

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/159137

Pérez-Rubio, S.; Tamarit Muñoz, S. (2019). Enhancing POI Testing Approach through the
Use of Additional Information. Lecture Notes in Computer Science. 11285:74-90.
https://doi.org/10.1007/978-3-030-16202-3_5

https://doi.org/10.1007/978-3-030-16202-3_5

Springer-Verlag

Enhancing POI testing through
the use of additional information ?

Sergio Pérez and Salvador Tamarit

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València

Camí de Vera s/n
E-46022 València, Spain

{serperu,stamarit}@dsic.upv.es

Abstract. Recently, a new approach to perform regression testing has
been defined: the point of interest (POI) testing. A POI, in this context,
is any expression of a program. The approach receives as input a set
of relations between POIs from a version of a program and POIs from
another version, and also a sequence of entry points, i.e. test cases. Then,
a program instrumentation, an input test case generation and different
comparison functions are used to obtain the final report which indicates
whether the alternative version of the program behaves as expected, e.g.
it produces the same outputs or it uses less CPU/memory. In this paper,
we present a method to improve POI testing by including additional
context information for a certain type of POIs. Concretely, we use this
method to obtain an enhanced tracing of calls. Additionally, it enables
new comparison modes and a categorization of unexpected behaviours.

Keywords: code evolution control, automated regression testing, call traces,
tracing

1 Introduction

During its useful lifetime, a program might evolve many times. Each evolution
is often composed of several changes that produce a new release of the software.
Software developers usually define test suites to detect any unexpected behaviour
(UnB) in new program releases. These suites help developers to notice the errors,
but detecting an error is just the beginning of the debugging process.
? This work has been partially supported by MINECO/AEI/FEDER (EU) un-
der grant TIN2016-76843-C4-1-R, and by the Generalitat Valenciana under grant
PROMETEO-II/2015/013 (SmartLogic). Salvador Tamarit was partially supported
by the Conselleria de Educación, Investigación, Cultura y Deporte de la Generalitat
Valenciana under grant APOSTD/2016/036.

2

Let us suppose that we are running our test suite and some test fails. Our
next step would probably be to start a debugging process in order to find the
bug. This process requires our knowledge and cannot be done without it. We are
going to start observing intermediate results until the origin of the bug is found.
We need to interpret each one of these intermediate results, until we locate the
one that makes no sense. However, in this process there is a lot of information
that is available, but is not usually exploited by users. All this information comes
from previous versions of the code which, in a continuous integration scheme,
will be very similar to the latest version or exactly the same.

First of all, the mentioned information can be used to establish relations
between the expressions of the last version of the code and its predecesor. Once
these relations are created, we can run the failing test using as observation point
all the expressions that form these relations. We should run the test on both
versions, and observe and compare the results obtained on each of these auto-
generated observation points1. However, most of the times, the compared values
are going to be very similar, so why do not automatise the comparison process
as well? These principles (expression relation across versions and comparison
of execution results) are the basis of Point of interest (POI) testing (briefly
described in Section 2).

POI testing tries to help users in comparing the behaviour of their code across
versions by observing specific points of a program. A POI can be any expression
of the code whose behaviour wants to be observed, e.g. the POI (module, 5,
(var, ‘A’), 2) refers to the second occurrence2 of variable A in the fifth line of
the file module. We can establish these relations between points of both programs
versions and seach for errors with our defined tests suites but, what happens
if the observed points does not reveal any incoherence when running our test
suite? or, even worse, what happens if we do not have any test suite? This is
also solved in our approach by auto-generating (a lot of) test cases that focus on
the observation points (POIs) when deciding what to use as concrete data inside
the test. Thus, it enables the comparison of versions without needing a user-
defined test-suite or reuses the existing one to create similar ones that explore
the behaviour of the POIs for different program executions.

POI testing, as mentioned previously, can be a very powerful tool that eases
the debugging process and reuses a lot of information that is available in common
repositories, such as Git repositories. However, its first and current definition
does not use all the available information when running a test. For this reason,
the user needs to do some extra work to locate the source of a bug. In this paper
we present a framework that allows to reuse more available information to ease
the task of the user in the debugging process (Section 3). As an example, we
present a concrete usage of the framework by increasing the information provided
by POIs placed at function calls (Section 4) in the context of the functional

1 Although current implementation of POI testing does not still support auto-
generation of observation points, it is a key feature that will be part of next release.

2 The occurrence argument (2 in the example) can be omitted, selecting in that case
the first occurrence of the variable in the indicated line.

3

programming language Erlang3 [1]. Let’s see Example 1 to better understand
the framework and its usage.

Example 1. Consider the code (in any specific language) shown in Figure 1 which
represents three lines of a program that show some differences between versions.

PREVIOUS NEW

x = g() x = h() → Expression changed, no relation built.

y = i() y = i() → Expression unchanged, relation built.

lib.f(x,y) lib.f(x,y) → f is in a library (lib) that has completely

changed due to some severe refactoring. Re-

lation built.

Fig. 1: Two different versions of a source code

In the new version, a severe refactoring on function f has been done. Suppose
that in the new version h() computes the value 5, while g() computes 4. Then,
when running our test suite, an error raises. Then we run POI testing, which
builds the relations between code versions as explained in Figure 1.

This means that, until comparing the values computed by each call to f, we
would not know that the call is uncovering the UnB. Our first reaction would be
to blame function f and start the debugging process for f, comparing completely
different versions of the same algorithm, that stands a hard and arduous task.
The framework presented in this paper can be used to add to our POI testing
the knowledge of the call arguments. These arguments, are integrated as another
expression in the plain POI testing, so they can be used when comparing values
computed on the POIs across versions.

2 POI testing

In POI testing, (i) the programmer identifies a POI and a set of entry points.
Then, by using some automatic test case generation technique, (ii) the approach
automatically generates a test suite which tries to cover all possible paths that
reach the POI (trying also to produce execution paths that evaluate this POI
several times). Therefore, in POI testing, the input of a test case (ITC) is defined
as a call to a particular function (defined as an entry point) with some specific
arguments. On the other hand, the output of a test case is the sequence of
values that the POIs are evaluated to for an ITC. For the sake of simplicity, in
the rest of the paper we use the term traces to refer to these sequences of values.
Next, (iii) the test suite is used to automatically check whether the behaviour
of the program remains unchanged across new versions4. Finally, (iv) the user is
provided with a report about the success or failure of these test cases.
3 More information about Erlang and how we implemented a POI tester for this lan-
guage are further discussed in Section 4.

4 Steps (ii) and (iii) could also be executed in parallel. Here, for the sake of simplicity,
we only consider the sequential execution of these steps.

4

Note that this technique allows the definition of multiple POIs [9]. With this
feature, users can trace several (and maybe unrelated) functionalities in a single
run. Additionally, users can strengthen the quality of their test suite by checking
behaviour preservation in more than one point. Finally, this feature is required
in those cases where a POI in one version is associated with more than one POI
in another version (e.g., when a POI is associated with two or more POIs due
to a refactoring or a removal of duplicated code).

An example of a POI tester is the tool SecEr (Software Evolution Control
for Erlang), which is publicly available at https://github.com/mistupv/secer.
The analyses performed by SecEr are transparent to the user. The only task
in SecEr that requires user intervention is identifying suitable POIs in both old
and new versions of a program. SecEr allows to define test configuration files
to ease all this process and also to make it reusable. The interested readers are
referred to [9] where they will find an extensive discussion about the similarities
with other tools and how to deal with concurrency.

Program P1 Program P2

1 main(X, Y) ⇒ main(X, Y) ⇒
2 A = X + Y, S = diff(X, Y),

3 D = X - Y, A = add(X, Y),
4 RETURN A * D. RETURN A * S.

5 add(X, Y) ⇒
6 RETURN X + Y.

7 diff(Y, X) ⇒
8 RETURN X - Y.

Fig. 2: Two versions of the same program

In the following, we introduce the approach with the help of the example
presented in Figure 2. There are three main parts in POI testing:

– Inputs: POI testing requires at least two parameters to be able to operate:
a sequence of POI relations and a set of entry points. Additionally, POI
testing can also be run with some specific comparison and report functions.
The comparison and report functions are explained within the internals and
the outputs of the approach, respectively.
• POI relations connect POIs from two different versions of the same pro-

gram. A POI relation is represented by a set of pairs. Each pair contains
two POIs, one of each version of the program. For instance, the POI re-
lation ((P1, 3, (var, D)), (P2, 2, (var, S), 1)) defines a relation
between the two POIs contained at lines 3 and 2 respectively, in Fig-
ure 2. This POI relation indicates that the variable D in line 3 has been
renamed to S, and moved to line 2.

• Entry points determine the beginning of the execution. They are rep-
resented by a set of function names with their arity. For example, the
set {main/2} defines an entry point for the approach in the example of
Figure 2, i.e. all the ITCs generated for the approach are calls to func-
tion main/2. Concretely, this function requires the generation of specific

https://github.com/mistupv/secer

5

arguments which are not provided by the user. This is further discussed
in the internals of the approach.

– Internals: There are three main stages of the approach. First, how traces are
built, then how they are compared, and finally how new ITCs are generated.
• Trace building. The basis of POI testing is the tracing of some POIs dur-

ing the evaluation of a concrete ITC. For this reason, it is needed a way
to create and collect these traces. This process is performed by means
of a program instrumentation (like the one defined in [9] for Erlang).
The instrumentation builds tuples of the form (POI, value) and sends
them to a trace server which collects and sorts all the tuples, producing
the final trace. For example, when we run the program P1 with the ITC
main(4,2), the trace obtained for the previously defined POI (P1, 3,
(var, D)) would be {2}5.

• Trace comparison. Once traces are generated and stored, the next step is
to compare them in order to infer if there is any UnB6. In the case that
some UnB is found, it shows the corresponding UnB type with and an
associated UnB report. There are several ways of comparing traces. The
most relevant techniques to compare multi-POI traces are described in
[9], where the authors distinguish between two main forms of comparison:
(i) the traces are compared as a whole or (ii) the traces are compared
independently for each POI. For example, consider both versions of the
program shown in Figure 2. Consider also the set of POI relations

{((P1, 3, (var, D)), (P2, 2, (var, S))),

((P1, 2, (var, A)), (P2, 3, (var, A)))}

represented from now on as {(P1_D, P2_S), (P1_A, P2_A)}, and the
ITC main(5,1). When running this ITC, the generated traces are

P1: {(P1_A, 6), (P1_D, 4)}

P2: {(P2_S, -4), (P2_A, 6)}

If they are compared as a whole, an UnB is raised reporting that a
trace from P2_A was expected, but a trace of P2_S was found instead.
In this comparison, the elements of both traces must be generated in
the same order for both executions. On the other hand, when they are
compared separately, independent traces are generated for each POI re-
lation. Therefore, for this example, there is an UnB found when com-
paring the traces of the (P1_D, P2_S) POI relation (i.e., value 4 was
expected but value -4 was found). There is an optional input parameter
that allows users to define their own comparison functions. This function

5 Note that a trace consists of a sequence of values since a variable can be evaluated
several times. Each evaluation is represented by an element of the sequence.

6 The observed UnBs are represented and identified using literals, e.g. the atom
greater could be used to represent an UnB that occurs when an expression is eval-
uated to a greater value in the new version than in the old one. The UnB represen-
tations are defined during the comparison process as it is then when the UnBs are
found.

6

should receive two traces and must return either true or a tuple of the
form (UnB_Type, UnB_Report), where UnB_Type is a label representing
the UnB and UnB_Report is the message shown when this type of UnB
is reported.

• ITC generation. POI testing starts by generating an ITC for each en-
try point. However, in order to reinforce the obtained UnB report, each
time an ITC is run, new ITCs may be derived from it according to the
comparison result. This way, if an UnB is found when running a partic-
ular ITC, we can generate new ITCs based on it, so that they are more
conducive to generate the same or other UnBs. In [9], an ITC genera-
tion based on the mutation of the arguments of the ITC is described.
Alternative generators can be used, but they should take into account
the result of the trace comparison in order to obtain better results for
POI testing.

– Outputs: The output of POI testing consists of a collection of ITCs together
with the result of their trace comparisons. When none of the ITCs evaluated
have generated an UnB, users are informed of the successful result by adding
also some additional information such as the number of ITCs evaluated. On
the contrary, when one or more UnBs have been observed, users get a report
that can be configured in several ways. For example, the program of Figure 2
when using the POI relation {(P1_D, P2_S)} would result in a report similar
to the one shown in Figure 3.

Generated test cases: 259

Mismatching test cases: 234 (90.35%)

*** Detected Error ***
Call: main(5,1)

Error Type: Unexpected trace value

POI: (P1_D) trace: [4]

POI: (P2_S) trace: [-4]

Fig. 3: Example of an error report

3 Enhancing POI testing with additional information

This section introduces a general overview of the enhancement that we have
defined for POI testing. In order to include this enhancement, extensions have
been incorporated in some of the stages of the approach introduced in Section 2.
Concretely, the trace building stage, the trace comparison stage, and the output
stage. Therefore, Section 4 is a special case of the general methodology explained
here.

3.1 Augmenting traces with additional information

POI testing uses POI traces to check whether some UnBs exist across several pro-
gram versions. We represent each element of this trace as a tuple (POI, value).
In this paper, we propose an extension where some additional information is
attached to each trace element. Thus, we have extended the concept of trace

7

element to a triplet (POI, value, ai) where ai is a mapping function containing
any kind of information we add about the program context when tracing a POI.

Then, a concrete implementation of an enhanced POI testing should be able
to construct these trace element triplets and handle them during the whole
process. As mentioned in Section 2, the trace elements are sent when the in-
strumented code is executed. Then, they are collected and stored by the tracer
which produces the final trace. Thus, the task of any concrete enhancement
proposed for POI testing is to build these triplets, storing in ai all the desired
execution information (e.g. the arguments of a function call), and manage its
usage in the trace comparison and UnB report stages. In other words, for each
enhancement we need to modify the code instrumentation and add some extra
tracing functionality.

3.2 Using augmented traces to compare program behaviour

POI testing allows using any comparison function. This feature gives users a
complete freedom to configure the testing and/or debugging process in the best
way according to their needs.

Fig. 4: Comparison function structure

In order to maximize the cus-
tomization level of the compar-
ison, users can define their own
comparison functions. Each com-
parison function is defined by a
set of connected functions that
cover the different aspects of the
comparison. Thus, the input part
of the approach is extended with two extra functions. The connection between
these functions is illustrated in Figure 4. The outer black box represents the
general comparison function (it receives the whole traces of both executions as
parameters, TO and TN), while the gray and white boxes represent the new men-
tioned functions, that are used inside the general comparison function. Their
behaviour is explained below7.

– Value-extractor function (VEF): This function works at the trace element
level. Its target is to extract for any trace element only the parts that the
user wants to compare. For example, function:

VEF(POI, value, ai) ⇒ RETURN (POI, value, ai(args))

extracts from a trace element only the arguments information related to call
POIs and ignores the rest of additional information8.

7 All functions presented in Section 3 are written in pseudocode. In a particular im-
plementation, all functions should be implemented in the target language.

8 We use the notation ai(key) to refer to access some specific information previously
stored in the ai mapping. In this case ai(args) represent the arguments of a POI
placed in a function call.

8

– Trace element comparison function (TECF): In order to allow users to
check UnBs in different ways and not only a plain equality function, i.e.
operator ==, we add a comparison function for each pair of trace elements.
This function iteratively receives pairs of trace elements contained in the
whole traces, and it is the one in charge of comparing them. In order
to compare two trace elements, it uses the VEF function to extract their
values, perform a defined comparison, and, if an UnB is found, it returns an
UnB type notifying about it. For example, function:

TECF(TOE, TNE) ⇒
CASE compare(VEF(TOE),VEF(TNE)) OF

gt → RETURN true

eq → RETURN same

lt → RETURN downgrade

ENDCASE

is an example of a TECF, where function compare/2 is used to check whether
a reduction in some performance indicator is obtained. Then, when it is not
obtained, either a same or a downgrade UnB type is returned.

3.3 Reporting customized error types

When an UnB is detected, a specific report should be generated, i.e. a message
should be provided to users. In order to further define these error messages,
we have added to the approach a way to specify how the POI tester should
react to a particular UnB. In this case, we have added an extra input parameter
called unexpected-behaviour report mapping (UnBRM). We use a mapping, because
it allows easy redefinitions and additions of UnBs reports. The mapping returns
a function for a given UnB type. The returned function should build a string
that will be the report message. For example, expression UnBRM(downgrade) may
return a function similar to the one shown in Figure 5, where a custom message
is shown9 when an UnB of this type is found during the execution.

DOWNGRADE(TEO, TEN, History) ⇒
RETURN "There has been a downgrade in the new version"

Fig. 5: Example of a function providing a customized error message

3.4 POI testing configurations

There are several ways of using the additional information stored in the trace
elements, and all these modes are defined by the added resources introduced in
the previous subsections (TECF, VEF and UnBRM). In this section, we show three
different modes which will be more useful for users.
9 The function presented in Figure 5, does not make use of parameters TEO, TEN and
History to define the message content. However, more complex functions that treat
the information stored in these parameters can be defined to obtain a more elabo-
rated message, like the one shown in Figure 7.

9

– Additional information is not used during comparison (NUAI). In
this mode, the traced values are the only data used when comparing the trace
elements. This is the mode that should be used when the additional informa-
tion is expected to vary due to the differences between program versions or
simply due to the type of data it contains. Additionally, this mode can also
be used to ease the comparison process. This mode will use a value-extractor
function like VEF(POI, V, AI) ⇒ RETURN (POI, V) or a particular variant,
where additional information is simply ignored. According on how additional
information is used, we have identified three submodes.
• Additional information is only used to define UnB types
(NUAI-T). The additional information is only used to define new types
of UnBs, but it will not appear in the UnB report. This mode is really
convenient in such cases where the additional information is too complex
or large, so it will not give a significative feedback to the user. In such
cases, when an UnB is found, it is interesting to define a new type of UnB
(e.g., diff_value_same_args can represent those UnBs where the values
of two POIs placed at function calls differ when their call arguments are
the same). The TECF is the one that should be defined to use this mode.
For example, Figure 6 shows a TECF which distinguishes between those
unexpected values for call POIs where the arguments are the same and
those where the arguments are different10. Categorizing different types

TECF(TOE, TNE) ⇒
IF VEF(TOE) == VEF(TNE) THEN

RETURN true

ELSE

IF get_ai(TOE)(args) == get_ai(TNE)(args) THEN

RETURN diff_value_same_args

ELSE
RETURN diff_value_diff_args

ENDIF

ENDIF

Fig. 6: TECF which returns different UnB types

of UnBs has several benefits in POI testing. First of all, these types can
be considered in the ITC generation as a criterion to decide whether an
ITC should be mutated or not. In the example above, if we do not distin-
guish between diff_value_same_args and diff_value_diff_args, once
a diff_value type has been mutated it can have less chances of being
selected to be mutated again. However, with this distinction, each one is
treated separately, so that both mutate as separated entities. Addition-
ally, if the final report is enriched with several UnB types, users have
more feedback that can help while finding the source of the UnB.

• Additional information is only used in the UnB report (NUAI-
R). If we consider that the additional information is not representative
enough to categorize new types of UnBs, we can use its data only in the

10 Function get_ai is defined as get_ai(POI,value,ai) ⇒ RETURN ai.

10

reports. This is a less intrusive way of using the additional information,
but still a useful way to obtain richer feedback in the final report of each
UnB. We should add to the UnBRM a new function associated to each
UnB type that could benefit from the stored additional information. For
example, in the UnBRM, we can store the function of Figure 7 associated
with the default error key diff_value. In this example, each time we find
a difference in the results of two call POIs, we also get feedback on their
arguments.

DIFF_VALUE({POI1, value1, ai1}, {POI2, value2, ai2}, History) ⇒
RETURN "Value for POI1 (value1) and for POI2 (value2) differ.

Their call arguments were:

ai1(args)

ai2(args)"

Fig. 7: Example of UnBRM error function associated to error key diff_value

• Additional information is used to categorize and report UnBs
(NUAI-TR). This submode takes the advantages of both previous sub-
modes. It also involves specific trace-element comparison functions and
additions in the UnB report mapping.

– Additional information is used during comparison (UAI). This mode
is the one that gives a major relevance to the additional information. By using
this mode, the value and the additional information is compared as a whole.
This means that, for instance, even if the compared values are the same,
when any pair of elements of the additional information differs, the ITC is
reported to be generating an UnB. This mode is very convenient to uncover
some UnBs earlier. It can also be used for performance checking, e.g. the
values of the trace elements are equal but a performance indicator included
in the additional information is revealing some downgrade. This mode uses
a VEF function and a TECF which takes into account all or some parts of
the additional information. The amount of information that is finally used
to build the UnB reports is left to user’s choice.

– The additional information is not attached to the trace element,
instead considered as an independent one (AIT). Finally, in this com-
pletely different mode, the additional information is considered as a sepa-
rated entity and constitutes a single trace element as the ones that are gen-
erated for the POIs. This mode can be similar to plain POI testing, however
it requires a special instrumentation (to send the new trace elements), trac-
ing (to receive and store the new trace elements) and maybe some special
comparison functions (to take into account their singularities). This mode
is very convenient in such cases where the additional information can be di-
rectly used to uncover an UnB, avoiding in this way the comparison of sev-
eral subcomputations. For instance, if we place a POI in a call, and the call
parameters are compared before comparing the call result, all intermediate
trace elements are not compared. Additionally, this mode can be combined
in such a way that other additional information is attached to these special
trace elements forming a hybrid mode suitable for some specific scenarios.

11

Program P Program P’
1 main(X, Y) ⇒ main(X, Y) ⇒
2

3 foo(X), foo(X),

4

Fig. 8: Two versions of a program with a call to the foo function

4 Enhancement by using improved call tracing

In this section we explain how call tracing has been improved and how the
enhanced call traces have been incorporated to POI testing for Erlang.

Erlang [1] is a concurrent, functional programming language. It implements
the actor model approach for concurrency, and allows concurrency based on
message passing. Although one of the main features of Erlang is its potential
for distributed programming, in this paper we have just focused on the non-
distributed part. The sequential subset of the Erlang language supports eager
evaluation and dynamic typing. In our case, the order of evaluation (eager or
lazy) is not relevant for the approach, because POI testing is interested in the
values of the evaluation, not in the order the expressions are evaluated. On
the other hand, the dynamic typing supposed an important drawback for the
ITC generation due to all possible types that needed to be considered in the
generation process. This problem does not exist in static typed languages, as we
know exactly the types of the value we need to generate. Additionally, all the
Erlang libraries prepared to perform a live instrumentation of the code, make it
a suitable language for implementing POI testing.

In this section, we also present a use case, using our tool (SecEr) that im-
plements the POI testing methodology. In the use case, we compare the results
provided by both the initial and the enhanced version of the tool.

4.1 Motivation

As it is usual in testing, after finding an UnB, we still have to find its source to
fix it, i.e. we have to start a debugging process. Unfortunately, POI testing is
not an exception. Consider the programs P and P’ shown in Figure 8, and both
foo calls at line 3 as related POIs presenting an UnB. The information provided
by plain POI testing for this scenario is shown in Figure 9. This report contains
a list with the set of values each function call is evaluated to, but without any
context information (e.g., the parameters of each call, the Erlang dictionary of
the process, etc.). Thus, it might be difficult to determine whether the source of
the error is located in the arguments of the call or inside the function called.

In the new approach, the POIs placed at function calls will be treated in
a special way. This special treatment augments the information given in the
report, allowing us to speficy where the source of the UnB can be found. This is
the main benefit of using an enhanced tracing for calls.

12

*** Detected Error ***
Call: main(6,9)

Error Type: Unexpected trace value

POI: (P, (call, foo), line 3) trace: [12]

POI: (P’, (call, foo), line 3) trace: [7]

Fig. 9: Report returned for programs P and P’

4.2 Implementation details of the call tracing

When we place a POI in a call, we are saying that we are interested in comparing
the result of this call, so the standard behaviour of a POI tester is to trace only
these values. In this work, we want to create an enhanced trace where not only the
result of the call, but also its arguments, are traced. Therefore, this enhancement
adds to the additional information mapping a new element whose key is ca and
whose value is a list that contains the call arguments.

In order to obtain the improved call traces, we have to define a way for send-
ing, receiving and merging those traces. The main idea is to send the argument
traces before actually performing the call and its result just after that. Thus, we
should define how the code instrumentation is extended to create these enhanced
trace elements, and also we should define how the tracer deals with them.

e(ei) ⇒ begin
fvref = make_ref(),
[fvv|fvvi] = [e|ei],
tracer!{add_i, POI, fvref, fvv},
tracer!{add_i, POI, fvref, fvi},
fv = fvv(fvvi),
tracer!{add, POI, fvref, fv},
fv

end

(a) Instrumentation rule for call tracing

1 tracer({Stack, Trace}) ->
2 receive
3 {add_i, POI, Ref, V} ->
4 tracer({[{Ref, V} | Stack], Trace});
5 {add, POI, Ref, V} ->
6 {CalleeArgs, NStack} =
7 remove_same_ref(Ref, Stack),
8 tracer({NStack,
9 [{POI, V, store(ca, CalleeArgs)}

10 | Trace]});
11 {add, POI, V} ->
12 tracer({Stack, [{POI, V} | Trace]})
13 end.

(b) Simplified tracing server

Fig. 10: Elements of our proposed call tracer enhancement in Erlang

The sending process is done thanks to a program instrumentation that en-
ables this double tracing for the call in two steps, i.e. arguments before perform-
ing the call and the result just after the call. We show in Figure 10a how this
instrumentation can be done for the programming language used, i.e. Erlang.

When the code instrumentation process finds a call, i.e. e(ei), the expression
is then replaced by the block expression (begin-end) on the right-hand side.
This instrumentation (i) creates a set of auxiliar free variables11 to store all the
evaluated context of the call (callee and arguments), (ii) sends to the tracer of
these defined variables, (iii) performs the actual call using the value of the callee

11 All free variables used in the rule are represented as fv∗. Each one of these free
variables is unique and different to all the original variables of the module.

13

and the arguments, (iv) sends the result of the call to the trace server, and (v)
return the result of the call to make the block return the expected result.

All the information sent while running the instrumented code is received
and merged by the tracer. In Erlang, the tracer is a server which is continuously
receiving trace elements until the end of the execution or until a timeout is raised.
Figure 10b shows a simplification of the Erlang function tracer/1 which is in
charge of this tracing process. The server state is a tuple containing: 1) a stack,
where the callee and arguments are stored in the order they are received, and
2) the trace generated so far. Its body is a receive expression with three clauses:
the first one is for the information sent by function calls’ callees and arguments,
the second one is for the result of the function call, and the third one is for the
rest of trace elements, i.e. those that do not come from a function call. When a
callee or an argument value is received, it is simply stacked. When the call result
is received, all its arguments, which are at the top of the stack, are unstacked
(function remove_same_ref/2), and stored in the additional information of the
call trace element. Finally, the rest of trace elements are simply added to the
current trace with an empty additional information structure.

4.3 Using the enhanced call tracing to compare traces

In this section, we describe the specific requirements needed to use the imple-
mented enhancement of Section 4.2. To this end, we use two executions of our
POI tester SecEr, one execution previous to our proposed enhancement and an-
other one after it. In concrete, we compare two versions of an Erlang program
that aligns columns of a string with multiple lines. The code of both versions is
shown in Figure 11. While align_columns_ok.erl version code is implemented
using line 19, the align_columns.erl version replaces that line of code with
line 20. Due to space limitations, the implementation of some trusted meth-
ods is omitted, and some changes have been done. Both full program versions
are part of the benchmarks used in EDD (Erlang Declarative Debugger) [3],
and their originals can be found at https://github.com/tamarit/edd/tree/
master/examples/align_columns.

These programs export a function with zero parameters, that can be con-
sidered a unit case. Our selected entry pointwill be function align_left/0. In
order to test both SecEr implementations, we need to define also a POI relation.
Our POI relation, defined in our configuration file is shown in Figure 12.

Additionally, for enhanced POI testing, a configuration mode must be se-
lected among the ones shown in Section 3.4. In our case, we have selected
NUAI-TR mode, providing the Erlang implementation of the TECF function
shown in Figure 6 and an UnBRM that reports also the callee and the args of a
function call as part of the report. The configuration proposed is represented
with the function config/012 represented by line 5 in Figure 12. Once all the
configuration requirements are fulfilled, we have run SecEr obtaining the results
shown in Figure 13.
12 In our implementation, the Erlang module secer_api provides a list of implemented

functions to easily select any execution mode.

https://github.com/tamarit/edd/tree/master/examples/align_columns
https://github.com/tamarit/edd/tree/master/examples/align_columns

14

1 -module (align_columns_ok). / -module (align_columns).
2 -export([align_left/0]).
3
4 align_left()-> align_columns(left).
5 align_columns(Alignment) ->
6 Lines = ["Weak$people$revenge",
7 "Strong$people$forgive",
8 "Intelligent$people$ignore"],
9 Words = [string:tokens(Line, "$") || Line <- Lines],

10 Words_length = lists:foldl(fun max_length/2, [], Words),
11 [prepare_line(Words_line, Words_length, Alignment) || Words_line <- Words].
12
13 max_length(Words_of_a_line, Acc_maxlength) -> ...% Trusted method
14 adjust_list(L, Desired_length, Elem) -> ... % Trusted method
15
16 prepare_line(Words_line, Words_length, Alignment) ->
17 All_words = adjust_list(Words_line, length(Words_length), ""),
18 Zipped = lists:zip(All_words, Words_length),
19 [apply(string, Alignment, [Word, Length + 1, $\s]) % align_columns_ok
20 [apply(string, Alignment, [Word, Length - 1, $\s]) % align_columns
21 || {Word, Length} <- Zipped].

Fig. 11: Align columns program versions

1 poiOld() -> {’align_columns_ok.erl’, 19, call}.

2 poiNew() -> {’align_columns.erl’, 20, call}.

3 rel() -> [{poiOld(),poiNew()}].

4 funs() -> "[align_left/0]".

5 config() -> secer_api:nuai_tr_config(mytecf(),ubrm()).

Fig. 12: SecEr configuration file

Figure 13a shows the information provided by plain POI testing implemented
by SecEr. When analysing this information, we can notice that there is not
enough feedback to decide whether the bug comes from the arguments or from
the function call. We do not even know the function we are calling when the UnB
was raised because it is passed as an argument to function prepare_line/3. On
the other hand, Figure 13b represents the execution of SecEr after implementing
the enhanced call tracing. It can be seen that the source of the error is clearly the
list in the third argument of the call apply, where the second element differs for
both programs. Thus, we can conclude that the error comes from the expression
calculating this argument. Furthermore, we also can observe that the called
function in the apply call is the function string:left/3, information that was
not provided by the previous SecEr version. This is just a single example, more
examples of use cases dealing with some real-life programs (e.g. https://github.
com/mistupv/secer/benchmarks/rebar) can be found at our Github repository.

5 Related work

The orchestrated survey of methodologies for automated software test case gen-
eration [2] identifies five techniques to automatically generate test cases. POI
testing could be included in the class of adaptive random technique as a variant

https://github.com/mistupv/secer/benchmarks/rebar
https://github.com/mistupv/secer/benchmarks/rebar

15

$./secer -pois "test_align:rel()"
-funs "test_align:funs()"
-to 5

Function: align_left/0

Generated test cases: 1
Mismatching test cases: 1 (100.0%)
Error Types:
+ different_value => 1 Errors

Example call: align_left()

------ Detected Error ------
Call: align_left()
Error Type: different_value
- - - - - - - - - - - - - -
POI: {’align_columns_ok.erl’,19,call,1}
Trace:
["Weak "]

POI: {’align_columns.erl’,20,call,1}
Trace:
["Weak "]

(a) SecEr without enhancements

$./secer -pois "test_align:rel()"
-funs "test_align:funs()"
-to 5
-config "test_align:config()"

Function: align_left/0

Generated test cases: 1
Mismatching test cases: 1 (100.0%)
Error Types:
+ different_value_different_args => 1 Errors

Example call: align_left()

------ Detected Error ------
Call: align_left()
Error Type: different_value_different_args
- - - - - - - - - - - - - -
POI: {’align_columns_ok.erl’,19,call,1}
Trace:
["Weak "]

Call POI Info:
Callee: apply
Args: [string,left,["Weak",12,32]]

POI: {’align_columns.erl’,20,call,1}
Trace:
["Weak "]

Call POI Info:
Callee: apply
Args: [string,left,["Weak",10,32]]

(b) SecEr with call tracing enhancement

Fig. 13: Comparison of SecEr executions

of random testing. Within this class, the authors identify five approaches. POI
testing mutation approach of the test input shares several similarities with some
approaches like selection of best candidate as next test case or exclusion. Ac-
cording to a survey on test amplification [5], which identifies four categories that
classify all the work done in the field, our work could be included in the category
named amplification by synthesizing (new tests with respect to changes). Inside
this category, our technique falls into the "other approaches" subcategory.

There are other approaches that use traces to compare program versions, like
the ones based on program spectra [11]. Different program spectra have been pro-
posed (branch, execution trace or data dependence spectra), but value spectra
[16] is the most similar to our call trace enhancement. In particular, value trace
spectra record the sequence of the user-function executions traversed as a pro-
gram executes. After the spectra recording, spectra comparison techniques are
used to find value spectra differences that expose internal behavioral deviations
inside the black box. However, the spectrum is generated for all the user-defined
functions while in our approach users decide which functions should be com-
pared. Additionally, POI testing allows a more flexible use of these call traces.
Finally, the motivation and also some techniques of the enhanced call traces are
similar to the ones of algorithmic debugging [12]. In fact, this approach has been
successfully applied to Erlang [3].

16

Most of the efforts in regression testing research have been put in regression
testing minimization, selection, and prioritization [17], although among prac-
titioners it does not seem to be the most important issue [6]. In fact, in the
particular case of the Erlang language, most of the works in the area are focused
on this specific task [13,15]. We can find other works in Erlang that share similar
goals but more are focused on checking whether applying a refactoring rule will
yield to a semantics-preserving new code [10].

With respect to tracing, there are multiple approximations similar to the POI
testing’s. In Erlang’s standard libraries, there are two tracing modules. Both are
able to trace function calls and process related events (spawn, send, receive,
etc.). One of these modules is oriented to trace the processes of a single Erlang
node [7], allowing for the definition of filters to function calls, e.g., with names of
the function to be traced. The second module is oriented to distributed system
tracing [8] and the output trace of all the nodes can be formatted in many
different ways. M. Cronqvist [4] presented a tool named redbug where a call
stack trace is added to the function call tracing, making possible to trace both
the result and the call stack. A. Till [14] implemented erlyberly, a debugging tool
with a Java GUI able to trace the previously defined features but also giving
the possibility to add breakpoints and trace other features such as exceptions
thrown or incomplete calls. All these tools are accurate to trace specific features
of the program, but none of them is able to trace the value of an arbitrary point
of it. In our approach, we can trace both the already defined features and a point
of the program regardless of its position.

6 Conclusions

We have presented a common framework to enhance POI testing with the addi-
tion of new information. This new information enriches the approach, allowing
users to get better UnB reports and to define new UnB types. These new UnB
types benefit some of the internal processes of the approach, e.g. the ITC gener-
ation. These additions need new ways to send and store this additional informa-
tion and also new comparison modes. In this paper, an enhancement have been
proposed by augmenting call traces. This enhancement has its particularities,
but it follows the common framework presented in Section 3.

This work opens a way to extensions of POI testing. Following the same com-
mon framework described in this paper, we can easily include different additional
information. This additional data can be other functional data, i.e. similar data
to richer call traces. One interesting enhancement is to store a snapshot of the
current environment for each POI, so more contextual information is available
to find the UnB source. We could also store the followed conditional paths, so it
could be used to improve the coverage during the ITC generation. At the same
time, we are studying the use of some special additional information that en-
ables the mocking of values. The idea is to execute again an ITC that leads to an
UnB, but when the value that uncovers the UnB is found, replace it by the value
computed by a correct version of the program. This will allow the technique to

17

find further errors using the same ITC. The same idea can be applied when an
internal call is a previously executed ITC in order to avoid its recomputation.
Finally, we plan to define extensions of the approach that study non-functional
data, e.g. CPU or memory usage. After some preliminary work, we have con-
cluded that the common framework presented in this paper represents a very
natural way to operate with such kind of data.

References
1. Erlang. Available at: http://www.erlang.org/, 1986.
2. S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, and P. McMinn. An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software,
86(8):1978–2001, 2013.

3. R. Caballero, E. Martin-Martin, A. Riesco, and S. Tamarit. EDD: A declarative
debugger for sequential Erlang programs. 20th International Conference Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2014), volume
8413 of LNCS, pages 581–586. Springer, April 2014.

4. M. Cronqvist. redbug. Available at: https://github.com/massemanet/redbug,2017.
5. B. Danglot, O. Vera-Perez, Z. Yu, M. Monperrus, and B. Baudry. The Emerging

Field of Test Amplification: A Survey. CoRR, abs/1705.10692, 2017.
6. E. Engström and P. Runeson. A Qualitative Survey of Regression Testing Practices.

In M. A. Babar, M. Vierimaa, and M. Oivo, editors, Product-Focused Software
Process Improvement, 11th International Conference, PROFES 2010, Limerick,
Ireland, June 21-23, 2010. Proceedings, volume 6156 of Lecture Notes in Business
Information Processing, pages 3–16. Springer, 2010.

7. Ericsson AB. dbg. Available at: http://erlang.org/doc/man/dbg.html, 2017.
8. Ericsson AB. Trace tool builder. Available at: http://erlang.org/doc/apps/

observer/ttb_ug.html, 2017.
9. D. Insa, S. Pérez, J. Silva, and S. Tamarit. Behaviour Preservation across Code

Versions in Erlang. Scientific Programming, vol. 2018, pages 1–42, 2018.
10. E. Jumpertz. Using QuickCheck and semantic analysis to verify correctness of

Erlang refactoring transformations; Master’s thesis, Radboud University Nijmegen,
2010.

11. T. W. Reps, T. Ball, M. Das, and J. R. Larus. The use of program profiling for
software maintenance with applications to the year 2000 problem. 6th European
Software Engineering Conference Held Jointly with the 5th ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, Zurich, Switzerland, September
22-25, 1997, Proceedings, volume 1301 of LNCS, pages 432–449. Springer, 1997.

12. E. Y. Shapiro. Algorithmic program debugging. MIT Press, April 1982.
13. R. Taylor, M. Hall, K. Bogdanov, and J. Derrick. Using behaviour inference to

optimise regression test sets. In IFIP International Conference on Testing Software
and Systems, pages 184–199. Springer, 2012.

14. A. Till. erlyberly. Available at: https://github.com/andytill/erlyberly, 2017.
15. I. B. M. Tóth and Z. Horváth. Reduction of regression tests for Erlang based on

impact analysis. 2013.
16. T. Xie and D. Notkin. Checking inside the black box: Regression testing by com-

paring value spectra. IEEE Trans. Software Eng., 31(10):869–883, 2005.
17. S. Yoo and M. Harman. Regression testing minimization, selection and prioritiza-

tion: A survey. Softw. Test. Verif. Reliab., 22(2):67–120, 2012.

http://www.erlang.org/
https://github.com/massemanet/redbug
http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/apps/observer/ttb_ug.html
http://erlang.org/doc/apps/observer/ttb_ug.html
https://github.com/andytill/erlyberly

