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Abstract

This work studies the effect and performance of an
optimal control strategy on engine fuel efficiency
and pollutant emissions. An accurate mean-value
control-oriented engine model has been developed
and experimental validation on a wide range of oper-
ating conditions was carried out. A direct optimiza-
tion method based on Euler’s collocation scheme
is used in combination with the above model in
order to address the optimal control of the engine.
This optimization method provides the optimal tra-
jectories of engine controls (fueling rate, exhaust
gases recirculation valve position, variable turbine
geometry position and start of injection) to repro-
duce a predefined route (speed trajectory including
variable road grade), minimizing fuel consumption
with limited NOx emissions and a low soot stamp.
This optimization procedure is performed for a set
of different NOx emission limits in order to analyze
the tradeoff between optimal fuel consumption and
minimum emissions.

Optimal control strategies are validated in an
engine test bench and compared against engine fac-
tory calibration. Experimental results show that
significant improvements in both fuel efficiency and
emissions reduction can be achieved with optimal
control strategy. Fuel savings at about 4% and less
than half of the factory NOx emissions were mea-
sured in the actual engine, while soot generation was
still low. Experimental results and optimal control
trajectories are thoroughly analyzed, identifying the
different strategies that allowed those performance
improvements.

This work was supported by Ministerio de Economı́a y
Competitividad through Project TRA2016-78717-R.

1 Introduction

Internal Combustion Engines (ICEs) are experienc-
ing a significant increase in complexity, especially
regarding pollutant reduction devices and technolo-
gies. Nowadays, vehicles incorporate a large number
of different systems aimed at reducing fuel consump-
tion while fulfilling pollutant emissions regulations.
Double Exhaust Gases Recirculation (EGR) loop,
Variable Geometry Turbine (VGT), double or triple
forced induction devices, Variable Valve Timing
(VVT), Direct Injection (DI) systems with multiple
injection events, Diesel Oxidation Catalyst (DOC),
Diesel Particulate Filter (DPF) or Selective Cat-
alytic Reduction (SCR) devices are some examples
[1].

All these systems work coupled together, involv-
ing a challenging control problem, where the behav-
ior of a single device influences the rest of the chain.
Usually, actuations aiming for both objectives (min-
imizing fuel and pollutant emissions) go in opposite
directions [2], so at the end it is a tradeoff. The con-
trol of such a complex nonlinear system requires of
advanced algorithms and, eventually, a large batch
of test cell experiments.

On the other hand, Optimal Control (OC) theory
has become an attractive methodology to approach
complex problems thanks to the advances in com-
putational power of the last decades and the access
to state-of-the-art computers for the general public.
OC theory is a type of model-based control where
different mathematical methods are used to calcu-
late the controls that must be applied to a system
to minimize a cost index [3]. It is already used in
many different engineering fields such as aviation [4],
train scheduling [5] or aerospace trajectory planning
[6].
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Despite of its advantages, OC is not yet estab-
lished in the automotive industry, where traditional
approaches, PID controllers and heuristic rules are
the most common. However, several works may
be found in literature where OC theory is used
with successful results: [7] applies the OC theory
to calculate the optimal behavior of a VGT dur-
ing load transients finding that pressure may be
built faster and smoother than with traditional PID
controllers; [8] approaches the combined control of
fueling rate, EGR and VGT opening to minimize
fuel consumption for a prescribed driving cycle; [9]
studies the possibility to optimally switch between
different calibrations to fulfill emission limits along
a route, minimizing fuel consumption compared to
a single calibration; [10] calculates the advantage
of optimally switching between low and high pres-
sure EGR loops in a diesel engine analyzing the
frequency and number of switches; [11] finds the
optimal heat release law by applying Dynamic Pro-
gramming (DP) to an in-cylinder pressure model to
minimize fuel and pollutant emissions; Pontryagin
Minimum Principle (PMP) is very popular among
energy management and power-split in Hybrid Elec-
tric Vehicle (HEV) works with a wide variety of
approaches such as [12–14].

This paper presents an OC strategy to manage
controls in a DI turbocharged diesel engine, namely
fueling rate, EGR valve position, VGT opening
and Start of Injection (SOI), for a given driving
cycle, minimizing fuel consumption with limited
NOx emissions and low soot generation. The main
contributions of this work compared to the current
state of the art are as follows:

• The application of OC to the simultaneous con-
trol of multiple engine actuators, removing the
need of maps or ECU calibrations on the con-
trol scheme in favour of a powertrain physical
model. Opposedly to other efficient and com-
plex control algorithms in literature, an OC
approach, such as the one in this study, pro-
vides mathematical guarantee of minimum fuel
consumption and/or pollutant emissions for a
given powertrain model and a set of constraints.

• The experimental benchmark for a long real
driving cycle (25 minutes), covering multiple
engine operating areas and transient conditions.
Existing studies usually limit the application of

OC to short transients (generally few seconds)
and reduced engine operating areas.

• The use of Direct Method (DM) in combination
with Euler’s collocation scheme as the Ordi-
nary Differential Equation (ODE) transcription
method. Typically, higher order collocation
schemes are used for DM but Euler’s proved to
be a better choice in terms of computational
efficiency, being able to handle such a huge
Optimal Control Problem (OCP) with reduced
computation time while keeping a fairly good
accuracy.

In order to reach the above targets, first, an exper-
imental test campaign is performed with a diesel en-
gine (see section 2) in order to fit a zero-dimensional
Mean Value Engine Model (MVEM) (see section
3). A DM based on Euler’s collocation scheme in
combination with an Nonlinear Programming (NLP)
solver is used to address the corresponding optimiza-
tion problem, obtaining a set of trajectories to be
applied to each of the engine controls (see section
4). An experimental validation is carried out on the
same test bench with different NOx emission limits
(see section 5) in order to find the optimal tradeoff
between fuel consumption and NOx generation. Fi-
nally, after analyzing the behavior of the optimal
trajectories, the main conclusions of the paper are
drawn, showing that DM offers an approach to solve
OCPs that are too large or too complex for DP or
PMP, and that the application of OC significantly
improves the fuel economy and emissions reduction
during real driving conditions (see section 6).

2 Experimental setup

The OCP presented in this paper is experimentally
benchmarked in an engine test bench to evaluate
the performance of the proposed methods for the
control of a real engine. The engine testing facility,
a real driving cycle and a testing campaign are
described in the following points.

2.1 Testing facility

These control works are performed in a Euro 5
turbocharged diesel engine equipped with VGT and
high pressure EGR. Table 1 summarizes the main
specifications of this engine.
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Configuration Euro 5 diesel, 4 in line, 16
valve, common rail, VGT,
EGR

Displacement 2 liters
Max torque 340 Nm @ 2000 rpm
Max power 120 kW @ 3750 rpm
After-treatment DOC and DPF

Table 1: Main specifications of the engine.

Control inputs

uf Fueling rate
uegr EGR valve position
uvgt VGT opening
uδsoi SOI offset

Model states

p2 Intake manifold pres-
sure

XOi Intake manifold oxygen
fraction

p3 Exhaust manifold pres-
sure

XOe Exhaust manifold oxy-
gen fraction

ωtc Turbocharger speed

Disturbances N Engine speed

Table 2: Summary of controls, states and distur-
bances to the OCP.

The test bench dyno is controlled by a Horiba
Sparc/Stars system. The ECU features an ETK
port that allows monitoring and accessing to the
ECU volatile memory on real time. The control
variables of interest (listed in table 2) are bypassed
through the ETK port. The engine is instrumented
with several thermocouples and pressure sensors at
different spots of the airpath as a supplement to the
factory sensors. A turbocharger speed sensor and
two commercial NOx probes are also fitted to the
engine. A Horiba MEXA-7170DEGR exhaust gas
analyzer and an AVL 439 opacimeter measure raw
pollutant emissions (before after-treatment), intake
CO2 (in order to have accurate steady state EGR
ratio readings) and exhaust gas opacity.

All the above measurements are ultimately sent
to a dSPACE MicroAutoBox II real time device
that manages sensor readings and OC trajectories
to be injected into the ECU.

N
ic

e
[r
p
m

]

1800

2200

2600

t [s]

0 500 1000

T
ic

e
[N

m
]

0

100

200

Figure 1: Real driving cycle engine speed and torque
trajectories.

2.2 Driving cycle

The benchmarking driving cycle is a daily commute
between two cities, recorded from actual driving
with GPS and OBD devices. The engine speed
is captured from the vehicle sensors while torque
trajectory is reconstructed according to the vehi-
cle speed and road height profile as collected from
Google Maps API. This trip features positive and
negative slopes during highway operation on a 40
km and 25 minutes long route. Speed and torque
profiles are shown in figure 1. Note that the sharp-
ness of the engine speed is due to test bench limita-
tions which prevented to reproduce the exact actual
trajectory.

2.3 Test campaign

In order to fit the model to the actual engine, a set
of experimental measurements has been carried out.
These tests explore multiple control combinations
as well as the dynamic response of the engine. To
this effect, three tests have been performed:

• Test 1: parametric tests at 20 different engine
operating points that cover the typical operat-
ing points on the benchmarking driving cycle.
Fueling rate, EGR, VGT and SOI are explored
at each operating point. This provides steady
state information at a wide range of engine
conditions, namely 980 different combinations
of controls and operating points (4 hours).

• Test 2: WLTC cycle with factory calibration.
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This test provides transient information at a
dynamic cycle (30 minutes).

• Test 3: benchmarking driving cycle trajectories
with factory calibration. This test is only used
as a validation to check that the model has an
acceptable accuracy (25 minutes).

In addition to the above model fitting tests, a
set of experiments have also been executed to vali-
date the proposed OC strategy. These experiments
consist of 12 optimal trajectories (calculated with
the presented methodology) applied to the engine
controls and an additional experiment with factory
calibration. These experiments will be introduced
in section 5.

3 Model

A zero-dimensional MVEM [15] has been built to
calculate the OC trajectories. This engine model is
inspired by other existing MVEMs such as [16]; how-
ever, an effort has been done to produce a smooth
and fully continuous model. It consists of intake
and exhaust manifolds, EGR loop, turbocharger
and cylinder submodels. It has been fitted to the
experimental data described above in section 2.3.

3.1 Intake and exhaust manifolds

Manifolds are modeled as reservoirs [17]. The equi-
librium between the incoming and outgoing gases
produces a variation on the reservoir pressure, en-
ergy and composition. These quantities are solved
using the mass and energy conservation principles:

ṁ(t) = ṁus(t)− ṁds(t) (1)

U̇(t) = Ḣus(t)− Ḣds(t) + Q̇(t) (2)

with m the mass of gas in the reservoir, ds and us
subindices refer to downstream and upstream flows,
U its internal energy, H the enthalpy of incoming
and outgoing flows, and Q̇ the heat flow exchanged
with the environment, which is null assuming an
adiabatic manifold.

The energy associated to the reservoir gas tem-
perature is:

U = cvmθ =
1

κ− 1
pV (3)

where cv is the heat capacity at constant volume
and θ the temperature inside the reservoir. Note
that the right hand side expression is obtained by
introducing the ideal gas equation substituting mass
and temperature. The energy flow at upstream and
downstream flows are:

Ḣus = cpṁusθus (4)

Ḣds = cpṁdsθds (5)

with cp the heat capacity and constant pressure.
The introduction of eqs. (3) to (5) in the energy
conservation relation (2) enables to express the vari-
ation of the reservoir pressure as:

ṗ =
κR

V
[ṁusθus − ṁdsθds] =

Rθ

V
[ṁus − ṁds]

(6)
The right hand side expression assumes an isother-
mal reservoir. This may be justified because the
temperature variations in the manifold are signifi-
cantly slower than other quantities such as pressure
or gas composition. This simplification is essential
to develop a light enough control-oriented model,
avoiding temperature as an additional state to the
problem.

The mass conservation principle (1) allows to
track the composition of the reservoir gas. Particu-
larly, the oxygen mass mO in this system verifies:

ṁO = ṁOus − ṁOds (7)

Oxygen mass flow can also be expressed as a func-
tion of the oxygen fraction XO for convenience:

ṁO = ṁXO +mẊO (8)

ṁOus = ṁusXOus (9)

ṁOds = ṁdsXOds (10)

The above expressions can be seamlessly introduced
in (7). If m is substituted by the ideal gas law,
and ṁ for the reservoir mass conservation principle
in (1), the variation of the oxygen fraction at the
reservoir results:

ẊO =
Rθ

pV
ṁus(XOus −XO) (11)
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Expressions for pressure and oxygen fraction vari-
ations can be particularized for both intake and
exhaust manifolds. The intake manifold (p2 and
XOi) receives fresh air from the intercooler (ṁc and
XOc) and the EGR gases (ṁegr and XOegr), while
this mixture goes into the cylinder inlet port (ṁip):

ṗ2 =
Rθim
Vim

[ṁc + ṁegr − ṁip] (12)

ẊOi =
Rθim
p2Vim

[ṁc(XOc −XOi)

+ ṁegr(XOegr −XOi)]

(13)

At the exhaust manifold (p3 and XOe), the gases
are diverted from the cylinder exhaust port (ṁep

and XOep) to the EGR valve and the exhaust line
(ṁt):

ṗ3 =
Rθem
Vem

[ṁep − ṁegr − ṁt] (14)

ẊOe =
Rθem
p3Vem

ṁep [XOep −XOe] (15)

3.2 Turbocharger

The turbocharger is composed of a compressor, a
turbine and a mechanical link between both. Models
for these three subsystems are described below.

3.2.1 Compressor

The compressor model is based on its operating
maps [16]. Contrary to the common representation
of compressor mass flow and efficiency as a function
of corrected rotational speed ω̂tc and pressure ratio
Πc, this model replaces the pressure ratio for a
normalized pressure ratio to account for the surge
limit. The normalized pressure ratio is defined as:

Π̂c =
Πc − 1

Πsrg − 1
(16)

The compressor surge happens at pressure ratios
over Πsrg, so Π̂c must stay within the [0, 1] range
to avoid unstable operation.

According to experimental readings, the surge
limit Πsrg can be approximated to the following
empirical equation:

Πsrg = c10 exp(c11ω̂tc) + c20 exp(c21ω̂tc) (17)

where c are tunable coefficients. Similarly, compres-
sor mass flow and efficiency have been also approxi-
mated to the empirical expressions below:

ṁc = c00 +c10ω̂tc+c01Π̂c+c11ω̂tcΠ̂c+c02Π̂2
c (18)

ηc =
[
c00 + c10ω̂tc + c01Π̂c + c20ω̂

2
tc + c11ω̂tcΠ̂c

+ c02Π̂2
c

] [
1− exp(cAΠ̂c + cB)

]
(19)

3.2.2 Turbine

Following the compressor model philosophy, the tur-
bine is represented with its operating maps [16]. As
long as turbines are not affected by surge, corrected
mass flow and efficiency are modeled with an analyt-
ical approximation to the experimental maps as a
function of the pressure ratio Πt and VGT opening
uvgt:

ṁt,cor = c00 + c10Πt + c01uvgt + c20Π2
t

+ c11Πtuvgt + c02u
2
vgt

(20)

ηt = [1− exp(cA(Πt − 1))]
[
c2u

2
vgt + c1uvgt + c0

]
+ cB(Πt − 1)

(21)

3.2.3 Mechanical link

Compressor and turbine wheels are linked with a
shaft so there is an energy transfer between exhaust
gases and the compressor mass flow. The power
generated by the turbine can be estimated assuming
an adiabatic expansion with isentropic efficiency ηt:

Pt = ηt
γR

γ − 1
ṁtθem

(
1−Π

1−γ
γ

t

)
(22)

Similarly, the power required to perform an adia-
batic compression at the compressor is:

Pc =
1

ηc

γR

γ − 1
ṁcθci

(
Π

γ−1
γ

c − 1

)
(23)
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The balance between those two power values above
determines the acceleration of the turbocharger
shaft:

ω̇tc =
Pt − Pc
Itcωtc

(24)

where Itc is the moment of inertia of the rotating
masses.

3.3 EGR loop

The EGR valve is modeled as an isothermal orifice
[17] with the following assumptions: (i) the flow is
compressible, (ii) it accelerates up to the narrow-
est point of the orifice without losses trading some
pressure for kinetic energy, and (iii) after the orifice,
the flow is completely turbulent and kinetic energy
is dissipated without pressure recuperation. Then,
the mass flow through the valve is:

ṁegr = ACd
p3√
Rθem

Ψ (25)

where A is the effective opening of the valve, Cd
the discharge coefficient and Ψ the expansion factor
which is a function of the expansion ratio Πegr =
p3/p2. The expression for Ψ is a piecewise function
that discriminates the conditions when the flow is
chocked from those when it is not [18]. For the sake
of simplicity, that expression is approximated to the
continuous function below:

Ψ =

[
1

2
+

1

2
erf(c1Πegr + c0)

]
· [c2 exp(c3Πegr) + c4]

(26)

The effective opening A is a function of the valve
position. The following empirical expression for it
is based on experimental observations:

Aegr = c2

[
1

2
erf(c1uegr + c0)− 1

2
erf(c0)

]
(27)

3.4 Cylinder

The events taking part at the cylinder are complex
and highly nonlinear [2]. In order to avoid heavy
equations that limit the control capabilities of the
model–and as long as no intra-cycle control is to

be performed–the cylinder is represented as a com-
bination of physically meaningful expressions and
black-box models whose inputs are the thermody-
namic conditions of the intake gas and the control
variables [17]. The interesting outputs are the indi-
cated efficiency ηind, the exhaust temperature θep
and NOx emissions Xnox:

ηind = ηind(N, uf , uδsoi, XOi, p2)
θep = θep(N, uf , uδsoi, XOi, p2)

Xnox = Xnox(N, uf , uδsoi, XOi, p2)
(28)

with N the engine speed and uδsoi the SOI offset
from factory calibration (a positive value means an
earlier SOI). This model entails an important sim-
plification but it is a reasonable hypothesis since the
characteristic time of the airpath is several orders
of magnitude over the in-cylinder phenomena.

The gas mass flow that gets into the cylinders
can be calculated assuming ideal gas behavior and
a volumetric efficiency ηv [2]:

ṁip = ηv
p2NVd

120Rθim
(29)

with Vd the engine displacement. There are several
empirical expressions available in the literature to
approach the volumetric efficiency [2, 16, 17, 19].
However, based on experimental observations of the
current engine, the following expression is proposed:

ηv = cA exp

(
c2

c1p2 + c0

)
+ cBuvgt + cC (30)

The presence of uvgt in the above equation is due
to purely empirical reasons, but enables to account
for the effect of the VGT backpressure.

Since no reservoirs are considered in the cylinder,
the exhaust mass flow is:

ṁep = ṁip + ṁf (31)

with the fuel mass flow a consequence of the fueling
rate uf :

ṁf = uf
ncylN

120 · 106
(32)

with ncyl the number of cylinders.
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Assuming perfect burning of fuel, the oxygen
fraction at the exhaust gas is a function of the
stoichiometric Air to Fuel Ratio (AFR):

XOep =
XOiṁip −AFRXOcṁf

ṁep
(33)

Similarly, engine λ can also be calculated from
the AFR:

λ =
ṁipXOi

AFRṁfXOc
(34)

The indicated torque generation is a consequence
of the fuel energy liberation during the combustion
process:

Ti = ηind
ufHfncyl
4 · 106π

(35)

where Hf is the fuel heating power. The torque
losses can be represented by a linear function of the
engine speed, which may be fitted with a motoring
experiment:

Tl = c0 + c1N (36)

Then, the effective torque at the crankshaft is:

Te = Ti − Tl (37)

3.5 Experimental validation

The accuracy of effective torque and NOx emissions
are critical for the OCP as long as they are part
of the constraints and the variables that define the
performance of the engine–to be precise, the fueling
rate is another critical variable but, since it is a
control that is forced at the experiments, no model
is in between. In figure 2 it may be appreciated
that torque and NOx emissions are well correlated
to experiments, especially the total NOx emissions.
Note that, in order to provide a fair model validation,
this data corresponds to the validation cycle which
the model is not fitted to (Test 3 in section 2.3).
On the bottom plots of this figure, the dynamic
response of intake pressure and turbocharger speed
(states of the OCP) is shown. Despite a minor offset
at t = [245, 255] s, settling time is quite similar in
simulations (red) and experiments (blue).
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Figure 2: Model validation results. At top plots,
correlation between experiments and simulations are
shown for effective torque and accumulated NOx

emissions. On bottom plots, dynamics of the model
are represented for two model states: intake mani-
fold pressure and turbocharger speed. Blue corre-
sponds to experiments and red to simulations.

4 Optimal control methodol-
ogy

4.1 Problem description

The aim of this work is to find an OC strategy that
minimizes fuel consumption with a specific limit on
NOx emissions while keeping a low soot stamp for
a real driving cycle. This target can be translated
into an OCP as the minimization of the cost index:

J =

∫ T
0

ṁf (x, u, t)dt (38)

varying the controls trajectory. The controls u and
states x are listed in table 2 for the current problem.
The NOx limit may be specified with an integral
constraint that bounds the total emissions:∫ T

0

ṁnox(x, u, t)dt− m̂nox ≤ 0 (39)

where m̂nox is the maximum amount of permissible
NOx generation during the cycle.

Since the target of this work is to calculate the
appropriate control trajectories to reproduce a pre-
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scribed driving cycle, its engine speed and torque
trajectories must be followed. Engine speed is a
disturbance to the problem and, therefore, is always
fulfilled. However, the engine torque is a conse-
quence of the controls. Then, an additional con-
straint is required to fulfill the driving cycle torque
request T̃ :

T̃ − Te(x, u, t) = 0 (40)

Note that in the above formulation hat accents ( ·̂ )
are used to denote limit values while tildes ( ·̃ ) refer
to setpoint trajectories.

In order to avoid excessive smoke generation and
to keep a low soot stamp, an opacity constraint
should be included. Unfortunately, opacity models
may be too expensive to be included in a control-
oriented engine model that already has 5 states,
and quasi-steady approaches show a poor correla-
tion with experimental values. However, in figure
3 it may be appreciated that there is a relation
between opacity and λ, as the less fresh air that
takes part in the combustion process, the chances to
generate more smoke increase. The red line overlaid
in this same figure is the Pareto front, which can
be used as a rough correlation between opacity and
λ, enabling to limit smoke generation by limiting λ
to the appropriate value. Of course, this is just a
qualitative question as long as a stronger limitation
in λ does not guarantee any particular opacity level,
but will surely limit the smoke generation at some
point with a low computational impact. Then, a λ
constraint is included in the OCP:

λ̂(t)− λ(x, u, t) ≤ 0 (41)

where λ̂ is the boundary limit calculated according
to the relation from figure 3 with an arbitrary 2%
higher opacity level than factory calibration in order
to allow some room for improvement.

4.2 Optimization algorithm

The above OCP features complex nonlinear equa-
tions with 5 states and 4 controls. At a time step
of ∆t = 0.05 seconds, the current 25 minutes long
driving cycle entails about 120000 unknowns for the
control trajectories.

There are three main families of OC methods
to approach OCPs: (i) DP [3, 20, 21], (ii) PMP
[22–24], and (iii) DMs [25–27]. DP can effectively
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Figure 3: Relation between λ and opacity. Blue
dots correspond to steady state measurements (Test
1 according to the test campaign description in
section 2.3). The red line is the Pareto front for this
tradeoff.

address complex problems but suffers the curse of
dimensionality [28], making a problem like this tech-
nically untractable with current computers. PMP
is not affected by those size-related issues but when
several states are involved, the ODEs are difficult
to address and tend to be ill-conditioned resulting
in the impossibility to reach a numerical solution
[3, 29].

On the contrary, DMs do not suffer any particular
issue when facing complex nonlinear OCPs of any
dimension. The main drawback is that the solution
is a local optimum that may differ from the global
one [26]. However, a proper initial solution increases
the chances to find a global optimum and, if problem
is convex or sufficiently smooth, it may be reached
almost regardless of the initial solution. Anyhow,
most of the times this is a minor issue. An important
remark is that model must show C1 continuity for
DM to be applied since derivatives of the objective
function and constraints must be provided. With
this purpose, the developed MVEM is completely
continuous.

Due to the above strengths of DMs, it is the se-
lected method to address this OCP. Among all the
existing DM methods [30], Direct Collocation (DC)
is the choice for this work due to computational
burden reasons. The idea behind DC is to discretize
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state and control trajectories into N + 1 time steps
such that the complex original OCP translates into
the selection of a large set of scalar unknowns (for
a better insight into DC and DMs in general, the
interested reader is redirected to [26]). To guarantee
continuity between those individual unknowns and
fulfilling of the model dynamics, ODEs are approx-
imated with a numerical method–centered Euler’s
method in this case. Therefore, the OCP is trans-
formed into a large–and sparse–NLP. The objective
function (38) becomes:

min
x,u

{
N−1∑
i=0

ṁf

(
xi + xi+1

2
,ui

)}
(42)

where the subindex i refers to the states and controls
at time ti = i · T /N . The state dynamics are
translated into a set of algebraic constraints:

f

(
xi + xi+1

2
,ui

)
− xi+1 − xi

∆t
= 0 (43)

with i = 0, . . . , N − 1. Similarly, NOx bound
(39), torque fulfilling (40) and λ limitation (41)
constraints are also transcribed into algebraic con-
straints:

N−1∑
i=0

ṁnox

(
xi + xi+1

2
,ui

)
∆t− m̂nox ≤ 0 (44)

T̃i − Te
(

xi + xi+1

2
,ui

)
≤ 0 (45)

λ̂i − λ
(

xi + xi+1

2
,ui

)
≤ 0 (46)

This NLP is extremely sparse due to the fact that
only two consecutive time steps are related at most
of these algebraic constraints (times ti and ti+1).
Integral constraints are dense, but they are only a
few. Therefore, the Jacobian of this NLP–the deriva-
tive of constraints with respect to all unknowns, i.e.
discretized states and controls–is made of diagonal
submatrices as it can be appreciated in figure 4.
This matrix is quite big (239855× 299816) but only
few elements are non-zero (0.0035% in this case).
This makes possible that, even after exploiting prob-
lem dimensions by discretizing states, controls and
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Figure 4: Jacobian matrix of the transcribed NLP.
Blue dots are non-zero elements, whose number is
2488433, a 0.0035% of the total number of matrix
elements.

constraints, the computational time required to com-
pute a complete NLP iteration is 1.04 seconds with
a total memory stamp of 23.1 MB.

The NLP is addressed with Ipopt, a software
package for large-scale nonlinear optimization that
is specially efficient for sparse problems [31]. Ana-
lytical expressions for the objective function, con-
straints and their exact derivatives (obtained with
symbolical differentiation) are provided to Ipopt.
Second derivatives may be also provided explicitly,
but they have been numerically approximated with
the quasi-Newton L-BFGS algorithm [32] for com-
putational efficiency reasons. The initial solution
provided to Ipopt is an arbitrary constant value tra-
jectory for states and controls. A more sophisticated
initial solution such as ECU setpoints may reduce
the number of iterations to find an optimum and
increase the robustness of the method. However,
as long as computational time is still short with
such a simple initial solution, it has been considered
sufficient for this study.

4.2.1 Remarks on solution robustness

The above NLP does not intrinsically limit the rate
of change of controls. In case of model discrepancies,
it may happen that optimal trajectories show an
oscillating behavior. This is not an issue for the
fueling rate neither for the SOI. The first has a direct
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impact on torque output which is constrained to the
driving cycle trajectory, while the second shows a
low interaction with other variables. However, EGR
and VGT controls are free to show a switching
policy, producing pulsating flows along the airpath
and an unstable behavior. In order to improve the
robustness of the method avoiding operating with a
highly dynamic policy, a rate of change limitation
has been imposed in the VGT control. Since this
involves a constraint on the derivative of a control,
it is necessary to introduce an auxiliary state:

xvgt = uvgt (47)

which replaces the original VGT control variable.
Instead, a new control must be defined:

uδvgt =
∂uvgt
∂t

(48)

The dynamics of the additional state are driven by:

ẋvgt = uδvgt (49)

The rate of change limitation can be imposed by
specifying upper and lower bounds to the control
uδvgt. In figure 5 it may be appreciated that, by ap-
plying this approach, VGT and EGR rate of change
are reduced from highly oscillating situations (up)
to a control policy that falls within the ±60%/s
range (down). Note that EGR oscillation is indi-
rectly reduced as a consequence of the coupling
between both controls in the airpath management.
For this reason, additional constraints on EGR rate
of change were considered unnecessary.

5 Experimental results

The presented OCP is addressed for different trade-
offs between total fuel consumption and accumu-
lated NOx emissions. The resulting experimental
fuel consumption, NOx emission and soot generation
are summarized in table 3. Optimization objective
in cases #1 to #10 is fuel consumption minimiza-
tion for different levels of maximum accumulated
NOx emissions m̂nox, case #11 is fuel minimization
with no specified limit for NOx emissions, case #12
is NOx minimization regardless of fuel consump-
tion, and case factory is performed with the factory
ECU control. Note that simulation results corre-
spond to experimental fuel consumption (it is forced
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Figure 5: Derivative of the EGR and VGT optimal
controls for an OCP with (down) and without (up)
a constraint on the VGT rate of change. The color
scale represent the number of occurrences of these
points. Note the effect of the constraint not only in
VGT but also in the EGR rate of change.

to be the same during experimental tests with a
small deviation due to the feedback controller) and
NOx emission limit m̂nox (optimization meets all
constraints within a negligible tolerance).

Despite all these cases delivered the same effective
torque in simulations, model uncertainties might
produce torque deviations, resulting in an unfair
comparison between different strategies and factory
calibration. In order to approach this issue, a feed-
back controller monitors the actual torque output
during the test and performs a fine tune of fuel-
ing rate accordingly. Of course this simple solution
somehow spoils the optimality of the control strat-
egy, but provides a fair and clear comparison among
strategies while keeping a quite similar control pol-
icy (corrections are bounded by ±0.85 mg/str). The
difference between requested and delivered torque is
shown in the histogram at figure 6. This histogram
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Case
OCP Experimental results

J
m̂nox mf mnox msoot

[g] [kg] [g] [g]

#1 mf 3 1.395 3.6 1.846
#2 mf 4 1.344 5.2 0.892
#3 mf 5 1.291 6.1 1.001
#4 mf 6.4 1.268 6.8 0.847
#5 mf 7.5 1.262 7.9 0.477
#6 mf 9 1.254 10.5 0.382
#7 mf 11 1.252 12.1 0.282
#8 mf 13.3 1.252 13.9 0.304
#9 mf 17 1.253 17.3 0.218
#10 mf 20 1.257 22.5 0.208
#11 mf – 1.247 20.5 0.229
#12 mnox – 1.369 3.8 0.936
Factory – – 1.306 11.4 0.340

Table 3: Summary of all OCPs that have been
issued and their main experimental results. The
information shown is, from left to right, the case
number, the minimization objective, NOx emission
limit assessed by simulation, experimental fuel con-
sumption, actual NOx emission and total soot gen-
eration.

is quite close to a normal variable, with an aver-
age of −0.1 Nm and a standard deviation of 3.3
Nm. These results confirm that the different control
strategies are comparable since the driving cycle is
followed up to a sufficient threshold.

It can also be appreciated that accumulated NOx

emissions are pretty well correlated to the model
estimations as shown in figure 7. Experimental
values are slightly above of simulation results due to
NOx model inaccuracies during transients. However
differences are mostly under one gram so model
accuracy is acceptable in that respect.

Experimental fuel consumption and NOx emis-
sions at all OC strategies are depicted in the Pareto
front at figure 8. Soot is also included as a refer-
ence of how different controls affect to its generation
but remind that it is not included in the optimiza-
tion problem explicitly but through a varying λ
limit. The Pareto front shows the set of points
that minimize fuel consumption for a given level
of NOx emissions, defining the frontier where the
engine operates on its most efficient way: an opti-
mal control falls within it, any suboptimal control
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Figure 6: Histogram of the error between experi-
mental and reference engine torque. An 80% of the
measurements lie in the gray area (±3.4 Nm).
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Figure 7: Correlation in accumulated NOx emissions
between OCP simulations and experiments. The
average error is −0.86 g and the standard deviation
is 0.75 g.

remains over the frontier, and operation below is
not possible. Factory calibration (red square) falls
over the Pareto front since it is not optimal and, in
fact, several experimental tests showed lower fuel
consumption and NOx emissions simultaneously.

According to the results, it is possible to decrease
both NOx emissions and fuel consumption with an
OC strategy compared to the factory calibration.
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Figure 8: Pareto frontier analysis of OC experi-
mental results for a range of NOx limits. Factory
calibration is denoted with a red square. The color
scale shows the soot generation in grams.

However, those two quantities do not show the same
room for improvement: NOx emissions can be easily
decreased to less than a half with the appropriate
strategy, but fuel savings are not greater than a
4%. The reason for this is that torque output–
which is constrained–is mostly a function of the
fueling rate while NOx generation is affected by
many other factors. It may be remarked that the
decrease in NOx seems to carry an increase in soot
emissions. Although this effect might limit the
minimum NOx emissions that can be achieved, these
levels are raw measurements (before after-treatment)
and DPF may equate the soot emission of all these
control strategies, although regenerations might be
necessary more often with its corresponding fuel
penalty.

The Pareto front shows a tradeoff between fuel
and NOx nearby the factory calibration. However,
in the extrema both variables show an asymptotic
trend that can be explained as the combination of
two effects: on the one hand, engine technology lim-
its the minimum level of fuel and NOx that can be
achieved and, on the other hand, engine operation
at extrema is on the limits of the model where little
fitting information was available. Therefore, 1.25 kg
of fuel and 6 g of NOx are the limits for this cycle.

In order to analyze how do the OC strategies
improve the factory control, histograms of four opti-
mized controls–uf , uegr, uvgt and uδsoi–are shown
in the contours at figure 9. At first glance, it is
clear that factory control is pretty different from

OC. The EGR rate is much higher in OC, recircu-
lating as much as possible (90% to 100% opening)
with the exception of the case where NOx emissions
are neglected (> 15 g). Meanwhile, factory control
moves along lower rates, with EGR valve position
mostly between 40% and 60%. On the contrary,
OC strategies tend to open the VGT delivering less
pressure than factory at the intake manifold, and
this effect is stronger as fuel consumption decreases.
Only at very low NOx emissions (high fuel consump-
tion) VGT is clearly closer than at factory control.
Regarding fuel consumption, it is obviously lower
than factory calibration and its value rises as NOx

emissions decrease. Finally, SOI is, in general, 1◦

delayed compared to factory control regardless of
the case, suggesting that the engine has a strong
optimal pole at that SOI setting that differs from
factory calibration in this cycle.

According to the above observations, OC exploits
two strategies. On the one hand, it reduces pump-
ing losses by opening the VGT. This decreases the
intake manifold pressure and, therefore, λ might be
penalized; however, since λ is constrained in the
problem, the strategy still keeps AFR at accept-
able values. The decrease of intake pressure also
jeopardizes the torque reserve. ECU has no looka-
head information so it has to keep some amount of
intake pressure to satisfy a strong load step when-
ever requested with a reduced lag. On the contrary,
OC knows the complete cycle in advance so that
torque reserve is no longer required and avoids an
unnecessary pumping effort. On the other hand,
OC recirculates as much exhaust gases as possible
to reduce NOx generation at the expense of a lower
combustion efficiency. In fact, to satisfy tighter NOx

constraints, VGT is also used to build backpressure
and increase the EGR ratio.

Then, the OC is a question of balance between
the advantage of reduced pumping losses and the
penalization of high EGR rates to decrease NOx

emissions. The definition of a proper OCP can
help finding the right balance to minimize fuel con-
sumption at a given NOx limit. In figure 10 it may
be appreciated that optimal strategies are able to
decide which is the most appropriate part of the
cycle where low NOx strategies benefit the most and
where fuel consumption should be a priority. For
example, t = [200, 300] s seems specially interesting
to reduce NOx as all OC strategies do strongly re-
circulate exhaust gases in that phase. Later in the
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Figure 9: Histogram of controls for all 12 opti-
mization cases that have been issued. Each plot
represents a different control, the x-axis lists the
total NOx emissions of the OC strategy and the
y-axis the range of operation of the control. Each
column belongs to a different case. ECU control is
shown at its corresponding column–according to its
NOx emission level–rounded in a red square. The
color scale shows the level of occurrence of a control
as a percentage.

cycle, fuel consumption becomes the target since
EGR rates are low. Meanwhile, the factory con-
trol holds an intermediate EGR amount without
discriminating different cycle characteristics. This
discerning capability of the OC is key to find the

proper balance between fuel and NOx by exploiting
the most attractive strategy at each phase of the
cycle, and it is something that the factory control
cannot perform as long as it lacks of lookahead
information.

6 Conclusions

OC theory has been applied to the fueling rate, EGR,
VGT and SOI control of a Euro 5 diesel engine in
a real driving cycle. A detailed, control-oriented,
experimentally validated MVEM and a methodology
to calculate the optimal trajectories for these four
controls making use of a DC optimization method
have been presented and described above. These
trajectories have been experimentally validated on
a testing facility showing that OC is able to improve
both fuel efficiency and NOx emissions compared to
factory control. Also, it must be remarked that it is
pretty straightforward to adapt the control strategy
to specific emissions requisites just by modifying
the NOx constraint limit at the formulation without
any additional calibration.

According to the results, a 45% NOx reduction
is possible while keeping the factory fuel efficiency;
similarly, a 4% improvement in fuel consumption
may be achieved with factory NOx and soot lev-
els. These results demonstrate that an OC strategy
may improve the performance compared to a fixed
calibration, showing that there is still room for
improvement in both fuel consumption and NOx

emissions with an adequate control strategy in a
real driving cycle.

OC trajectories follow two strategies to achieve
these results. On the one hand, pumping losses are
reduced by opening the VGT at the expense of a
decrease in intake pressure. It spoils the torque
reserve but, as long as the cycle is known in ad-
vance, torque reserve is no longer necessary. On the
other hand, EGR rates are much higher in order to
reduce NOx generation at the expense of penalizing
the combustion efficiency. These two strategies are
applied specifically on the parts of the cycle where
they are more beneficial for the global efficiency. It
may be appreciated how the control switches from
strong NOx reducing phases to high fuel efficient
operation depending on the current cycle demands
in the context of the complete driving cycle. The
ECU has no chance to find out that cycle-specific
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Figure 10: OC trajectories for the whole driving cycle. From top to bottom: intake manifold pressure,
VGT opening, EGR position, fuel consumption difference with respect to factory and NOx emissions
compared to factory (values greater than zero mean higher mass than factory). The cases depicted in this
figure and their corresponding case number at table 3 are: factory calibration ( ), low NOx emissions
( , case #12), low fuel consumption ( , case #11) and factory NOx with lower fuel consumption
( , case #6).

balance and, therefore, it has to keep a reasonable
tradeoff between NOx and fuel at any condition,
which is by far not the best option.

The necessity of lookahead information to per-
form an OC may be a significant drawback of this
methodology in a practical implementation with cur-
rent technology. However, it is still a valuable tool
for benchmarking purposes of existing engine control
strategies as a reference of how far they are from the
theoretical optimum, or even to derive new heuristic
rules from the OC results. OC can also be used to
inspect the additional room for improvement that
introduces an architecture or technology change.
Scenarios where lookahead information is available
are good candidates for the presented methodology,

such as adaptive cruise controls with orographic
information or even autonomous vehicles.
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