
of a trunk link transmit different packets, in order to increase path-diversity
and routing flexibility. For example, the Cray Gemini [14] uses 10 links for
building a 3D torus: 4 links for the X and Z dimensions, and only 2 links
for the Y dimension. In addition, Gemini has two nodes connected to each
router, reducing the number of routers in the network. Note that combining
both design approaches is also possible. In fact, the internal router of Cray
Gemini has 48 ports [14]: 8 ports are used to communicate the router with
the 2 Gemini NICs, while the remaining 40 ports comprise the 10 Gemini
links, using 4 ports per link.

The use of trunk links increases switch to switch bandwidth. We can
exploit this increased bandwidth by attaching several NICs to every switch
(as stated above, the Cray Gemini attaches two NICs). An interesting ob-
servation is that, for a fixed system size (in number of NICs -i.e., computing
nodes-), the number of network switches in a torus is reduced by the number
of NICs attached to each switch. Of course, switches with a higher number
of ports are required.

Network performance is not the only parameter to take into account when
designing the network. A trade-off between performance and cost is usually
required. Regarding cost, we must take into account not only the cost of
network design and deployment but also exploitation costs. Leaving aside
the possible network failures, this cost greatly depends on the network power
consumption.

From this point of view, for a given network size N , two design options
are possible. The first one is using a high dimensional network without
link aggregation and one NIC per router. The extreme case would be a
hypercube1 with log2N dimensions. The second option is using a lower
dimensional network with link aggregation, several NICs per router and a
lower number of routers. The first option requires a higher number of smaller
switches, while the second requires a lower number of bigger switches. To

1Remember that an hypercube is an n-dimensional torus with 2 nodes in each dimen-
sion. Therefore, the number of dimensions of the hypercube is log2 N .

4

(a) 7-port switch for 3D tori (b) 20-port switch for 2D tori

Figure 1: Torus node configuration for building a 64-node network.

do a fair comparison, the bisection bandwidth of both design choices should
be the same, in order to keep constant the theoretical network bandwidth.
Notice, though, that there may exist several intermediate design options that
use different levels of link aggregation.

As an example, let’s consider a 64-node network. Using the first approach,
we could build a 4 × 4 × 4 3D torus with 64 switches with one computing
node per switch. Each switch would have 7 links (one port per each network
direction plus one port to attach the computing node). Figure 1a shows this
kind of switch. The network would have 64 × 6 = 384 links, an average
distance of n × k

4
= 3 × 4

4
= 3 and a bisection bandwidth of 2 × kn−1 =

2 × 42 = 32 bidirectional links.
Using the second approach, we could build a 4 × 4 2D torus with 16

switches, with 4 trunk links and 4 computing nodes per switch. Each switch
has 20 links (4 ports per each network direction plus 4 ports to attach 4
computing nodes). Figure 1b shows this second kind of switch. This network
has 16 × 16 = 256 links, an average distance of 2 × 4

4
= 2 and a bisection

bandwidth of 4(# of trunk links) × 2 × kn−1 = 4 × 2 × 41 = 32 bidirectional
links.

Although both networks have the same bisection bandwidth, they will
show different behaviors. The network with aggregated links (the 2D torus in
the previous example) should have lower message latencies under low traffic
loads because it has lower average distance than the network with more
dimensions. However, the switch allocator performance decreases when the
number of ports increases [15]. After reaching certain traffic load, the network
with more dimensions (the 3D torus in the previous example) should obtain
better performance since its switches allow to achieve greater throughput as

5

they are smaller. On the other hand, although the 3D network will achieve
better performance under heavy traffic loads, the 2D network still has a lower
power consumption because it has less network links (see Sections 2 and 3.2
for details).

The questions we try to answer in this paper are: which design option
for the network is overall more energy efficient? A high-dimensional network
with single links or a low-dimensional network with aggregated links? Is the
performance loss for high loads of the network with aggregated links accept-
able if it consumes lower energy? Since the energy consumed for running
an application depends on both the system power consumption and the ex-
ecution time, these are not trivial questions. Although a lower dimensional
network with aggregated links has lower power consumption, the execution
time could be longer. This might increase the energy consumption of the
system.

Another issue that must be taken into account is the fact that intercon-
nection networks can provide dynamic mechanisms to save energy [16, 17].
In particular, the mechanism proposed by Alonso [17] turns off links when
low network utilization is detected. This mechanism is very well suited for
networks with trunk links, since turning off individual links from trunk links
maintains the topology and does not require changes in the routing algorithm,
provided that there is at least one operating link. Similar techniques are used
in real products for saving energy. For example, in Mellanox switches, a link-
level power saving feature reduces the width of the trunk link when a fabric
is underutilized [13].

In this paper, we analyze the performance of different k-ary n-cube con-
figurations to determine which configuration is more energy-efficient. To do
so, we analyze both performance and energy consumption, also applying dy-
namic power saving techniques. Performance of the different configurations is
determined by using application execution traces. The rest of the document
is organized as follows. In Section 2 we describe the system power consump-
tion model. Section 3 presents the system and evaluation model. After that,
we analyze and discuss network performance and energy evaluation results in
Section 4. Section 5 shows the related work. Finally, in Section 6 we outline
the conclusions and future work.

6

2. A simple power consumption model

As mentioned in Section 1, the goal of this paper is to analyze the im-
pact of different configurations of the interconnection network topology on
the energy consumption of a high performance computing (HPC) platform
(cluster or supercomputer).

The study presented in this paper has been developed by simulation,
using a tool that models the nodes and the network that interconnects them.
To obtain energy results, we have included in the simulator a simple power
consumption model where the contribution of the main components of the
interconnection network is considered. However, notice that we are interested
in carrying out a comparative study, and therefore it is not totally relevant
to use the absolute power consumption of each system component, but to
determine the fraction of the total power consumed by those components.

Using the simulation tool, we will obtain the total energy consumed by
an application running on the HPC platform from its execution time and the
calculated power consumption during the simulation. As it is well known,
the power consumption of many building blocks of a computing system is the
sum of a static or fixed component, and a dynamic component, that varies
according to their utilization. For this reason, during the simulation, data
related to dynamic power is collected, in order to calculate the total power
consumption at the end of the simulation.

Due to the relevance of the links in the performance and energy efficiency
of the network, in order to determine the total power consumption of a
switch, our model considers the power consumption of the links and the
power consumption of the remaining switch logic. According to the state of
the art, we consider the following general hypotheses:

� The switch power consumption increases linearly with the number of
ports [18].

� We assume two states for the switch ports: wake-up (or turned on) and
sleep (or turned off), similar to the ones used in the Low Power Idle
(LPI) power-saving mechanism proposed in the IEEE Energy-Efficient
Ethernet standard (IEEE 802.3az, and from now on, the EEE stan-
dard) [19]. LPI freezes transceiver state when it enters in sleep mode
and restores it when the port is waked up, drastically reducing the
power consumption and allowing to turn on/off the links in a few mi-
croseconds [20]. Therefore:

7

– Since the transceiver is working regardless of whether the port is
transmitting data or not, the port power consumption is 100%
when it is turned on.

– When the port is in sleep mode, it consumes a small part of the
total power consumption.

– During the transitions from one state to another, the port power
consumption is 100%.

� We assume the power saving strategy proposed by Alonso et al [17] for
the aggregated torus topology. Briefly, this strategy always maintains
one active port per aggregated link, turning on/off the remaining ports
depending on the aggregated link utilization. Note that topology is
not modified, preserving connectivity, and the same routing algorithm
is used.

At the end of this section, we provide an equation that allows us to obtain
the total energy consumed by the execution of a given application for each
network configuration on the HPC platform. Previously, a set of definitions
is introduced, related to the system components and their contribution to
the total power consumption of such system.

2.1. Definitions

We introduce the parameters we use to quantify both the main compo-
nents of the system and their contribution to power consumption and total
energy.

In order to compare networks with different number of routers/ports,
we normalize the power consumption with respect to a “reference” network.
Let’s consider as an example the networks built from the switches shown
in Figure 1 (page 5). Considering the 3D torus network as the reference
network, its maximum power consumption will be 1. According to our initial
hypotheses, switch (and network) power consumption linearly increases with
the number of ports. The ratio of ports between the 2D torus and the
3D torus is 16×20

64×7
= 0.714. Therefore, the maximum power consumption

of the 2D torus network will be 0.714, although it could be even lower if
power saving strategies were applied (e.g. turning off unused or underutilized
links). For this reason, we have included several terms related to the reference
network, that are denoted with the prefix REF.

8

� Nports: Number of ports per switch.

� Nsw: Number of switches in the network.

� REFports: Number of ports per switch in the reference network.

� REFsw: Number of switches in the reference network.

� Up
port: Fraction of time that a port p is turned on.

� ωp
Sport: Fraction of the power consumption that a port p consumes while

in sleep mode.

� Runtask: Fraction of Runtime that a process/task attached to a node
is running; i.e. the time that the process/task is not idle because it is
performing a network communication.

� ωSnodes: Fraction of the power consumption that a node always con-
sumes, independently of the node load.

� ωs
ports: Contribution of the ports in a switch s to the total power con-

sumption of that switch.

� ωnet: Contribution of the network to the total power consumption of
the system.

2.2. Power consumption model

Let W s
ports be the fraction of the power consumption that all the ports

consume in a switch s with respect to the maximum power consumption of
those ports. When a port p is in sleep mode, only consumes ωp

Sport of the total
power consumption. Then, a port p always consumes ωp

Sport, plus (1−ωp
Sport)

when it is turned on. Therefore:

W s
ports =

1

Nports

Nports∑
i=1

(
ωi
Sport + (1 − ωi

Sport) · U i
port

)
As ports in a switch have the same characteristics, ω1

Sport = ω2
Sport = · · · =

ω
Nports

Sport = ωSports. Therefore:

W s
ports = ωSports + (1 − ωSports)

1

Nports

Nports∑
i=1

U i
port

9

If the average value Uports for all U i
port is considered:

Uports =
1

Nports

Nports∑
i=1

U i
port

we obtain:
W s

ports = ωSports + (1 − ωSports) · Uports

Once we have the port power consumption, we can calculate the propor-
tion of the switch power consumption with respect to its maximum power
consumption. In order to simplify the model, we consider that the remaining
logic of the switch always consumes the maximum power regardless of its
utilization, i.e. the switch logic always consumes (1 − ωs

ports). Therefore:

W s
sw = (1 − ωs

ports) + ωs
ports ·W s

ports

If we consider all switches in the network, we can obtain the network
power consumption:

Wnet =
1

Nsw

Nsw∑
i=1

W i
sw =

1

Nsw

Nsw∑
i=1

((1 − ωi
ports) + ωi

ports ·W i
ports)

Without loss of generality, and reasoning at network level in the same
way as switch level, we consider that the contribution of switch ports to the
total switch power consumption is the same for all switches (ω1

ports = ω2
ports =

. . . ωNsw
ports = ωports). Considering Wports as the average value of W i

ports:

Wnet = (1 − ωports) + ωports ·Wports

However, this way of obtaining the network power consumption is only
valid to compare network topologies using the same type of switch; i.e. the
number of ports per switch must be the same in each topology. Since we want
to compare networks with different number of switches or ports per switch,
we need to normalize the power consumption with respect to a reference
network.

As our initial hypothesis is that the power consumption increases linearly
with the number of ports, once we have chosen the reference network, we can
calculate the relative network power consumption:

Wnet = ((1 − ωports) + ωports ·Wports) ·
Nports

REFports

· Nsw

REFsw

10

In order to obtain the total energy of the HPC platform, we need to
consider the power consumption of the computing portion, mainly due to
the compute nodes. Taking into account the definitions above, and again
considering the average behavior of the nodes, the fraction of the power
consumption that all the nodes consume in the system, with respect to the
maximum power consumption of those nodes, can be expressed as:

Wnodes = ωSnodes + (1 − ωSnodes) ·Runtask

where we assume that there is a part of the total power consumption that is
always consumed (ωSnodes), while the remaining power consumption depends
on the node load, that is, the fraction of time that the processes/tasks at-
tached to the node are not idle due to the network communications (Runtask)

Then, considering the nodes and network power consumption, we can
calculate the HPC platform power consumption:

Wcluster = ωnet ·Wnet + (1 − ωnet) ·Wnodes

Wcluster provides the fraction of the maximum power (both network and
nodes) consumed during the application execution and normalized with re-
spect to the reference network. Finally, the network and system energy
consumed by an application is, respectively:

Enet = Wnet ·Runtime
Ecluster = Wcluster ·Runtime

2.3. Parameter characterization

Once the power model has been defined, we must select the values for the
parameters that determine the fraction of power consumed by the various
network building blocks, as defined in our model. Table 1 summarizes all the
selected values.

According to the EEE standard, the power consumption of an idle link2

is estimated to be 10% of the link power consumption [19, 20]. Therefore,
we set ωSport to 0.1.

The weight of the link power consumption with respect to the switch
power consumption is 65% and 63% for the Dell PowerConnect 5324 (24-port

2Note that, in our terminology, an idle link is equivalent to an off link, while an active
link is equivalent to an on link.

11

Table 1: Power model parametrization

Parameter ωSport ωports ωnet ωSnodes

Value 0.1 0.65 0.15 Variable

switch) and the Dell PowerConnect 6248 (48-port switch) [21], respectively;
64% for an IBM Infiniband 8-Port 12X switch [22] and 68% for the EXTOLL
Tourmalet switch [23]. According to that, we consider that 0.65 is a realistic
estimation for ωports.

Finally, we set ωnet to 0.15, since the network power consumption is
10%∼20% [24, 25] of the full system. We have not fixed ωSnodes, since we
want to study the impact of node power consumption on the final results.
A realistic estimation of this parameter is ≈ 0.5 since even energy-efficient
servers still consume half of their power while idle [26].

3. System model

After presenting the power model, we describe the system model used
as evaluation testbed. Section 3.1 outlines the switch architecture model
while Section 3.2 shows the topologies selected for our experiments. Finally,
Section 3.3 briefly explains the network load model.

3.1. Switch model

We consider that all the switches in the network use the same technology,
independently of their number of ports. The modeled architecture is realistic
and representative of current state of the art HPC platforms, since the design
parameters have been chosen based on several commercial networks [2, 4, 11,
27, 28].

The main specifications of the switch architecture are the following: IQ
(Input Queued) switches [29], virtual cut-through switching [30], credit-based
flow control and the three-stage allocation algorithm implemented in IBM
Blue Gene L [31], with the only difference that our algorithm employs round-
robin arbiters in all the allocator stages.

Data are transmitted in flits of 16 bytes, grouped in 8-flit packets (or
128-byte packets). The switch logic frequency is 625 MHz (i.e. switch clock
resolution is 1.6 ns). Since the switch crossbar can deliver one flit per cycle,
each switch port offers a peak bandwidth of 10 Gbytes/s.

12

Table 2: Case studies

Nodes Torus Dim.
Num.

ports

Allocator

latency

Port

aggr.

Num.

switches

Network

ports

Port

ratio

Name

(No PS)

Name

(PS)

64 3D 4x4x4 7 3 1 64 448 – 3D-1X –

2D 4x4 20 5 4 16 320 0.714 2D-4X 2D-4X-PS

1D 4 48 6 16 4 192 0.428 1D-16X 1D-16X-PS

256 4D 4x4x4x4 9 4 1 256 2304 – 4D-1X –

3D 4x4x4 28 5 4 64 1792 0.777 3D-4X 3D-4X-PS

The latency per hop is approximately 50 ns, slightly varying as a func-
tion of the number of ports, as explained below. Since we assume that the
switches are implemented with the same technology, we can keep fixed the
latency of the switching units. The latency of input buffering and the port
serializer does not depend on the number of ports. On the other hand, con-
sidering a table-based routing algorithm, its latency mainly depends on the
memory technology and the maximum network size supported by the archi-
tecture. The only switch unit with a variable latency is the switch allocator.
Algorithms like iSLIP [15] or our allocator based on the IBM Blue Gene L
allocator [31] are composed of several stages of multiple round-robin arbiters.
Increasing the number of ports linearly increases the number of round-robin
arbiters (and therefore the hardware complexity) but the number of stages
is kept fixed and the increment of the round-robin arbiter latency is only
logarithmic [32]. This slightly increases the allocator latency. Table 2 shows
the allocator latency, measured in cycles, for each router size.

Regarding the buffer organization, each input port has an input buffer
of 1024 flits, or 16 Kbytes, statically split between four virtual channels
(VCs). The virtual channels are employed to avoid deadlocks and to provide
adaptiveness. In this case, the switch implements a fully-adaptive routing
algorithm [1]. Two of the four VCs are fully-adaptive while the remaining
ones are used as escape paths, implementing the DOR algorithm using two
VCs to avoid deadlocks.

Finally, we have implemented the trunk links using the second approach
described in Section 1, i.e. each trunk link comprises several independent
ports transmitting independent packets. We have also implemented the
power saving strategy described in [17]3. Note that we have not employed a

3Although the network implements adaptive routing, note that an off port can not be

13

power saving strategy in the reference network (the torus network without
port-aggregation). Beside being the reference topology, the main reason is to
avoid a great performance penalty caused, not by the topology, but by the
power saving strategy. In particular, although other strategies like turning-
off the ports after a certain unused time could be applied, the performance
penalty is significant, while the Alonso’s power saving technique has very
little impact on performance since the network is always fully-connected.

Regarding the power saving strategy parameters, although our router is
not related to any specific technology, we have used the time values specified
in EEE standard [20] to configure the delays for turning on (4.16 µs) and
turning off (2.88 µs) a link. These delays are used in all the networks when
power-saving is active.

3.2. Case studies

We have selected systems with 64 and 256 compute nodes. Table 2 shows
the topologies evaluated for the same amount of compute nodes, showing
the most relevant parameters. Note that all the networks evaluated for each
system size have the same bisection bandwidth.

The labels used to identify the topologies use the following nomenclature:
nD-pX, where n is the number of dimensions and p is port aggregation.

Note that if a power saving mechanism is used in the network, the cor-
responding label ends with -PS. And finally, remember that we have chosen
the torus topology with the highest number of dimensions (and no aggre-
gated links) as the reference system for both system sizes (i.e., 3D torus for
64 nodes and 4D torus for 256 nodes).

3.3. Network load

The assessment of energy consumption of an HPC platform relies on
the correct estimation of power consumption and execution time for a given
load. Synthetic traffic patterns, typically used in performance evaluation, are
not appropriate for this purpose since the difference among message latency
on different network configurations cannot be translated into differences in
execution time. As a result, for modeling the network load, we have used an
open access trace-driven traffic model, called VEF trace model [33, 34]. The
MPI traffic injected by parallel applications is captured in a trace file which is

chosen by the routing function.

14

later used to generate the traffic in the network simulator. VEF traces model
both MPI point-to-point and MPI collective communication primitives, using
the collective communication algorithms implemented in OpenMPI [35].

Specifically, we have performed an evaluation using the VEF traces gener-
ated by parallel applications run in the GALGO supercomputer [36]. For our
tests, we have selected the following applications, trying to consider different
realistic scenarios4:

� Namd is a parallel application for simulating large biomolecular sys-
tems [37]. The application logically maps tasks in a 3D grid and tasks
communicate mainly with their neighbor in the grid. For this reason,
its traffic pattern shows a great spatial locality. Our traces correspond
to the STMV benchmark.

� Gromacs [38] is a scientific application to perform molecular dynamics.
Similarly to the previous application, it shows a great spatial locality.
We generated the trace using the input “d.poly-ch2” available in the
Gromacs benchmark5.

� HPCC MPI Random Access [39] (or MPIRA). Most of the commu-
nications are performed by MPI point-to-point primitives. Messages
are evenly distributed among all the tasks, producing a very close to
uniform traffic pattern.

� HPCC Linpack [39] is used to solve a dense system of linear equations.
This application follows a special communication model in which every
task typically communicates with the same tasks, following a ping-pong
pattern.

� Graph500 benchmark using the replicated-csr implementation, a scale
factor of 20 and an edge factor of 16 [6]. All the communications are
generated by MPI collective primitives that generate a great exchange
of data among tasks. This application generates the highest network
load of all the tested applications.

4All the VEF traces described in this work and the software needed to run the VEF
traces are available free at the VEF website [33].

5http://www.gromacs.org/About_Gromacs/Benchmarks

15

http://www.gromacs.org/About_Gromacs/Benchmarks

We have used the aforementioned traces in two ways. First, we evaluate
system performance running only one application at a time. Next, we launch
a set comprising several applications that are scheduled in the system.

Single trace evaluation

In first place, we have evaluated each system executing a single application
each time. We have used 512-task traces for simulating each application. In
order to represent a more realistic environment, we simulate multicore nodes
whenever possible. That is, for testing the 64-node networks, we have simu-
lated 8-core nodes, but for testing the 256-node networks, we have simulated
only two cores per node. Unfortunately, the trace generation is limited by
the size of the GALGO supercomputer, thus we can only simulate nodes with
a small number of cores.

Trace scheduler evaluation

We have developed an oblivious trace scheduler to overcome the limitation
of the number of tasks per trace and to evaluate the interconnection networks
under a more realistic environment. Given a set of traces, the operation of
the trace scheduler is as follows. In first place, the scheduler checks the
number of available cores. Then, it checks the number of tasks of each
trace to determine which traces are selectable; that is, which traces can be
executed with the available resources. Finally, the scheduler randomly choses
a selectable trace and maps it to the first free nodes. Note that the nodes are
identified with a number from 0 to N − 1. The scheduler checks the nodes
following an ascending order and mapping the tasks in the first free nodes
found. This process is repeated until all the traces are mapped or there are
no free nodes to map another trace. In the latter case, the scheduler will be
executed again when a trace finishes and frees the resources it was using.

For the trace scheduler evaluation, we consider that all the nodes have
8 cores; i.e. the 64-node network has 512 cores while the 256-node network
has 2048 cores. We have evaluated three different sets of traces, combining
traces from the five applications shown in Section 3.3 with three different
task sizes: 128, 256 and 512 tasks. Every trace set has the same number
of applications (15 traces: 5 applications multiplied by 3 task sizes). Since
Graph500 application generates the highest network load, with the purpose
of stressing the network performance and its power saving mechanism, each
set includes extra instances of Graph500 traces. In particular, the three sets
of traces considered are the following:

16

� Set A: Namd, Gromacs, Linpack, MPI Random Access and Graph500.

� Set B: Gromacs, Linpack, MPI Random Access and Graph500 (×2).

� Set C: Linpack, MPI Random Access and Graph500 (×3).

Finally, note that since the scheduler randomly selects traces for execu-
tion, we have averaged results from 30 different executions of each trace set
and topology.

4. Evaluation

In this section, we show the results of the performance and energy con-
sumption evaluation. Section 4.1 shows the results for each application in-
dividually executed, while Section 4.2 shows the results obtained using the
trace sets and the scheduler.

4.1. Single trace evaluation

64-node network

Firstly, we describe the results obtained for 64-node networks. Figure 2
shows the Runtime, Runtask and Enet obtained for each application, while
Figure 3 shows Ecluster as a function of ωSnodes. Note that Runtime and Enet

are normalized with respect to the reference network, while Runtask shows
the average fraction of time that the tasks are running (i.e. tasks are not idle
waiting for network communications) obtained in each simulation. Finally,
remember that ωSnodes indicates the fraction of power consumed by compute
nodes while idle. That is, if ωSnodes = 0, we have the ideal case of totally
energy-proportional nodes, while when ωSnodes = 1 we have the worst case:
nodes always consume the same power regardless of their utilization.

Namd, Gromacs, Linpack and MPIRA applications obtain similar results.
Since all the network topologies achieve the same performance, the network
energy consumption directly depends on port ratio (shown in Table 2). The
2D torus consumes 71.5% of the reference network energy (or 50% with the
power-saving strategies), while the 1D torus only consumes 43% (or 32%
with the power-saving). The aggregated-link torus networks only have a
little performance penalty in the MPIRA application (less than 1% in the 2D
torus and 3% in the 1D torus). Moreover, notice that using the power-saving
strategy has no significant impact on performance in these applications.

17

Namd Gromacs Linpack MPIRA Graph500
0

20

40

60

80

100

120

140

160

180

200

220

N
o
rm

.
R

u
n
ti

m
e
 (

%
)

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

Namd Gromacs Linpack MPIRA Graph500
0

10

20

30

40

50

60

70

80

R
u
n

(%

)
ta

s
k

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

Namd Gromacs Linpack MPIRA Graph500
0

10
20
30
40
50
60
70
80
90

100
110

N
o
rm

.
E
_
n
e
t

(%
)

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

Figure 2: Runtime, Runtask and Enet obtained for 64-node networks

However, there are some differences when we analyze Ecluster. In Namd,
Gromacs and Linpack, with no significant performance penalty, Ecluster de-
pends on the port ratio, with the 1D torus network consuming the lowest
energy followed by the 2D torus. But the total saved energy also depends on
the node utilization. As it can be seen, the applications with lower Runtask

can save more energy, depending on how energy-proportional the nodes are.
This is very reasonable: if Runtask decreases, the node energy consumption
also decreases, and, as a consequence, Enet represents a more significant frac-
tion of Ecluster.

Finally, the Graph500 application provides captivating results. As shown
in the figures, the network is the bottleneck of the system since the nodes

18

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(a) Namd

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(b) Gromacs

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(c) Linpack

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(d) MPI Random Access

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(e) Graph500

Figure 3: Ecluster for 64-node networks

are idle most of the running time. The execution time on the 1D torus is
unacceptable (around 208∼218%, depending on the case). Although Enet is
reduced due its reduced port ratio, Ecluster also greatly increases.

The 2D torus, considering the network subsystem alone, achieves signifi-
cant energy savings (14% – 31%), but incurs in performance penalty (19%),
with full system energy efficiency highly relying on compute nodes efficiency.
This topology saves energy when the compute nodes are energy-proportional.
Note that ωSnodes must be lower than 0.2 ∼ 0.4, depending on the case, to
save energy. For higher values of ωSnodes the energy consumption of the full
system increases due to the extended runtime when applying power saving
techniques to the network.

19

Namd Gromacs Linpack MPIRA Graph500
99,8

100

100,2

100,4

100,6

100,8

101

101,2

101,4

101,6

N
o
rm

.
R

u
n
T
im

e
 (

%
)

4D-1X 3D-4X 3D-4X-PS

Namd Gromacs Linpack MPIRA Graph500
0

10

20

30

40

50

60

70

80

R
u
n

(%

)
ta

s
k

4D-1X 3D-4X 3D-4X-PS

Namd Gromacs Linpack MPIRA Graph500
0

10
20
30
40
50
60
70
80
90

100
110

N
o
rm

.
E
_
n
e
t

(%
)

4D-1X 3D-4X 3D-4X-PS

Figure 4: Runtime, Runtask and Enet obtained for 256-node networks

In summary, the 1D torus is the worst design option. Although this net-
work can save energy under low network loads, the performance penalty and
the energy consumption increase is unacceptable under high loads. Regard-
ing the 2D torus, it obtains significant energy savings under low loads. Under
high loads (illustrated with Graph500), energy efficiency of a system with 2D
torus network depends on the energy-proportionality of compute nodes since
no power can be saved on a network that is working close to its full capacity.
However, the energy savings on the low load scenarios could compensate the
energy increase on the high load scenario.

20

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

4D−1X 3D−4X 3D−4X−PS

(a) Namd

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

4D−1X 3D−4X 3D−4X−PS

(b) Gromacs

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

4D−1X 3D−4X 3D−4X−PS

(c) Linpack

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

4D−1X 3D−4X 3D−4X−PS

(d) MPI Random Access

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

wSnodes

4D−1X 3D−4X 3D−4X−PS

(e) Graph500

Figure 5: Ecluster for 256-node networks

256-node network

In this section we present the results obtained for 256-node network con-
figurations. Figure 4 shows the Runtime, Runtask and Enet obtained for each
application, while Figure 5 shows Ecluster.

The results are similar to the ones shown for 64 nodes. All the networks
achieve the same performance under Namd, Gromacs, Linpack and MPIRA
applications, with energy consumption depending on the port ratio and the
usage of the power saving mechanism. For the Graph500 application, the 3D
torus only has 1.5% performance penalty, reducing the energy consumption
at network and system level regardless of the value of ωSnodes.

21

To sum up, the aggregated-link 3D torus using the power saving mech-
anism achieves the best results with energy savings at network level of up
to 50% that translate into 5% to 40% at system level. And, as in the 64-
node case, using the power saving mechanism has no significant impact on
performance.

4.2. Trace scheduler evaluation

Finally, we show the results obtained by running three application sets
using the trace scheduler. Figure 6 shows the Runtime, Runtask and Enet

obtained for each trace set, while Figure 7 shows results for the overall system
energy Ecluster.

64-node network

As shown in Figure 6a, the results are consistent with the ones obtained
in the single trace evaluation. For the application Set A, which injects the
lowest network load, the energy consumption mainly depends on the network
port ratio of the network under test with respect to the reference network
and the usage of the power saving mechanism. Using a 2D torus has no
significant impact on performance, even when activating the power saving
mechanism; while the 1D torus increases the execution time around 4.5%.

When the network load increases, the performance penalty of the 1D
torus is huge, with execution times of 150% for Set B and 170% for Set C,
approximately. This great increase in execution time makes the 1D torus
to consume much more energy than the reference network (3D torus). Only
when the compute nodes are very energy-efficient (0 ≤ ωSnodes < 0.15) these
networks (1D-16X and 1D-16X-PS) can save energy, but the performance
penalty is still unacceptable.

The 2D torus also achieves lower performance than the reference network.
The performance penalty is 10% for Set B and 15% for Set C, although the
2D tori (2D-4X and 2D-4X-PS) consume less energy (60 ∼ 64% with power
saving). As in the single trace evaluation, the 2D torus can save energy with
respect to the reference network, even with high loads, depending on the
value of ωSnodes, saving energy when ωSnodes < 0.7 and ωSnodes < 0.45 for
Sets B and C, respectively.

Summarizing, as observed for a single trace evaluation, the 3D torus (the
reference network) is the best in terms of performance. The 1D torus is the
worst design option due to its performance penalty. Again, the 2D torus
achieves significant energy savings under low loads, but its energy efficiency

22

Set A Set B Set C
0

30

60

90

120

150

180

N
o
rm

.
R

u
n
ti

m
e
 (

%
)

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

Set A Set B Set C
95

100

105

110

115

120

125

N
o
rm

.
R

u
n
ti

m
e
 (

%
)

4D-1X 3D-4X 3D-4X-PS

Set A Set B Set C
0

10

20

30

40

50

R
u
n

(%

)
ta

s
k

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

Set A Set B Set C
0

4

8

12

16

20

R
u
n

(%

)
ta

s
k

4D-1X 3D-4X 3D-4X-PS

Set A Set B Set C
0

20

40

60

80

100

N
o
rm

.
E
_
n
e
t

(%
)

3D-1X 2D-4X 2D-4X-PS 1D-16X 1D-16X-PS

(a) 64 nodes

Set A Set B Set C
0

20

40

60

80

100

N
o
rm

.
E
_
n
e
t

(%
)

4D-1X 3D-4X 3D-4X-PS

(b) 256 nodes

Figure 6: Runtime, Runtask and Enet using application sets and the trace scheduler

under high loads depends on the energy-proportionality of computing nodes
(ωSnodes). However, the values required for ωSnodes to save energy are more
moderate than the ones required for the networks evaluated only using the
Graph500 benchmark. Finally, as expected, the energy saving achieved when
applications inject low to moderate network load can compensate the energy
increase generated by network-intensive applications as in Set B and Set C.

256-node network

The results for 256-node networks are similar to the ones obtained for
64 nodes. For Set A, there are no network with a significant performance
penalty, and therefore, the energy consumption depends on the network port
ratio with respect to the reference network and the activation of the power
saving mechanism. When application sets are run on 3D torus significant
performance penalties are observed for Sets B and C, although a significant
amount of energy is saved at network level (in excess of 30%) It still requires
energy-proportional nodes to save energy at system level, although requires
more moderate values of ωSnodes (ωSnodes < 0.45).

Summarizing, 3D torus networks with aggregated links and a power sav-
ing mechanism based on on/off links are a good configuration for low and

23

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(a) Set A: 64 nodes

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

4D−1X 3D−4X 3D−4X−PS

(b) Set A: 256 nodes

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(c) Set B: 64 nodes

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

4D−1X 3D−4X 3D−4X−PS

(d) Set B: 256 nodes

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

3D−1X

2D−4X

2D−4X−PS

1D−16X

1D−16X−PS

(e) Set C: 64 nodes

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.2 0.4 0.6 0.8 1

N
o
r
m
a
l
i
z
e
d

E
c
l
u
s
t
e
r

(
%
)

Wnodes

4D−1X 3D−4X 3D−4X−PS

(f) Set C: 256 nodes

Figure 7: Ecluster using application sets and the trace scheduler

moderate network loads. When network resources are going to be fully uti-
lized at any given time there is no opportunity to save energy by switching
off unused resources. In that case, the topology with best performance (4D
torus in our experiments) also provides the best results in terms of energy
consumption.

24

5. Related work

Although power consumption in HPC interconnection networks has not
received much attention, several works have proposed alternatives to improve
energy efficiency of interconnection networks.

Using a dynamic power management (DPM) mechanism is proposed in
[16] for mesh topologies. Depending on network utilization, interconnection
links are turned on or off. Traffic is redirected using alternative routes when
specific links are turned off making use of a deadlock-free, fully-adaptive
routing algorithm that guarantees packet arrival to destination. Significant
power savings with moderate impact on performance indicate that more ef-
ficient dynamic switchable link designs would be critical.

Dynamic Adjusting Link Width (DALW) [40] dynamically sets the avail-
able network bandwidth as a function of the network traffic. Unlike DPM
that completely switch links off when they are not fully utilized, DALW is
based on reducing link bandwidth by narrowing link width. As the network
topology is not modified, the same routing algorithm can be used simplifying
the router design. Significant power consumption reduction can be achieved
but message latency for low loads increases.

Work done in [41], for torus networks, takes advantage of the availability
of high-degree switches to connect them through several links (i.e., trunk
links) and apply power consumption reduction techniques switching off links
for low loads, as long as network connectivity is guaranteed, (i.e. every pair
of switches should be connected through at least one active link). A set of
utilization thresholds is used to control on/off links. In [17], the authors pro-
pose a method to reduce interconnect power consumption by merging two
techniques for network topologies based on aggregated links: firstly, dynam-
ically switching on and off network links as a function of traffic; secondly,
dynamically reducing the link bandwidth, with low traffic. As in the case
of DALW, an advantage with respect to DPM is that the topology of the
network is not modified so the same routing algorithm can be used.

Alonso et al. [42] propose a mechanism to reduce power consumption in
fat-tree networks while guaranteeing network connectivity. Simulation results
show that to obtain a significant network power consumption reduction with
minimum performance degradation is possible . In [43] the authors improve
the mechanism by defining a dynamic behavior that considers the switch
status to modulate the sensitivity to traffic variations. The aggressiveness

25

of the power reduction strategy can also be set. This solution significantly
outperforms their previous proposals without additional cost.

Gunaratne et al. [44] investigate adaptive link rate to reduce the energy
consumption of an Ethernet link by adaptively varying the link data rate
depending on utilization. Output buffer queue length thresholds and utiliza-
tion monitoring are used to set data rate. An evaluation using an analytic
model and simulation using synthetic traffic patterns shows that an Ethernet
link can operate at a low data rate most of the time yielding to significant
energy savings with small impact on packet delay.

Totoni et al. [45] propose a hardware support for turning off intercon-
nection links in software when they are not used during parallel applications
execution and their management using adaptive runtime systems. Their pro-
posal is evaluated by simulation for torus and dragonfly topologies.

PerfBound and DynamicFastwake mechanisms were presented in [46] to
minimize interconnect link energy consumption. A performance overhead
bound is introduced to dynamically manage on/off based networks. The
techniques use local information already available at network switches and
interfaces and require no change to the application and no communication
with nodes and switches.

6. Conclusions

This paper explores the performance/energy dilemma in current high-
performance computing systems with focus on torus network topologies. We
have provided evidence that an appropriate selection of the interconnect con-
figuration design parameters is a key issue to make an efficient use of a large
scale computing platform. Our experiments, conducted on a selection of real
application traces, represent typical high-demanding computing scenarios.
We have evaluated network performance/efficiency balance at network level
and complete system level. Various configurations of torus networks, for the
same system size and bisection bandwidth, have been tested. We explored
the impact of aggregating links and implementing an dynamic on/off link
power saving mechanism. As observed in our results, using a power saving
mechanism always reduces energy consumption at network level. When the
full system is considered, two main factors determine what network topology
is more energy efficient at system level: the regular network load and the
energy efficiency of the compute nodes.

26

Under low to moderate network load scenarios, the best option is to
implement an aggregated-link torus. Tori with aggregated links have not
significant impact on performance and lead to the lowest power consumption,
getting the best results on energy consumption. In addition, using power-
saving mechanisms based on on/off links, provides significant power saving
with minimum performance penalties.

However, the results change under high loads. In this case, the best
performance is obtained by the torus with the highest number of dimensions,
which was used as the reference network in all the experiments. When the
load is very high, neither topological organization nor link on/off mechanism
aiming at saving power provides benefits. The most performing topology,
with no power saving mechanism, has been shown to be also the most energy-
efficient: it uses all network resources, all the time at full power and the run
time is typically lower than the more energy-friendly configurations we tested.

The aggregated-link torus topologies require very energy-efficient com-
pute nodes (low ωSnodes) to save energy. These topologies offer the best trade-
off between performance and energy consumption. As indicated, only in the
scenario with the highest network load, the most energy efficient network is
the reference topology, but in the remaining scenarios, the aggregated-link
torus becomes the best design option.

Finally, notice that, in all the evaluated aggregated-link torus networks,
applying power saving strategies significantly reduces energy consumption
without incurring in significant performance penalties. That is, indepen-
dently of the torus network selected for our cluster, using a power-saving
mechanism is a good idea.

For future work, we plan to evaluate larger systems, also including more
topologies in the performance analysis, like fat-trees or dragonflies, since most
of the available studies in the literature only compare the different topologies
from a performance point of view.

Acknowledgment

This work has been supported by the Spanish MINECO and European
Commission (FEDER funds) under project TIN2015-66972-C5-1-R and project
TIN2015-66972-C5-2-R. Francisco J. Andújar is also funded by the Spanish
MINECO under a Juan de la Cierva grant FJCI-2015-26080.

27

References

[1] J. Duato, S. Yalamanchili, L. Ni, Interconnection networks. An engi-
neering approach, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2003.

[2] H. Fröning, M. Nüssle, H. Litz, C. Leber, U. Brüning, On achieving high
message rates, in: 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, 2013, pp. 498–505.

[3] Cray Inc, Cray CS Series Specifications., https://www.cray.com/

sites/default/files/resources/CrayCS400-ACBrochure.pdf

(2017).

[4] D. Chen, et al., The IBM Blue Gene/Q interconnection network and
message unit, in: 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–10.

[5] TOP500 homepage, https://www.top500.org, (Accessed December
20, 2021).

[6] Graph500 homepage, https://graph500.org, (Accessed December 20,
2021).

[7] W. Dally, B. Towles, Principles and Practices of Interconnection Net-
works, Morgan Kaufmann, 2003.

[8] W. J. Dally, Performance analysis of k-ary n-cube interconnection net-
works, IEEE Trans. Computers 39 (6) (1990) 775–785.

[9] A. Agarwal, Limits on interconnection network performance, IEEE
Transactions on Parallel and Distributed Systems 2 (4) (1991) 398–412.

[10] S. L. Scott, J. R. Goodman, The impact of pipelined channels on k-
ary n-cube networks, IEEE Transactions on Parallel and Distributed
Systems 5 (1) (1994) 2–16.

[11] S. Derradji, T. Palfer-Sollier, J. P. Panziera, A. Poudes, F. W. Atos, The
BXI Interconnect Architecture, in: 2015 IEEE 23rd Annual Symposium
on High-Performance Interconnects, 2015, pp. 18–25.

28

https://www.cray.com/sites/default/files/resources/CrayCS400-ACBrochure.pdf
https://www.cray.com/sites/default/files/resources/CrayCS400-ACBrochure.pdf
https://www.top500.org
https://graph500.org

[12] Mellanox infiniband switch systems, http://www.mellanox.com/page/
switch_systems_overview (2017).

[13] Mellanox White Paper, Power saving features in Mellanox products,
Tech. rep., Mellanox Technologies (2013).

[14] R. Alverson, D. Roweth, L. Kaplan, The Gemini system interconnect,
in: IEEE 18th Annual Symposium on High Performance Interconnects
(HOTI), 2010, pp. 83–87.

[15] N. McKeown, The iSLIP scheduling algorithm for input-queued
switches, IEEE/ACM Transactions on Networking 7 (2) (1999) 188–201.

[16] V. Soteriou, L.-S. Peh, Dynamic power management for power optimiza-
tion of interconnection networks using on/off links, in: 11th Symposium
on High Performance Interconnects, 2003, pp. 15–20.

[17] M. Alonso, S. Coll, J.-M. Mart́ınez, V. Santonja, P. López, J. Duato,
Power saving in regular interconnection networks, Parallel Computing
36 (12) (2010) 696 – 712.

[18] F. Guo, O. Ormond, M. Collier, X. Wang, Power measurement of NetF-
PGA based router, in: 2012 IEEE Online Conference on Green Com-
munications (GreenCom), 2012, pp. 116–119.

[19] K. Christensen, et al., IEEE 802.3az: the road to energy efficient ether-
net, IEEE Communications Magazine 48 (11) (2010) 50–56.

[20] P. Reviriego, J. A. Hernandez, D. Larrabeiti, J. A. Maestro, Performance
evaluation of Energy Efficient Ethernet, IEEE Communications Letters
13 (9) (2009) 697–699.

[21] M. Koibuchi, et al., An on/off link activation method for low-power
ethernet in PC clusters, in: 2009 IEEE International Symposium on
Parallel Distributed Processing, 2009, pp. 1–11.

[22] J. Li, W. Huang, C. Lefurgy, L. Zhang, W. E. Denzel, R. R. Treumann,
K. Wang, Power shifting in thrifty interconnection network, in: 2011
IEEE 17th International Symposium on High Performance Computer
Architecture, 2011, pp. 156–167.

29

http://www.mellanox.com/page/switch_systems_overview
http://www.mellanox.com/page/switch_systems_overview

[23] F. Zahn, P. Yebenes, S. Lammel, P. J. Garcia, H. Fröning, Analyzing
the energy (dis-)proportionality of scalable interconnection networks, in:
2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era, 2016, pp. 25–32.

[24] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, H. Liu, Energy propor-
tional datacenter networks, in: Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture, ISCA ’10, ACM, New
York, NY, USA, 2010, pp. 338–347.

[25] A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, The cost of a cloud:
Research problems in data center networks, SIGCOMM Comput. Com-
mun. Rev. 39 (1) (2008) 68–73.

[26] L. A. Barroso, U. Hölzle, The case for energy-proportional computing,
Computer 40 (12) (2007) 33–37.

[27] M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa, T. Watanabe, The
K-Computer: Japanese next-generation supercomputer development
project, in: Proceedings of the International Symposium on Low Power
Electronics and Design, 2011, pp. 371–372.

[28] B. Alverson, E. Froese, L. Kaplan, D. Roweth, Cray XC series network,
Cray Inc., White Paper WP-Aries01-1112.

[29] M. Karol, M. Hluchyj, Queuing in high-performance packet-switching,
IEEE Journal on Selected Areas 1 (1998) 1587–1597.

[30] T. Anderson, S. Owicki, J. Saxe, C. Thacker, High-speed switch schedul-
ing for local-area networks, ACM Transactions on Computer Systems 11
(1993) 319–352.

[31] N. Adiga, et al., Blue Gene/L torus interconnection network, IBM Jour-
nal of Research and Development 49 (2) (2005) 265–276.

[32] S. Q. Zheng, M. Yang, Algorithm-hardware codesign of fast parallel
round-robin arbiters, IEEE Transactions on Parallel and Distributed
Systems 18 (1) (2007) 84–95.

[33] VEF traces homepage, http://www.i3a.uclm.es/VEFtraces/, (Ac-
cessed December 20, 2021).

30

http://www.i3a.uclm.es/VEFtraces/

[34] F. J. Andújar, J. A. Villar, J. L. Sánchez, F. J. Alfaro, J. Escudero-
Sahuquillo, VEF Traces: A Framework for Modelling MPI Traffic in
Interconnection Network Simulators, in: The 1st IEEE International
Workshop on High-Performance Interconnection Networks in the Exas-
cale and Big-Data Era, Chicago, IL, USA, 2015, pp. 841–848.

[35] E. Gabriel, et al., Open MPI: Goals, concept, and design of a next
generation MPI implementation, in: Proceedings of the 11th European
PVM/MPI Users’ Group Meeting, 2004, pp. 97–104.

[36] GALGO - Supercomputer Center of Albacete Research Insti-
tute of Informatics homepage, https://www.i3a.uclm.es/i3a_t/

galgo-supercomputing/, (Accessed December 20, 2021).

[37] J. C. Phillips, et al., Scalable molecular dynamics with NAMD, Journal
of Computational Chemistry 26 (16) (2005) 1781–1802.

[38] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,
M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess,
E. Lindahl, Gromacs 4.5: a high-throughput and highly parallel open
source molecular simulation toolkit, Bioinformatics 29 (7) (2013) 845–
854.

[39] HPC challenge benchmark homepage, http://icl.cs.utk.edu/hpcc/
index.html, (Accessed December 20, 2021).

[40] M. Alonso, J.-M. Mart́ınez, V. Santonja, P. López, Reducing Power
Consumption in Interconnection Networks by Dynamically Adjusting
Link Width, in: Lecture Notes in Computer Science, Vol. 3149, Springer-
Verlag, 2004, pp. 882–890.

[41] M. Alonso, J. M. Martinez, V. Santonja, P. Lopez, J. Duato, Power sav-
ing in regular interconnection networks built with high-degree switches,
in: 19th IEEE International Parallel and Distributed Processing Sym-
posium, 2005, pp. 5b–5b.

[42] M. Alonso, S. Coll, J. M. Martinez, V. Santonja, P. Lopez, J. Duato,
Dynamic power saving in fat-tree interconnection networks using on/off
links, in: Proceedings 20th IEEE International Parallel Distributed Pro-
cessing Symposium, 2006, pp. 8 pp.–.

31

https://www.i3a.uclm.es/i3a_t/galgo-supercomputing/
https://www.i3a.uclm.es/i3a_t/galgo-supercomputing/
http://icl.cs.utk.edu/hpcc/index.html
http://icl.cs.utk.edu/hpcc/index.html

[43] M. Alonso, S. Coll, J. Mart́ınez, V. Santonja, P. López, Power consump-
tion management in fat-tree interconnection networks, Parallel Comput-
ing 48 (C) (2015) 59–80.

[44] C. Gunaratne, K. Christensen, B. Nordman, S. Suen, Reducing the en-
ergy consumption of ethernet with adaptive link rate (alr), IEEE Trans.
Comput. 57 (4) (2008) 448–461.

[45] E. Totoni, N. Jain, L. V. Kale, Toward runtime power management of
exascale networks by on/off control of links, in: 2013 IEEE Interna-
tional Symposium on Parallel Distributed Processing, Workshops and
Phd Forum, 2013, pp. 915–922.

[46] K. P. Saravanan, P. Carpenter, Perfbound: Conserving energy with
bounded overheads in on/off-based hpc interconnects, IEEE Transac-
tions on Computers (2018) 1–1.

32

