

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/159142

Fredlund, L.; Mariño, J.; Pérez-Rubio, S.; Tamarit Muñoz, S. (2019). Runtime verification in
Erlang by using contracts. Lecture Notes in Computer Science. 11285:56-73.
https://doi.org/10.1007/978-3-030-16202-3_4

https://doi.org/10.1007/978-3-030-16202-3_4

Springer-Verlag

Runtime verification in Erlang by using contracts?

Lars-Åke Fredlund1, Julio Mariño1, Sergio Pérez2, and Salvador Tamarit2

1 Babel Group
Universidad Politécnica de Madrid, Spain

{lfredlund,jmarino}@fi.upm.es
2 Departament de Sistemes Informàtics i Computació

Universitat Politècnica de València, Spain
{serperu, stamarit}@dsic.upv.es

Abstract. During its lifetime, a program regularly undergoes changes
that seek to improve its functionality or efficiency. However, such modifi-
cations may also introduce new errors. In this work we use the design-by-
contract approach to allow programmers to formally state, in the code,
some of the knowledge and assumptions originally made when the code
was first written. Such contracts can then be checked at runtime, to en-
sure that modifications made to a program did not violate those assump-
tions. Applying these principles we have designed a runtime verification
system for the Erlang language. The system comprises two kinds of an-
notations. The first one contains those needed to specify contracts in
both sequential and concurrent code. The second kind of annotations is
specifically intended for concurrent Erlang code. Details about the de-
sign and implementation of these contracts, as well as examples of its use
are provided. The ideas presented in this paper have been implemented
in a tool named EDBC. Its source code is available at github.com as an
open-source and free project.

Keywords: Runtime Verification, Design-By-Contract, Program instrumenta-
tion, Concurrency.

1 Introduction

Developing software is not an easy task and, consequently, errors (bugs) are
present in most software artefacts. Companies usually rely on program testing
? This work has been partially supported by MINECO/AEI/FEDER (EU) under grant
TIN2016-76843-C4-1-R, by the Comunidad de Madrid under grant S2013/ICE-2731
(N-Greens Software), and by the Generalitat Valenciana under grant PROMETEO-
II/2015/013 (SmartLogic). Salvador Tamarit was partially supported by the Consel-
leria de Educación, Investigación, Cultura y Deporte de la Generalitat Valenciana
under grant APOSTD/2016/036.

github.com

2

to check that programs behave as expected. There are also programming lan-
guages, e.g., Haskell and Rust, that provide robust static type systems which
can help discover errors during program compilation. Once a bug is found, the
debugging process can start in order to find the cause or source of the bug. Even
in a program language which lacks a static type system, programmers can make
the process of locating the cause of a bug easier by annotating code with implicit
assumptions made – e.g., concerning type of parameters to methods or functions.
For instance, consider a function that will divide a number by zero if one of its
parameters has a non-expected value. Normally such an error is manifest when
the division by zero occurs. However, the true source of the bug is the func-
tion call. Defensive programming is a way to eliminate unexpected behaviours,
e.g., division by zero, by checking the validity of arguments before operations
are attempted. However, in mainstream programming this style is not a recom-
mendable practice for various reasons, such as the need to add boiler-plate code
which obscures the program logic, and because of the execution time overhead
caused by such checks. In fact, the language considered in this article, Erlang,
is infamous for its stance that defensive programming is to be avoided – “let it
crash”.

The Erlang programming has a number of interesting and innovative mech-
anisms for error detection and recovery,3 but these features are supposed to be
used only for errors that are hard to avoid (i.e., because static type systems are
not strong enough to characterise full program behaviour). Unfortunately, not all
the errors fall in this category. Some errors are rather easy to detect, and should
ideally be detected at “compile time” instead of being detected and corrected
when a software is operational. Erlang, as Python or JavaScript, is a dynamic
programming language. This means that the program compiler, if it even ex-
ists, does relatively few checks during compilation to help prevent errors when
the program is later run. For this reason, static analysis techniques, popularised
primarily by the Dialyzer tool[12], have been successfully and widely adopted
by Erlang practitioners. Dialyzer can analyse the code and report some errors
without requiring annotating program code in any way. However, the capability
of Dialyzer to detect program bugs can be considerably improved by the use of
type contracts [10]. Note that such contracts are not used only by Dialyzer to
implement static type checking, but also serve to document the developed code,
which improves the maintainability of the resulting software.

Even when the Dialyzer tool is used, and when programmers provide e.g. EU-
nit test cases (an Erlang testing tool) to further check program behaviour, pro-
gram bugs can still remain. In this work, we propose an mechanism to further
structure and strengthen such “defensive” programming tasks, i.e., the Erlang
Design-By-Contract (EDBC) system, a runtime verification framework based on
the Design-By-Contract [14] philosophy. The EDBC system is available as free and
open-source software at https://github.com/tamarit/edbc.

3 For example, process links help structure fault detection and fault recovery in com-
plex applications.

https://github.com/tamarit/edbc

3

In typical design-by-contract frameworks there are different types of con-
tracts, with most of them being related to program functions or methods. The
most common contracts are pre- and postconditions. Preconditions are condi-
tions that should hold before evaluating a function or method, while postcon-
ditions should hold after its evaluation. In addition to these, the EDBC system
includes type contracts, decreasing-argument contracts to help analyse program
termination, execution-time contracts to document bounds for the execution
time of function, and purity contracts which prohibit side effects such as Erlang
process-to-process communication. All these contracts can be used in any Erlang
program, regardless whether the program is purely functional, or structured as
a concurrent system, composed of a number of concurrent processes. To avoid
the traditional execution overhead associated with the use of contracts, normally
they are checked only during software production and maintenance. The EDBC
library provides a mechanism to disable such checks for running product code.

The article is structured as follows: Section 2 describes the contracts sup-
ported by our system for annotating Erlang code, regardless whether the code
is purely functional or implements concurrent behaviours. This section contains
a number of examples (2.1), and also gives details on the implementation of
contracts by means of program instrumentation in Section 2.2. There is a sec-
ond type of contracts which is used in concurrent Erlang code, specifically, in
programs using so called Erlang “behaviours”. Annotations for such concurrent
behaviours are described in Section 3.2, with examples in Sections 3.3 and 3.4.
Finally, Section 4 presents an overview of related work, and Section 5 concludes
and provides directions for future research and development.

2 Contracts in Erlang

In this section we first introduce the contracts provided by the EDBC system, and
show how they can be used to check program behaviour at runtime in Section
2.1. Then, we present some implementation details in Section 2.2.

2.1 The contracts

Precondition contracts. With the macro4 ?PRE/1 we can define a precondition
that a function should hold. The macro should be placed before the first clause of
the annotated function. The single argument of this macro is a function without
parameters, e.g. fun pre/0 or an anonymous function fun() -> . . . end, that
we call precondition function. A precondition function is a plain Erlang function.
Its only particularity is that it includes references to the function parameters.
In Erlang, a function can have more than one clause, so referring the parameter
using the user-defined names can be confusing for both EDBC and for the user.
In order to avoid these problems, in EDBC we refer to the parameters by their
4 As an implementation decision, we have chosen to use Erlang macros to represent
all contracts. The reason is that similar tools like EUnit also uses macros for assert
definitions.

4

position. Additionally, the parameters are rarely single variables but can be more
complex terms like a list or a tuple (since Erlang permits pattern matching). For
these reasons we use the EDBC’s macro ?P/1 to refer to the parameters. The
argument of this macro should be a number that ranges from 1 to the arity
of the annotated function. For instance, ?P(2) refers to the second parameter
of the function. A precondition function should return a boolean value which
indicates whether the precondition of the annotated function holds or not. The
precondition is checked during runtime before actually performing the call. If
the precondition function evaluates to false, the call is not preformed and a
runtime exception is raised.

As an example, imagine a function find(L,K) which searches for the position
of a value K in a list L, and returns -1 if the value is not found. Figure 1a shows
the usage of a precondition contract which expresses that the first parameter list
should not be empty.

In case the precondition is violated, an Erlang exception is raised. For in-
stance, if we attempt the function call find([], 3), which fails the precondition
check because the length of the list argument is 0, the resulting error message is
shown in Figure 1b.
Postcondition contracts. Similar to preconditions, the macro ?POST/1 is used
to define a postcondition that a function should satisfy. The macro should be
placed after the last clause of the annotated function. Its argument is a function
without parameters, which we call the postcondition function. For checking post-
conditions referring to the result of the function is essential; the macro ?R permits
this. Additionally, as in the ?PRE/1 precondition function the ?P/1 macros can
be used to refer to the actual parameters of the annotated function. The result
of a postcondition function is also a boolean value. Postcondition functions are
checked after a call terminates, and a runtime error is raised if the postcondi-
tion function evaluate to false. Figure 1c shows an example of a postcondition
contract associated with the function find/2. In this contract, an error is raised
if the index returned by find/2 is greater that the length of the list. Suppose
an implementation of find/2 returns the value 5 to the call find([1,2,3],3).
In this case, the execution would raise the error shown in Figure 1d.
Decreasing-argument contracts. These contracts are meant to be used in recur-
sive functions, and check that (some) arguments are always decreasing in nested
calls5. There are two types of macros to define these contracts: ?DECREASE/1
and ?SDECREASE/1. They both operate exactly in the same way with the ex-
ception that the ?SDECREASE/1 macro indicates that the argument should be
strictly smaller in each nested call, while the ?DECREASE/1 macro also permits
the argument to be equal. The argument of both macros can be either a single
?P/1 macro or a list containing several ?P/1 macros. These contracts should
be placed before the first clause of the function. Decreasing-argument contracts
are checked each time a recursive function call is made, by comparing the argu-
ments of the current call with the nested call just before performing the actual

5 Note that decreasing contracts only guarantee termination if the sequence is strictly
decreasing and well founded, i.e. values cannot go below a certain limit.

5

1 ?PRE(fun() -> length(?P(1)) > 0 end).
2 find(L, K) -> ...

(a) Erlang function find/2 annotated
with contracts.

** exception error: {"Precondition does not hold.
Call find([], 3), the list is empty."}

(b) Precondition contract violation

1 find(L, K) -> ...
2 ?POST(fun() -> ?R < 0 orelse
3 ?R < length(?P(1)) end).

(c) Erlang function find/2 with contract
annotations.

** exception error: {"Postcondition does not hold.
Call find([1,2,3], 3), returned value 5."}

(d) Postcondition contract violation

?SDECREASES(?P(1)).
-spec fib(integer()) -> integer().
fib(0) -> 0;
fib(1) -> 1;
fib(N) -> fib(N - 1) + fib(N + 2).

(e) Erlang function fib/1 annotated.

** exception error: {"Decreasing condition does
not hold. Previous call: fib(2).
Current call: fib(4).", [{ex,fib,1,[]},...

(f) Decrease contract violation

1 ?EXPECTED_TIME(fun() ->
2 20 + lists:sum([case (I rem 2) of
3 0 -> 100; 1 -> 200 end || I <- ?P(1)]) end)
4 f_time(L) -> [f_time_run(E) || E <- L].
5 f_time_run(N) when (N rem 2) == 0 ->

timer:sleep(100);
6 f_time_run(N) when (N rem 2) /= 0 ->

timer:sleep(200).

(g) Function with time contracts

** exception error: {"The execution of
ex:f_time2([1,2,3,4,5,6,7,8,9,10]) took too
much time. Real: 1509.913 ms.
Expected: 1020 ms. Difference: 489.913 ms)

(h) Execution-time contract-violation re-
port

1 fold1(Fun, Acc, Lst) -> lists:fold(Fun, Acc, Lst).
2 fold2(Lst, Fun) -> fold1(Fun, 1, Lst).
3 g3() -> fold1(fun erlang:put/2, ok,
4 [computer, error]).
5 ?PURE.
6 g4() -> fold2([2, 3, 7], fun erlang:’*’/2).

(i) Example taken from PURITY [15]

** exception error: {"The function is not pure.
Last call: ex:g3().
It has call the impure BIF erlang:put/2
when evaluating g3().",[{ex,g3,0,[]}]}

(j) Pure contract-violation report

Fig. 1: Several examples of contract annotations.

nested recursive call. In case the argument expected to decrease is not actually
decreasing, a runtime error is raised and the call is not performed. To exemplify
the functionality of this contract, we use a wrong implementation of the Erlang
program calculating the Fibonacci numbers shown (Figure 1e). When executing
the function call fib(2), the error message in Figure 1f is shown.

Execution-time contracts. EDBC introduces two macros that allow users to de-
fine contracts concerning execution times: ?EXPECTED_TIME/1 and ?TIMEOUT/1.
The macros should be placed before the first clause of the annotated func-
tion. The argument of these macros is a function without parameters called the
execution-time function. An execution-time function should evaluate to an inte-
ger which defines the expected execution time in milliseconds. Within the body
of an execution-time function we can use ?P/1 macros to refer to the arguments.

6

Permitting the execution-time function to refer to arguments is particularly use-
ful when dealing with lists or similar structures where the expected execution
time of the function is related to the sizes of arguments. Both macros have a
similar semantics, the only difference is that with macro ?EXPECTED_TIME/1 the
EDBC system waits till the evaluation of the call finishes to check whether the call
takes the expected time, while with macro ?TIMEOUT/1 EDBC raises an exception
if the function call does not terminate before the timeout limit is reached. As an
example of time contracts, we consider a function which performs a list of tasks.
Each task has its type (even or odd), and the allowed execution time is defined
by this type (100 and 200 ms., respectively). Figure 1g shows the function and
its associated time contract. Supposing we change the execution-time function
to, for instance, fun() -> 20 + (length(?P(1)) * 100) end, we would obtain
the contract-violation report shown in Figure 1h.

Purity contracts. When we say that a function is pure we mean that its execu-
tion does not cause any side effects, i.e., it does not perform I/O operations, nor
does it send messages, etc. That a function is “pure” can be declared by using the
macro ?PURE/0 before its first clause. The purity checking process is performed
in two steps. First, before a call to an function declared to be pure is performed,
a tracing process is started. Then, once the evaluation of the annotated function
call finishes, the trace is inspected. If a call to an impure function or operation
has been made, a runtime exception is raised. Note that due to the use of tracing
we can provide exact purity checks, ensuring that there are neither false positives
nor false negative reports.

Note that purity checking is not compatible with execution-time contracts,
since checking execution times do require performing impure actions. In order
to illustrate the checking of purity contracts we take a simple example used to
present PURITY [15], i.e., an analysis that statically decides whether a function
is pure or not. The example the authors presented is depicted in Figure 1i. We
only added the contract ?PURE in the test case g4/0, because the other test case,
i.e. g3/0, performs the impure operation erlang:put/2. When g4/0 is run, no
contract violation is reported as expected. If we added the contract ?PURE to
g3/0, then the execution will fail showing the error in Figure 1j.

Invariant contracts. This contract is meant to be used in Erlang behaviours
which has an internal state. An invariant contract is defined by using the macro
?INVARIANT/1. This macro can be placed anywhere inside the module imple-
menting the behaviour. The argument of the ?INVARIANT/1 macro is a function,
named invariant function, with only one parameter that represents the current
state of the behaviour. Then, an invariant function should evaluate to a boolean
value which indicates whether the given state satisfies the invariant or not. The
invariant function is used to check the invariant contract each time a call to a
function which is permitted to change the state finishes, e.g., when a call by
the gen_server behaviour to the handle_call/3 callback function finishes (see
Section 3.2 for a description of the behaviour). Note that invariant contracts can
be used to check for the absence of problems in concurrent systems such as e.g.
starvation. Examples of invariant contracts are presented in Section 3.2.

7

** exception error: {"The spec precondition does not hold.
Last call: ex:fib(a).
The value a is not of type integer().", ...}

Fig. 2: spec contract-violation report

method Find(a: array<int>, key: int)
returns (index: int)
requires a != null
ensures 0 <= index ==> index < a.Length &&

a[index] == key
ensures index < 0 ==> forall k ::

0 <= k < a.Length ==> a[k] != key
{...}

(a) Function Find/2 annotated in Dafny

1 ?PRE(fun() -> length(?P(1)) > 0 end).
2 ?SDECREASES(?P(1))
3 find(L, K) -> ...
4 ?POST(fun() -> ?R < 0 orelse
5 (?R < length(?P(1))
6 andalso lists:nth(?R, ?P(1)) == ?P(2))
7 end).
8 ?POST(fun() -> ?R > 0 orelse
9 lists:all(fun(K) -> K /= ?P(2) end,

10 ?P(1))
11 end).

(b) Function find/2 annotated in Er-
lang/EDBC.

Fig. 3: Contracts for function find/2 in Dafny and Erlang

Type contracts. Erlang has a dynamic type system, i.e., types are not checked
during compilation but rather at runtime. However, the language still permits to
specify type contracts (represented by spec attributes) which serves both as code
documentation, and as aid to static analysers like Dialyzer [12]. However, such
type contracts are not checked at runtime by the Erlang interpreter, because
of the potential associated cost in execution time. However, for programs still
in production, checking such type contracts during runtime can be helpful to
detect unexpected behaviour. For this reason, before a function is evaluated, EDBC
checks the type contract of its parameters (if any), while its result is checked after
its evaluation. If a type error is detected, a runtime exception error is raised.
Note that EDBC does not use any special macro to check type contracts, the
standard spec attributes are used instead. Figure 2 shows an error that would
be shown in case of calling fib(a) for the program defined in Figure 1e.

Note that the EDBC system can be used to define quite advanced contracts.
As a comparison point, the Dafny tool [11], which was an inspiration for EDBC,
permits the use of quantifiers to define conditions for input lists. Figure 3a shows
as an example of how quantifiers are used in Dafny to characterise the function
Find/2.

Such contracts with quantifiers can be represented in EDBC too. Instead of
using a special syntax like in Dafny, we can check conditions with quantifiers
using a common Erlang function such as lists:all/2, which checks whether
a given predicate is true for all the elements of a given list. Figure 3b shows
how the contracts in Figure 3a are represented in EDBC. If we implemented this
function as a recursive one, the list would be decreasing between calls. Then, we
could also add the contract ?SDECREASE(?P(1)) to the function.

8

Contracts added by users can also be used to generate documentation. Erlang
OTP includes the tool EDoc [6] which generates documentation for modules in
HTML format.

Fig. 4: EDoc for the annotated function find/2.

We have modified the
generation of HTML doc-
uments to also include
information concern-
ing EDBC contracts. As
an example the EDoc-
generated documentation
for the function find/2,
with information of its
contracts (some in Figure
3b and some new), and
its type specification,
is depicted in Figure 4.
Finally, it is important
to note that the contract
checking performed by
EDBC does not cause incompatibilities with other Erlang analysis tools. For
instance, users can both define EDBC contracts, and include EUnit [3] test case
assertions, in the same function.

2.2 Implementation details

In this section we explain how the code is instrumented to support contract
checking at runtime. Note that the code produced by the instrumentation pro-
cess is normal Erlang code, which is executed by the standard Erlang runtime
system in a completely normal fashion. Technically the instrumentation is per-
formed using so called Erlang “parse transforms”, which permits defining syntac-
tic transformations on Erlang code.

Consider a module with a number of annotated functions. The instrumen-
tation process replaces such annotated functions with a copy of the (possibly
modified) original function, together with a number of helper functions which
are synthesised from the contracts. The instrumentation is performed in three
steps:

1. First, if a function has an associated contract, then an instrumentation to
store the relevant information regarding function calls (function name, ar-
guments and stack trace) is performed. This creates a new function which
becomes the function entry point, and the original function is renamed. When
the new function is called, it stores the call information, and proceeds to call
the original function.

2. Then, contracts of type ?DECREASES/1 (including ?SDECREASES/1) are pro-
cessed. This instrumentation creates a function which checks if the size of
its parameters have decreased between recursive calls. If they are decreased,

9

delayed calls are executed, and if they are not, a contract violation exception
is raised. During the instrumentation the original function is also modified
by replacing all the recursive calls to calls to the new created function. Note
that, due to this instrumentation and the previous one, we have changed
the call cycle of a recursive call from fori → fori to fsi → fori → fdc → fsi,
where fori is the original function, fsi is the function that stores the call
information, and fdc is the function that checks the decreasing of arguments.

3. Finally, the remaining contract types are processed distinguishing between
contracts of type ?PRE, and contracts of type ?POST. All contracts except
?DECREASE can in fact be generalised to one of of these two types of contract.
Of course, each contract has its particularities, however, these particulari-
ties do not have any effect in the instrumentation process. The chain of calls
becomes fsi → fpre/post∗ → fori, where fpre/post∗ are a number of functions
(maybe none) introduced by ?PRE/?POST contracts. In the case of a recur-
sive function which defines a ?DECREASE contract, the call chain would be
fsi → fpre/post∗ → fori → fdc → fsi. Further note that most of the helper
functions have a call as its last expression enabling, in this way, so called
last call optimisations to reduce the runtime cost of instrumenting code. The
only exception is the functions generated for postconditions, which needs to
be be stacked until internal calls are completely evaluated.

Finally, contract checking can be easily disabled or enabled using a special
compilation flag, thus e.g. permitting production code to be compiled and run
without instrumentation.

3 Concurrency

As we shall see, the contracts presented in the earlier Section 2 are highly use-
ful for concurrent code too. The contracts for “normal” Erlang code in a sense
help provide additional structure to Erlang functions; they serve to document
assumptions how Erlang functions may be called, and, if the caller respects its
contract, what can be expected of the behaviour of the function (i.e., concerning
the computed result, side effects, termination properties, and so on). For concur-
rent Erlang code the situation is different: for the most part concurrent Erlang
code is already highly structured. Most Erlang programmers do not write con-
current code from scratch, but rather rely heavily on proven concurrent Erlang
behaviours (which can be considered a form of design patterns) present in the
Erlang/OTP standard library.

3.1 Erlang Behaviours as Concurrent Contracts

The Erlang behaviours are formalisations of common programming patterns.
The idea is to divide the code for a process in a generic part (a behaviour Er-
lang module), which is never changed, and a specific part (a callback Erlang
module), which is used to tailor the process for the particular application being

10

implemented. Thus, the behaviour module forms part of the Erlang/OTP stan-
dard library, and the callback module is implemented by the programmer. Such
behaviours provide standard mechanisms to implement concurrent behaviours:
the generic part provides a proven implementation of an often complex concur-
rent coordination task, which permits programmers to focus on the easier task
on how to adapt this generic behaviour to the particular application at hand.

Thus, the definition, and use of such behaviours, can be seen as a form of
parametric software contract. The generic part of the guarantees the general
behaviour of the behaviour, which to be able to function correctly, requires the
specific part to function correctly, i.e., that callback functions function correctly
(e.g. are computationally efficient, and terminate normally).

In the following section 3.2 we focus on an Erlang behaviour which is heav-
ily used in industrial applications, the gen_server behaviour which is used to
implement client–server architectures. In practice the behaviour has a number
of shortcomings which are addressed in EDBC by extending it to handle client re-
quests which arrive when the server is not capable of servicing them, a common
situation in asynchronous concurrent systems. A programmer using the normal
gen_server behaviour must manually handle such asynchronous requests by im-
plementing a queuing policy in the specific behaviour part. In the EDBC a modified
gen_server is provided instead, where the generic behaviour part handles such
asynchronous requests according to a simple rule, and which implements a flex-
ible queuing policy, thus providing a concurrent contract which is considerably
easier to use.

3.2 The gen_server behaviour with contracts

One of the more commonly used Erlang behaviours is the gen_server, which
provides a standard way to implement a client–server architecture. A callback
module for this behaviour needs to define the specific parts of the server (pro-
cess), e.g., what is the initial state of the server (e.g., implementing the Erlang
function init/0), and handling specific client requests (e.g., implementing the
Erlang functions handle_call/3 for blocking client calls, and handle_cast/2 for
non-blocking client calls), etc.

Given the highly regular nature of specific parts of this behaviour, the use of
normal contracts is highly useful. For instance, invariants (as expressed by the
?INVARIANT/1 contract explained in Section 2) constrain the (persistent) state
of the underlying server process. Moreover, for the server to function correctly,
the generic parts of the service require the programmer written specific parts of
the behaviour to satisfy a number of properties expressible as contracts: calls
to handle_call/3 (or handle_cast) must normally be side effect free (as the
generic part handles replying to server requests) as expressed by the ?PURE/0
contract, and and the code implementing handle_call/3 should be efficient as
expressed by the ?EXPECTED_TIME/1 contract.

As discussed earlier we have also extended the gen_server behaviour to
handle asynchronous client requests to the server. This extension provides a
mechanism for the server to postpone requests which it is not yet ready to

11

serve, but which should be served in the future when the server state changes.
Concretely we add a new callback function that the behaviour specific part
may implement: cpre/3. This function should return a boolean value indicating
whether the server is ready or not to serve a given request. The rest of the
gen_server callbacks are not modified. The three parameters of the callback
function cpre/3 are 1) the request, 2) the from of the request6 and 3) the current
server state. The function cpre/3 should evaluate to a tuple with two elements.
The first tuples element is a boolean value which indicates if the given request
can be served. The second tuples element is the new server state.

The gen_server_cpre behaviour behaves in the same way as the gen_server
behaviour except with a significant difference. Each time the server receives a
client request, it calls to cpre/3 callback before calling the actual gen_server
callback, i.e., handle_call/3. Then, according to the value of the first element
of the tuple that cpre/3 returns, either the request is actually performed (when
the value is true) or it is queued to be served later (when the value is false).
In both cases, the server state is updated with the value returned in the second
element of the tuple.

EDBC includes two implementations of the gen_server_cpre behaviour, each
one treats the queued requests in a different way. The least complicated imple-
mentation resends to itself a client request that cannot be served in the current
server state, i.e., a request for which function cpre/3 returns {false, ...}).
Since mailboxes in Erlang are ordered according to the arrival time of messages
(i.e., in FIFO order), the postponed request will be the last request in the queue
of incoming requests. This can be considered unfair, because, when once in the
future the state of the server has changed thus potentially permitting the post-
poned client request to be served, the server could instead serve serve new client
requests that have arrived later than the postponed client request.

The EDBC framework also provides a more fair version of the gen_server_cpre
behaviour. In this version, three queues are used to ensure that older requests
are served first: queuecurrent, queueold, and queuenew. Each time the server is
ready to listen for new requests, the queuecurrent is inspected. If it is empty,
then the server proceeds as usual, i.e., by receiving a request from its mailbox.
Otherwise, if it is not empty, a request from queuecurrent is served. Consequently,
the served request is removed from queuecurrent. The queues are also modified by
adding requests to queueold and queuenew. This is done when function cpre/3
returns {false, ...}. Depending on the origin of the request it is added to
queueold (when it comes from queuecurrent) or to queuenew (when it comes from
the mailbox). Finally, each time a request is completely served, the server state
could have been modified. A modification in the server state can enable post-
poned requests to be served. Therefore, each time the server state is modified,
queuecurrent is rebuilt as follows: queueold + queuecurrent + queuenew.

6 The from of the request has the same form as in the handle_call/3 callback, i.e., a
tuple {Pid,Tag}, where Pid is the process identifier of the client issuing the request,
and Tag is an unique tag.

12

3.3 Selective receives

In public forums such as https://stackoverflow.com and the
erlang-questions mailing list7, where Erlang programming is discussed,
there have been a number of questions regarding the limitations of the standard
gen_server implementation. Most of them concern how to implement a server
which has the ability to delay some requests. For example, one question posted
in stackoverflow.com8 asks whether it is possible to implement a server which
performs a selective receive while using a gen_server behaviour. None of the
provided answers is giving an easy solution. Some of them suggest that the
questioner should not use a gen_server for this, and directly implement a
low-level selective receive. Other answers propose to use gen_server but delay
the requests manually. This solution involves storing the request in the server
state and returning a no_reply in the handle_call/3. Then, the request should
be revised continually, until it can be served and use gen_server:reply/2 to
inform the client of the result. Our solution is closer to the last one, but all the
management of the delayed requests is completely transparent to the user.

1 handle_call(test, _From, _State) ->
2 List = [0,1,2,3,4,5,6,7,8,9],
3 lists:map(fun(N) -> spawn(fun() ->
4 gen_server:call(?MODULE, {result, N}) end)
5 end, lists:reverse(List)),
6 {reply, ok, List};
7 handle_call({result, N}, _From, [N|R]) ->
8 io:format("result: " ++ integer_to_list(N) ++ "~n"),
9 {reply, ok, R}.

Fig. 5: handle_call/2 for selective receive

Figure 5 shows the func-
tion handle_call/2 of the
gen_server that the ques-
tioner provided to exemplify
the problem. When the re-
quest test is served, it builds
ten processes, each one per-
forming a {result, N} re-
quest, with N ranging from 0 to 9. Additionally, the server state is defined as
a list which also ranges from 0 to 9 (Figure 5, lines 2 and 6). The interesting
part of the problem is how the {result, N} requests need to be served. The
idea of the questioner is that the server should process the requests in the order
defined by the state. For instance, the request {result, 0} can only be served
when the head of the state’s list is also 0. However, there is a problem in this ap-
proach. The questioner explains it with the sentence: when none of the callback
function clauses match a message, rather than putting the message back in the
mailbox, it errors out. Although this is the normal and the expected behaviour
of a gen_server, the questioner thinks that some easy alternative should ex-
ists. However, as explained above, the solutions proposed in the thread are not
satisfactory enough.

1 cpre(test, _, State) -> {true, State};
2 cpre({result, N}, _, [N|R]) -> {true, [N|R]};
3 cpre({result, N}, _, State) -> {false, State}.

Fig. 6: cpre/3 for selective receive

With the enhanced versions of
the gen_server behaviour we pro-
pose in this paper, users can define
conditions for each request by using
function cpre/3. Figure 6 depicts a definition of the function cpre/3 that solves
the questioner’s problem without needing to redefine function handle_call/3

7 see http://erlang.org/mailman/listinfo/erlang-questions
8 see https://stackoverflow.com/questions/1290427/
how-do-you-do-selective-receives-in-gen-servers

https://stackoverflow.com
erlang-questions
http://erlang.org/mailman/listinfo/erlang-questions
https://stackoverflow.com/questions/1290427/how-do-you-do-selective-receives-in-gen-servers
https://stackoverflow.com/questions/1290427/how-do-you-do-selective-receives-in-gen-servers

13

of Figure 5. The first clause indicates to the gen_server_cpre server that the
request test can be served always. In contrast, {result, N} requests only can
be served when N coincides with the first element of the server’s state.

3.4 Readers-writers example

1 handle_call(request_read, _, State) ->
2 NState = State#state{readers = State#state.readers + 1},
3 {reply, pass, NState};
4 handle_call(request_write, _, State) ->
5 NState = State#state{writer = true}},
6 {reply, pass, NState}.
7
8 handle_cast(finish_read, State) ->
9 NState = State#state{readers = State#state.readers - 1},

10 {noreply, NState};
11 handle_cast(finish_write, State) ->
12 NState = State#state{writer = false},
13 {noreply, NState}.

Fig. 7: Readers-writers request handlers

In this section we de-
fine a simple server
that implements the
readers-writers problem,
as a second example
of the use of the ex-
tended gen_server_cpre
contract. We start by
introducing an imple-
mentation of the problem
using the standard
gen_server behaviour. The server state is a record defined as -record(state,
readers = 0, writer = false). The requests that it can handle are four:
request_read, request_write, finish_read and finish_write. The first two
requests are blocking (because clients need to wait for a confirmation) while
the latter two do not block the client (clients do not need confirmation). Figure
7 shows the handlers for these requests. They basically increase/decrease the
counter readers or switch on/off the flag writer.

Having defined all these components, we can already run the readers-writer
server. It will start serving requests successfully without any noticeable issue.
However, the result in the shared resource is a mess, mainly because we are
forgetting an important problem: its invariant, i.e. !writer ∨ readers = 0.

1 ?INVARIANT(fun invariant/1).
2
3 invariant(#state{ readers = Readers, writer = Writer}) ->
4 is_integer(Readers) andalso Readers >= 0
5 andalso is_boolean(Writer)
6 andalso ((not Writer) orelse Readers == 0).

Fig. 8: Readers-writers invariant definition

We can define an in-
variant for the readers-
writers server by using
the macro ?INVARIANT/1
introduced in Section 2.
Figure 8 shows how the
macro is used and the helper function which actually checks the invariant. Apart
from the standard invariant, i.e., (not Writer) orelse Readers == 0, the func-
tion also checks that the state field readers is a positive integer and that the
state field writer is a boolean value.

If we run the server with the invariant defined, we obtain feedback on whether
the server is behaving as expected. In this case, the server is clearly not a correct
implementation of the problem. Therefore, an error should be raised due to the
violation of the invariant. An example of the errors is shown in Figure 9.

The error is indicating that the server state was {state,0,true} when the
server processed a request_read which led to the new state {state,1,true}
which clearly violates the defined invariant. The information provided by the

14

=ERROR REPORT====

** Generic server readers_writers terminating

** Last message in was request_read

** When Server state == {state,0,true}

** Reason for termination ==

** {{"The invariant does not hold.",Last call: readers_writers:handle_call(
request_read, ..., {state,0,true}). Result: {reply, pass,{state,1,true}}",
[{readers_writers,handle_call,3,...},...]}, ...}

Fig. 9: Failing invariant report

error report can be improved by returning a tuple {false, Reason} in the in-
variant function, where Reason is a string to be shown in this contract-violation
report after the generic message.

In order to correctly implement this feature, we use the function cpre/3
to control when a request can be served or not. Figure 10 shows a function
cpre/3 which makes the server’s behaviour correct and avoids violations of the
invariant. It enables request_read requests as long as the flag writer is switched
off. Similarly, the request_write requests also require the flag writer to be
switched off and also the counter readers to be 0. If we rerun now the server,
no more errors due to invariant violations will be raised.

1 cpre(request_read, _, State = #state{writer = false}) ->
2 {true, State};
3 cpre(request_read, _, State) ->
4 {false, State};
5 cpre(request_write, _,
6 State = #state{writer = false, readers = 0}) ->
7 {true, State};
8 cpre(request_write, _, State) ->
9 {false, State}.

Fig. 10: Readers-writers cpre/3 definition

Although this im-
plementation is already
correct, it is unfair for
writers as they have less
chances to access the
shared resource. The EDBC
code repository9 includes a
number of implementations
of the example, which implement various fairness criteria.

4 Related Work

Our contracts are similar to the ones defined in [1], where the function specifica-
tions are written in the same language, i.e., Curry, so they are executable. Being
executable enables their usage as prototypes when the real implementation is
not provided. Their contracts are functions in the source code instead of macros,
so it is not clear whether they could be removed in the final release. One of the
authors extended this work in [8], where static analysis performed by an SMT
solver at compile time was used to check the contracts. This analysis discharged
the overhead produced by the dynamic verification of these contracts. In these
works, there is not any mention about whether their contracts are integrated
with a documentation tool like our contracts are with EDoc. Moreover, they
only allow to define basic precondition and postcondition contracts, while we

9 https://github.com/tamarit/edbc/tree/master/examples/readers_writers

https://github.com/tamarit/edbc/tree/master/examples/readers_writers

15

are providing alternative ones like purity or time contracts. Finally, our con-
tracts for concurrent environments has a completely different approach.

The work in [15] presents a static analysis which infers whether a function
is pure or not. Since the focus on the article is on static analysis whereas ours
is on dynamic analysis, the purity checking is performed in completely different
ways in each work. However, we can benefit from their results by, for instance,
avoiding to execute functions that are already known to be impure, reporting
earlier to the user a purity-contract violation. In the same way, our system can
be used in their approach to check the validity of statically-inferred results.

The type contract language for Erlang [10] allows to specify the intended
behaviour of functions. Their usage is twofold: i) as a documentation in the
source code which is also used to generate EDoc, and ii) to refine static analyses
provided by tools such as Dialyzer. The contract language allows for singleton
types, unions of existing types and the definition of new types. However, these
types and function specifications do not guarantee type safety. This guarantee
comes with Erlang which incorporates strong runtime typing with type errors
detected and reported at runtime. Although such a static analysis is quite ca-
pable in detecting typing violations, strong typing usually detects unexpected
behaviour too far from its source. Therefore, when debugging a program, pro-
viding the feature to detect violations of such type contracts at runtime can be
a useful aid to provide more precise error location.

The contracts proposed for the concurrent environments follow the same
philosophy as the specifications defined in [9,7]. Indeed, our function cpre/3
takes its name from these works. Although these works were more focused on
enabling the use of formal methods, or testing techniques, to verify nontrivial
properties of realistic systems, in this paper we demonstrate that they can be
used to concisely program server applications which are forced to deal with
asynchronous requests that must be delayed, and moreover are also useful for
runtime verification.

Dafny [11] is a language which allows to define invariants and contracts in
their programs. The main difference between their approach and ours is that their
contracts are not checked during runtime, but during compile-time. Additionally,
as we have explained in Section 2, we can replicate the same type of contracts
in EDBC. However, our approach does not need an extra syntax or functionality
to define complex contracts as Dafny does.

The aspect-oriented approach for Erlang (eAOP) presented in [4] shares some
similarities with our work. eAOP allows the instrumentation of a program with
a user-defined tracing protocol (at an expression level). This is able to report
events to a monitor (asynchronous) as well as to force some part of the code
to block waiting for information from the monitor (synchronicity). Our system
could be used to a similar purpose but only at the function level. Additionally,
thanks to the functionality freedom allowed in our contracts, EDBC enables the
definition of synchronisation operations at the user-defined contracts. More com-
plex modifications of our system, such as the ones done in [13], can transform
our work into a complete aspect-oriented system.

16

Also in Erlang, the work [5] defines a runtime monitoring tool which helps to
detect messages which do not match a given specification. These specifications
are defined through an automaton, which requires an extra knowledge from the
user concerning both the syntax of the specification, and in the whole system
operation. We propose a clear and easy way to define the conditions for when to
accept a request without needing any user input.

Finally, JErlang [16] enables so called joins in Erlang. This is achieved by
modifying the syntax of Erlang receive patterns to permit expressing matching
of multiple subsequent messages. Although our goal and theirs are different, both
approaches can simplify the way programmers solve similar kinds of problems.
Indeed, we could simulate joins by adding a forth parameter to the function
cpre/3. This additional parameter would represent the still unserved pending
requests. When the last request of a user-defined sequence (join) is received, the
pending requests should be examined to check whether the required join can be
served. A similar modification is needed to the callback handle_call/3 interface
so that the pending requests could be served using the gen_server:reply/2 call.

5 Conclusions

We have developed a new framework EDBC which permits annotating Erlang code
(functions) with a number of different code contracts, ranging from classical ones
such as function pre- and post-conditions to more novel ones, e.g., whether func-
tions are side-effect free, and which can express limits on the execution time
of function calls. Such contracts help programmers to formally document oth-
erwise undocumented contextual assumptions regarding how functions may be
used. Such a feature can, we believe, for instance reduce the number of bugs
introduced when are programs are rewritten to add new functionality, as con-
tracts permit checking that new code interfaces correctly with the old code. An
additional advantage that code contracts provide is improved API documenta-
tion. Our framework includes a feature to include runtime contract as part of
the automatically generated documentation of Erlang functions.

The code contracts supported by EDBC are checked at runtime, and can be
easily be disabled for deployed code to avoid the runtime overhead of checking
contracts, if so desired. Moreover our contracts use plain Erlang, without the
need for defining new syntax or requiring supporting libraries.

As a second contribution of the article we have also provided an improved
contract for an important class of client–server based concurrent systems. In
Erlang such concurrent contracts are manifest as so called “behaviours”, a form
of design patterns. Our improved concurrent contract permit programmers to
state, in a declarative fashion, when asynchronous client requests can be served
by the server, and when they must be postponed as the server is incapable of
responding to them in its current state. The EDBC provides an implementation of
this contract, essentially freeing an Erlang programmer from having to explicitly
manage a set of queues to properly coordinate client requests, a nontrivial task.

17

There are multiple extensions of this work. For instance, contracts can be
modified to return a default value instead of an error when a contract is violated,
to permit more flexible policies for how contract violations are signalled, and
recovered from. Another item for future work is to generalise the “decrease”
contracts, which are used to ensure that recursive functions progress.

We can also use our contracts to control starvation of concurrent systems.
The idea is to use a mapping from types of request to waiting requests which
represents the fact that a delayed request is waiting for a concrete event to occur.
An invariant can then be used to control starvation. Another useful extension
concerning contracts for concurrent systems would be to cleanly communicate
the fact that a server process fails a precondition check to the client process that
issued the failing request, thus protecting the server process while communicating
the error to the responsible party.

More generally, we can extend our system to translate EDBC contracts to
EUnit tests cases, to or property test generators for property-based testing tools
like Quviq QuickCheck [2]. Finally, we are trying to establish a relation between
so called liquid types [17] and our approach as there are a number of similarities.

References

1. S. Antoy and M. Hanus. Contracts and specifications for functional logic pro-
gramming. In C. V. Russo and N. Zhou, editors, Practical Aspects of Declarative
Languages - 14th International Symposium, PADL 2012, Philadelphia, PA, USA,
January 23-24, 2012. Proceedings, volume 7149 of Lecture Notes in Computer Sci-
ence, pages 33–47. Springer, 2012.

2. T. Arts, J. Hughes, J. Johansson, and U. T. Wiger. Testing telecoms software
with quviq QuickCheck. In Proceedings of the 2006 ACM SIGPLAN Workshop on
Erlang, Portland, Oregon, USA, September 16, 2006, pages 2–10. ACM, 2006.

3. R. Carlsson and M. Rémond. EUnit: a lightweight unit testing framework for Er-
lang. In M. Feeley and P. W. Trinder, editors, Proceedings of the 2006 ACM SIG-
PLAN Workshop on Erlang, Portland, Oregon, USA, September 16, 2006, page 1.
ACM, 2006.

4. I. Cassar, A. Francalanza, L. Aceto, and A. Ingólfsdóttir. eAOP: an aspect oriented
programming framework for Erlang. In N. Chechina and S. L. Fritchie, editors,
Proceedings of the 16th ACM SIGPLAN International Workshop on Erlang, Ox-
ford, United Kingdom, September 3-9, 2017, pages 20–30. ACM, 2017.

5. C. Colombo, A. Francalanza, and R. Gatt. Elarva: A monitoring tool for Erlang.
In S. Khurshid and K. Sen, editors, Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised
Selected Papers, volume 7186 of Lecture Notes in Computer Science, pages 370–374.
Springer, 2011.

6. Ericsson AB. EDoc. Available at: http://erlang.org/doc/apps/edoc/chapter.
html, 2018.

7. L. Fredlund, J. Mariño, R. N. Alborodo, and Ángel Herranz. A testing-based
approach to ensure the safety of shared resource concurrent systems. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
230(5):457–472, 2016.

http://erlang.org/doc/apps/edoc/chapter.html
http://erlang.org/doc/apps/edoc/chapter.html

18

8. M. Hanus. Combining static and dynamic contract checking for curry. In Pro-
ceedings of the 27th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2017), volume 10855 of Lecture Notes in Computer
Science (LNCS), pages 323–340. Springer, 2017.

9. Á. Herranz-Nieva, J. Mariño, M. Carro, and J. J. Moreno-Navarro. Modeling con-
current systems with shared resources. In M. Alpuente, B. Cook, and C. Joubert,
editors, Formal Methods for Industrial Critical Systems, 14th International Work-
shop, FMICS 2009, Eindhoven, The Netherlands, November 2-3, 2009. Proceedings,
volume 5825 of Lecture Notes in Computer Science, pages 102–116. Springer, 2009.

10. M. Jimenez, T. Lindahl, and K. Sagonas. A language for specifying type con-
tracts in erlang and its interaction with success typings. In S. J. Thompson and
L. Fredlund, editors, Proceedings of the 2007 ACM SIGPLAN Workshop on Erlang,
Freiburg, Germany, October 5, 2007, pages 11–17. ACM, 2007.

11. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness.
In E. M. Clarke and A. Voronkov, editors, Logic for Programming, Artificial Intel-
ligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in
Computer Science, pages 348–370. Springer, 2010.

12. T. Lindahl and K. Sagonas. Detecting Software Defects in Telecom Applications
Through Lightweight Static Analysis: A War Story. In Programming Languages
and Systems: Second Asian Symposium, APLAS 2004, Taipei, Taiwan, November
4-6, 2004. Proceedings, volume 3302 of Lecture Notes in Computer Science, pages
91–106. Springer, 2004.

13. D. H. Lorenz and T. Skotiniotis. Extending Design by Contract for Aspect-Oriented
Programming. CoRR, abs/cs/0501070, 2005.

14. B. Meyer. Applying "Design by Contract". IEEE Computer, 25(10):40–51, 1992.
15. M. Pitidis and K. Sagonas. Purity in Erlang. In J. Hage and M. T. Morazán,

editors, Implementation and Application of Functional Languages - 22nd Interna-
tional Symposium, IFL 2010, Alphen aan den Rijn, The Netherlands, September
1-3, 2010, Revised Selected Papers, volume 6647 of Lecture Notes in Computer
Science, pages 137–152. Springer, 2010.

16. H. Plociniczak and S. Eisenbach. JErlang: Erlang with Joins. In D. Clarke and
G. A. Agha, editors, Coordination Models and Languages, 12th International Con-
ference, COORDINATION 2010, Amsterdam, The Netherlands, June 7-9, 2010.
Proceedings, volume 6116 of Lecture Notes in Computer Science, pages 61–75.
Springer, 2010.

17. P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’08, pages 159–169, New York, NY, USA, 2008. ACM.

