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Abstract

Lipschitz-free spaces F(M) are canonical linearizations of arbitrary complete met-
ric spaces M . More specifically, F(M) is the unique Banach space that contains an
isometric copy of M that is linearly dense, and such that any Lipschitz mapping
from M into some Banach space X extends to a bounded linear operator from
F(M) into X. Those spaces are a very powerful tool for studies of the nonlinear
geometry of Banach spaces, as they allow the application of well-known classical
linear techniques to nonlinear problems. But this effort is only worthwhile if we
have sufficient knowledge about the structure of F(M). The systematic study of
Lipschitz-free spaces is rather recent and so the current understanding of their
structure is still quite limited. This thesis is framed within the general program
of studying the structure of general Lipschitz-free spaces.

We start our study by developing some basic tools for the general theory of
Lipschitz-free spaces. First we introduce weighting operators and use them to
solve Weaver’s conjecture that all normal functionals in the bidual F(M)

∗∗
are

weak∗ continuous. Next we prove the intersection theorem, which essentially says
that the intersection of Lipschitz-free spaces is again a Lipschitz-free space. That
result allows us to develop the concept of support of an element of F(M), analo-
gous to the support of a measure. Furthermore, we extend the use of these tools
to the bidual F(M)

∗∗
and apply them to establish a decomposition of the bidual

into spaces of functionals that are “concentrated at infinity” and “separated from
infinity”, respectively.

With these tools at our disposal, we undertake the study of two particular aspects
of Lipschitz-free spaces. First we analyze the relationship between F(M) and
spaces of measures on M . In particular, we obtain characterizations of those
elements of F(M) that can be represented as integration against a (not necessarily
finite) Borel measure on M and vice versa, and we show that their supports agree.
We also identify those metric spaces such that every element of F(M) can be
represented by a Borel measure. This analysis is generalized to the bidual F(M)

∗∗
,

using measures on the uniform compactification of M in that case and obtaining
similar results. We also derive some consequences for those elements of F(M) and
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F(M)
∗∗

that can be expressed as the difference between two positive elements,
such as the existence of an analog of the Jordan decomposition for measures.

Secondly, we study the extremal structure of the unit ball of F(M) and provide
some contributions to the general program of finding purely geometric characteri-
zations of all of its extremal elements. Namely, we characterize all of its preserved
extreme points, and its extreme and exposed points of finite support. We also give
a full description of the extremal structure of the positive unit ball. The theory of
supports developed previously plays a crucial role in the proofs of these results.
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Resumen

Los espacios libres Lipschitz F(M) son linearizaciones canónicas de espacios métri-
cos M cualesquiera. Más concretamente, F(M) es el único espacio de Banach
que contiene una copia isométrica de M que es linearmente densa, y tal que toda
aplicación Lipschitz de M en cualquier espacio de Banach X puede extenderse a un
operador linear continuo de F(M) en X. Estos espacios suponen una herramienta
muy potente para el estudio de la geometŕıa no lineal de espacios de Banach, al
permitir la aplicación de las técnicas lineales clásicas, bien conocidas, a problemas
no lineales. Pero este esfuerzo sólo merece la pena si se dispone de un conocimiento
lo bastante detallado de la estructura de F(M). El estudio sistemático de los
espacios libres Lipschitz es bastante reciente y, por ello, dicho conocimiento es
todav́ıa más bien limitado. Esta tesis se enmarca en el programa general de estudio
de la estructura espacios libres Lipschitz genéricos.

Empezamos nuestro estudio desarrollando algunas herramientas básicas para la
teoŕıa general de espacios libres Lipschitz. Primero definimos operadores de pon-
deración en espacios Lipschitz y los usamos para demostrar la conjetura de Weaver
de que todos los funcionales normales del bidual F(M)

∗∗
son débil∗ continuos. A

continuación demostramos el teorema de la intersección, que en esencia dice que
la intersección de espacios libres Lipschitz es de nuevo un espacio libre Lipschitz.
Este resultado nos permite desarrollar el concepto de soporte de un elemento de
F(M), análogo al de soporte de una medida. Además, extendemos el uso de estas
herramientas al bidual F(M) y las usamos para establecer una descomposición
del bidual en espacios de funcionales que están “concentrados en el infinito” y
“separados del infinito”, respectivamente.

Con estas herramientas en nuestro poder, emprendemos el estudio de dos aspectos
concretos de los espacios libres Lipschitz. En primer lugar analizamos la relación
entre F(M) y los espacios de medidas sobre M . En particular, obtenemos caracte-
rizaciones de los elementos de F(M) que pueden representarse como la integración
con respecto a una medida de Borel (no necesariamente finita) sobre M y vice-
versa, y probamos que el soporte coincide con el de la medida asociada. También
identificamos los espacios métricos M en los cuales todo elemento de F(M) puede
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ser representado como una medida de Borel. Este análisis se generaliza al bidual
F(M)

∗∗
, utilizando en este caso medidas sobre la compactificación uniforme de

M y llegando a resultados similares. Obtenemos también algunas consecuencias
para los elementos de F(M) y F(M)

∗∗
que pueden expresarse como diferencia de

dos elementos positivos, como la existencia de un análogo de la descomposición de
Jordan para medidas.

En segundo lugar, estudiamos la estructura extremal de la bola unidad de F(M) y
hacemos algunas contribuciones al programa general consistente en encontrar ca-
racterizaciones puramente geométricas de todos sus elementos extremales. Con-
cretamente, caracterizamos los puntos extremos preservados de la bola, aśı como
aquellos puntos extremos y expuestos que tienen soporte finito. Además damos
una descripción completa de la estructura extremal de la parte positiva de la bola
unidad. La teoŕıa de los soportes en F(M) desarrollada anteriormente juega un
papel crucial en las demostraciones de estos resultados.
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Resum

Els espais lliures Lipschitz F(M) són linearitzacions canòniques d’espais mètrics
M qualssevol. Més concretament, F(M) és l’únic espai de Banach que conté una
còpia isomètrica de M que és linealment densa, i tal que tota aplicació Lipschitz
de M en qualsevol espai de Banach X pot ser estesa a un operador lineal continu
de F(M) en X. Aquests espais són una eina molt potent per a l’estudi de la
geometria no lineal d’espais de Banach, ja que permeten l’aplicació de les tècniques
lineals clàssiques, ben conegudes, a problemes no lineals. Però aquest esforç nomes
val la pena si es disposa d’un coneixement bastant detallat de l’estructura de
F(M). L’estudi sistemàtic dels espais lliures Lipschitz és bastant recent i, per
això, aquest coneixement és encara prou limitat. Aquesta tesi s’emmarca en el
programa general d’estudi de l’estructura dels espais lliures Lipschitz genèrics.

Comencem el nostre estudi desenvolupant algunes eines bàsiques per a la teo-
ria general d’espais lliures Lipschitz. Primer definim operadors de ponderació en
espais Lipchitz i els fem servir per demostrar la conjectura de Weaver que tots
els funcionals normals del bidual F(M)

∗∗
son feble∗ continus. A continuació de-

mostrem el teorema de la intersecció, que en essència diu que la intersecció d’espais
lliures Lipschitz és de nou un espai lliure Lipschitz. Aquest resultat ens permet
desenvolupar el concepte de suport d’un element de F(M), anàleg al de suport
d’una mesura. A més, estenem l’ús d’aquestes eines al bidual F(M)

∗∗
i les fem

servir per establir una descomposició del bidual en espais de funcionals que estan
“concentrats a l’infinit” i “separats de l’infinit”, respectivament.

Amb aquestes eines al nostre abast, emprenem l’estudi de dos aspectes concrets
dels espais lliures Lipschitz. En primer lloc, analitzem la relació entre F(M)
i els espais de mesures sobre M . En particular, obtenim caracteritzacions dels
elements de F(M) que poden representar-se com la integració respecte a una
mesura de Borel (no necessàriament finita) sobre M i viceversa, i provem que el
suport coincideix amb el de la mesura associada. També identifiquem els espais
mètrics M on tot element de F(M) pot ser representat com una mesura de Borel.
Aquesta análisi es generalitza al bidual F(M)

∗∗
, utilitzant en aquest cas mesures

sobre la compactificació uniforme de M i arribant a resultats similars. També
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obtenim algunes conseqüències per als elements de F(M) i F(M)
∗∗

que poden
expressar-se com a diferència de dos elements positius, com ara l’existència d’un
anàleg de la descomposició de Jordan per a mesures.

En segon lloc, estudiem l’estructura extremal de la bola unitat de F(M) i fem
algunes contribucions al programa general consistent en trobar caracteritzacions
purament geomètriques de tots els seus elements extremals. Concretament, carac-
teritzem els punts extrems preservats de la bola, aix́ı com aquells punts extrems i
exposats que tenen suport finit. A més fem una descripció completa de l’estructura
extremal de la part positiva de la bola unitat. La teoria dels suports en F(M)
desenvolupada anteriorment juga un paper crucial en les demostracions d’aquests
resultats.
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Chapter 1

Introduction

Given a complete metric space (M,d) in which an arbitrary point 0 is selected
as a base point, one may consider the space Lip0(M) of all real-valued Lipschitz
functions on M that vanish at the base point. This turns out to be a Banach space
endowed with the norm given by the Lipschitz constant of each function. We may
then consider the evaluation functionals δ(x) ∈ Lip0(M)∗ for each point x ∈ M .
The closed space generated by these functionals is called Lipschitz-free space over
M and denoted by F(M). This space has the following fundamental properties:

• It contains an isometric copy δ(M) of M that is linearly dense.

• It is the canonical predual of the space Lip0(M).

• It satisfies the following universal property: any Lipschitz mapping from M
into a Banach space X can be extended to a linear operator from F(M)
into X. More generally, any Lipschitz mapping between two metric spaces
M and N can be extended to a linear operator between the Lipschitz-free
spaces F(M) and F(N). Moreover, the norm of the operator is equal to the
Lipschitz constant of the original mapping.

The universal property implies that the operation of constructing Lipschitz-free
spaces is a functor from the category of metric spaces to the category of Banach
spaces. It allows us to transform a complicated (Lipschitz) mapping into a simpler
(linear) one at the expense of substituting the domain and range metric spaces by
their associated Lipschitz-free spaces, with a more complicated structure. It also
allows us, for instance, to dismiss the existence of bi-Lipschitz homeomorphisms
between two metric spaces by proving that their Lipschitz-free spaces are not
isomorphic to each other. For these reasons, Lipschitz-free spaces are nowadays
considered a fundamental tool for the study of the non-linear geometry of Banach
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Chapter 1. Introduction

spaces, as they allow the application of classical linear techniques to non-linear
problems.

The construction of the Lipschitz-free spaces can be traced back to the mid-20th

century with the pioneering works of Kantorovich and Rubinstein on optimal
transport problems [41], and was rediscovered several times during the subse-
quent decades by authors such as Arens, de Leeuw, Eells or Johnson, often as an
auxiliary tool for a particular problem [10, 18, 37]. In particular, Kadets [38] and
Pestov [46] stated early versions of the universal property (see Theorem 2.2.4).
The systematic study of Lipschitz-free spaces begins in the 1990s with the work of
Weaver (using the name Arens-Eells spaces). The publication of the first edition
of his monograph [52] in 1999, which is still considered the fundamental reference
in this field, is a major milestone.

If we restrict ourselves to the more specific topic of Geometry of Banach Spaces,
the use of these spaces begins in 2003 with the seminal paper by Godefroy and
Kalton [30] where the term Lipschitz-free space is coined, which is now prevalent
in this field. That paper focuses on the case where the metric space M under
consideration is a Banach space with the norm metric, and it contains the proof
of results such as the following:

• F(Rn) has the metric approximation property;

• the bounded approximation property of Banach spaces is stable under Lip-
schitz homeomorphisms;

• if a Banach space contains an isometric copy of another separable Banach
space, then it actually contains a linearly isometric copy.

The study of the linear structure (both isometric and isomorphic) of Lipschitz-free
spaces began its development in the wake of these results, and it has been growing
in interest during the last 15 years.

Currently, Lipschitz-free spaces find widespread use in several branches of mathe-
matics where they are sometimes known by different names, such as Wasserstein-1
spaces in Metric Geometry.1 Besides their obvious theoretical interest, one may
also find incentives for their study coming from certain branches of applied math-
ematics. One notable example is Optimal Transport: indeed, the norm of F(M)
may be interpreted as the cost of the optimal solution to a certain transport prob-
lem; see e.g. [50]. Hence Lipschitz-free spaces find more or less explicit applications
in problems related to PDEs, computer vision, image reconstruction and correc-
tion, etc. This is, for instance, one of the motivations behind the paper [45] where
the theoretical result is proved that F(R2) is not contained in F(R). As a prac-
tical consequence of this fact, one obtains lower bounds for the execution time of

1Actually Wasserstein-1 spaces are not exactly the same as Lipschitz-free spaces, but rather
a certain linearly generating subset thereof.
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certain search algorithms employed in the analysis of 2D images. Let us remark
here that the question whether F(Rm) can be contained in F(Rn) for m > n > 1,
which has analogous interest and applications, is open at the time of writing.

Outline of the thesis

This thesis is primarily concerned with the isometric structure of Lipschitz-free
spaces. More specifically, the starting point of the present research is the study of
the extremal structure of the unit ball BF(M). The roots of this study go back to
the 1990s, when Weaver proved that all preserved extreme points of BF(M) had
to be elementary molecules, that is, elements of F(M) of the form

mxy =
δ(x)− δ(y)

d(x, y)

for x 6= y ∈ M . Apart from that result, knowledge about this topic was scarce
until 2017 when a series of works by Garćıa-Lirola, Petitjean, Procházka and Rueda
Zoca shed new light on the issue. In [24] they gave a characterization of strongly
exposed points of BF(M) in terms of a geometrical condition on points x, y, and
in [23] they showed that the sets of preserved extreme points and denting points
coincide.

This thesis picks up at this point and continues the program of characterizing the
different extremal elements of the unit ball. In particular, some of the results
presented here include similar characterizations of preserved extreme points, and
of those extreme and exposed points that also have the form mxy. We remark here
that, at the time of writing, it is still an open problem whether all extreme points
are necessarily elementary molecules.

On the way to proving those results, it becomes necessary to establish some fun-
damental facts about Lipschitz-free spaces that appear to have been previously
unknown. The prime example is what we have called the intersection theorem.
It roughly says the following: the Lipschitz-free space over the intersection of a
family of sets is the same as the intersection of the Lipschitz-free spaces over those
sets. That is, “the symbols F and

⋂
commute”. It is perhaps surprising that this

elementary-looking fact went unnoticed for so long. However, our proof requires
some results about the algebraic structure of Lipschitz spaces, which is often over-
looked in favor of the linear structure. The real importance of this result lies in
the fact that it allows us to define another fundamental notion: that of support
of an element of F(M), which possesses the basic properties one would intuitively
expect from an object called “support” by analogy with, say, continuous functions
or measures.

Let us now briefly describe the structure of this document. After this introduction,
Chapter 2 presents the basic theory of Lipschitz and Lipschitz-free spaces and some
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Chapter 1. Introduction

of the most important and paradigmatic examples. An effort has been made to
write a self-contained text, so the proofs of virtually all results are included. Most
proofs are rather elementary and only basic knowledge of Banach Space theory is
required.

The rest of the document presents the research conducted during the course of
the thesis. The material is not presented in chronological order; instead, we start
with the fundamental, general results first and save the applications to the study
of extremal structure for last.

In Chapter 3 we extend the basic theory of Lipschitz-free spaces with some general
tools. First we briefly develop the theory of weighting operators on F(M) and, as
an elementary (but rather technical) application, we solve the long-standing open
problem by Weaver asking whether all normal functionals in Lip0(M)∗ belong to
F(M) (see Theorem 3.2.5). Next we move to the main result in the chapter, and
possibly the whole thesis: the intersection theorem (see Theorem 3.3.5). We use
it to define supports of elements of F(M) and prove their most basic properties
and characterizations. Let us mention just one of them that should be enough to
explain our choice of name: the action of an element m ∈ F(M) on a Lipschitz
function f only depends on the values that f takes on the support of m (see
Proposition 3.3.9).

The second half of Chapter 3 is devoted to extending the concept of support to all
elements of the bidual F(M)

∗∗
. An important change of setting takes place here

as it is shown that, in general, it is not possible to give a reasonable definition
of such a support as a subset of M . Instead, it is necessary to define it as a
subset of a compactification of M , but the usual approach of considering the
Stone-Čech compactification βM also leads to inconsistencies. We show that the
appropriate choice is the lesser-known uniform compactification MU . We also
establish a canonical decomposition of elements of F(M)

∗∗
into a part that is

“concentrated at infinity” and a part that is “concentrated away from infinity”,
and show that in general supports only have meaningful properties for the latter.

Motivated by a question asked by Godefroy at a conference in 2018, we undertake
in Chapter 4 a detailed study of the relationship between elements of F(M) and
measures on M ; note that both can be interpreted as functionals over the space
Lip0(M). In particular, when an element of F(M) can be identified with such a
measure then the concept of support agrees for both representations. As it turns
out, a completely analogous study can be carried out for elements of F(M)

∗∗
and

measures on the uniform compactification MU . We characterize those measures
that correspond to bounded functionals on Lip0(M) and conversely, those elements
of F(M) and F(M)

∗∗
that admit an integral representation. The most important

technical result is that, out of those measures on MU that represent elements
of F(M)

∗∗
, the ones that yield elements of F(M) are precisely those that are

concentrated on M (see Theorem 4.2.7).
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After that, we study the majorizable elements of F(M) and F(M)
∗∗

, that is,
those that can be expressed as the difference between two positive elements. We
show that this family of elements agrees almost exactly with that of elements
that admit an integral representation. As a consequence, we are able to prove
some unexpected results: for instance, when M is compact and the base point
is isolated, any majorizable element of F(M)

∗∗
actually belongs to F(M) (see

Corollary 4.3.10). We are also able to show that majorizable elements of F(M)
admit a canonical minimal representation as a difference of positive elements,
analogous to the Jordan decomposition for measures (see Theorem 4.3.15). Finally,
we characterize those metric spaces where every element of F(M) is majorizable
or can be represented by a measure.

Finally, in Chapter 5 we apply the previous ideas to the study of the extremal
structure of BF(M). First we provide geometric characterizations of the preserved
extreme points and of the extreme points that happen to be elementary molecules.
Although these results appeared originally on separate papers [1, 5], here we give
an almost simultaneous proof of both characterizations (see Theorems 5.2.6 and
5.2.9). We end the chapter by providing some supplementary results concerning
other extremal elements, such as exposed molecules and extreme points of the
positive unit ball.

Each chapter includes a small final section where some comments and open prob-
lems related to its content are collected.

Most of the research contained here has been carried out in collaboration with
Eva Pernecká (Czech Technical University in Prague). This includes all results
in Chapters 3 and 4 and part of Chapter 5, which appear in the papers [4–6]
and in the preprint [3]. Some results in Chapter 5 have been obtained together
with Antonio José Guirao (Universitat Politècnica de València) [1] and with Colin
Petitjean and Antońın Procházka (Université Bourgogne-Franche-Comté) [6].

Other topics have also been studied with these and other collaborators during the
course of the thesis. We summarize some of these unrelated results here:

• In [7], we characterize those metric spaces M such that F(M) embeds into
`1 isometrically and almost isometrically.

• In [2], we show that certain Banach space properties are compactly deter-
mined, in the sense that they are satisfied by F(M) if and only if they are
satisfied by F(K) for every compact K ⊂ M . In particular this holds for
weak sequential completeness, the Schur property and, with a small modifi-
cation, the approximation property and the Dunford-Pettis property.

• In [8], we characterize points of Gâteaux and Fréchet differentiability of
the norm in F(M) under various assumptions. This is a joint work with
Abraham Rueda Zoca (Universidad de Granada).
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Chapter 1. Introduction

We have chosen not to include the details of these results in this document, not
even as appendices, as they are only tangentially relevant to the research included
here (and to each other). Instead, we have preferred to keep this dissertation
focused on a smaller number of selected topics that are more strongly related.

Acknowledgments

The author would like to thank Marek Cúth, Michal Doucha, Antonio José Guirao,
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1.1 Notation

Basic knowledge of Banach space theory is assumed throughout the text, including
the usual cornerstone theorems of Functional Analysis and the fundamentals of
weak and weak∗ topologies. The comprehensive book [22] is recommended as a
reference; the material contained in the first three chapters therein is sufficient.
Some elementary knowledge of topology and measure theory is also required. Most
of the necessary information can be found e.g. in chapters 1, 2 and 6 of [47]; for
basic background on nets in topology, see e.g. [44, §29]. No previous knowledge
about Lipschitz or Lipschitz-free spaces is assumed, but we recommend [53] as a
reference and for a wealth of further information about these objects.

Let us briefly describe the most common notation we will be using throughout the
thesis. The notation that is more specific to the subject will be described as it is
introduced in the text, and is collected in the list of symbols at the end of this
document.

Unless specified otherwise, M will always denote a complete metric space with
metric d. We will moreover assume that M is pointed , that is, a certain point of
M will be selected as a base point and denoted by 0. The open ball of radius r
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1.1 Notation

around p ∈M will be denoted B(p, r). We will also use the notation

d(x,A) = inf {d(x, a) : a ∈ A}
d(A,B) = inf {d(a, b) : a ∈ A, b ∈ B}
rad(A) = sup {d(a, 0) : a ∈ A}

diam(A) = sup {d(a, b) : a, b ∈ A}

for x ∈ M and A,B ⊂ M ; the last two quantities will be called the radius and
diameter of A, respectively. The characteristic function of A will be denoted by
χA (i.e. χA(x) = 1 for x ∈ A and χA(x) = 0 for x /∈ A).

We will deal exclusively with real Banach spaces and real scalars. The closed
unit ball and unit sphere of a Banach space X will be denoted by BX and SX ,
respectively. The dual of X will be denoted by X∗, and the dual action of x∗ ∈ X∗
on x ∈ X as 〈x, x∗〉 = x∗(x). The annihilator of a subset A ⊂ X will be written
as A⊥, and the preannihilator of a subset A ⊂ X∗ as A⊥.

The space of continuous linear operators from X into another Banach space Y shall
be written as L(X,Y ). If X and Y are linearly isometric, we will write X ∼= Y ;
if they are linearly isomorphic, we will write X ∼ Y instead. The standard unit
vectors of a c0(Γ) or `p(Γ) space (1 ≤ p ≤ ∞) will be denoted eγ , for γ ∈ Γ.
We will write span (A) for the linear span of A ⊂ X, i.e. the set of finite linear
combinations of elements of A, and conv (A) for its convex hull, i.e. the set of
finite convex combinations. We will use the notation span (A) and conv (A) for
their respective closures. The set of extreme points of A will be denoted by ext(A).

We will write xi → x to state that a net (xi) converges to x. Convergence shall be
understood to hold with respect to the metric or norm topology when dealing with
metric or Banach spaces, respectively. When convergence with respect to a specific
topology τ is meant, we will write xi

τ−→ x instead. The symbols τ = w,w∗ will be
used for the weak and weak∗ topology, respectively. When dealing with a function
space, τ = p will be used for the topology of pointwise convergence.

Finally, if f and g are elements of some space of real-valued functions, their
pointwise maximum and minimum will be denoted by f ∨ g = max {f, g} and
f ∧ g = min {f, g}. More generally, the pointwise supremum and infimum of a
collection (fi) of real-valued functions will be denoted by

∨
i fi = supi fi and∧

i fi = infi fi, respectively. We shall also write f ≤ g when f is less or equal than
g pointwise, and denote f+ = f ∨ 0 and f− = (−f) ∨ 0. The space of continuous
real-valued functions on a topological space X will be denoted by C(X).
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Chapter 2

Basics of Lipschitz and
Lipschitz-free spaces

In this chapter, Lipschitz functions and Lipschitz-free spaces will be defined and
their basic properties will be described. With few exceptions, the proofs of all
results have been included since they are elementary. After that, some of the
most important elements in Lipschitz-free spaces will be introduced (molecules,
and positive and majorizable elements), which will play a large role in Chapters
4 and 5. Finally, we will present some paradigmatic examples of Lipschitz and
Lipschitz-free spaces over familiar metric spaces.

2.1 Lipschitz functions and Lipschitz spaces

The following definition is well known but central to this thesis:

Definition 2.1.1. Let f : M → N be a mapping between two metric spaces
(M,dM ) and (N, dN ). The Lipschitz constant of f is defined as the value

‖f‖L = sup

{
dN (f(x), f(y))

dM (x, y)
: x 6= y ∈M

}
.

The function f is said to be Lipschitz if ‖f‖L <∞.

Mappings with a Lipschitz constant less or equal to 1, i.e. such that

dN (f(x), f(y)) ≤ dM (x, y)

for any x, y ∈ M , are also called non-expansive. In particular, if f is an isometry
i.e. such that dN (f(x), f(y)) = dM (x, y) for any x, y ∈ M , then ‖f‖L = 1.

9



Chapter 2. Basics of Lipschitz and Lipschitz-free spaces

An important basic fact is that the composition of Lipschitz mappings is again
Lipschitz:

Proposition 2.1.2. Let M,N,P be metric spaces and consider mappings f :
M → N and g : N → P . Then ‖g ◦ f‖L ≤ ‖g‖L · ‖f‖L. If g is an isometry then
‖g ◦ f‖L = ‖f‖L.

Proof. Let x 6= y ∈M . If f(x) = f(y) then (g ◦ f)(x) = (g ◦ f)(y), otherwise

dP ((g ◦ f)(x), (g ◦ f)(y))

dM (x, y)
=
dP (g(f(x)), g(f(y)))

dN (f(x), f(y))
· dN (f(x), f(y))

dM (x, y)
≤ ‖g‖L ‖f‖L

and taking suprema we get the desired inequality. If g is an isometry then the left
fraction in the product above is equal to 1 whenever f(x) 6= f(y), and so taking
suprema yields exactly ‖g ◦ f‖L = ‖f‖L.

We will focus on the case where the target space is just the real numbers, so that
the Lipschitz constant is given by

‖f‖L = sup

{
|f(x)− f(y)|

d(x, y)
: x 6= y ∈M

}
.

Notice that absolute values may be omitted in the numerator above because x and
y may be interchanged. In a slight abuse of notation, we will refer to fractions
of the form (f(x)− f(y)) /d(x, y) as incremental quotients. We shall denote the
collection of all real-valued Lipschitz functions on M as Lip(M). It should be
mentioned here that we may assume the metric space M to be complete without
loss of generality, as one may obviously identify Lip(M) with Lip(M̂) where M̂ is
the completion of M .

The next proposition describes the behavior of the Lipschitz constant with respect
to the most common operations on real-valued functions: sums, products, and
taking pointwise minima and maxima. We will use the notation f ∨g = max {f, g}
and f∧g = min {f, g} for the latter, and also more generally for pointwise suprema
and infima of infinite collections of functions.

Proposition 2.1.3. Let f and g be real-valued functions on M , and λ ∈ R. Then:

(a) ‖f + g‖L ≤ ‖f‖L + ‖g‖L,

(b) ‖λf‖L = |λ| · ‖f‖L,

(c) ‖f ∨ g‖L ≤ max {‖f‖L , ‖g‖L} and ‖f ∧ g‖L ≤ max {‖f‖L , ‖g‖L},
(d) ‖fg‖L ≤ ‖f‖L ‖g‖∞ + ‖g‖L ‖f‖∞.
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Proof. Choose an arbitrary pair of different points x, y ∈ M , and let us estimate
the various Lipschitz constants in the statement. First, we have

|(f + g)(x)− (f + g)(y)|
d(x, y)

≤ |f(x)− f(y)|
d(x, y)

+
|g(x)− g(y)|

d(x, y)
≤ ‖f‖L + ‖g‖L

and taking the supremum over all possible pairs (x, y) we get (a). We also have

|(λf)(x)− (λf)(y)|
d(x, y)

= |λ| |f(x)− f(y)|
d(x, y)

and taking suprema on both sides yields (b). To prove (c), let h = f ∨ g and
suppose h(x) ≥ h(y) without loss of generality. If h(x) = f(x) then

h(x)− h(y)

d(x, y)
=
f(x)− h(y)

d(x, y)
≤ f(x)− f(y)

d(x, y)
≤ ‖f‖L

and if h(x) = g(x) then we have the same with g in place of f . In any case,
taking suprema yields ‖h‖L ≤ max {‖f‖L , ‖g‖L}. The corresponding inequality
for h = f ∧ g = −((−f) ∨ (−g)) follows immediately. Finally, for statement (d),
compute

|(fg)(x)− (fg)(y)|
d(x, y)

≤ |f(x)g(x)− f(x)g(y)|
d(x, y)

+
|f(x)g(y)− f(y)g(y)|

d(x, y)

= |f(x)| |g(x)− g(y)|
d(x, y)

+ |g(y)| |f(x)− f(y)|
d(x, y)

≤ ‖f‖∞ ‖g‖L + ‖g‖∞ ‖f‖L

to obtain the conclusion.

The following shows that the Lipschitz constant also behaves well with respect to
pointwise limits.

Proposition 2.1.4.

(a) If (fi) is a net of functions M → R that converges pointwise to f then
‖f‖L ≤ lim infi ‖fi‖L.

(b) If (fn) is a sequence of functions M → R and
∑
n fi converges pointwise,

then ‖
∑
n f‖L ≤

∑
n ‖fn‖L.

(c) If {fi : i ∈ I} is a family of functions M → R that is pointwise bounded
above, then

∥∥∨
i∈I fi

∥∥
L
≤ supi∈I ‖fi‖L.

(d) If {fi : i ∈ I} is a family of functions M → R that is pointwise bounded
below, then

∥∥∧
i∈I fi

∥∥
L
≤ supi∈I ‖fi‖L.

11
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Proof. (a) For any choice of x 6= y ∈M we have

f(x)− f(y)

d(x, y)
= lim

i

fi(x)− fi(y)

d(x, y)
≤ lim inf

i
‖fi‖L .

(b) Apply (a) to the sequence (gn) where gn =
∑n
k=1 fk, which satisfies ‖gn‖L ≤∑n

k=1 ‖fk‖L by Proposition 2.1.3(a).

(c) Let F be the set of all finite subsets of I, directed by inclusion, and consider
the net (gF )F∈F where gF =

∨
i∈F fi for F ∈ F. It is straightforward to check that

(gF ) converges pointwise to g =
∨
i∈I fi, and we have

‖gF ‖L ≤ max
i∈F
‖fi‖L ≤ sup

i∈I
‖fi‖L

for any F ∈ F by Proposition 2.1.3(d). Applying (a) now yields the conclusion.

(d) is proved in the same way as (c).

Proposition 2.1.3(a,b) shows that Lip(M) is a vector space and that the Lipschitz
constant is a seminorm on Lip(M). It is obvious that ‖f‖L = 0 if and only if f
is a constant function on M , hence the Lipschitz constant cannot be a norm on
Lip(M) (unlessM is trivial). However, it would be desirable to endow Lip(M) with
a normed space structure in order to be able to use functional analytic methods for
the study of Lipschitz functions. There are several possible ways to circumvent this
restriction. The most usual one is to consider pointed metric spaces and restrict
our attention to the following subspace:

Definition 2.1.5. The Lipschitz space over M is the vector space

Lip0(M) = {f ∈ Lip(M) : f(0) = 0} .

Lip0(M) is clearly a one-codimensional vector subspace of Lip(M) and 0 is the
only constant function contained in it, so it follows from the previous discussion
that ‖ · ‖L is a norm on Lip0(M). We can actually say more:

Proposition 2.1.6. Lip0(M) is a Banach space endowed with the norm ‖ · ‖L.
Moreover, different choices of the base point of M produce linearly isometric Ba-
nach spaces.

Proof. It is a well known fact that a normed vector space is complete if and only
if every absolutely convergent series is convergent. So let (fn) be a sequence in
Lip0(M) such that

∑
n ‖fn‖L <∞. For every x ∈M we have

|fn(x)| = |fn(x)− fn(0)| ≤ ‖fn‖L d(x, 0)
12



2.1 Lipschitz functions and Lipschitz spaces

thus
∑
n |fn(x)| is absolutely convergent, and so the series

∑
n fn converges point-

wise to a function f . It is clear that f(0) = 0. By Proposition 2.1.4(b), f ∈
Lip0(M) with ‖f‖L ≤

∑
n ‖fn‖L. Moreover, we have∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
L

=

∥∥∥∥∥∑
k>n

fk

∥∥∥∥∥
L

≤
∑
k>n

‖fk‖L

where the inequality follows from Proposition 2.1.4(b). Thus
∑
n fn converges to

f in norm, and the first statement is proved.

Now let e ∈ M and denote by Lipe(M) the space of Lipschitz functions on M
such that f(e) = 0. Define T : Lip0(M)→ Lipe(M) by (Tf)(x) = f(x)− f(e) for
x ∈M . The map T is obviously linear, and Tf−f is a constant function for every
f ∈ Lip0(M) so ‖Tf‖L = ‖f‖L. Moreover, if g ∈ Lipe(M) then f = g − g(0) ∈
Lip0(M) and Tf = g, thus T is onto. This ends the proof.

The most important function in Lip0(M), which we shall denote by ρ, is given by

ρ(x) = d(x, 0)

for x ∈ M . The triangle inequality implies that ρ(x) − ρ(y) ≤ d(x, y) for any
x, y ∈ M , hence ‖ρ‖L = 1. More precisely, ρ is the largest element of BLip0(M).
Indeed, for any f ∈ Lip0(M) and x ∈M we have |f(x)| ≤ ‖f‖L · ρ(x), a fact that
has already been used in the preceding proof.

Lipschitz spaces, being spaces of real-valued continuous functions, can be expected
not to merely possess a natural linear structure but also an algebraic and a lattice-
theoretic one. Let us briefly comment on those properties.

Proposition 2.1.3(c) shows that Lip(M) is a Riesz space, i.e. a vector lattice,
with the partial order given by the pointwise order. The same can be said about
Lip0(M), as it is closed under the operations ∨ and ∧. Moreover, by Proposi-
tion 2.1.4(c,d) the unit ball BLip0(M) is a complete lattice, i.e. every subset has a
supremum and an infimum. However, Lip0(M) is not in general a Banach lattice,
because |f | ≤ |g| does not imply in general that ‖f‖L ≤ ‖g‖L: a simple coun-
terexample is given by g(x) = x and f(x) = x sinx in Lip0[0, 2π]. For the exact
conditions when Lip0(M) is a Banach lattice see [53, p. 187].

Proposition 2.1.3(d) shows that the product of bounded Lipschitz functions is
Lipschitz. If M is bounded then any f ∈ Lip(M) is bounded, since

|f(x)| ≤ ‖f‖L ρ(x) ≤ rad(M) ‖f‖L
for every x ∈ M , hence ‖f‖∞ ≤ rad(M) ‖f‖L. Thus, in that case Lip(M) and
Lip0(M) are algebras under the pointwise product, and moreover

‖fg‖L ≤ ‖f‖L rad(M) ‖g‖L + ‖g‖L rad(M) ‖f‖L = 2 rad(M) ‖f‖L ‖g‖L
13



Chapter 2. Basics of Lipschitz and Lipschitz-free spaces

by Proposition 2.1.3(d). So Lip0(M) is not a Banach algebra in general (unless
rad(M) ≤ 1

2 ), but it can be turned into one by scaling its norm by a constant factor.
When M is unbounded, however, Lip0(M) is not even closed under pointwise
products: just notice that

ρ(x)2 − ρ(0)2

d(x, 0)
= d(x, 0)

is not bounded, so
∥∥ρ2
∥∥
L

=∞ and ρ2 /∈ Lip0(M).

Next, let us discuss an extension result for Lipschitz functions defined on subsets of
M . It is an extremely important fact, first proved by McShane [43], that any such
function can be extended to the whole space M without increasing its Lipschitz
constant:

Theorem 2.1.7 (McShane). Let N ⊂ M and f ∈ Lip(N). Then there is F ∈
Lip(M) such that F �N = f , ‖F‖L = ‖f‖L, supx∈M F (x) = supx∈N f(x) and
infx∈M F (x) = infx∈N f(x).

We will, in fact, need some details about the nature of such an extension F . The
following definition describes the two canonical constructions of F . We will show
that they are the largest and smallest possible extensions of f to M , respectively.

Definition 2.1.8. Let N ⊂M and f ∈ Lip(N). Then the functions E+f,E−f :
M → R, defined by

(E+f)(x) = inf {f(y) + ‖f‖L d(x, y) : y ∈ N}
(E−f)(x) = sup {f(y)− ‖f‖L d(x, y) : y ∈ N}

(2.1)

for x ∈M , are called the inf-convolution and sup-convolution of f , respectively.

Proposition 2.1.9. The functions E+f,E−f have the following properties:

(i) (E+f)�N = (E−f)�N = f ,

(ii) ‖E+f‖L = ‖E−f‖L = ‖f‖L,

(iii) if g ∈ Lip(M) is any function such that g�N = f and ‖g‖L = ‖f‖L, then
E−f ≤ g ≤ E+f .

Proof. Let x ∈ N , then we have f(x) ≤ f(y) + ‖f‖L d(x, y) for any y ∈ N and
therefore f(x) ≤ (E+f)(x). But we also have, taking y = x, that (E+f)(x) ≤
f(x)+‖f‖L d(x, x) = f(x). Hence (E+f)(x) = f(x). The proof for E−f is similar.
This establishes (i).

To prove (ii), let x1, x2 ∈ M and ε > 0. By construction there is y ∈ N such
that f(y) + ‖f‖L d(x2, y) < (E+f)(x2) + ε, and we have (E+f)(x1) ≤ f(y) +

14



2.1 Lipschitz functions and Lipschitz spaces

‖f‖L d(x1, y), therefore

(E+f)(x1)− (E+f)(x2) < f(y) + ‖f‖L d(x1, y)− (f(y) + ‖f‖L d(x2, y)− ε)
= ‖f‖L (d(x1, y)− d(x2, y)) + ε

≤ ‖f‖L d(x1, x2) + ε.

Taking ε → 0 and the supremum over pairs x1, x2 we get ‖E+f‖L ≤ ‖f‖L. But
(i) clearly implies the opposite inequality, therefore ‖E+f‖L = ‖f‖L. Again, the
argument for E−f is similar.

Finally, if g is as in (iii), then for any x ∈ M and y ∈ N we have |g(x)− g(y)| ≤
‖g‖L d(x, y) i.e.

f(y)− ‖f‖L d(x, y) ≤ g(x) ≤ f(y) + ‖f‖L d(x, y).

Taking the supremum on the left hand side and the infimum on the right hand
side yields (E−f)(x) ≤ g(x) ≤ (E+f)(x).

Proof of Theorem 2.1.7. Let a = infx∈N f(x) and b = supx∈N f(x). Take g =
E+f (or E−f), and let F = (g∧b)∨a. By Propositions 2.1.3(c) and 2.1.9 we have
‖F‖L ≤ ‖g‖L = ‖f‖L, and since F �N = f we must have ‖F‖L = ‖f‖L. It is also
clear that supx∈M F (x) ≤ b by construction and supx∈M F (x) ≥ b by restriction
to N , therefore supx∈M F (x) = b. Similarly infx∈M F (x) = a.

Let us provide an alternative interpretation of Theorem 2.1.7:

Corollary 2.1.10. If N ⊂M , then

BLip0(N) =
{
f�N : f ∈ BLip0(M)

}
.

Indeed, it is clear that ‖f�N‖L ≤ ‖f‖L as the supremum defining the Lipschitz
constant is taken over a smaller set of pairs of points in the left hand side. This
yields inclusion ⊃. The reverse inclusion is precisely McShane’s theorem.

To end this section, we mention another property of Lipschitz functions that will be
required occasionally. In order to state it, let us first recall the following concept.
Given a set X, a partition of unity on X is a family {fi : i ∈ I} of non-negative
functions on X such that, for every x ∈ X, only finitely many of the functions
fi have a nonzero value on x and moreover

∑
i∈I fi(x) = 1. If X is a topological

space and {Ui : i ∈ I} is an open cover of X, then the partition of unity {fi : i ∈ I}
is said to be subordinated to {Ui} if supp(fi) ⊂ Ui for every i ∈ I.

Theorem 2.1.11. For every open cover of M there is a partition of unity subor-
dinated to it that consists of Lipschitz functions.

The proof of this fact is elementary but rather long and technical, so we choose
not to include it here; it can be found e.g. in [14, Theorem 2.6.5].
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2.2 Lipschitz-free spaces

In the previous section, we have seen that the Lipschitz space Lip0(M) is a Banach
space. We will now prove the less obvious fact that it is actually a dual Banach
space.

There are several equivalent ways to construct the predual of Lip0(M). The most
straightforward one is as the linear space generated by the evaluation functionals
δ(x) ∈ Lip0(M)∗, given by

〈f, δ(x)〉 = f(x)

for f ∈ Lip0(M) and x ∈ M . In consistency with this notation, we may more
generally consider the mapping

δ : M → Lip0(M)∗

that takes each x ∈M to its associated evaluation functional δ(x).

Let us remark that δ(0) is just the 0 element of Lip0(M)∗ because every f ∈
Lip0(M) vanishes at the base point. Notice also that the evaluation functionals
are linearly independent. Indeed, given any finite set E ⊂M \{0} and any x ∈ E,
the function that takes x to 1 and all other points of E to 0 is Lipschitz on E (any
function on a finite metric space is clearly Lipschitz). By McShane’s theorem, it
can be extended to f ∈ Lip0(M) such that 〈f, δ(x)〉 = 1 and 〈f, δ(y)〉 = 0 for
y ∈ E, y 6= x. Hence δ(E) is a linearly independent set.

Proposition 2.2.1. δ is an isometric embedding of M into Lip0(M)∗ that is
continuous with respect to the weak∗ topology of Lip0(M)∗.

Proof. Let x 6= y ∈M . Then

‖δ(x)− δ(y)‖ = sup
{
〈f, δ(x)− δ(y)〉 : f ∈ BLip0(M)

}
= sup

{
f(x)− f(y) : f ∈ BLip0(M)

}
.

On one hand, f(x)− f(y) ≤ d(x, y) for any f ∈ BLip0(M). On the other hand, the
function f : z 7→ d(z, y) − d(0, y) belongs to BLip0(M) and f(x) − f(y) = d(x, y).
Thus the supremum in the expression above is exactly d(x, y), and δ is indeed an
isometry. It is also clear that if xi → x in M then

〈f, δ(xi)〉 = f(xi)→ f(x) = 〈f, δ(x)〉

for any f ∈ Lip0(M) because such an f is continuous, thus δ(xi)
w∗−→ δ(x). That

is, δ is a weak∗ continuous mapping.

We can now finally define the main object of study in this thesis.
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Definition 2.2.2. The Lipschitz-free space over M is the subspace of Lip0(M)∗

given by
F(M) = span δ(M) = span {δ(x) : x ∈M} .

The norm in F(M) will be simply the restriction of the norm in Lip0(M)∗.

Theorem 2.2.3. F(M)∗ is linearly isometric to Lip0(M) under the mapping
Λ 7→ Λ◦δ, and the corresponding weak∗ topology on Lip0(M) coincides on bounded
sets with the topology of pointwise convergence.

Proof. For any Λ ∈ F(M)∗ define T (Λ) = Λ ◦ δ : M → R. Notice first that for
any x, y ∈M we have by Proposition 2.2.1

|T (Λ)(x)− T (Λ)(y)| = |Λ(δ(x)− δ(y))| ≤ ‖Λ‖ d(x, y)

so ‖T (Λ)‖L ≤ ‖Λ‖. In fact, T (Λ) ∈ Lip0(M) since δ(0) = 0. Now, for every
x ∈M , we have

〈T (Λ), δ(x)〉 = T (Λ)(x) = (Λ ◦ δ)(x) = 〈δ(x),Λ〉

and, by linear density of the δ(x), it follows that 〈T (Λ),m〉 = 〈m,Λ〉 for any
m ∈ F(M). Therefore

‖Λ‖ = sup
m∈BF(M)

〈m,Λ〉 = sup
m∈BF(M)

〈T (Λ),m〉

≤ sup
φ∈BLip0(M)∗

〈T (Λ), φ〉 = ‖T (Λ)‖L .

So we conclude ‖Λ‖ = ‖T (Λ)‖L, and T : F(M)∗ → Lip0(M) is a linear isometric
embedding.

To see that T is onto, choose g ∈ Lip0(M) and let Λ ∈ F(M)∗ be defined by
〈δ(x),Λ〉 = g(x) for any x ∈ M . Since the δ(x) are linearly independent and lin-
early dense in F(M), this defines an element of F(M)∗ properly, and it is obvious
that T (Λ) = g. Thus T is onto and F(M)∗ is linearly isometric to Lip0(M).

Finally, let (fi) be a net in BLip0(M). Then fi
w∗−→ f if and only if 〈m, fi〉 → 〈m, f〉

for any m ∈ F(M). But δ(M) is linearly dense in F(M), so this is equivalent to
〈m, fi〉 → 〈m, f〉 for m ∈ δ(M), i.e. to fi(x)→ f(x) for all x ∈M . This ends the
proof.

The Lipschitz-free space F(M) is regarded as the canonical predual of Lip0(M).
In fact, it is conjectured (but unknown at the time of writing) that F(M) is the
only possible predual of Lip0(M), however this fact has only been proved when
M is bounded or geodesic [54]. In any case, whenever we make reference to the
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weak∗ topology in Lip0(M) we will invariably mean the weak topology induced by
F(M).

We must observe at this point that the linear structure of F(M) is once again
independent of the choice of base point of M . Indeed, it is easy to check that the
linear isometry between the corresponding Lip0(M) spaces described in Propo-
sition 2.1.6 is pointwise-to-pointwise continuous, hence w∗-w∗-continuous by the
Banach-Dieudonné theorem. Its preadjoint is then a linear isometry between the
Lipschitz-free spaces. Let us remark here that only the linear properties of Lips-
chitz and Lipschitz-free spaces remain invariant under changes of base point. Their
lattice-theoretic structure does not, for instance; we shall see examples of this in
Chapters 3 and 4.

There are two main properties of Lipschitz-free spaces that justify the attention
they get in current research efforts. The first one is the fact that F(M)∗ ∼= Lip0(M)
as we have just proved. The second (and main) one is the “universal” extension
property that we are about to prove. It essentially means that any Lipschitz
mapping from M to a Banach space can be “extended” to a linear operator with
domain F(M); this is understood as an extension insofar as M is identified with
its image δ(M) in F(M).

Theorem 2.2.4 (Universal extension property). Let f : M → X be a Lips-
chitz mapping into a Banach space X such that f(0) = 0. Then there is F ∈
L(F(M), X) such that ‖F‖ = ‖f‖L and F (δ(x)) = f(x) for any x ∈ M , i.e. the
following diagram is commutative:

M

δ

��

f // X

F(M)

F

<<

Proof. Define F : F(M)→ X by setting F (δ(x)) = f(x) for x ∈M and extending
linearly. Since {δ(x) : x ∈ X} is linearly independent and linearly dense in F(M),
this correctly defines a unique linear mapping F . Moreover, we have

‖F‖ = sup
m∈BF(M)

‖F (m)‖ = sup
m∈BF(M)

sup
x∗∈BX∗

x∗(F (m))

= sup
x∗∈BX∗

sup
m∈BF(M)

(x∗ ◦ F )(m)

= sup
x∗∈BX∗

‖x∗ ◦ F‖F(M)

18
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since x∗ ◦ F ∈ F(M)∗ for x∗ ∈ X∗. Now notice that by Theorem 2.2.3

‖x∗ ◦ F‖F(M) = ‖x∗ ◦ F ◦ δ‖Lip0(M) = ‖x∗ ◦ f‖L

= sup
x 6=y∈M

(x∗ ◦ f)(x)− (x∗ ◦ f)(y)

d(x, y)

= sup
x 6=y∈M

x∗
(
f(x)− f(y)

d(x, y)

)
.

We now conclude that

‖F‖ = sup
x∗∈BX∗

sup
x 6=y∈M

x∗
(
f(x)− f(y)

d(x, y)

)
= sup
x 6=y∈M

∥∥∥∥f(x)− f(y)

d(x, y)

∥∥∥∥ = ‖f‖L .

In particular F ∈ L(F(M), X). This ends the proof.

The authorship of Theorem 2.2.4 is somewhat disputed. The universal extension
property can be found in the works of Kadets [38] and Pestov [46] in 1985-86,
but was first stated in its current form by Weaver in 1999 in [52]. Each of these
authors dealt with a different construction of the Lipschitz-free space.

Let us provide yet another way to express the conclusion of Theorem 2.2.4. Denote
by Lip0(M,X) the space of X-valued Lipschitz mappings on M that vanish at the
base point, which is easily shown to be a Banach space using the same argument as
in Proposition 2.1.6. Then Theorem 2.2.4 asserts that Lip0(M,X) ∼= L(F(M), X),
with a linear isometry given by composition with δ. In particular, for X = R we
have L(F(M),R) = F(M)∗ and we recover Theorem 2.2.3.

An important particular case arises when the target space is a Lipschitz-free space
itself. The theorem then says that any Lipschitz mapping between metric spaces
can be extended to a linear operator between the corresponding Lipschitz-free
spaces:

Corollary 2.2.5. Let f : M → N be a Lipschitz mapping between two pointed
metric spaces such that f(0M ) = 0N . Then there is F ∈ L(F(M),F(N)) such
that ‖F‖ = ‖f‖L and F ◦ δM = δN ◦ f , i.e. the following diagram is commutative:

M

δM
��

f // N

δN
��

F(M)
F
// F(N)

Proof. Apply Theorem 2.2.4 to the Lipschitz mapping δN ◦ f : M → F(N). This
yields an operator F ∈ L(F(M),F(N)) that makes the diagram commutative and
such that ‖F‖ = ‖δN ◦ f‖L. Finally notice that ‖δN ◦ f‖L = ‖f‖L by Proposition
2.1.2, as δN is an isometry.
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Yet another application of the universal extension property allows us to show that
Lipschitz-free spaces over subsets of M may be identified as closed subspaces of
F(M):

Theorem 2.2.6. Let K be a closed subset of M that contains 0. Then F(K) is
linearly isometric to span δ(K) ⊂ F(M).

Proof. Apply Theorem 2.2.4 to the restricted mapping δM : K → F(M) to ob-
tain a linear operator T : F(K) → F(M) such that the following diagram is
commutative

K

δK

��

δM // F(M)

F(K)

T

::

i.e. such that T (δK(x)) = δM (x) for any x ∈ K. Now let m ∈ span δK(K), say
m =

∑n
i=1 aiδK(xi) where ai ∈ R and xi ∈ K. Then T (m) =

∑n
i=1 aiδM (xi), and

we have

‖m‖ = sup
f∈BLip0(K)

〈m, f〉 = sup
f∈BLip0(K)

n∑
i=1

aif(xi)

‖T (m)‖ = sup
f∈BLip0(M)

〈T (m), f〉 = sup
f∈BLip0(M)

n∑
i=1

aif(xi)

Notice that, by Corollary 2.1.10, BLip0(K) consists precisely of the restrictions to
K of the functions in BLip0(M). Therefore both suprema have the same value, and
‖T (m)‖ = ‖m‖. Since this is true for m in a dense subset of F(K), T must be
an isometry, and it is clear that its range is T (span δK(K)) = T (span δK(K)) =
span δM (K).

We shall denote the subspace appearing in Theorem 2.2.6 as

FM (K) = span δ(K) = span {δ(x) : x ∈ K} ,

with the convention that span∅ = {0}. The requirement that 0 ∈ K in Theorem
2.2.6 is just a technical condition to ensure that K is pointed with the same base
point as M , so that the identity mapping K →M leaves the base point invariant.
Nevertheless, notice that FM (K) = FM (K ∪ {0}) by definition, so we may always
attach the base point to K to get the same result. The Lipschitz-free space F(K)
can be completely identified with the subspace FM (K) of F(M) and we will often
do so, but certain arguments appearing in this thesis require keeping track of the
particular overspace M under consideration and this notation will prove useful
there.
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2.3 Distinguished elements and examples

Elementary molecules

In this section we will introduce some of the most important members of F(M)
and its bidual F(M)

∗∗
= Lip0(M)∗. We have already presented the evaluation

functionals δ(x) and their basic properties. Members of span δ(M), i.e. finite lin-
ear combinations of evaluation functionals, will be called elements of finite support ,
an intuitive designation that will be shown to be completely precise in Proposition
3.3.8. Among those, the following are arguably the most important:

Definition 2.3.1. Let x, y be two different points ofM . The elementary molecule,
or simply molecule,1 on points x and y is the element of F(M) given by

mxy =
δ(x)− δ(y)

d(x, y)
.

The set of all elementary molecules in F(M) will be denoted by Mol(M).

Our first observation is that molecules always have norm 1, since δ is an isometry.
Notice moreover that

〈mxy, f〉 =
f(x)− f(y)

d(x, y)

for any f ∈ Lip0(M), i.e. the action of mxy on f corresponds to taking the
incremental quotient of f on the pair x, y that is used for the determination of its
Lipschitz constant. It is immediate then that ‖f‖L = sup {〈m, f〉 : m ∈ Mol(M)},
and the Hahn-Banach theorem implies easily that

BF(M) = conv Mol(M).

In fact, a stronger approximation result is valid: every element of F(M) can be
represented as a series of molecules, and one may choose the sum of the coefficients
to be arbitrarily close to the norm. There are several known proofs of this basic
fact, we provide here a rather self-contained one.

Proposition 2.3.2. Let m ∈ F(M). Then for every ε > 0 there exist a sequence
(an) in R and a sequence (xn, yn) of pairs of different points in M such that

m =

∞∑
n=1

anmxnyn (2.2)

and
∑∞
n=1 |an| < ‖m‖+ ε.

1For some authors, like Weaver in [53], only the term elementary molecule refers to elements
of the form mxy , whereas molecule refers to any element of finite support.
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Proof. Let M̃ be the set of pairs of different points in M , and define the map-
ping T : `1(M̃) → F(M) by letting Te(x,y) = mxy and extending linearly on

span
{
e(x,y) : (x, y) ∈ M̃

}
; here e(x,y) denote the standard unit vectors of `1(M̃).

Since molecules have norm 1, it is clear that T has norm 1 when restricted to
finitely supported elements, so ‖T‖ = 1. Now notice that

BOF(M) ⊂ BF(M) = conv Mol(M) ⊂ T (B
`1(M̃)

) = T (BO
`1(M̃)

)

where BOX denotes the open unit ball of X. By a standard open mapping theorem
argument (e.g. [22, Lemma 2.24]) we actually have BOF(M) ⊂ T (BO

`1(M̃)
). That is,

if ‖m‖ < 1 then there is an expression of the form (2.2) such that
∑∞
n=1 |an| < 1.

This is clearly equivalent to the statement of the Proposition.

It is clear that for any such expression (2.2) one has

‖m‖ ≤
∞∑
n=1

‖anmxnyn‖ =

∞∑
n=1

|an| .

For some elements it is even possible to find a series of molecules such that∑∞
n=1 |an| = ‖m‖; for instance, if m is finitely supported then one may assume

that M is finite and this follows from Proposition 2.3.2 by a finiteness argument.
However, this is in general not possible. We refer to [8] for counterexamples and
necessary conditions.

One final reason for the importance of elementary molecules is that they provide
prototypical examples of extremal elements of BF(M); it is in fact conjectured that
they are the only examples of extremal elements. We shall consider this issue in
depth in Chapter 5.

Positive and majorizable elements

An entirely different family of elements of F(M) (and its bidual) will be introduced
now, determined by the order structure of Lip0(M). Recall that an ordered vector
space X is a vector space with a partial order ≤ that is compatible with addition
and with multiplication by non-negative scalars. An element x ∈ X is then called
positive if x ≥ 0. The set of all positive elements of X is called the positive cone
of X and denoted X+. Note that the order in X is completely determined by its
positive cone X+. When X is a normed space, we will write B+

X for its positive
unit ball i.e. the set of positive elements of BX .

We have already seen that Lip0(M) is a lattice under the pointwise order, gener-
ated by the positive cone

Lip0(M)+ = {f ∈ Lip0(M) : f(x) ≥ 0 for all x ∈M} .
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Thus, any f ≥ 0 will be called positive, even if the term non-negative might be
more accurate. This order structure induces a partial order on Lip0(M)∗ that
turns it into an ordered vector space: we say that the functional φ ∈ Lip0(M)∗ is
positive if 〈f, φ〉 ≥ 0 for all f ∈ Lip0(M)+. By restriction, this also endows F(M)
with an ordered vector space structure. It should be remarked that neither F(M)
nor Lip0(M)∗ are lattices in general (see the comment after Definition 2.3.5).

The norm of positive elements of Lip0(M)∗, including F(M), is particularly easy
to compute and to handle:

Proposition 2.3.3. If φ ∈ Lip0(M)∗ is positive, then ‖φ‖ = 〈ρ, φ〉. If (φn) are
positive elements of Lip0(M)∗ and

∑
n φn is an absolutely convergent series, then

‖
∑
n φn‖ =

∑
n ‖φn‖.

Proof. We have ρ ∈ BLip0(M), and for any f ∈ BLip0(M) we have f ≤ ρ and hence
〈f, φ〉 ≤ 〈ρ, φ〉. Taking the supremum over f yields ‖φ‖ = 〈ρ, φ〉. The second
assertion follows immediately by evaluating the series

∑
n φn on ρ.

Since any element of F(M) can be approximated in norm by elements of finite
support, one may wonder whether positive elements of F(M) can also be ap-
proximated by positive elements of finite support, that is, linear combinations of
evaluation functionals with positive coefficients. This is a folklore result and easy
to prove. In fact, the same may be said for positive elements of Lip0(M)∗ re-
placing norm convergence with weak∗ convergence, and the proof of both facts is
essentially the same:

Proposition 2.3.4. Every m ∈ F(M)+ is the limit of a sequence (mn) of positive,
finitely supported elements of F(M), and every φ ∈ (F(M)

∗∗
)+ is the weak∗ limit

of a net (mi) of positive, finitely supported elements of F(M).

Proof. We will only give the proof of the second statement. Let A be the set
of positive, finitely supported elements of F(M), and suppose that there exists

φ ∈ (F(M)
∗∗

)+ such that φ /∈ A
w∗

. By the Hahn-Banach separation theorem,
there is f ∈ Lip0(M) such that

〈f, φ〉 > sup
{
〈f, ψ〉 : ψ ∈ Aw

∗}
≥ 0.

In particular, taking ψ = aδ(x) for a > 0 and x ∈M , we get af(x) < 〈f, φ〉. Since
this is true for any a > 0, it follows that f(x) ≤ 0. Hence f ≤ 0, and the positivity
of φ implies that 〈f, φ〉 ≤ 0, a contradiction.

An important role will be played in later chapters by positive elements of F(M)
and Lip0(M)∗, but also by the following, more general class of elements:
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Chapter 2. Basics of Lipschitz and Lipschitz-free spaces

Definition 2.3.5. Let X be an ordered vector space and x ∈ X. A majorant of
x is a positive element x+ ∈ X+ such that x ≤ x+; we also say that x is majorized
by x+. We will say that an element x ∈ X is majorizable (more specifically,
majorizable in X) if it has at least one majorant x+ ∈ X+. Equivalently, x is
majorizable if it may be written as the difference x = x+ − x− of two positive
elements x+, x− of X+.

Since Lip0(M) is a lattice, every f ∈ Lip0(M) is majorizable and can, in fact, be
expressed canonically as f = f+ − f−, where f+ = f ∨ 0 and f− = (−f) ∨ 0 are
positive and have Lipschitz constants bounded by ‖f‖L. However, not all elements
of F(M) are majorizable in general, as illustrated e.g. by Example 3.24 in [53];
consequently, F(M) and Lip0(M)∗ are not lattices in general. In Theorem 4.4.2,
we shall determine those metric spaces M for which every element of F(M) is
majorizable.

Notice that, for an element m ∈ F(M), there are two separate notions of majoriz-
ability: m may be majorizable in F(M) or in Lip0(M)∗; that is, there may exist
a positive m+ in F(M) such that m ≤ m+ or there may exist a positive φ+ in
Lip0(M)∗ such that m ≤ φ+. Formally, the latter is a weaker condition. It is by
no means obvious whether both conditions are equivalent; they are, as a matter
of fact, and we will prove that later in Theorem 4.3.15.

Examples of Lipschitz-free spaces

To finish this chapter, we will showcase some of the paradigmatic examples of
Lipschitz and Lipschitz-free spaces for particular cases of the metric space M .

Example 2.3.6. Let M be a finite metric space with n + 1 elements, say M =
{0, x1, . . . , xn}. Then Lip0(M) ∼ Rn. Indeed, one may identify f ∈ Lip0(M) with
the n-tuple (f(x1), . . . , f(xn)) ⊂ Rn and, conversely, any such n-tuple defines a
Lipschitz function as there are only finitely many incremental quotients to choose
from. Since Lip0(M) is finite dimensional, it must be reflexive and hence F(M) =
Lip0(M)∗ is also isomorphic to Rn.

Not every finite-dimensional space can be realized as a Lipschitz or Lipschitz-free
space. For instance, the unit ball of Lip0(M) is always a polyhedron, given by the
intersection of finitely many half-spaces

{(a1, . . . , an) ∈ Rn : ai − aj ≤ d(xi, xj)}

for i 6= j between 1 and n. As a consequence, the unit ball of F(M) is also a
polyhedron. Moreover, in the first orthant, the norm of F(M) coincides with a
weighted `1 norm on Rn. Indeed, those elements are exactly the positive elements
of F(M), expressible as m =

∑n
k=1 akδ(xk) where ak ≥ 0, therefore ‖m‖ =∑n

k=1 akd(xk, 0) by Proposition 2.3.3. In particular, BF(M) has no vertexes in the
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interior of the first orthant (we shall prove later that this is true even for infinite
M ; see Theorem 5.3.4).

It is even possible to give an explicit formula for the norm of F(M) in terms of
the metric of M . When M = {0, x, y}, the norm of an arbitrary element of F(M)
is given by

‖aδ(x) + bδ(y)‖ =


d(x, 0) |a|+ d(y, 0) |b| , if ab ≥ 0

d(x, 0) |a|+ (d(x, y)− d(y, 0)) |b| , if ab ≤ 0 and |b| ≤ |a|
(d(x, y)− d(x, 0)) |a|+ d(y, 0) |b| , if ab ≤ 0 and |a| ≤ |b|

(see [15, Lemma 11]). But already for |M | = 4 the closed formula for the norm of
F(M) is too complicated to handle.

We should mention here that F(M) and Lip0(M) are reflexive only when M is
finite (see [53, Corollary 3.46]).

Example 2.3.7. Let M = N ∪ {0} with the usual metric, inherited from R.
Then F(M) ∼= `1 and Lip0(M) ∼= `∞. Indeed, let us see that the linear mapping
T : Lip0(M) → `∞ defined by (Tf)n = f(n) − f(n − 1), n ∈ N is a surjective
isometry. Choose f ∈ SLip0(M). It is clear that |f(n)− f(n− 1)| ≤ 1 for any
n ∈ N, hence ‖Tf‖∞ ≤ 1. On the other hand, for any ε > 0 there are m < n in
N ∪ {0} such that

1− ε < |f(n)− f(m)|
n−m

≤ max
m<k≤n

|f(k)− f(k − 1)|

and therefore ‖Tf‖∞ > 1−ε. Thus T is an isometry. It is also easy to check that,
for any (an) ∈ `∞, the function f given by f(0) = 0 and f(n) =

∑n
k=1 ak for n ∈ N

satisfies ‖f‖L ≤ ‖(an)‖∞ and Tf = (an). It follows that Lip0(M) ∼= `∞, and since
`∞ is known to have a unique predual (see e.g. [29]) we must have F(M) ∼= `1. In
fact, the isometry between these spaces is just the preadjoint of T ; its inverse is
S : F(M)→ `1 where S(δ(n)) =

∑n
k=1 en.

The following is an important related example:

Example 2.3.8. Let M = N∪{0} and define a metric d on M as follows: for any
n 6= m ∈ N let d(n,m) = 2 and d(n, 0) = 1. The space (M,d) is usually called the
equilateral space. Let us see that Lip0(M) is once again linearly isometric to `∞
under the mapping (Tf)n = f(n). Indeed, if f ∈ SLip0(M) then

|f(n)| = |f(n)− f(0)| ≤ d(n, 0) = 1

for any n ∈ N, so ‖Tf‖∞ ≤ 1. On the other hand, given ε > 0 there are m < n in
N ∪ {0} such that |f(n)− f(m)| > (1− ε)d(n,m). If m = 0 this implies |f(n)| >
1 − ε, otherwise |f(n)− f(m)| > 2(1 − ε) and so max {|f(n)| , |f(m)|} > 1 − ε.
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So in any case ‖Tf‖∞ > 1 − ε. Finally, if (an) ∈ B`∞ then the function f given
by f(0) = 0 and f(n) = an is clearly in BLip0(M) and Tf = (an). So we have
Lip0(M) ∼= `∞, and therefore also F(M) ∼= `1 under the preadjoint mapping
S : `1 → F(M) given by S(en) = δ(n).

The previous examples all dealt with topologically discrete metric spaces. Let us
now see what kind of Lipschitz-free spaces arise when the underlying metric space
is connected:

Example 2.3.9. Let M = [0, 1] with the usual metric. Let us prove that
Lip0(M) ∼= L∞[0, 1] under the mapping T : L∞[0, 1]→ Lip0[0, 1] given by

(Tf)(x) =

∫ x

0

f(t) dt

for f ∈ L∞[0, 1]. Indeed, for any such f and x < y in [0, 1] we have

|(Tf)(y)− (Tf)(x)| =
∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ ‖f‖∞ (y − x)

and so ‖Tf‖L ≤ ‖f‖∞ and Tf ∈ Lip0[0, 1]. Now consider the mapping S :
Lip0[0, 1] → L∞[0, 1] given by Sf = f ′. Note that any Lipschitz function f ∈
Lip0[0, 1] is absolutely continuous and therefore satisfies the fundamental theorem
of calculus, i.e. f ′ exists almost everywhere and

f(y)− f(x) =

∫ y

x

f ′(t) dt

for any x < y in [0, 1], that is, T (Sf) = f (this fact is also referred to as
Rademacher’s theorem). It is also clear that

|f ′(x)| = lim
h→0

∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ ‖f‖L
for any x ∈ [0, 1] where f ′(x) exists, hence Sf ∈ L∞[0, 1] and ‖Sf‖∞ ≤ ‖f‖L. To
recap, we have proved that T and S are inverses of each other and non-expansive,
and it follows that they are surjective linear isometries.

Since L∞ spaces have unique preduals (again, see e.g. [29]), we conclude that
F([0, 1]) ∼= L1[0, 1]. The corresponding preadjoint linear isometry takes δ(x) (x ∈
[0, 1]) to the characteristic function χ[0,x].

One can use a similar argument to show that Lip0(R) ∼= L∞(R) and F(R) ∼=
L1(R). These facts, together with Example 2.3.7, admit the following generaliza-
tion proved by Godard [28]:
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Theorem 2.3.10 (Godard). Let M be a closed subset of R. If M has measure
zero then F(M) ∼= `1. Otherwise F(M) ∼= L1 ⊕1 `

n−1
1 where n is the number of

connected components of M (with the convention that `∞1 = `1).

This theorem already suggests that general Lipschitz and Lipschitz-free spaces are
somehow related to L∞ and L1 spaces, respectively. It is a good intuition to think
about Lipschitz-free spaces as a generalization of L1 spaces, and there are a number
of positive results in this direction. For instance, every Lipschitz-free space F(M)
contains a complemented copy of `1(Γ) where Γ is the density character of M [33],
and the norm of F(M) is octahedral for most metric spaces M [11]. However, there
are also negative results. A celebrated result of Naor and Schechtman states that
F(R2) cannot be isomorphically embedded into L1 [45]. By virtue of Theorem
2.2.6, the same must be true of F(Rn) for n > 2; in particular, F(Rn) is not
isomorphic to F(R) for n > 1.2 At the time of writing, it is an open problem
whether F(Rm) and F(Rn) are isomorphic for any n > m ≥ 2.

2This does not stop some papers from claiming otherwise [20].

27





Chapter 3

Supports in Lipschitz-free
spaces and their biduals

In this chapter we will introduce the notion of support of an element m ∈ F(M).
Much like the analogous concept used when dealing with functions or measures,
the support of m represents the region of the metric space M where m has an effect;
or conversely, m completely ignores what happens outside of its support. This is
a basic notion that can be successfully applied to the study of many problems in
Lipschitz-free spaces but was unused until recently. The proof of the existence of
supports first appeared in [5] for bounded M , and then in [6] for the general case.

To obtain these results, we will need to develop one particular tool that is of
independent interest: weighting operators on Lipschitz-free spaces (and their bid-
uals). They allow functionals over Lipschitz spaces to be modulated by a fixed
Lipschitz function in much the same way as when dealing with measures; here, the
weighting function plays a role analogous to that of a Radon-Nikodým derivative.
As a stand-alone application of this tool, we solve a problem of Weaver asking
whether all normal functionals in F(M)

∗∗
belong to F(M). Further applications

of supports and weighting will be given in the next two chapters.

Finally, we will extend the notion of support for functionals φ ∈ F(M)
∗∗

. The
proposed definition has slightly weaker properties. In this case, the support cannot
be defined as a subset of M , but rather of a compactification of M . The most
appropriate compactification to use in this context is the uniform compactifica-
tion, which we shall also introduce. Additionally, this will allow us to describe
a canonical decomposition of F(M)

∗∗
into functionals “concentrated at infinity”

and functionals “away from infinity”.
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3.1 Weighting operators

Let us start this chapter by introducing a class of operators on Lipschitz spaces
and their duals and preduals that will be used extensively throughout the rest of
this document.

Definition 3.1.1. Let h ∈ Lip(M), and let K be a closed subset of M such
that supp(h) ⊂ K. We define the weighting operator Wh associated to h as the
mapping Wh : Lip0(K)→ C(M) given by

Wh(f)(x) =

{
f(x)h(x) if x ∈ K
0 if x /∈ K

.

In the most general case Wh(f) need not be a Lipschitz function. When M is
bounded, however, Lip(M) is closed under pointwise products by Proposition
2.1.3(d) and so Wh(f) ∈ Lip0(M). This also holds in a slightly more general
case:

Proposition 3.1.2. Suppose that h ∈ Lip(M) has bounded support, and let
K ⊂ M be closed and contain the base point and the support of h. Then Wh ∈
L(Lip0(K),Lip0(M)) and

‖Wh‖ ≤ ‖h‖∞ + rad(supp(h)) ‖h‖L . (3.1)

Moreover Wh is w∗-w∗-continuous, i.e. its adjoint W ∗h takes F(M) into F(K).

Proof. Put S = supp(h). First, we show that Wh(f) ∈ Lip0(M) for any f ∈
Lip0(K). Clearly Wh(f)(0) = 0. If x, y ∈ S, then

|Wh(f)(x)−Wh(f)(y)|
d(x, y)

=
|f(x)h(x)− f(y)h(y)|

d(x, y)

≤ |f(x)h(x)− f(x)h(y)|
d(x, y)

+
|f(x)h(y)− f(y)h(y)|

d(x, y)

≤ sup
S
|f | · ‖h‖L + ‖h‖∞ · ‖f‖L

≤ (rad(S) ‖h‖L + ‖h‖∞) ‖f‖L ,

and if x ∈ S and y ∈M \ S then

|Wh(f)(x)−Wh(f)(y)|
d(x, y)

=
|f(x)h(x)− f(x)h(y)|

d(x, y)

≤ sup
S
|f | · ‖h‖L ≤ rad(S) ‖h‖L ‖f‖L .
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3.1 Weighting operators

Therefore the function Wh(f) is Lipschitz and

‖Wh(f)‖L ≤ (rad(S) ‖h‖L + ‖h‖∞) · ‖f‖L .

Hence, Wh is a well defined and bounded operator from Lip0(K) into Lip0(M).
Linearity is obvious.

Finally, we prove that Wh is w∗-w∗-continuous. By the Banach-Dieudonné theo-
rem, it suffices to show that it is w∗-w∗-continuous on bounded subsets of Lip0(K).
Since w∗-convergence agrees with pointwise convergence on bounded subsets of
Lipschitz spaces, it is enough to verify that Wh(fi)→ Wh(f) pointwise whenever
(fi) is a net in BLip0(K) that converges pointwise to f . But this is immediate from
the definition of Wh.

We will usually denote the action of the adjoint of Wh on functionals φ ∈ F(M)
∗∗

as W ∗h (φ) = φ ◦Wh. This notation is consistent, since 〈f,W ∗h (φ)〉 = 〈Wh(f), φ〉 =
(φ ◦Wh)(f) for any f ∈ Lip0(K). Notice that if h ≥ 0 then Wh takes positive
functions to positive functions, and therefore W ∗h takes positive functionals to
positive functionals.

Let us also observe that the function Wh(f) does not depend on the choice of K,
as long as it contains supp(h). Thus the requirement that 0 ∈ K is not really a
restriction, as one may always use the set K ∪ {0} instead. In most cases we will
just take K = M without further mention; we will always mention K explicitly
when it is a proper subset of M .

Weighting will primarily be used with Urysohn-lemma-like functions constructed
in the following way. Let A,B be two subsets of M such that d(A,B) > 0;
A represents a “region of interest” where we want to focus, and B is a region
that we want to ignore. By McShane’s theorem, there is h ∈ Lip(M) such that
0 ≤ h ≤ 1, h = 1 in A, h = 0 in B, and ‖h‖L ≤ 1/d(A,B). If A is bounded
then one can choose h with bounded support by replacing B with the larger set
B′ = {x ∈M : d(x,A) ≥ d(A,B)}. Then Wh is an operator on Lip0(M) such that

‖Wh‖ ≤ 1 + rad(supp(h)) ‖h‖L

and, for every m ∈ F(M), one has 〈m ◦Wh, f〉 = 〈m, f〉 whenever supp(f) ⊂ A
and 〈m ◦Wh, f〉 = 0 whenever supp(f) ⊂ B. On the other hand, if B is bounded
then one may similarly choose h such that supp(1 − h) is bounded, then Wh =
I−W1−h is also an operator on Lip0(M) with the same properties (here I denotes
the identity operator). In this case, its norm is bounded by

‖Wh‖ ≤ ‖I‖+ ‖W1−h‖ ≤ 2 + rad(supp(1− h)) ‖h‖L .

If A and B are both unbounded, it is not possible to construct such an operator
in general.
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

0 2−n−1 2−n 2n−1 2n 2n+1
ρ(x)

Πn(x)

Λn(x)

Gn(x)

Hn(x)

Figure 3.1: Standard weighting functions used in this thesis.

Let us now introduce several standard weighting functions that will be used often
in this thesis, where the regions of interest are balls or annuli centered at the base
point, or their complements. For n ∈ Z, let

Hn(x) =


1 , if ρ(x) ≤ 2n

2− 2−nρ(x) , if 2n ≤ ρ(x) ≤ 2n+1

0 , if 2n+1 ≤ ρ(x)

(3.2)

Gn(x) = 1−Hn(x) (3.3)

and
Λn(x) = Gn−1(x)Hn(x) (3.4)

and for n ∈ N let

Πn(x) = G−(n+1)(x)Hn(x) =

n∑
k=−n

Λk(x). (3.5)

All of these functions depend only on ρ(x); their graphs are shown in Figure 3.1.

Notice that ‖Hn‖L ≤ 2−n and rad(supp(Hn)) ≤ 2n+1, so (3.1) yields ‖WHn‖ ≤ 3
and ‖WGn‖ ≤ 1 + ‖WHn‖ ≤ 4. Similarly we get ‖WΛn‖ ≤ 5. Note also that

‖WΠn‖ ≤
∥∥WG−(n+1)

∥∥ · ‖WHn‖ ≤ 12.

So all of these functions generate operators on Lip0(M). Moreover, for every
f ∈ Lip0(M) the sequences of functions (WHn(f)), (WG−n(f)) and (WΠn(f))
(where n ∈ N) are bounded and converge pointwise, hence weak∗, to f , and if f ≥ 0
then convergence is monotonic. Finally, notice that WHmWHn = WHmin{m,n} ,
WGmWGn = WGmax{m,n} and WΠmWΠn = WΠmin{m,n} .
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3.1 Weighting operators

To finish this section, we will give an application of these weighting operators
that will be used later. In Section 4 of [40], Kalton established that elements of
F(M) admit a decomposition as a series with terms whose action is limited to
annuli around the base point. We will now prove a slightly different version of
that decomposition based on the functions Λn instead of the original ones because
they make computations easier, and show that it can also be applied to certain
functionals in F(M)

∗∗
.

Proposition 3.1.3. For any φ ∈ F(M)
∗∗

, the functional

φs =
∑
n∈Z

φ ◦WΛn = lim
n→∞

φ ◦WΠn (3.6)

belongs to F(M)
∗∗

, where the series converges absolutely and the limit is in norm.

Proof. We will prove that ∑
n∈Z
‖φ ◦WΛn‖ ≤ 45 ‖φ‖ (3.7)

which, together with the equality (3.5), implies the desired result. Fix ε > 0 and a
finite set F ⊂ Z. For i = 0, 1, 2, let Fi be the set of those n ∈ F that are congruent
with i modulo 3. We will show that∑

n∈Fi
‖φ ◦WΛn‖ < 15 ‖φ‖+ ε

and this will be enough to end the proof.

Fix i, and for n ∈ Fi choose fn ∈ BLip0(M) such that

‖φ ◦WΛn‖ −
ε

|Fi|
< 〈fn, φ ◦WΛn〉 = 〈fnΛn, φ〉 .

Notice that ‖fnΛn‖L ≤ ‖WΛn‖ ≤ 5 by (3.1). Now define g =
∑
n∈Fi fnΛn and

let us estimate ‖g‖L. Fix x ∈ supp(g), then x ∈ supp(Λn) for some n ∈ Fi. If
y ∈ supp(Λm) for m ∈ Fi \ {n}, assume m > n without loss of generality, then
d(x, y) ≥ d(x, 0) and

|g(x)− g(y)| ≤ |fn(x)Λn(x)|+ |fm(y)Λm(y)|
≤ 5(d(x, 0) + d(y, 0))

≤ 5(2d(x, 0) + d(x, y)) ≤ 15d(x, y).

Otherwise

|g(x)− g(y)| = |fn(x)Λn(x)− fn(y)Λn(y)| ≤ 5d(x, y).
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

So we get ‖g‖L ≤ 15. Therefore∑
n∈Fi

‖φ ◦WΛn‖ <
∑
n∈Fi

〈fnΛn, φ〉+ ε = 〈g, φ〉+ ε ≤ 15 ‖φ‖+ ε

as was claimed.

In particular, if φ ∈ F(M) then φ = φs and we recover Kalton’s decomposition

result. Indeed, since WΠn(f)
w∗−→ f for any f ∈ Lip0(M), we have

〈φ ◦WΠn , f〉 = 〈φ,WΠn(f)〉 → 〈φ, f〉 ,

i.e. φ◦WΠn
w−→ φ, and Proposition 3.1.3 shows that we actually have convergence

in the norm topology.

3.2 Normal functionals

In this section we will apply the previous results, in particular our version of
Kalton’s decomposition, to solve a problem regarding a certain property of func-
tionals in F(M)

∗∗
. Before giving the definition let us recall that, by a straight-

forward application of the Banach-Dieudonné theorem, a functional φ ∈ F(M)
∗∗

is weak∗ continuous precisely when it satisfies the following condition: given any
norm-bounded net (fi) in Lip0(M) that converges pointwise to f , one has that
〈fi, φ〉 converges to 〈f, φ〉.

In [52], Weaver introduced a weakened version of this property, by analogy with
the corresponding notion for von Neumann algebras:

Definition 3.2.1. A functional φ ∈ F(M)
∗∗

is normal when it satisfies the fol-
lowing: given any norm-bounded net (fi) in Lip0(M) that converges pointwise and
monotonically to f ∈ Lip0(M), one has that 〈fi, φ〉 converges to 〈f, φ〉.

Equivalently, φ is normal if 〈fi, φ〉 → 0 for any net (fi) of non-negative functions
in BLip0(M) that decreases pointwise to 0.

Any element of F(M) is obviously normal. Weaver asked in [52, p. 37] whether
the converse is also true. Some particular cases were already proved by him. First
he gave an affirmative answer for the very specific case of evaluation functionals
on elements of the Stone-Čech compactification of M [52, Proposition 2.1.6] and
for “generalized molecules” [53, Theorem 3.43], as an auxiliary result to prove that
all preserved extreme points of BF(M) are elementary molecules [51]. Later, he
proved that all positive normal functionals are weak∗ continuous and used it to
show that F(M) is the unique predual of Lip0(M) under various assumptions [54].
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3.2 Normal functionals

We must mention here the well-known theorem that states (i.e. positive linear
functionals) on a von Neumann algebra are normal if and only if they belong to
its predual; see e.g. [48, Theorem 1.13.2]. Thus Weaver’s problem asks whether
the classical result for von Neumann algebras carries over to Lipschitz spaces. Let
us also briefly mention that a positive answer to the problem could be considered
as an abstract version of the Radon-Nikodým theorem for Lipschitz-free spaces;
compare e.g. to [49, Theorem 8.7].

Such a positive answer will be provided in this section. Before giving the proof,
we need a few simple preparatory results. We will start by verifying that Kalton’s
decomposition is valid for normal functionals:

Lemma 3.2.2. Suppose that φ ∈ F(M)
∗∗

is normal. Then φ = φs, where φs is
given by (3.6).

Proof. It will suffice to show that (φ◦WΠn) converges weak∗ to φ, since Proposition
3.1.3 implies that the sequence converges in norm to φs. That is, we need to show
that 〈f, φ ◦WΠn〉 → 〈f, φ〉 for any f ∈ Lip0(M); we may assume that f ≥ 0, and
the general case then follows by expressing f = f+ − f−. So fix f ∈ Lip0(M)+

and notice that ‖WΠn(f)‖L ≤ 12 ‖f‖L, and WΠn(f)(x) converges pointwise and
monotonically (increasing) to f(x) for every x ∈ M . By the normality of φ we
have

lim
n→∞

〈f, φ ◦WΠn〉 = lim
n→∞

〈WΠn(f), φ〉 = 〈f, φ〉 .

This ends the proof.

Moreover, each term in the decomposition series and in the limit in (3.6) is also
normal:

Lemma 3.2.3. Suppose that h ∈ Lip(M) is positive and has bounded support. If
φ ∈ F(M)

∗∗
is normal, then φ ◦Wh is normal.

Proof. Let (fi) be a bounded net in Lip0(M) that decreases to 0 pointwise. Then
‖fih‖L ≤ ‖Wh‖ ‖fi‖L is bounded by (3.1), so (fih) is also a bounded net that
decreases to 0 pointwise. Since φ is normal, we have

lim
i
〈fi, φ ◦Wh〉 = lim

i
〈fih, φ〉 = 0.

It follows that φ ◦Wh is normal, too.

We will also need to use the following simple but powerful lemma from [13], which
is itself based on a weaker version found in [39].

Lemma 3.2.4 ([13, Lemma 1.5]). Let (fn) be a bounded sequence in Lip0(M).

Suppose that the supports of the functions fn are pairwise disjoint. Then fn
w−→ 0.
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

We are now ready to answer Weaver’s question.

Theorem 3.2.5. A functional φ ∈ F(M)
∗∗

is normal if and only if it is weak∗

continuous.

Proof. The sufficiency part of the statement is obvious. To prove the necessity, let
φ ∈ F(M)

∗∗
be a normal functional. Lemma 3.2.2 says that φ = limn→∞ φ ◦WΠn

with respect to the norm convergence, so it suffices to show that φ ◦WΠn , for any
n ∈ N, is weak∗ continuous. Moreover, by Lemma 3.2.3, such φ ◦WΠn for any
n ∈ N is also normal. Therefore it suffices to prove the theorem for functionals of
the form φ ◦WΠn .

Consequently, for the rest of the proof we will assume that φ ∈ BF(M)∗∗ is a
normal functional and that there exist real numbers 0 < r < R such that 〈f, φ〉 = 0
whenever f ∈ Lip0(M) vanishes on the set

K = {x ∈M : r ≤ d(x, 0) ≤ R} .

We will repeatedly make use of the function

e(x) =

(
1− 4

r
d(x,K)

)
∨ 0 for all x ∈M,

whose support is contained in

K ′ =

{
x ∈M :

3

4
r ≤ ρ(x) ≤ R+

r

4

}
and which equals 1 on K, and the function

e′(x) =

(
1− 4

r
d(x,K ′)

)
∨ 0 for all x ∈M,

whose support is contained in

K ′′ =
{
x ∈M :

r

2
≤ ρ(x) ≤ R+

r

2

}
and which equals 1 on K ′. These auxiliary functions will play the role of units on
K and K ′ and will be used to truncate and translate other functions, respectively.
Note that e, e′ ∈ Lip0(M)+ with ‖e‖L , ‖e′‖L ≤

4
r ; in particular,

|〈e′, φ〉| ≤ 4

r
. (3.8)

For brevity, denote α = 2 + (R+ 1) 4
r .

We will proceed by contradiction. Suppose that φ /∈ F(M). Then there exists
F ∈ BF(M)∗∗∗ such that 〈φ, F 〉 = C > 0 and that 〈m,F 〉 = 0 for every m ∈ F(M).
Our argument relies on a construction presented in the following Claim:

36



3.2 Normal functionals

Claim 1. With the notation as above, for a given nonempty finite set A ⊂ K ′ and
0 < ε < min

{
1, Cr48

}
, there exists a function g : M → R satisfying the following:

(i) g ∈ Lip0(M)+ with ‖g‖L ≤ α,

(ii) g(x) ≤ 2ε for every x ∈ A,

(iii) g(x) ≥ ε for every x ∈ K ′,
(iv) g(x) = εe′(x) for every x ∈ M \ K ′; in particular, supp(g) ⊂ K ′′ and

‖g‖∞ ≤ α(R+ r
2 ),

(v) |〈g, φ〉| ≥ C
4 .

Proof of Claim 1. Consider the weak∗ neighborhood U of F in F(M)
∗∗∗

given by

U =

{
Ψ ∈ F(M)

∗∗∗
: |〈φ, F −Ψ〉| < C

3
and |〈δ(x), F −Ψ〉| < ε for all x ∈ A

}
.

By Goldstine’s theorem there exists f ∈ BLip0(M) ∩ U , which means that 〈f, φ〉 >
2C
3 and |f(x)| = |〈δ(x), f〉| < ε for every x ∈ A. By replacing f with f+ or f−,

we obtain a positive f ∈ BLip0(M) such that

|〈f, φ〉| > C

3
(3.9)

and f(x) < ε for every x ∈ A. Now let

g = fe+ εe′.

Then g ∈ Lip0(M)+ and

‖g‖L ≤ ‖f‖L ‖e‖∞ + ‖f�K′‖∞ ‖e‖L + ε ‖e′‖L ≤ 1 +
(
R+

r

4

) 4

r
+ ε

4

r
≤ α,

so g satisfies (i). Moreover, supp(fe) ⊂ supp(e) ⊂ K ′, which establishes (iv). In
particular, the bound on ‖g‖∞ then follows from (i) and the definition of K ′′.
Properties (ii) and (iii) are straightforward to verify. Finally, for every x ∈ K we
have that g(x) = f(x) + ε, that is g�K = (f + εe′)�K . Hence, by the assumption
on φ and by (3.9) and (3.8), we get that

|〈g, φ〉| = |〈f + εe′, φ〉| ≥ |〈f, φ〉| − ε |〈e′, φ〉| > C

3
− C

12
=
C

4

and (v) also holds.

To proceed with the main proof, let us fix a decreasing sequence (εn) of positive
numbers such that ε1 < min

{
1, cr48 ,

r
2

}
, εn → 0 and

(2 + α)εn+1 < εn (3.10)
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

for every n. Let F be the family of all nonempty finite subsets of K ′, and for A ∈ F
let FA = {B ∈ F : A ⊂ B}. Note that the sets F and FA are directed by inclusion.
We will now construct a net (gA)A∈F in Lip0(M) that satisfies conditions (i)–(iv)
above with ε = ε|A|, and also these two:

(vi) |〈gA, φ〉| ≥ C
8 ,

(vii) if E ⊂ A then gA(x) ≤ gE(x) for every x ∈M .

This will be enough to end the proof. Indeed, (gA)A∈F then decreases pointwise to
0 because gA(x) ≤ 2εn whenever |A| ≥ n and either x ∈ A (by (ii)) or x ∈M \K ′
(by (iv)), but |〈gA, φ〉| ≥ C

8 for every A ∈ F, contradicting the normality of φ.

We proceed by induction on n = |A|. For n = 1 i.e. singletons A = {x} with
x ∈ K ′, let gA be the function g given by Claim 1 for ε = ε1. It clearly satisfies
(i)–(vi), and also (vii) by vacuity. Now let n > 1, assume that the functions gA
have been constructed for all nonempty subsets A ⊂ K ′ with less than n elements,
and fix A ⊂ K ′ with |A| = n. To complete the induction, it suffices to prove that
there exists gA satisfying (i)–(iv) and (vi)–(vii) with ε = εn.

Assume for contradiction that such a gA does not exist. That is, assume that any
function g that satisfies conditions (i)–(iv) and (vii) for A and ε = ε|A| must fail

(vi), i.e. it must be such that |〈g, φ〉| < C
8 . Under this hypothesis, we can prove

the following Claim:

Claim 2. If A is as above and n = |A|, then there is a constant β > 0 with the
following property: for any B ∈ FA, there exist E ∈ FB and f ∈ Lip0(M)+ such
that

(a) ‖f‖L ≤ β,

(b) supp(f) ⊂
( ⋃
x∈E

B(x, εn)

)
\
( ⋃
x∈B

B(x, εn)

)
,

(c) |〈f, φ〉| ≥ C
16 .

Proof. Let B ∈ FA and let g be the function given by Claim 1 for the set B and
ε = εn. Denote h =

∧
E(A gE , which satisfies conditions (i)–(iv) with A and

ε = εn−1. Notice that the function g∧h satisfies conditions (i)–(iv) for ε = εn and
set A because it is bounded by g, and also condition (vii) because it is bounded
by h. By assumption, g ∧ h must fail condition (vi), i.e. we have |〈g ∧ h, φ〉| < C

8 .

Now let f = (g − (g ∧ h)) · e. Clearly f ≥ 0 and ‖f‖L ≤ 2α
(
2 + 4

rR
)

by (3.1).
Suppose that x ∈ B(b, εn) for some b ∈ B. If x /∈ K ′ then e(x) = 0, and if x ∈ K ′
then by (3.10) we have

g(x) ≤ g(b) + |g(x)− g(b)| ≤ 2εn + αεn < εn−1
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3.3 Supports in F(M)

whereas h(x) ≥ εn−1, so g(x) ≤ h(x). In any case f(x) = 0 for all x ∈⋃
b∈B B(b, εn). Moreover,

|〈f, φ〉| = |〈g − (g ∧ h), φ〉| ≥ |〈g, φ〉| − |〈g ∧ h, φ〉| > C

4
− C

8
=
C

8
.

Similarly to functions e and e′ introduced above, for a given E ∈ FB define the
function

eE(x) =

(
1− 1

εn
d(x,E)

)
∨ 0 for all x ∈M.

Then eE ∈ Lip0(M)+ satisfies that ‖eE‖L ≤
1
εn

, ‖eE‖∞ = 1, and supp(eE) ⊂⋃
x∈E B(x, εn). The net (feE)E∈FB is a norm-bounded increasing net in Lip0(M)+

that converges pointwise to f . Indeed, by (3.1) we have ‖feE‖L ≤ β where

β = 2α

(
2 +R

4

r

)(
1 +

1

εn

(
R+

r

4

))
does not depend on B or E, and the rest is immediate from the definition. Hence
the normality of φ implies that 〈feE , φ〉 converges to 〈f, φ〉, and in particular there
exists E ∈ FB such that

|〈f, φ〉 − 〈feE , φ〉| <
C

16
.

The function feE satisfies the requirements of the Claim. Indeed, we have already
verified (a), (b) follows from supp(feE) ⊂ supp(f)∩supp(eE), and we get (c) from

|〈feE , φ〉| ≥ |〈f, φ〉| − |〈f, φ〉 − 〈feE , φ〉| >
C

8
− C

16
=
C

16
.

This ends the proof.

To conclude our main argument, let us construct sequences (Bn) ⊂ FA and (fn) ⊂
Lip0(M)+ as follows: take B0 = A, and for any n ∈ N let Bn and fn be the set E
and function f given by Claim 2 for B = Bn−1, respectively. Then the sequence
(fn) is norm-bounded by (a) and has pairwise disjoint supports by (b). However
it is not weakly null due to (c), which is in contradiction with Lemma 3.2.4. This
ends the proof of Theorem 3.2.5.

3.3 Supports in F(M)

We will establish the existence of supports in this section. It is based on (in
fact, equivalent to) a rather simple and intuitive fact: the class of Lipschitz-free
spaces over closed subsets of M , considered as subspaces of F(M), is closed under
intersections. In order to prove this, we will need to obtain some results about the
algebra structure of Lip0(M) first.
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Ideals in Lip0(M)

Recall that Lip0(M) is closed under pointwise products when M is bounded, which
endows it with an algebra structure. We will require some facts about its ideals.
A subalgebra Y ⊂ Lip0(M) is an ideal when it has the following property: for
every f ∈ Y and g ∈ Lip0(M), one has fg ∈ Y . That is, Y is not only closed
under products, but also “absorbs” outside elements.

The most important class of ideals in Lip0(M) is defined as follows. Let K ⊂M ,
and denote

IM (K) = {f ∈ Lip0(M) : f(x) = 0 for all x ∈ K} . (3.11)

In general, IM (K) is a w∗-closed subspace of Lip0(M) (being the intersection of
the kernel of all evaluation functionals δ(x) for x ∈ K) and IM (K) = IM (K) so
we may assume that K is closed without loss of generality. Moreover IM (K) =
IM (K ∪ {0}) as every function in Lip0(M) vanishes at 0; in particular IM ({0}) =
Lip0(M). This may be remindful of the situation with Lipschitz-free subspaces
FM (K); that is not a coincidence, as they are strongly related to ideals:

Proposition 3.3.1. Let K be a closed subset of M . Then FM (K)⊥ = IM (K)
and IM (K)⊥ = FM (K).

Proof. Since the set δ(K) is linearly dense in FM (K), we have FM (K)⊥ = δ(K)⊥,
which is clearly identical to IM (K) by definition. So FM (K)⊥ = IM (K), and it
follows that

IM (K)⊥ = (FM (K)⊥)⊥ = spanFM (K) = FM (K)

proving the other equality.

The space IM (K) clearly absorbs products whenever they belong to Lip0(M). In
particular, it is an ideal when M is bounded. It turns out that all w∗-closed ideals
of Lip0(M) are of this form. Let us first describe the natural way to recover the
set K from an arbitrary ideal: given a subspace Y of Lip0(M), define the hull of
Y as the closed set

H(Y ) = {x ∈M : f(x) = 0 for all f ∈ Y } .

Then we haveH(IM (K)) = K for any closedK ⊂M , as witnessed by the Lipschitz
map x 7→ d(x,K). The “converse statement” is given by the following theorem,
which combines several results from [53] (Theorem 7.17, Corollary 7.7 and the
proof of Theorem 6.19 therein).1 We do not include its proof here, as it is a big
detour and the details will not be needed in the sequel.

1The statement appeared explicitly in the first edition of the book as [52, Corollary 4.2.6].

40



3.3 Supports in F(M)

Theorem 3.3.2. Suppose that M is bounded. If Y is a w∗-closed ideal of Lip0(M),
then Y = IM (H(Y )).

An application of the weighting operators introduced previously in this chapter
allows us to show that the w∗-closure of any ideal in Lip0(M) is again an ideal
and hence of the form IM (K):

Proposition 3.3.3. Suppose that M is bounded and let Y ⊂ Lip0(M) be an ideal.

Then Y
w∗

= IM (H(Y )).

Proof. Let f ∈ Y w
∗

, g ∈ Lip0(M) and h = fg. We claim that h ∈ Y w
∗

. Indeed,
let U ⊂ Lip0(M) be a w∗-neighborhood of h. Then U contains a w∗-neighborhood
V of h of the form

V = {ψ ∈ Lip0(M) : |〈mn, h− ψ〉| < ε for n = 1, . . . , N} ,

where mn ∈ F(M), ε > 0, and N ∈ N. Consider the set

W = {ϕ ∈ Lip0(M) : |〈mn ◦Wg, f − ϕ〉| < ε for n = 1, . . . , N} .

Since each mn ◦ Wg is in F(M), W is a w∗-neighborhood of f so there exists
ϕ ∈ Y ∩ W . Let ψ = ϕg. Then ψ ∈ Y because Y is an ideal, and for any
n = 1, . . . , N we have

|〈mn, h− ψ〉| = |〈mn, (f − ϕ)g〉| = |〈mn ◦Wg, f − ϕ〉| < ε,

so ψ ∈ V ⊂ U . Therefore U ∩ Y is nonempty, and this proves our claim.

We have thus proved that Y
w∗

is an ideal. To conclude, apply Theorem 3.3.2 to

get Y
w∗

= IM (H(Y
w∗

)). Clearly H(Y
w∗

) = H(Y ), and this ends the proof.

The intersection theorem

Let us highlight a simple fact about the role of Lipschitz functions with bounded
support:

Lemma 3.3.4. The Lipschitz functions with bounded support are w∗-dense in
Lip0(M) and in IM (K) for any K ⊂M .

Proof. Fix f ∈ Lip0(M) and consider the sequence of functions fn = WHn(f),
where Hn is defined in (3.2). Each of them satisfies ‖fn‖L ≤ ‖WHn‖ ‖f‖L ≤
3 ‖f‖L and fn(x) = f(x) for every x ∈ B(0, 2n), hence fn

w∗−→ f . Moreover
supp(fn) ⊂ supp(Hn) ⊂ B(0, 2n+1) is bounded. Finally, notice that fn(x) = 0
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

whenever f(x) = 0, hence if f ∈ IM (K) then fn ∈ IM (K). It follows that the
Lipschitz functions with bounded support are w∗-dense in IM (K). In particular
(taking K = {0}) they are w∗-dense in Lip0(M).

In fact, we have proved something stronger: the Lipschitz functions with bounded
support are 3-norming for F(M). Recall that, given a Banach space X, a set
A ⊂ X∗ is C-norming if

sup {〈x, x∗〉 : x ∈ BX∗ ∩A} ≥
1

C
‖x‖

for any x ∈ X. A more precise construction shows that boundedly supported
Lipschitz functions are even 1-norming for F(M). This will be proved as part of
Theorem 3.5.3.

We now arrive at our main result, the intersection theorem:

Theorem 3.3.5 (Intersection theorem). Let {Ki : i ∈ I} be a family of closed
subsets of M . Then ⋂

i∈I
FM (Ki) = FM

(⋂
i∈I

Ki

)
.

Proof. Let Y = span
⋃
i∈I IM (Ki). We will show that Y

w∗

= IM (K) where
K =

⋂
i∈I Ki. This is enough, as Proposition 3.3.1 implies then that

⋂
i∈I
FM (Ki) =

⋂
i∈I
IM (Ki)⊥ =

(⋃
i∈I
IM (Ki)

)
⊥

= Y⊥ =
(
Y
w∗
)
⊥

= IM (K)⊥ = FM (K) .

Assume first that M is bounded. Then Y is an ideal and we may apply Proposition

3.3.3 to get Y
w∗

= IM (H) where H = H(Y ). Now notice that
⋂
i∈I Ki ⊂ H,

and for each x /∈
⋂
i∈I Ki there exists i ∈ I such that x /∈ Ki, so the function

y 7→ d(y,Ki) belongs to Y and witnesses that x /∈ H. Thus H =
⋂
i∈I Ki, and

this settles the bounded case.

When M is unbounded, we cannot use Proposition 3.3.3 because Y is not neces-
sarily closed under products. Instead, we will reduce the problem to the bounded

case. Let us first notice that the inclusion Y
w∗ ⊂ IM (K) is clear, so we only need

to prove the reverse inclusion. Take f ∈ IM (K) and let U be a w∗-neighborhood
of f in Lip0(M); it will suffice to show that U intersects Y .
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3.3 Supports in F(M)

We may assume that f has bounded support by Lemma 3.3.4. So let S = supp(f),
define h ∈ Lip(M) by

h(x) = (1− d(x, S)) ∨ 0

for x ∈M , and let A = supp(h)∪{0}. Thus 0 ≤ h ≤ 1, h�S = 1 and h = 0 outside
of the bounded set A, so we may consider the continuous weighting operator
Wh : Lip0(A) → Lip0(M). Let f̂ = f�A ∈ Lip0(A) and note that Wh(f̂) = f .
Since Wh is w∗-w∗-continuous by Proposition 3.1.2, there is a w∗-neighborhood V
of f̂ such that Wh(V ) ⊂ U .

Let us apply the bounded version of this theorem on the metric space A to get⋂
i∈I
FA(Ki ∩A) = FA(K ∩A).

It follows that

IA(K ∩A) =

(⋂
i∈I
FA(Ki ∩A)

)⊥
=

((⋃
i∈I
IA(Ki ∩A)

)
⊥

)⊥
= spanw

∗⋃
i∈I
IA(Ki ∩A).

Now f̂ ∈ IA(K ∩A), so there must exist g ∈ V of the form g = g1 + . . . + gn
where gk ∈ IA(Kik ∩A), ik ∈ I for k = 1, . . . , n. To finish the proof, note
that Wh(gk) ∈ IM (Kik) for every k = 1, . . . , n by the definition of Wh. Hence
Wh(g) = Wh(g1) + . . .+Wh(gn) ∈ U ∩ Y .

With the intersection theorem at our disposal, we may finally introduce the main
subject of this chapter:

Definition 3.3.6. Let m ∈ F(M). The support of m, denoted supp(m), is the
intersection of all closed subsets K of M such that m ∈ FM (K).

The most important property of supports, which makes them actually meaningful,
is the following:

Theorem 3.3.7. For every m ∈ F(M) we have m ∈ FM (supp(m)).

Indeed, let {Ki} be the family of all closed subsets of M such that m ∈ FM (Ki),
then by the intersection theorem we have

m ∈
⋂
i

FM (Ki) = FM

(⋂
i

Ki

)
= FM (supp(m)).

In fact, Theorem 3.3.7 is an equivalent form of the intersection theorem, in the
sense that the latter can be deduced from the statement of Theorem 3.3.7 just as
easily.
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

Properties of supports

Let us now collect some elementary properties of supports. First, we check that
the choice of the name elements of finite support for finite linear combinations of
evaluation functionals was completely appropriate:

Proposition 3.3.8. Let m ∈ F(M). Then m ∈ span δ(M) if and only if supp(m)
is a finite set. More precisely, if

m =

n∑
i=1

aiδ(xi) (3.12)

where xi ∈M \{0} are all different and ai ∈ R\{0}, then supp(m) = {x1, . . . , xn}.

Proof. Suppose first that supp(m) is a finite set K, then

m ∈ FM (K) = span δ(K) ⊂ span δ(M)

by Theorem 3.3.7. Now assume that m ∈ span δ(M) is of the form (3.12) and
let K = {x1, . . . , xn}. It is clear that m ∈ FM (K), hence supp(m) ⊂ K is finite.
Suppose that supp(m) = L ( K. Then we may choose p = xi ∈ K \ L and pick
f ∈ Lip0(M) that vanishes on L but satisfies f(p) = 1 (e.g. using McShane’s
theorem and the fact that p is at a positive distance of the closed set L). Then
〈m, f〉 = ai 6= 0, therefore m /∈ FM (L) = IM (L)⊥, a contradiction. We conclude
that K = supp(m).

Note now that if m =
∑
nmn where mn ∈ F(M), then it follows directly from the

definition that supp(m) ⊂
⋃
n supp(m). The same happens if m = limnmn. In

particular, by taking mn ∈ span δ(M) and using Proposition 3.3.8, we conclude
that supp(m) is always a closed separable subset of M .

Let us also observe that the base point cannot be an isolated point of supp(m), as
that would imply m ∈ FM (K) where K = supp(m) \ {0} is closed. In particular,
note that supp(0) = ∅. This shows that supports are not completely stable under
changes of base point, as e.g. supp(δ(p)) = {p} for p 6= 0 but changing the base
point to p converts δ(p) into 0, with empty support. However, the discrepancy is
limited to the new base point and only in the case where this point is isolated in
the support.

We will now describe several equivalent characterizations of supports:

Proposition 3.3.9. Let K be a closed subset of M , and m ∈ F(M). Then the
following are equivalent:

(i) supp(m) ⊂ K,
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3.3 Supports in F(M)

(ii) m ∈ FM (K),

(iii) 〈m, f〉 = 〈m, g〉 for any f, g ∈ Lip0(M) such that f�K = g�K .

Proof. (i)⇒(ii): This is an immediate consequence of Theorem 3.3.7.

(ii)⇒(i): This follows trivially from the definition.

(ii)⇔(iii): Notice that (iii) is equivalent to 〈m, f − g〉 = 0 whenever f −g vanishes
in K, that is, to m ∈ IM (K)⊥.

The equivalence (i)⇔(iii) shows that, in particular

supp(m ◦Wh) ⊂ supp(m) ∩ supp(h) (3.13)

for any m ∈ F(M) and h ∈ Lip(M) such that Wh ∈ L(Lip0(M)). Indeed, if
f, g ∈ Lip0(M) coincide on supp(m)∩ supp(h) then Wh(f) and Wh(g) coincide on
supp(m) and thus

〈m ◦Wh, f〉 = 〈m,Wh(f)〉 = 〈m,Wh(g)〉 = 〈m ◦Wh, g〉 .

The inclusion in (3.13) may be strict. For instance, if supp(m) intersects supp(h)
only at its boundary then m ◦Wh = 0.

The following characterization of the support will be used most often, as it is
usually the easier one to handle and to verify.

Proposition 3.3.10. Let m ∈ F(M) and p ∈M . Then p ∈ supp(m) if and only
if for every neighborhood U of p there exists a function f ∈ Lip0(M) whose support
is contained in U and such that 〈m, f〉 6= 0. Moreover, in that case we may take
f ≥ 0.

Proof. Assume that there exists a neighborhood U of p such that for any function
f ∈ Lip0(M) with supp(f) ⊂ U we have 〈m, f〉 = 0. Take an open neighborhood
V of p for which V ⊂ U . Then m ∈ IM (M \ V )⊥ because every f ∈ IM (M \ V )
satisfies supp(f) ⊂ V ⊂ U . Hence m ∈ FM (M \ V ), so supp(m) ⊂ M \ V by the
definition of supp(m), and therefore p /∈ supp(m).

On the other hand, suppose that p /∈ supp(m) and let U = M \ supp(m).
Then every f ∈ Lip0(M) whose support is contained in U obviously belongs to
IM (supp(m)) = FM (supp(m))⊥. Therefore 〈m, f〉 = 0.

For the last statement, notice that 〈m, f〉 6= 0 implies that either 〈m, f+〉 6= 0 or
〈m, f−〉 6= 0.
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

As a corollary, we obtain yet another equivalent formulation of the intersection
theorem that can be interpreted as a locality principle. Loosely speaking, it says
that if two elements of F(M) are equal locally then they are equal globally:

Corollary 3.3.11. Let m,m′ ∈ F(M). Suppose that for every p ∈ M there is
a neighborhood U of p such that 〈m, f〉 = 〈m′, f〉 for every f ∈ Lip0(M) whose
support is contained in U . Then m = m′.

Proof. By assumption, for every p ∈ M we have 〈m−m′, f〉 = 0 for every f ∈
Lip0(M) supported in a certain neighborhood of p. Proposition 3.3.10 then implies
that p /∈ supp(m−m′). Hence supp(m−m′) = ∅ and m−m′ = 0.

Let us now collect some useful facts about positive elements of F(M) and their
supports:

Proposition 3.3.12. Let m,m′ ∈ F(M)+.

(a) If f ∈ Lip0(M), f ≥ 0 and 〈m, f〉 = 0, then f = 0 on supp(m).

(b) If f ∈ BLip0(M) and 〈m, f〉 = ‖m‖, then f = ρ on supp(m).

(c) If m ≤ m′ then supp(m) ⊂ supp(m′).

Proof. (a) Suppose f(p) > 0 for some p ∈ supp(m), so there are c > 0 and r > 0
such that f ≥ c in B(p, r). By Proposition 3.3.10 there exists h ∈ Lip0(M) such
that supp(h) ⊂ B(p, r), h ≥ 0 and 〈m,h〉 > 0. Scale h by a constant factor so
that h ≤ c. Then f − h ≥ 0 but 〈m, f − h〉 < 0, a contradiction.

(b) Apply (a) to the function ρ− f .

(c) Let p ∈ supp(m) and U be a neighborhood of p. By Proposition 3.3.10 there
exists f ∈ Lip0(M) such that supp(f) ⊂ U , f ≥ 0 and 〈m, f〉 > 0. But then
〈m′, f〉 ≥ 〈m, f〉 > 0, so p ∈ supp(m′) applying Proposition 3.3.10 again.

The decomposition theorem

We finish this section with a decomposition property for supports of elements of
F(M). This will serve as another illustration of the use of weighting operators.

Theorem 3.3.13. Let m ∈ F(M) and suppose that supp(m) = K1 ∪ K2 where
K1,K2 are closed subsets of M such that K1 is bounded and d(K1,K2) > 0. Then
there exists a unique decomposition m = m1 +m2 where m1,m2 ∈ F(M) are such
that supp(m1) = K1 and supp(m2) = K2, and it satisfies

‖m1‖ ≤ ‖m‖ ·
(

2 +
rad(K1)

d(K1,K2)

)
.
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3.3 Supports in F(M)

Proof. We start by proving uniqueness. Assume there exist decompositions m =
m1 + m2 = m′1 + m′2 with supp(m1), supp(m′1) ⊂ K1 and supp(m2), supp(m′2) ⊂
K2. Then m1 − m′1 = m′2 − m2, where the left and right hand sides have their
supports contained in K1 and K2, respectively. Therefore supp(m1 −m′1) ⊂ K1 ∩
K2 = ∅, and so m1 −m′1 = 0.

Now we prove existence. Denote D = d(K1,K2) and R = rad(K1). Choose
ε ∈ (0, D2 ) and let

A = {x ∈M : d(x,K1) ≤ ε} ,
B = {x ∈M : d(x,K1) ≥ D − ε} .

By McShane’s theorem, there exists h ∈ Lip(M) such that 0 ≤ h ≤ 1, h = 1 on A,
h = 0 on B, and ‖h‖L ≤ d(A,B)−1 ≤ (D− 2ε)−1. Note that supp(h) is bounded,
with rad(supp(h)) ≤ R+D−ε. Thus m1 = m◦Wh and m2 = m−m1 = m◦W1−h
are elements of F(M) and

‖m1‖ ≤ ‖m‖ ·
(

1 +
R+D − ε
D − 2ε

)
(3.14)

by (3.1). Notice that (3.13) yields

supp(m1) ⊂ supp(m) ∩ supp(h) ⊂ supp(m) \B = K1,

supp(m2) ⊂ supp(m) ∩ supp(1− h) ⊂ supp(m) \A = K2.

and, since m = m1 +m2, we have

supp(m) ⊂ supp(m1) ∪ supp(m2) ⊂ K1 ∪K2 = supp(m).

Since the unions are disjoint, all inclusions must actually be equalities. We have
thus proved that the decomposition exists and satisfies (3.14). But the decompo-
sition is unique and ε was arbitrary, so taking ε→ 0 yields the desired bound on
‖m1‖.

It may seem that Theorem 3.3.13 is rather weak because the hypotheses that
d(K1,K2) > 0 and that K1 (or K2) is bounded are too strong. The following
examples, inspired in [53, Example 3.24], will show that actually neither of them
may be omitted from Theorem 3.3.13 in general.

Example 3.3.14. Let M ⊂ c0 consist of 0 as the base point and the sequences
xn = en and yn = (1 + 2−n)en, where en are the standard basis vectors. Let K1

and K2 consist of the points xn and yn, respectively. Then K1 and K2 are closed,
bounded and disjoint, but d(K1,K2) = 0. Let

m =

∞∑
n=1

(δ(xn)− δ(yn)).
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

Since ‖δ(xn)− δ(yn)‖ = d(xn, yn) = 2−n, the series is absolutely convergent and
m ∈ F(M).

First we show that m is not majorizable. Indeed, suppose that m = m+ − m−
where m+,m− ∈ F(M)+. For n ∈ N, define fn ∈ Lip0(M) such that fn(xk) = 1
for k ≤ n and fn(x) = 0 for any other x ∈M . Let also h ∈ Lip0(M) be such that
h(x) = 1 for any x ∈M , x 6= 0. Then 0 ≤ fn ≤ h pointwise and〈

m+, h
〉
≥
〈
m+, fn

〉
≥
〈
m+, fn

〉
−
〈
m−, fn

〉
= 〈m, fn〉 = n

for every n, which is impossible.

Now we show that m cannot be expressed as m = m1 +m2 where supp(m1) ⊂ K1

and supp(m2) ⊂ K2. Suppose there was such a decomposition. Then m1 ∈
FM (K1 ∪ {0}). Since K1 ∪ {0} is uniformly discrete2, countable, and bounded,
it is known that every element of F(K1 ∪ {0}) can be expressed as the difference
between two positive elements (indeed, each element is an `1 sum of evaluation
functionals, see e.g. the proof of [23, Proposition 5.1]; alternatively, use Theorem
4.4.2), hence m1 = m+

1 −m
−
1 where m+

1 ,m
−
1 are positive elements of F(M) sup-

ported on K1. Analogously, m2 = m+
2 −m

−
2 where m+

2 ,m
−
2 are positive elements

of F(M) supported on K2. Therefore

m = (m+
1 +m+

2 )− (m−1 +m−2 )

is majorizable, contradicting the previous paragraph.

Example 3.3.15. Let M ⊂ c0 consist of 0 as the base point and the sequences
xn = 2nen and yn = (2n + 1)en, where en are the standard basis vectors. Let K1

and K2 consist of the points xn and yn, respectively. Then K1 and K2 are closed
and d(K1,K2) = 1, but both are unbounded. Let

m =

∞∑
n=1

2−n(δ(xn)− δ(yn)).

Since ‖δ(xn)− δ(yn)‖ = d(xn, yn) = 1, the series is absolutely convergent and
m ∈ F(M).

Suppose that m = m1 +m2 where supp(m1) ⊂ K1 and supp(m2) ⊂ K2. For every
n ∈ N consider the function λn ∈ Lip0(M) given by

λn(x) =


d(x, 0) if d(x, 0) ≤ 2n

2n+1 − d(x, 0) if 2n ≤ d(x, 0) ≤ 2n+1

0 if 2n+1 ≤ d(x, 0)

.

2We say that a metric space is uniformly discrete if nonzero distances are bounded below by
some positive constant.
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3.4 The uniform compactification

Notice that ‖λn‖L ≤ 1 and λn converges pointwise to ρ, hence λn
w∗−→ ρ. Let

hn be the characteristic function of Xn = {x1, . . . , xn}, then hn ∈ Lip0(M) has
bounded support and therefore hn · λn ∈ Lip0(M). Since λn and hn · λn coincide
on K1, by Proposition 3.3.9 we have

〈m1, λn〉 = 〈m1, hn · λn〉 = 〈m,hn · λn〉 − 〈m2, hn · λn〉
= 〈m,hn · λn〉 = n

as supp(m2) ∩Xn = ∅. Therefore 〈m1, ρ〉 = limn 〈m1, λn〉 = ∞, a contradiction.
Hence the decomposition m = m1 +m2 cannot exist.

3.4 The uniform compactification

The rest of this chapter will be devoted to extending the notion of support to
functionals in the bidual F(M)

∗∗
. As we will see, such a support cannot be

defined as a subset of M , but rather as a subset of some topological overspace of
M . In this section we will introduce the proper setting for such extended supports.

Recall that a compactification of a completely regular Hausdorff space, in par-
ticular of a metric space M , is a compact Hausdorff space that contains a dense
subset that is homeomorphic to M (and can thus be identified with M). Com-
pactifications X,Y of M may be partially ordered by declaring that X ≤ Y if
there is a continuous map from Y onto X whose restriction to M is the identity;
X and Y are then equivalent if X ≤ Y and Y ≤ X. The largest compactification
under this ordering is the well-known Stone-Čech compactification βM , which is
characterized (up to equivalence) by the fact that any continuous function from
M to a compact Hausdorff space, in particular any bounded real-valued function,
can be extended to a continuous function on βM . This renders it a useful tool in
the study of spaces of continuous functions. In particular, it is used for the study
of Lipschitz spaces in [53], and we will also make use of it throughout Chapter 5
as a tool in the study of the extreme points of BF(M).

When dealing with metric spaces and Lipschitz functions, however, the common
Stone-Čech compactification carries an important drawback for some of our in-
tended purposes, namely the fact that Lipschitz functions do not necessarily sep-
arate points of βM . Let us see a simple example of how this can happen:

Example 3.4.1. Let M ⊂ R consist of 0 and the points xn = n and yn = n+2−n

for n ∈ N. By compactness there is a subnet (xni , yni) of the sequence (xn, yn)
such that xni and yni converge to points ξ and η of βM , respectively. Since M
is topologically discrete, any function on M is continuous and we may take for
instance f ∈ C(M) such that f(xn) = 0 and f(yn) = 1 for every n. Then f(ξ) = 0
and f(η) = 1, hence ξ 6= η. However ξ and η cannot be separated by Lipschitz
functions: indeed, if f ∈ Lip(M) then |f(xn)− f(yn)| ≤ 2−n ‖f‖L, and taking
limits yields f(ξ) = f(η).
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

In fact, according to [55, Theorem 3.4] Lipschitz functions separate points of βM
if and only if there is a compact subset K of M such that M \ U is uniformly
discrete for every open set U ⊃ K; recall that a metric space is uniformly discrete
if the distance between different points is bounded below by a positive constant.

Instead of βM , we will be using the uniform or Samuel compactification of M ,
and denote it as MU . The suggested reference for information about this object
is [55]. The following statement collects its defining properties:

Proposition 3.4.2 ([55, Corollary 2.4]). Let M be a metric space. Then there
exists a compactification MU of M with the following properties:

(i) Every bounded, uniformly continuous function f : M → R can be extended
uniquely to a continuous function fU : MU → R.

(ii) Given two subsets A,B ⊂ M , their closures in MU are disjoint if and only
if d(A,B) > 0.

Moreover, these properties determine MU uniquely up to equivalence.

We will denote the closure of A ⊂ M in MU by A
U

. Note that A
U

and AU are
equivalent compactifications of the metric space A by [55, Theorem 2.9], so this
notation shall lead to no confusion. We will also need the following converse to
property (i):

Proposition 3.4.3 ([55, Theorem 2.5]). If f : M → R is bounded and can be
extended continuously to MU , then f is uniformly continuous.

Combining property (ii) with the usual separation axioms immediately yields the
following metric separation property, that we will be using repeatedly:

Proposition 3.4.4. Let K,L be disjoint closed subsets of MU . Then there are
disjoint open neighborhoods V,W of K,L such that d(V ∩M,W ∩M) > 0.

Thus disjoint closed subsets of MU can be separated by (extensions of) Lipschitz
functions on M . In particular, Lipschitz functions separate points of MU as re-
quired. In fact, MU may be identified with the quotient space of βM obtained by
identifying those points that cannot be separated by Lipschitz functions.

Property (i) only covers the extension of bounded uniformly continuous (in par-
ticular, Lipschitz) functions on M , but in general we may need to deal with ex-
tensions of unbounded functions, too. It is proved (for a more general setting)
in [25, Proposition 1.4] that unbounded Lipschitz functions can be continuously
extended to MU if we enlarge the range from R to its one-point compactification
R∪ {∞}; see also Section 1 of [26]. The following version of that property will be
more useful for our purposes:
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Proposition 3.4.5. Every Lipschitz function f : M → R can be extended uniquely
to a continuous function fU : MU → [−∞,+∞].

Indeed, this follows easily using (ii) from either the R ∪ {∞} version or, more
directly, from the Taimanov extension theorem (see e.g. [21, Theorem 3.2.1]).

The Lipschitz realcompactification

Let us consider the elements ζ ∈ MU that satisfy any of the following clearly
equivalent conditions:

• ζ is the limit of a bounded net in M ,

• ρU (ζ) <∞ (for any choice of base point in M),

•
∣∣fU (ζ)

∣∣ <∞ for all f ∈ Lip(M).

The set MR of all such elements is called the Lipschitz realcompactification of
M in [26]. In general we have M ⊂ MR ⊂ MU , and it should be clear that
MR = MU if and only if M is bounded, and MR = M if and only if M is a Heine-
Borel space. Recall that a metric space is Heine-Borel (alternatively called proper
or boundedly compact) if all its closed balls are compact; in particular, compact
spaces are Heine-Borel.

Notice also that the evaluation functional δ(ζ) : f 7→ fU (ζ) is an element of
F(M)

∗∗
if and only if ζ ∈ MR, and its norm is ‖δ(ζ)‖ = ρU (ζ). Let us also

mention that (fg)U (ζ) = fU (ζ)gU (ζ) for any ζ ∈ MR and f, g ∈ Lip(M) such
that fg ∈ Lip(M); this is not valid for ζ /∈MR, as an indeterminate limit of type
0×∞ may appear.

Derivations

Let us now introduce a class of functionals on Lip0(M) that will play a role in
what follows. In [53, Section 7.5], a derivation at a point x ∈ M (or MU , more
generally) is defined as an element φ ∈ F(M)

∗∗
that satisfies the relation

〈fg, φ〉 = 〈f, φ〉 · g(x) + f(x) · 〈g, φ〉
for any f, g ∈ Lip0(M). In general fg is not a Lipschitz function, and this is
likely one of the reasons why the original definition is only given for bounded M ;
another one is that f(x) may not be finite if x /∈ MR, which is possible when M
is unbounded. In order to eliminate these restrictions and extend the domain of
the definition, we prefer to use the following alternative formulation:

Definition 3.4.6. Let φ ∈ F(M)
∗∗

and ζ ∈ MU . We say that φ is a derivation
at ζ if 〈f, φ〉 = 0 for any f ∈ Lip0(M) such that fU is constant in a neighborhood
of ζ.
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Lemma 7.47 in [53] asserts that both definitions are equivalent in the original
setting, i.e. when M is bounded, and it follows easily that they are also equiv-
alent in general for ζ ∈ MR. This formulation makes it obvious that nontrivial
derivations at x ∈ M can only exist if x is not an isolated point. Also, deriva-
tions at ζ ∈ MR \ {0} can never be positive, since given f ∈ Lip0(M) it is easy
to construct g ∈ Lip0(M)+ such that g − f is constant in a neighborhood of ζ.
On the other hand, there are always positive derivations at 0 (assuming it is not
isolated): indeed, let xn → 0 and mn = δ(xn)/d(xn, 0) ∈ BF(M), then (mn) must
have a subnet that converges weak∗ to φ ∈ F(M)

∗∗
. This φ is clearly a positive

derivation at 0 such that ‖φ‖ = 〈ρ, φ〉 = 1.

It is interesting to note that derivations at different points of MR are “orthogonal”
to each other and to weak∗ continuous functionals in the following sense.

Proposition 3.4.7. Let m ∈ F(M), and let (φn) ⊂ F(M)
∗∗

be a sequence of
derivations at different points of MR such that

∑
‖φn‖ <∞. Then∥∥∥∥∥m+

∞∑
n=1

φn

∥∥∥∥∥ = ‖m‖+

∞∑
n=1

‖φn‖ .

Proof. It is clearly enough to prove the theorem for a finite sum m+φ1 + . . .+φn,
and we may assume that each φi is nonzero. Fix ε > 0 and choose f, gi ∈ SLip0(M)

such that 〈m, f〉 = ‖m‖ and 〈gi, φi〉 > ‖φi‖ − ε
n for i = 1, . . . , n. Suppose that φi

is a derivation at ζi ∈MR and let A be the set of those ζi that belong to M . Let
F be the family of all finite subsets of M \ (A∪{0}), directed by inclusion. We will
construct a net (hE)E∈F in Lip0(M) such that ‖hE‖L ≤ 1 + 4ε for every E ∈ F.

Fix E ∈ F. Since the ζi are all different from each other and not contained in E,
we may find disjoint open neighborhoods Ui of ζi such that the sets Ui ∩M are
at a positive distance from each other and from E; also, if ζi 6= 0 then we also
assume that d(Ui ∩M, 0) > 0. Let r > 0 be smaller than all of those distances.
For each i = 1, . . . , n let

Vi =
{
ξ ∈MU :

∣∣gUi (ξ)− gUi (ζi)
∣∣ < εr and

∣∣fU (ξ)− fU (ζi)
∣∣ < εr

}
which is clearly an open neighborhood of ζi, and let Wi = Ui ∩ Vi. Define the
function hE on the set {0} ∪ E ∪

⋃n
i=1(Wi ∩M) by

hE(x) =

{
f(x) , x ∈ E ∪ {0}
gi(x)− gUi (ζi) + fU (ζi) , x ∈Wi ∩M

for i = 1, . . . , n. Notice that if ζi = 0 for some i then both cases yield the same
value hE(0) = 0.

Now let us estimate ‖hE‖L. It is clear that |hE(x)− hE(y)| ≤ d(x, y) if x, y belong
to E ∪ {0} or to Wi ∩M for the same i. If x ∈Wi ∩M and y ∈Wj ∩M for i 6= j
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then d(x, y) ≥ r and

|hE(x)− hE(y)| ≤
∣∣gi(x)− gUi (ζi)

∣∣+
∣∣gj(y)− gUj (ζj)

∣∣+
∣∣fU (ζi)− fU (ζj)

∣∣
≤ 2εr +

∣∣fU (ζi)− f(x)
∣∣+
∣∣fU (ζj)− f(y)

∣∣+ |f(x)− f(y)|
≤ 4εr + d(x, y)

≤ (1 + 4ε)d(x, y)

Otherwise, if x ∈Wi ∩M and y ∈ E then d(x, y) ≥ r again and

|hE(x)− hE(y)| ≤
∣∣gi(x)− gUi (ζi)

∣∣+
∣∣fU (ζi)− f(y)

∣∣
≤ εr +

∣∣fU (ζi)− f(x)
∣∣+ |f(x)− f(y)|

≤ 2εr + d(x, y)

≤ (1 + 2ε)d(x, y).

So ‖hE‖L ≤ 1+4ε as claimed. Finally, extend hE to M using McShane’s theorem.

We have thus built a bounded net (hE)E∈F in Lip0(M). Now notice that hE
converges pointwise to f . Indeed, hE(x) = f(x) for all x ∈ A ∪ {0} and all E ∈ F
by construction, and hE(x) = f(x) for any x ∈M \ (A ∪ {0}) whenever E ⊃ {x}.
Thus (hE) converges weak∗ to f , and therefore we can choose E ⊂ F such that
〈m,hE〉 > 〈m, f〉 − ε. By construction, hE − gi is constant in a neighborhood of
each ζi, therefore 〈hE , φi〉 = 〈gi, φi〉. Putting it all together, we have〈

hE ,m+

n∑
i=1

φi

〉
> 〈m, f〉 − ε+

n∑
i=1

〈gi, φi〉 > ‖m‖+

n∑
i=1

‖φi‖ − 2ε

and hence∥∥∥∥∥m+

n∑
i=1

φi

∥∥∥∥∥ > ‖m‖+
∑n
i=1 ‖φi‖ − 2ε

‖hE‖L
≥
‖m‖+

∑n
i=1 ‖φi‖ − 2ε

1 + 4ε
.

Letting ε→ 0 yields the desired result.

3.5 Supports in F(M)∗∗

In this section we will propose a generalization of the concept of support for ele-
ments of F(M) that is applicable to functionals in its bidual. Unfortunately, some
of its properties break down for functionals with content that “lies at infinity”. In
order to make this statement more precise, we will first analyze the structure of
F(M)

∗∗
and establish a decomposition of general functionals into elements that

concentrate at different domains.
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Structure of F(M)
∗∗

Before continuing, let us make the following observation: for any φ ∈ F(M)
∗∗

, the
sequence (φ ◦WHn) is Cauchy. Indeed, for m > n ∈ N we have that

‖φ ◦WHm − φ ◦WHn‖ =

∥∥∥∥∥
m∑

k=n+1

φ ◦WΛk

∥∥∥∥∥ ≤
∞∑

k=n+1

‖φ ◦WΛk‖

can be made arbitrarily small by (3.7). So (φ ◦ WHn) converges in norm to a
functional in F(M)

∗∗
that can be interpreted as “the part of φ that is concentrated

away from infinity”, and since φ ◦WGn = φ−φ ◦WHn , the limit of (φ ◦WGn) also
exists and can be thought of as “the part of φ that lies at infinity”. Analogously,
(φ ◦WG−n) and (φ ◦WH−n) converge in norm and the limits can be understood as
“the part of φ that is concentrated away from the base point” and “the part that
lies at the base point”, respectively.

With this idea in mind, let us introduce some terminology for the following classes
of functionals:

Definition 3.5.1. Let φ ∈ F(M)
∗∗

. We say that φ

• is concentrated at infinity if φ ◦WHn = 0 for all n ∈ N,

• avoids infinity if limn φ ◦WHn = φ,

• avoids infinity strongly if φ ◦WHn = φ for some n ∈ N,

• is concentrated at 0 if φ ◦WG−n = 0 for all n ∈ N,

• avoids 0 if limn φ ◦WG−n = φ,

• avoids 0 strongly if φ ◦WG−n = φ for some n ∈ N.

Let us mention some easy facts about these classes. If φ ∈ F(M)
∗∗

avoids 0
(resp. infinity) strongly then it avoids 0 (resp. infinity), and if φ is concentrated
at infinity then it avoids 0 strongly and vice versa. Moreover, since WHn(f) and
WG−n(f) converge weak∗ to f for every f ∈ Lip0(M), it follows from the remark
before Definition 3.5.1 that every element of F(M) avoids 0 and infinity. It is also
not difficult to see that φ avoids 0 and infinity strongly if and only if φ ◦WΠn = φ
for some n and it avoids 0 and infinity if and only if limn φ ◦WΠn = φ.

Note also that if 0 is an isolated point of M then every functional φ ∈ F(M)
∗∗

avoids 0 strongly, and if M is bounded then every φ avoids infinity strongly. In
fact, those functionals that avoid infinity strongly can be completely identified
with functionals over some space Lip0(K) where K is bounded - only we are con-
sidering them as elements of Lip0(M)∗ for some possibly unbounded overspace
M of K. Similarly, functionals that avoid 0 strongly can be identified with func-
tionals over some space Lip0(K) where K has an isolated base point. In view of
Proposition 3.3.9, it is also easy to see that an element of F(M) avoids infinity
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strongly precisely when its support is bounded. This is not the case in F(M)
∗∗

,
as we shall see with Example 3.5.15.

While the definitions above are given in terms of the auxiliary functions Hn and
Gn defined in (3.2) and (3.3), it is possible to express some of these notions equiv-
alently in a much more general way. The following proposition contains some such
characterizations; additional ones will be given in Proposition 3.5.18.

Proposition 3.5.2. Let φ ∈ F(M)
∗∗

.

(a) φ is concentrated at infinity if and only if 〈f, φ〉 = 0 for every f ∈ Lip0(M)
with bounded support.

(b) φ is concentrated at 0 if and only if it is a derivation at 0.

(c) φ avoids infinity strongly if and only if φ = φ ◦Wh for some h ∈ Lip(M)
with bounded support.

Proof. (a) Suppose that φ is concentrated at infinity, and pick f ∈ Lip0(M) with
bounded support. Choose n ∈ N such that 2n > rad(supp(f)). Then f = fHn

and hence
〈f, φ〉 = 〈fHn, φ〉 = 〈f, φ ◦WHn〉 = 0.

For the converse implication, if f ∈ Lip0(M) and n ∈ N then fHn ∈ Lip0(M) has
bounded support, hence 〈f, φ ◦WHn〉 = 〈fHn, φ〉 = 0. Therefore φ ◦WHn = 0.

(b) If φ is a derivation at 0, then for every n ∈ N and f ∈ Lip0(M) we have〈
f, φ ◦WG−n

〉
= 〈fG−n, φ〉 = 0 since fG−n = 0 in a neighborhood of 0, so φ

is concentrated at 0. Conversely, suppose that φ is concentrated at 0 and let
f ∈ Lip0(M) be constant, i.e. 0, in a neighborhood of 0. Then f = fG−n for n
large enough and

〈f, φ〉 = 〈fG−n, φ〉 =
〈
f, φ ◦WG−n

〉
= 0.

Hence φ is a derivation at 0.

(c) One implication is obvious taking h = Hn. For the converse, let n be such that
2n > rad(supp(h)), then hHn = h and hence

φ ◦WHn = (φ ◦Wh) ◦WHn = φ ◦WhHn = φ ◦Wh = φ.

Every functional in F(M)
∗∗

can be canonically decomposed as a sum of elements
of the classes introduced in Definition 3.5.1 as follows:

Theorem 3.5.3. Every φ ∈ F(M)
∗∗

can be expressed as

φ = φ0 + φs + φ∞ (3.15)
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where φ0 is a derivation at 0, φ∞ is concentrated at infinity, and φs avoids 0 and
infinity. This expression is unique and

φ0 = lim
n→∞

φ ◦WH−n

φs = lim
n→∞

φ ◦WΠn

φ∞ = lim
n→∞

φ ◦WGn

. (3.16)

Moreover we have
‖φ‖ = ‖φ0‖+ ‖φs‖+ ‖φ∞‖ . (3.17)

If φ is positive then so are φ0, φs and φ∞.

Proof. Let us first prove existence of the decomposition. Let φ0, φs, φ∞ be given
by (3.16). We have already seen that all of these limits exist, and (3.15) follows
from taking limits in the identity

φ = φ ◦WH−(n+1)
+ φ ◦WΠn + φ ◦WGn .

Notice that, for any fixed n ≥ 1

φ0 ◦WG−n =

(
lim
k→∞

φ ◦WH−k

)
◦WG−n = lim

k→∞
φ ◦WH−kG−n = 0

as H−kG−n = 0 eventually, so φ0 is concentrated at 0, hence it is a derivation
at 0 by Proposition 3.5.2(b). By an analogous argument, φ∞ is concentrated at
infinity. We also have

φs ◦WHn =

(
lim
k→∞

φ ◦WΠk−1

)
◦WHn

=

(
lim
k→∞

φ ◦WG−kHk−1

)
◦WHn = lim

k→∞
φ ◦WG−kHn

and therefore

lim
n→∞

φs ◦WHn = lim
n→∞

lim
k→∞

φ ◦WG−kHn = lim
n→∞

lim
k→∞

n∑
i=−k+1

φ ◦WΛi = φs

because the series (3.6) converges absolutely by (3.7). That is, φs avoids infinity.
A similar argument shows that it also avoids 0. The statement about positivity
follows from the fact that all weighting operators used in the construction preserve
positivity.

Next we prove that the decomposition is unique. Assume that

φ = φ0 + φs + φ∞ = φ′0 + φ′s + φ′∞
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where φ0, φ
′
0 are concentrated at 0, φ∞, φ′∞ are concentrated at infinity, and φs, φ

′
s

avoid 0 and infinity. Then φ0 + φs − φ′0 − φ′s = φ′∞ − φ∞, and we have

0 = lim
n→∞

(φ′∞ − φ∞) ◦WHn = lim
n→∞

(φ0 − φ′0 + φs − φ′s) ◦WHn

= φ0 − φ′0 + lim
n→∞

(φs − φ′s) ◦WHn

= φ0 − φ′0 + φs − φ′s

so that φ′0 − φ0 = φs − φ′s. It follows similarly that

0 = lim
n→∞

(φ′0 − φ0) ◦WG−n = lim
n→∞

(φs − φ′s) ◦WG−n = φs − φ′s.

Hence φs = φ′s, and uniqueness follows.

Finally, we will prove (3.17). Fix ε > 0, and choose functions f0, fs, f∞ ∈ SLip0(M)

such that 〈f0, φ0〉 > ‖φ0‖ − ε, 〈fs, φs〉 > ‖φs‖ − ε and 〈f∞, φ∞〉 > ‖φ∞‖ − ε. By
the convergence of (3.7), we may find n ∈ N such that∑

k∈Z
|k|>n

‖φ ◦WΛk‖ < ε.

This implies that ‖φs − φ ◦WΠn‖ < ε and, more generally

∥∥φ ◦W1−H−m−Πn−Gm
∥∥ =

∥∥∥∥∥∥
−(n+1)∑
k=−m+1

φ ◦WΛk +

m∑
k=n+1

φ ◦WΛk

∥∥∥∥∥∥ < ε (3.18)

for any m > n. Fix m > n + 2, to be determined later. Since φ ◦WH−m → φ0

and φ ◦ WGm → φ∞ as m → ∞, m can be chosen to be large enough that∥∥φ0 − φ ◦WH−m

∥∥ < ε and ‖φ∞ − φ ◦WGm‖ < ε.

Let M ′ = M0 ∪Ms ∪M∞ where

M0 = B(0, 2−m+1)

Ms = B(0, 2n+1) \B(0, 2−n−1)

M∞ = M \B(0, 2m)

and define g : M ′ → R by g = f0 on M0, g = fs on Ms and g = f∞ on M∞. Let
us estimate ‖g‖L. Clearly |g(x)− g(y)| ≤ d(x, y) when x, y belong to the same
one of the disjoint sets M0, Ms, M∞. Otherwise suppose d(x, 0) > d(y, 0), then
we actually have d(x, 0) ≥ 2m−n−2d(y, 0) and hence

|g(x)− g(y)|
d(x, y)

≤ |g(x)|+ |g(y)|
d(x, y)

≤ d(x, 0) + d(y, 0)

d(x, 0)− d(y, 0)
≤ 2m−n−2 + 1

2m−n−2 − 1
.
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Thus, by choosing m large enough we can guarantee that ‖g‖L < 1 + ε. Now
extend g to M without increasing its norm. Then we have

〈g, φ〉 =
〈
g, φ ◦WH−m

〉
+ 〈g, φ ◦WΠn〉

+ 〈g, φ ◦WGm〉+
〈
g, φ ◦W1−H−m−Πn−Gm

〉
. (3.19)

Notice that〈
g, φ ◦WH−m

〉
=
〈
f0, φ ◦WH−m

〉
= 〈f0, φ0〉 −

〈
f0, φ0 − φ ◦WH−m

〉
> ‖φ0‖ − 2ε

and similarly the second and third terms in (3.19) are bounded below by ‖φs‖−2ε
and ‖φ∞‖ − 2ε, respectively. Substituting into (3.19) and using (3.18) we obtain

〈g, φ〉 > ‖φ0‖+ ‖φs‖+ ‖φ∞‖ − 6ε− ‖g‖L ε

and it follows that

‖φ‖ ≥ 〈g, φ〉
‖g‖L

>
‖φ0‖+ ‖φs‖+ ‖φ∞‖ − 6ε

1 + ε
− ε.

Letting ε → 0 yields ‖φ‖ ≥ ‖φ0‖ + ‖φs‖ + ‖φ∞‖, and the converse inequality is
obvious.

By adding φA = φ0 + φs (or using similar reasoning), we obtain a similar decom-
position of φ into a part that is concentrated at infinity and a part that avoids
infinity, and they do not depend on the choice of base point:

Corollary 3.5.4. Every φ ∈ F(M)
∗∗

can be expressed uniquely as φ = φA + φ∞
where φA avoids infinity and φ∞ is concentrated at infinity. These terms are
given by φA = limn φ ◦WHn and φ∞ = limn φ ◦WGn . Moreover we have ‖φ‖ =
‖φA‖+ ‖φ∞‖.

Extended supports

Let us now deal with the generalized concept of support for elements of F(M)
∗∗

.
Before giving the definition, we will briefly discuss the reasoning behind the
changes with respect to the previous notion for F(M).

First of all, for any such notion it is a reasonable expectation that the support of an
evaluation functional is precisely the point where the evaluation takes place. That
is the case for the support of elements δ(x) ∈ F(M) for x ∈ M , by Proposition
3.3.8. However, we have seen that the evaluation on any ζ ∈ MR \M is also an
element of F(M)

∗∗
. In order to accommodate for that, the support should now

be a subset of some compactification of M . And since any compactification larger
than MU could contain elements that are not separated by Lipschitz functions
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and therefore lead to inconsistencies when defining the support of their associated
evaluation functionals, the appropriate choice would be precisely MU .

Second, it is not possible to obtain a support that is sharp in the sense of Propo-
sition 3.3.9, in that the action of φ ∈ F(M)

∗∗
on a function f ∈ Lip0(M) only

depends on the values it (or its extension fU ) takes on the support of φ. The
best example to illustrate this issue are derivations. For instance, let φ be the
derivation at 0 that we have constructed just after Definition 3.4.6. It does not
make sense for the support of φ to contain any point other than 0, since the value
of 〈f, φ〉 is independent of the behavior of f away from 0, so the support should
be just {0}. However, note that 〈f, φ〉 does not depend just on the value of f at
0, it depends on its behavior in a neighborhood of 0 (any neighborhood is valid).

The previous discussion suggests that the support of a functional φ ∈ F(M)
∗∗

should be defined as a subset S of MU that satisfies the following property, weaker
than Proposition 3.3.9: 〈f, φ〉 = 〈g, φ〉 whenever fU coincides with gU on some
open set containing S. This motivates the next definition:

Definition 3.5.5. Let φ ∈ F(M)
∗∗

. The set

S(φ) =
⋂{

K ⊂MU : K is compact and φ ∈ IM (K)⊥
}

=
⋂{

K ⊂MU : K is compact and 〈f, φ〉 = 0 whenever fU�K = 0
}

will be called the extended support of φ.

Note that we are extending here the definition of IM (K) from (3.11) to subsets of
MU in the obvious way:

IM (K) =
{
f ∈ Lip0(M) : fU (ζ) = 0 for all ζ ∈ K

}
.

It is straightforward to check that Definition 3.5.5 is equivalent to

S(φ) =
⋂{

A
U

: A ⊂M and 〈f, φ〉 = 0 whenever f�A = 0
}
. (3.20)

We will first prove some basic facts about the extended supports. Let us start by
checking that this definition really is a generalization of supports in F(M) and
admits a characterization similar to the one given by Proposition 3.3.10:

Proposition 3.5.6. Let φ ∈ F(M)
∗∗

and ζ ∈MU . Then ζ ∈ S(φ) if and only if
for every neighborhood U ⊂ MU of ζ there exists a function f ∈ Lip0(M) whose
support is contained in U ∩M and such that 〈f, φ〉 6= 0.

Proof. Suppose that ζ satisfies the condition in the statement, and let K ⊂MU be
closed and such that φ ∈ IM (K)⊥. If ζ /∈ K then let U be a neighborhood of ζ such
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that U
U ∩K = ∅, then by assumption there is f ∈ Lip0(M) supported on U ∩M

with 〈f, φ〉 6= 0. But fU vanishes on K and hence 〈f, φ〉 = 0, a contradiction. So
ζ ∈ K, and it follows that ζ ∈ S(φ).

Now suppose that ζ does not satisfy the condition. This means that there is an
open neighborhood U of ζ such that 〈f, φ〉 = 0 for every f ∈ Lip0(M) whose

support is contained in U ∩M . Let V be an open set with ζ ∈ V ⊂ V
U ⊂ U and

K = MU \V . Then f ∈ IM (K) implies supp(f) ⊂ V ∩M ⊂ U ∩M and therefore
〈f, φ〉 = 0. Thus φ ∈ IM (K)⊥, hence S(φ) ⊂ K and ζ /∈ S(φ).

This characterization yields several basic properties of extended supports almost
immediately. First of all we check that, for elements of F(M), supports and
extended supports agree as much as possible, considering that the latter must be
closed in MU .

Corollary 3.5.7. If m ∈ F(M) then supp(m) = S(m)∩M and S(m) = supp(m)
U

.

Proof. The first equality follows immediately from comparing Proposition 3.5.6

and Proposition 3.3.10. This also yields supp(m)
U
⊂ S(m), whereas the reverse

inclusion follows from (3.20) and Proposition 3.3.9.

Recall that supp(m) is a separable subset of M for any m ∈ F(M). We do not
know whether, similarly, S(φ) is a separable subset of MU for any φ ∈ F(M)

∗∗
,

but we can show that its intersection with M is still separable.

Proposition 3.5.8. For any φ ∈ F(M)
∗∗

, the subset S(φ)∩M of M is separable.

Proof. We need to show that any discrete subset of the metric space S(φ) ∩M
is at most countable. Let {pi : i ∈ I} be such a set, then there are ri > 0 such
that the subsets B(pi, 2ri) ∩ S(φ) of M are pairwise disjoint. We claim that
the balls B(pi, ri) are disjoint in M . Indeed, suppose otherwise that there exists
x ∈ B(pi, ri) ∩B(pj , rj) for some i 6= j ∈ I. Assume ri ≤ rj . Then

d(pi, pj) ≤ d(pi, x) + d(x, pj) < ri + rj ≤ 2rj

therefore pi ∈ B(pi, 2ri) ∩B(pj , 2rj), contradicting disjointness.

For each i ∈ I consider the function ρi ∈ Lip(M) given by ρi : x 7→ d(x, pi),
then Ui = (ρUi )−1(−∞, ri) is an open neighborhood of pi in MU . Since pi ∈
S(φ), Proposition 3.5.6 yields a function fi ∈ BLip0(M) such that 〈fi, φ〉 6= 0 and
supp(fi) ⊂ Ui ∩M ⊂ B(pi, ri). That is, the functions fi have pairwise disjoint
supports. Now apply Lemma 3.2.4 to conclude that for any k ∈ N there may
only exist a finite amount of indices i ∈ I such that |〈fi, φ〉| ≥ 1

k . Hence I is
countable.
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Another basic fact of extended supports is that they are compatible with finite
sums:

Corollary 3.5.9. If φ, ψ ∈ F(M)
∗∗

, then S(φ + ψ) ⊂ S(φ) ∪ S(ψ). If moreover
S(φ) ∩ S(ψ) = ∅, then we get an equality.

Proof. The first part of the statement is straightforward. Assume therefore that
S(φ) and S(ψ) are disjoint and let ζ ∈ S(φ). By Proposition 3.5.6 there exists a
neighborhood V ⊂MU of ζ such that for every function f ∈ Lip0(M) supported in
V ∩M we have 〈f, ψ〉 = 0. If now U ⊂MU is any neighborhood of ζ, by Proposition
3.5.6 again, we may find a function f ∈ Lip0(M) with the support contained in
U ∩ V ∩M which satisfies 〈f, φ〉 6= 0. Hence also 〈f, φ+ ψ〉 = 〈f, φ〉 6= 0. We
conclude that ζ ∈ S(φ+ ψ).

Compatibility of the extended support with infinite sums, or more generally with
limits, requires extra hypotheses and so its discussion will be withheld until Lemma
3.5.20.

As another consequence of Proposition 3.5.6, we may extend Proposition 3.3.12
to the bidual. A similar proof works, taking the precaution not to leave the
realcompactification MR:

Corollary 3.5.10. Let φ, ψ be positive elements of F(M)
∗∗

.

(a) If f ∈ Lip0(M), f ≥ 0 and 〈f, φ〉 = 0, then fU = 0 on S(φ) ∩MR.

(b) If f ∈ BLip0(M) and 〈f, φ〉 = ‖φ‖, then fU = ρU on S(φ) ∩MR.

(c) If φ ≤ ψ then S(φ) ⊂ S(ψ).

Proof. (a) Suppose that fU (ζ) > 0 for some ζ ∈ S(φ) ∩ MR. Then there are
c > 0 and an open neighborhood U of ζ such that fU (ξ) ≥ c for ξ ∈ U . Moreover,
since ζ ∈ MR, we may choose U such that U ∩M is bounded. By Proposition
3.5.6 there exists h ∈ Lip0(M) such that supp(h) ⊂ U ∩M and 〈h, φ〉 6= 0. We
may assume that h ≥ 0 and 〈h, φ〉 > 0 by replacing h with h+ or h−. Since h is
bounded, we may also assume that h ≤ c by multiplying by a positive constant.
Then f − h ≥ 0 but 〈f − h, φ〉 < 0, a contradiction.

(b) Since ‖φ‖ = 〈ρ, φ〉, this is immediate from applying (a) to the function ρ− f .

(c) Fix ζ ∈ S(φ) and let U be a neighborhood of ζ. As in part (a), there is
h ∈ Lip0(M) such that supp(h) ⊂ U ∩M , h ≥ 0 and 〈h, φ〉 > 0. Thus 〈h, ψ〉 ≥
〈h, φ〉 > 0, and Proposition 3.5.6 implies that ζ ∈ S(ψ).

A generalized version of inclusion (3.13) also holds for supports of weighted func-
tionals:
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Corollary 3.5.11. Let h ∈ Lip(M) be such that Wh is a bounded linear operator

on Lip0(M). Then for every φ ∈ F(M)
∗∗

we have S(φ ◦Wh) ⊂ S(φ) ∩ supp(h)
U

.

Proof. Let f ∈ Lip0(M) and suppose f = 0 on supp(h), then fh = 0 and so

〈f, φ ◦Wh〉 = 〈fh, φ〉 = 0. Thus S(φ ◦ Wh) ⊂ supp(h)
U

by (3.20). Now let
A ⊂ M be such that 〈f, φ〉 = 0 for any f ∈ Lip0(M) such that f�A = 0. Then,
for any such f we also have 〈f, φ ◦Wh〉 = 〈fh, φ〉 = 0 since (fh)�A = 0, and

therefore S(φ ◦Wh) ⊂ A
U

by (3.20). Taking the intersection over all such A we
get S(φ ◦Wh) ⊂ S(φ).

Localization property of extended supports

We now turn to the localization property stated in the discussion before Definition
3.5.5. As was hinted there, one reason behind this different behaviour of supports
in F(M) and in F(M)

∗∗
is that a hypothetical bidual version of the intersection

theorem, which would have the form

⋂
i

IM (Ki)
⊥

= IM

(⋂
i

Ki

)⊥
, (3.21)

is not true in general. Indeed, if {Ki} is the family of balls centered at 0 then the
derivations at 0 are contained in the left hand side of (3.21) but not in the right
hand side. Let us recall here that IM (K)⊥ = FM (K)⊥⊥ can be identified with
F(K)

∗∗
for K ⊂M .

We will now establish an optimal version of the intersection theorem for the bidual.
In order to do that, we need to introduce a variation of the ideals IM (K) for
K ⊂MU . Let us define JM (K) as the space of all functions f ∈ IM (K) that are
moreover locally flat at K, that is, for every ε > 0 there is an open neighborhood
U of K such that ‖f�U∩M‖L ≤ ε. This is a closed subspace of Lip0(M), and
moreover it is an ideal when M is bounded. By [53, Lemma 7.43] this ideal can
also be described as

JM (K) =
⋃
{IM (U) : U is an open neighborhood of K} .

With this definition in place we can now state:

Proposition 3.5.12. Suppose that M is bounded, and let {Ki : i ∈ I} be a family
of closed subsets of MU . Then

IM

(⋂
i∈I

Ki

)⊥
⊂
⋂
i∈I
IM (Ki)

⊥ ⊂ JM

(⋂
i∈I

Ki

)⊥
.
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Proof. Denote K =
⋂
iKi and Y = span

⋃
i I(Ki). We will prove that

JM (K) ⊂ Y ⊂ IM (K)

and the result will follow by taking annihilators. The inclusion Y ⊂ IM (K) is
obvious, so we only need to show that JM (K) ⊂ Y .

We will first prove that fact under the additional hypothesis that 0 ∈ K. Notice
that each IM (Ki) is an ideal, hence so are Y and Y . Therefore, by [53, Proposition
7.44] it is enough to check that K is the “extended hull” of Y , i.e. that

K =
{
ζ ∈MU : fU (ζ) = 0 for all f ∈ Y

}
.

In order to prove inclusion ⊂ in this equation, fix ζ ∈ K. Clearly fU (ζ) = 0 for
every f ∈ IM (Ki) and hence for f ∈ Y , and the continuity of δ(ζ) ∈ Lip0(M)∗

shows that this is also the case for f ∈ Y . Conversely, suppose that ζ /∈ K. Then
there is i ∈ I such that ζ /∈ Ki, and by Proposition 3.4.4 there are open sets
U, V ⊂ MU such that ζ ∈ U , Ki ⊂ V , and d(U ∩ M,V ∩ M) > 0. We may
therefore find f ∈ Lip0(M) such that 0 ≤ f ≤ 1, f = 1 on U ∩M , and f = 0 on
V ∩M (note that 0 ∈ K ⊂ V ). That is, f ∈ IM (Ki) ⊂ Y but f(ζ) 6= 0. This
completes the proof of this case.

Now suppose that 0 /∈ K, so there exists i0 ∈ I such that 0 /∈ Ki0 . Proposition
3.4.4 yields open neighborhoods U and V of 0 and Ki0 , respectively, such that
d(U ∩ M,V ∩ M) > 0. Fix f ∈ JM (K), then by McShane’s theorem there is
g ∈ Lip0(M) such that g = f on U ∩M and g = 0 on V ∩M . Since K ⊂ Ki0 ⊂ V ,
we have f − g ∈ JM (K ∪ {0}). By the paragraph above (applied to the family
{Ki ∪ {0} : i ∈ I}) we deduce that f − g ∈ Y . But clearly g ∈ IM (Ki0) ⊂ Y , so
f ∈ Y . This ends the proof.

Note the similarity between our argument in this proof and the one employed
in the first part of the proof of Theorem 3.3.5. Both are based on the algebra
structure of Lip0(M), and the main difference is that we are now dealing with
norm-closed ideals instead of weak∗-closed ideals.

Proposition 3.5.12 is optimal in that either inclusion may become an equality. For
instance, expanding on the derivation example given above, if {Ki} consists of the
closures in MU of the balls centered on some x ∈ M then the right inclusion is
always an equality whereas the left one is if and only if x is isolated. The right
inclusion may also be strict e.g. when {Ki} consists of a single set {x} where
x ∈ M is not isolated. It is straightforward to combine these cases in order to
obtain an example where both inclusions are strict.

We are now ready to prove the main result in this section, according to which the
property that 〈f, φ〉 depends only on the values of f in a neighborhood of S(φ) is
valid when φ avoids infinity. We will also see in Example 3.5.15 that it does not
hold in general.
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Theorem 3.5.13. Suppose that φ ∈ F(M)
∗∗

avoids infinity. If U is any open
subset of MU containing S(φ), then 〈f, φ〉 = 0 for any f ∈ Lip0(M) that vanishes
on U ∩M . Moreover, S(φ) is the smallest subset of MU with that property.

Proof. We will prove the second statement first. Let

Z =
{
K ⊂MU : K is compact and φ ∈ IM (K)⊥

}
so that S(φ) =

⋂
Z. Suppose that S′ is a subset of MU satisfying the hypothesis

that does not contain S(φ), i.e. there exists ζ ∈ S(φ) \ S′. Let U and V be
disjoint open sets in MU containing S′ and ζ, respectively. Given f ∈ Lip0(M)
that vanishes on MU \V , it vanishes on U in particular and, by the assumption on
S′, we have 〈f, φ〉 = 0. Thus MU \V ∈ Z and ζ ∈ S(φ) ⊂MU \V , a contradiction.
Therefore we must have S(φ) ⊂ S′ as we wanted to prove.

Let us now proceed with the first statement. If M is bounded then this is an
almost immediate consequence of Proposition 3.5.12. For the general case we
will need a technical trick, similar to the one employed in the second part of the
proof of Theorem 3.3.5, in order to reduce the problem to a bounded setting where
Proposition 3.5.12 can be applied. Fix n ∈ N and let A = B(0, 2n+2), and consider
the two weighting operators

WHn : Lip0(M)→ Lip0(M)

W ′Hn : Lip0(A)→ Lip0(M)

which satisfy WHn(f) = W ′Hn(f�A) for every f ∈ Lip0(M).

Fix K ∈ Z and g ∈ IA
(
K ∩AU

)
, and let f = W ′Hn(g) ·Hn+1 ∈ Lip0(M). Clearly

W ′Hn(g) = W ′Hn(f�A) as Hn+1 = 1 on supp(Hn), therefore〈
W ′Hn(g), φ

〉
=
〈
W ′Hn(f�A), φ

〉
= 〈WHn(f), φ〉 .

But moreover f ∈ IM (K), hence WHn(f) ∈ IM (K) and we obtain
〈
g, φ ◦W ′Hn

〉
=

0. We have thus proved that φ◦W ′Hn ∈ IA
(
K ∩AU

)⊥
. Apply Proposition 3.5.12

in the bounded metric space A to get

φ ◦W ′Hn ∈
⋂
K∈Z

IA
(
K ∩AU

)⊥
⊂ JA

( ⋂
K∈Z

K ∩AU
)⊥

= JA
(
S(φ) ∩AU

)⊥
.

Now let f ∈ Lip0(M) be such that f = 0 on U ∩M for some open neighborhood
U of S(φ). Then f is clearly locally flat on S(φ), i.e. f ∈ JM (S(φ)) and therefore

f�A ∈ JA
(
S(φ) ∩AU

)
. So we get

〈f, φ ◦WHn〉 =
〈
f�A, φ ◦W ′Hn

〉
= 0.
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Finally, since φ avoids infinity, taking limits as n→∞ yields 〈f, φ〉 = 0.

Note that we have actually proved an apparently stronger result: if φ ∈ F(M)
∗∗

avoids infinity then 〈f, φ〉 = 0 for any f ∈ Lip0(M) such that fU vanishes at S(φ)
and f is locally flat at S(φ). In fact, both statements are equivalent by [53, Lemma
7.43].

As an immediate consequence of Theorem 3.5.13 we obtain:

Corollary 3.5.14. If φ ∈ F(M)
∗∗

avoids infinity, then S(φ) = ∅ if and only if
φ = 0.

Theorem 3.5.13 and Corollary 3.5.14 may fail in the general case as illustrated
by the next example. This also shows that, unlike in F(M), a bounded extended
support does not necessarily imply avoiding infinity, strongly or not.

Example 3.5.15. Let M ⊂ R2 consist of the points xn = (0, n) and yn = (1, n) for
n ≥ 0. Define mn = δ(xn)/n for n ≥ 1. Then ‖mn‖ = 1, so we may find a subnet
(xni) of the sequence (xn) that converges to some ζ ∈ MU and such that (mni)
converges weak∗ to some φ ∈ F(M)

∗∗
. Notice that φ ≥ 0 and ‖φ‖ = 〈ρ, φ〉 = 1.

We claim that S(φ) = ∅. Indeed, let X = {xn : n ≥ 0} and Y = {yn : n ≥ 0}, then

MU = X
U ∪Y U is a disjoint union by Proposition 3.4.2 and it is clear that S(φ) ⊂

X
U

by (3.20). Now let U ⊂MU be a neighborhood of X
U

such that U ∩ Y U = ∅
and suppose that f ∈ Lip0(M) is supported on U ∩M = X. Then f(yn) = 0 and
|f(xn)| ≤ ‖f‖L d(xn, yn) = ‖f‖L for every n, hence 〈f, φ〉 = limi f(xni)/ni = 0.

So S(φ) ∩XU = ∅ by Proposition 3.5.6, therefore S(φ) is empty.

Observe also that if f ∈ Lip0(M) is constant on some neighborhood of ζ, then in
particular it is bounded on (xni) and 〈f, φ〉 = 0 again. Hence φ is a derivation at
ζ.

Note that Example 3.5.15 together with Corollary 3.5.9 allow us to generate ex-
amples of functionals with non-empty extended supports failing Theorem 3.5.13.
Indeed, consider for instance any functional of the form φ + δ(xn). Its extended
support is {xn} and the function ρGn vanishes on a neighborhood of {xn}, however
〈ρGn, φ+ δ(xn)〉 = 1.

The functional φ constructed in Example 3.5.15 vanishes on any bounded function
of Lip0(M). This is, in fact, a general property of elements of F(M)

∗∗
with empty

extended support. Note that this also shows that the principle that “local equality
implies global equality” in F(M) (Corollary 3.3.11) is no longer valid in F(M)

∗∗
.

Proposition 3.5.16. Let φ ∈ F(M)
∗∗

be such that S(φ) = ∅. Then 〈f, φ〉 = 0
for every bounded f ∈ Lip0(M).
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Proof. We will adapt an argument from [53, Lemma 7.28]. Once again let

Z =
{
K ⊂MU : K is compact and φ ∈ I(K)⊥

}
so that we have

⋂
Z = S(φ) = ∅. For each ζ ∈ MU choose a compact Kζ ∈ Z

such that ζ /∈ Kζ . Further, choose a compact set K and an open set V in MU

such that K0 ⊂ V ⊂ K and 0 /∈ K.

For every ζ ∈ K we may construct a function gζ ∈ Lip0(M) such that 0 ≤ g ≤ 1,
gUζ (ζ) = 1, and gζ ∈ IM (Kζ). Denote

Uζ =
{
ξ ∈MU : gUζ (ξ) > 0

}
.

Since ζ ∈ Uζ , the sets Uζ form an open cover of the compact K, and we can
extract a finite subcover Uζ1 ∪ . . . ∪ Uζn . Now let g = gζ1 + . . . + gζn . Then we
have gU (ζ) > 0 for all ζ ∈ K, so by compactness there is a positive constant c > 0
such that gU (ζ) ≥ c for ζ ∈ K. Therefore 1/g is a bounded Lipschitz function on
V ∩M . By McShane’s theorem there exists a bounded h ∈ Lip0(M) such that
h = 1/g on V ∩M .

To finish, let us write

〈f, φ〉 = 〈f − fgh, φ〉+ 〈fgζ1h, φ〉+ . . .+ 〈fgζnh, φ〉

and notice that all functions involved are products of bounded Lipschitz functions,
hence Lipschitz themselves. We have f = fgh on V ∩M , thus f − fgh ∈ IM (K0)
and we get 〈f − fgh, φ〉 = 0 because K0 ∈ Z. On the other hand, for each
i = 1, . . . , n we have fgζih ∈ IM (Kζi) and so 〈fgζih, φ〉 = 0 too. We conclude
that 〈f, φ〉 = 0.

The converse of Proposition 3.5.16 does not hold in general:

Example 3.5.17. Let M ⊂ R consist of 0 and the points xn = 2n for n ∈ N. The
functionals φn = δ(xn)/2n are uniformly bounded, so there is a subnet (xni) of
(xn) such that xni converges to some ζ ∈ MU and φni converges weak∗ to some
φ ∈ F(M)

∗∗
. It is clear that 〈f, φ〉 = 0 whenever f ∈ Lip0(M) is bounded. Let us

check that ζ ∈ S(φ). To that end, fix a neighborhood U of ζ. By Proposition 3.5.6
it will be enough to find f ∈ Lip0(M) such that 〈f, φ〉 = 1 and supp(f) ⊂ U ∩M .
We claim that this is satisfied by the function defined by f(0) = 0 and

f(xn) =

{
2n , if xn ∈ U
0 , if xn /∈ U

for n ∈ N. Indeed, it is easy to check that ‖f‖L ≤ 2. Moreover 〈f, φn〉 = 1 for
xn ∈ U , so considering a subnet of (xni) contained in U allows us to conclude that
〈f, φ〉 = 1.
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We will show now how extended supports may be used to characterize of some
of the classes of functionals defined in Definition 3.5.1. The following proposition
complements Proposition 3.5.2.

Proposition 3.5.18. Let φ ∈ F(M)
∗∗

.

(a) φ is concentrated at infinity if and only if S(φ) ∩MR = ∅.

(b) φ avoids 0 strongly if and only if 0 /∈ S(φ).

Proof. (a) Suppose that φ is concentrated at infinity. Let ζ ∈MR and take n ∈ N
such that 2n > ρU (ζ). Then U =

{
ξ ∈MU : ρU (ξ) < 2n

}
is a neighborhood of

ζ, and for every f ∈ Lip0(M) with supp(f) ⊂ U we have 〈f, φ〉 = 〈fHn, φ〉 =
〈f, φ ◦WHn〉 = 0. By Proposition 3.5.6, ζ /∈ S(φ).

Now suppose that S(φ) ∩MR = ∅ and fix n ∈ N. Then by Corollary 3.5.11

S(φ ◦WHn) ⊂ S(φ) ∩ supp(Hn)
U
⊂ B(0, 2n+1)

U
\MR = ∅.

But φ ◦WHn clearly avoids infinity (e.g. by Proposition 3.5.2(c)), so φ ◦WHn = 0
by Corollary 3.5.14.

(b) If φ avoids 0 strongly then 0 cannot be contained in S(φ) = S(φ ◦WG−n) ⊂
supp(G−n)

U
by Corollary 3.5.11. For the converse, assume 0 /∈ S(φ). By Propo-

sition 3.5.6 there is a neighborhood U ⊂ MU of 0 such that 〈f, φ〉 = 0 for every
f ∈ Lip0(M) supported in U∩M . Let n ∈ N be so large that supp(H−n) ⊂ U∩M .
Then for every f ∈ Lip0(M) we have〈

f, φ ◦WG−n

〉
= 〈f, φ〉 −

〈
f, φ ◦WH−n

〉
= 〈f, φ〉 − 〈fH−n, φ〉 = 〈f, φ〉

because supp(fH−n) ⊂ U ∩M . Hence φ = φ ◦WG−n .

It is not possible to characterize all the classes in Definition 3.5.1 via the extended
supports since a functional may have a component concentrated at infinity which
cannot be detected in its support (add for instance the functional from Example
3.5.15 with empty extended support to any element of F(M)

∗∗
and apply Corollary

3.5.9). However, under the assumption of avoiding infinity there is a mutual
correspondence between the extended support of a functional and its classification.
The next two propositions describe that link.

Proposition 3.5.19. If φ ∈ F(M)
∗∗

avoids infinity strongly, then S(φ) ⊂ MR.
If φ avoids infinity then the converse is also true.

Proof. Suppose that φ ∈ F(M)
∗∗

avoids infinity strongly, i.e. φ = φ ◦WHn for
some n ∈ N. In view of Corollary 3.5.11 then

S(φ) = S(φ ◦WHn) ⊂ supp(Hn)
U
⊂MR.
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For the converse, assume that φ avoids infinity and that S(φ) ⊂ MR. Since
S(φ) is compact and ρU�MR is a real-valued continuous function, it is bounded
on S(φ) and there exists n ∈ N such that U =

{
ζ ∈MU : ρU (ζ) < 2n

}
is an open

neighborhood of S(φ). For every f ∈ Lip0(M) we thus get by Theorem 3.5.13 that

〈f, φ〉 = 〈fHn, φ〉 = 〈f, φ ◦WHn〉

because f = fHn on U . Hence φ = φ ◦WHn .

For the second proposition, we need an independent lemma describing the stability
of extended supports with respect to weak∗ limits:

Lemma 3.5.20. Let (φn) be a sequence of functionals in F(M)
∗∗

that avoid

infinity, and suppose that φn
w∗−→ φ ∈ F(M)

∗∗
. Then S(φ) ⊂

⋃
n S(φn)

U
.

Proof. Let ζ /∈
⋃
n S(φn)

U
and let U and V be disjoint open neighborhoods of ζ

and
⋃
n S(φn)

U
, respectively. Then for any f ∈ Lip0(M) with supp(f) ⊂ U we

have by Theorem 3.5.13 that 〈f, φn〉 = 0 for every n ∈ N. Hence also 〈f, φ〉 =
limn→∞ 〈f, φn〉 = 0 which proves that ζ /∈ S(φ) by Proposition 3.5.6.

Proposition 3.5.21. If φ ∈ F(M)
∗∗

avoids infinity then S(φ) = S(φ) ∩MR
U

.

Proof. One inclusion is obvious. For the other one, recall that

S(φ ◦WHn) ⊂ S(φ) ∩B(0, 2n+1)
U
⊂ S(φ) ∩MR

according to Corollary 3.5.11. Applying Lemma 3.5.20 to φ = limn→∞ φ ◦WHn

we conclude that S(φ) ⊂ S(φ) ∩MR
U

as desired.

Compare Proposition 3.5.21 with Corollary 3.5.7: if φ ∈ F(M)
∗∗

is weak∗ contin-
uous then its extended support is completely determined by its intersection with
M , whereas if φ avoids infinity then it is completely determined by its intersection
with MR.

Let us end this chapter by identifying those functionals in F(M)
∗∗

which are
supported on just one point. In F(M), these are easily seen to be just the (mul-
tiples of) evaluations on said point. In the case of F(M)

∗∗
the situation is more

complicated, since we have evaluations (on elements of MR this time) but also
derivations. The next proposition states that, when we restrict ourselves to the
functionals that avoid infinity, these cover all possible cases.

Proposition 3.5.22. Suppose that φ ∈ F(M)
∗∗

avoids infinity and let ζ ∈ MR.
Then the following are equivalent:
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(i) S(φ) ⊂ {ζ},
(ii) φ = aδ(ζ) + ψ, where a ∈ R and ψ is a derivation at ζ.

Proof. First assume (ii), and let ξ ∈ MU , ξ 6= ζ. Choose neighborhoods U ,
V of ξ, ζ such that d(U ∩M,V ∩M) > 0. Suppose f ∈ Lip0(M) is such that
supp(f) ⊂ U∩M . Then fU = 0 on V , so 〈f, ψ〉 = 0 by definition and so 〈f, φ〉 = 0.
By Proposition 3.5.6 we get ξ /∈ S(φ), and (i) follows.

Now assume (i). First suppose ζ = 0, and let f ∈ Lip0(M) be such that fU

is constant in a neighborhood U of 0. This constant must obviously be 0. By
Theorem 3.5.13, we have 〈f, φ〉 = 0. This means that φ is a derivation at 0.

Suppose now that ζ 6= 0, and choose h ∈ Lip0(M) such that hU = 1 in a neigh-
borhood of ζ; e.g. take h = ( 1

bρ) ∧ 1 where b < ρU (ζ). Let ψ = φ − aδ(ζ) where
a = 〈h, φ〉. Then ψ is a derivation at ζ. Indeed, suppose f ∈ Lip0(M) is such that
fU takes a constant value c in a neighborhood U of ζ. Let g = f −ch, then gU = 0
on U , and 〈g, φ〉 = 0 by Theorem 3.5.13, so

〈f, ψ〉 = 〈f, φ〉 − afU (ζ) = 〈f, φ〉 − ac = 〈f − ch, φ〉 = 〈g, φ〉 = 0.

Note that we do not need the hypothesis that φ avoids infinity for the implication
(ii)⇒(i). In fact, one easily checks that any φ satisfying (ii) for some ζ ∈ MR

avoids infinity strongly.

Corollary 3.5.23. Suppose that φ ∈ F(M)
∗∗

avoids infinity. Then S(φ) is finite
if and only if φ is a finite linear combination of point evaluations and derivations
on points of MU .

Proof. If S(φ) is finite, then by virtue of Proposition 3.5.21 we have S(φ) ⊂MR.
Denote S(φ) = {ζ1, . . . , ζk} and find neighborhoods U1, . . . , Uk of ζ1, . . . , ζk with
pairwise disjoint closures. For each i define hi ∈ Lip0(M) such that hUi = 1 on Ui
and hUi = 0 on

⋃
j 6=i Uj . Since maxi ρ

U (ζi) <∞, we may moreover take hi to have
a bounded support. By Theorem 3.5.13 then

φ = φ ◦W∑k
i=1 hi

=

k∑
i=1

φ ◦Whi .

But Corollary 3.5.11 gives that S(φ ◦Whi) ⊂ {ζi}, so Proposition 3.5.22 yields

φ ◦Whi = aiδ(ζi) + ψi

for some a ∈ R and ψi a derivation at ζi, and the forward implication follows. On
the other hand, if φ avoiding infinity is a nontrivial finite linear combination of
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

evaluations and derivations, then these also avoid infinity by the uniqueness of the
decomposition in Theorem 3.5.3 and Proposition 3.5.22 implies that their supports
are singletons. An appeal to Corollary 3.5.9 yields that S(φ) is finite.

Combining Proposition 3.5.22 with Corollary 3.5.7 immediately implies the follow-
ing, that can also be proved by a direct argument:

Corollary 3.5.24. If φ ∈ F(M) is a derivation then φ = 0.

Note that this already provides us with an order-theoretic property that is not in-
variant under changes of base point: F(M)

∗∗ \F(M) contains positive functionals
supported on just one point if and only if the base point of M is not isolated. We
will see a stronger version of this behavior in Corollary 4.3.10.

3.6 Open problems

We have seen in Proposition 3.1.3 how Kalton’s original decomposition from [40],
or rather our proposed modification thereof, allows us to express every functional
in F(M) as an absolutely convergent series of elements with bounded supports.
More generally, by Theorem 3.5.3 this is also valid for every element of F(M)

∗∗

that avoids infinity. However, the supports of the series terms have a very specific
form: they are annuli centered at the base point, with growing sizes. So we may
ask:

Problem 3.1. Are there more general forms of the series decomposition (3.6)
where the supports of individual terms are allowed to have other shapes?

For instance, one could want the terms to be supported on balls of a given size,
or on arbitrary balls. The existence of such a decomposition would likely have
consequences in the study of approximation properties, and more generally in
the study of the structure of the bidual F(M)

∗∗
. Here we remark that, in any

case, these decompositions can only be valid for functionals that avoid infinity by
Proposition 3.5.2(a). More general decompositions could also be used to reduce
certain properties of F(M) to the corresponding properties on F(A) for certain
subsets A of M , in line with the results in [2, 27].

A second open question concerns the following weakening of the concept of normal
functional: let us say that φ ∈ F(M)

∗∗
is sequentially normal if 〈fn, φ〉 → 0 for

any sequence (fn) of non-negative functions in BLip0(M) that decreases pointwise
to 0. This is the same condition as for normal elements, except that nets are
replaced with sequences.

Problem 3.2. Is sequential normality equivalent to normality (and hence to weak∗

continuity, by Theorem 3.2.5)?
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For separable M the answer is positive since BLip0(M) is then weak∗ metrizable.
We do not know what happens in the nonseparable case, but we suspect that
the answer is negative. A counterexample for Problem 3.2 is likely to answer
(negatively) the following question, too:

Problem 3.3. Is S(φ) separable for every φ ∈ F(M)
∗∗

?

Proposition 3.5.8, showing that S(φ) ∩M is separable, provides a partial positive
answer to that question.

Our next problem is related to the intersection theorem. Although the result
concerns exclusively the linear structure of Lipschitz and Lipschitz-free spaces, in
our proof we have required some non-trivial facts about the algebra structure of
Lipschitz spaces, namely Theorem 3.3.2. Since the result seems of a fundamental
nature, it is natural to ask whether there is a more direct proof that avoids such
algebraic detours, e.g. by using a method based on Lipschitz partitions of unity
instead.

Problem 3.4. Find a direct proof of the intersection theorem (Theorem 3.3.5)
that does not depend on the algebra structure of Lip0(M).

The following question concerns our proposed definition of extended support for
elements φ ∈ F(M)

∗∗
. We have already argued that S(φ) must be defined as a

subset of MU , and that it cannot define a “sharp region” to which the restriction
of f ∈ Lip0(M) completely determines the value of 〈f, φ〉 in the sense of Proposi-
tion 3.3.9(iii), having to settle on a “soft region” in the sense of Theorem 3.5.13
instead. With these restrictions in mind, our proposed notion successfully extends
supports for F(M) and has all expected properties for functionals that avoid in-
finity (more interesting consequences will be obtained in Chapter 4). But it seems
to break down when we consider functionals that do not avoid infinity or even are
concentrated at infinity. We do not know whether this issue can be solved with
an alternative definition, or if one can prove that every reasonable definition of
extended support must fail at infinity.

Problem 3.5. Does there exist a notion of extended support in F(M)
∗∗

that sat-
isfies all expected properties even for functionals that are concentrated at infinity?

To finish this list of questions, let us mention a classical, probably difficult open
problem concerning the bidual F(M)

∗∗
. It is our hope that the machinery of

extended supports can be used to obtain advances towards its solution:

Problem 3.6. For which metric spaces M is F(M) complemented in its bidual?

Let us note that it would be enough to show that F(M) is complemented in
the space Y of all functionals of F(M)

∗∗
that avoid infinity, since Y is a 1-

complemented subspace of F(M)
∗∗

by Theorem 3.5.3.
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Chapter 3. Supports in Lipschitz-free spaces and their biduals

Not all metric spaces M satisfy the property from Problem 3.6. Indeed, if M is
separable and F(M) contains c0 (e.g. for M = c0) then an easy application of
Sobczyk’s and Phillips’ theorems shows that F(M) cannot be complemented in
F(M)

∗∗
. On the other hand, the answer is positive when M is a finite-dimensional

Banach space or a subset thereof with nonempty interior [16]. For other cases, the
answer is not known. The case M = `1 is particularly important, as a positive
answer would imply that any Banach space that is bi-Lipschitz equivalent to `1 is
actually isomorphic to `1; see [31, Problem 16].
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Integral representation

The properties of supports in F(M) reviewed in Chapter 3, together with the fact
that measures also act (by integration) as functionals on Lipschitz spaces, make it
natural to analyze the relationship with spaces of measures defined on the metric
space M . Some previously known results include the following: every finite Borel
measure on M with compact support represents an element of F(M) [30, p. 123],
but not all elements of F(M) can be represented in that way when M is an infinite
compact [53, Theorem 3.19]. Moreover, every positive element in F(M) is shown
in [9, Proposition 2.7] to be representable as a positive Borel measure on M (a
typo incorrectly specifies a probability measure; in fact, the measure does not even
have to be finite as we will show). A similar result holds, with finite measures, for
other function spaces related to Lipschitz spaces [34].

This chapter is devoted to exploring these topics, and we provide general forms
of all statements given above. We also provide justification for our choice of the
name “support”, as we shall see that this notion coincides with the usual one for
elements of F(M) that can be identified with measures. Moreover, we extend this
analysis to functionals in F(M)

∗∗
and measures on MU . Studying this matter

leads to the recognition of the uniform compactification as the appropriate setting
for the analysis of F(M)

∗∗
among other enlightening ideas.

This study also leads to a number of results on majorizable elements of F(M) and
F(M)

∗∗
, as we obtain the unexpected result that they almost coincide with those

functionals that can be represented as a measure. This has some important con-
sequences such as the weak∗ continuity of most majorizable functionals when M
is compact, or the existence of canonical “Jordan decompositions” of majorizable
functionals as difference of positive functionals. We end the chapter by character-
izing the metric spaces M such that every element of F(M) is majorizable.
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Chapter 4. Integral representation

All results presented in this chapter may be found in the preprint [3].

4.1 Radon measures

We start by introducing the basic measure-theoretic concepts used in this chapter.
It is important to mention that the terminology is not universal, and there are
conflicting notions of regularity and Radonness in the main references, e.g. [12,
47]. We have checked carefully that all referenced results really hold under our
terminology of choice.

Let X be a Hausdorff topological space and let µ be a Borel measure on X, i.e. a
measure defined on the Borel σ-algebra of X. If µ is positive (but not necessarily
finite) then we will say that it is

• inner regular if µ(E) = sup {µ(K) : K ⊂ E compact} for every Borel set
E ⊂ X,

• outer regular if µ(E) = inf {µ(U) : U ⊃ E open} for every Borel set E ⊂ X,

• regular if it is both inner and outer regular,

• Radon if it is regular and finite.

Notice that if µ is finite then inner regularity implies regularity, and if additionally
X is compact then each of the four conditions above implies the other three.

If µ is a finite signed (real-valued) measure instead, we define its positive and
negative variation by

µ+(E) = sup {µ(A) : A ⊂ E Borel}
µ−(E) = sup {−µ(A) : A ⊂ E Borel}

for any Borel set E ⊂ X, and its total variation as |µ| = µ+ + µ−. Then µ+, µ−

and |µ| are finite positive Borel measures on X, and µ is said to have each of the
four regularity properties above when the total variation measure |µ| does. We
also have

µ = µ+ − µ−.
This expression is called the Jordan decomposition of µ, and satisfies the following
property: if we have µ = λ+−λ− for a pair λ+, λ− of finite positive Borel measures
on X, then λ+ ≥ µ+ and λ− ≥ µ−. Moreover µ+, µ− are unique with respect to
that property.

The support of a measure µ is defined as the set supp(µ) of points x ∈ X such
that |µ| (U) > 0 for every open neighborhood U of x. It is always a closed set. If
µ is Radon, then supp(µ) = ∅ if and only if µ = 0 (see e.g. [12, Theorem 7.2.9]).
Let us also mention that, when X is metrizable, the support of every finite Borel
measure on X is separable (see e.g. [42, Lemma 2.1]).
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4.1 Radon measures

Given a Borel measure µ on X and a Borel set A ⊂ X, we will denote by µ�A the
restriction of µ to A defined by

µ�A(E) = µ(E ∩A)

for any Borel set E ⊂ X. This is again a Borel measure on X. We will say that
µ is concentrated on A if µ = µ�A, or, equivalently, |µ| (X \ A) = 0. Let us recall
that, for any µ, there is at least one Hahn decomposition of X associated to µ, i.e.
a partition X = A+ ∪A− into two disjoint Borel subsets such that µ+ and µ− are
concentrated on A+ and A−, respectively.

In our analysis, we will consider both positive and signed Borel measures. Signed
measures will have finite total variation, but positive measures may be finite or σ-
finite. Measures will not be assumed to be finite, positive, or regular unless stated
explicitly. We will moreover restrict ourselves to the cases where X is either a
metric space or a compact space, namely M and MU . When the underlying space
is M , then any finite Borel measure µ is automatically outer regular, and if M is
complete and separable then µ is also Radon (see Theorems 1.4.8 and 7.1.7 in [12],
where a slightly different notation is used).

We will pay special attention to Radon measures, and denote by M(M) and
M(MU ) the Banach spaces of Radon measures on M and MU , respectively. Recall
that, since MU is compact,M(MU ) is the dual of the space C(MU ) of continuous
functions on MU , which by Proposition 3.4.3 can be identified with the space of
bounded, uniformly continuous functions on M . Let us remark once again that
finite Borel measures on M or MU are Radon as soon as they are inner regular.

It is possible to identify M(M) with the subspace of M(MU ) consisting of those
measures that are concentrated on M . This follows easily from the fact that M
is always a Borel subset of MU (it is in fact a Gδ subset, as we assume M to be
complete) and that a subset K ⊂M is compact as a topological subspace of M if
and only if it is compact as a topological subspace of MU . We will make use of
this identification without further notice.

We will, in fact, consider a slightly more general class than the Radon measures:

Definition 4.1.1. Let us say that a Borel measure µ on M (resp. MU ) is almost
Radon if µ({0}) = 0 and, for every closed subset K of M (resp. MU ) such that
0 /∈ K, the restriction µ�K is Radon.

It is straightforward to check that every almost Radon measure µ on M is inner
regular by noticing that

µ(E) = lim
n→∞

µ(E \B(0, 2−n)) = lim
n→∞

µ�M\B(0,2−n)(E)

for every Borel set E ⊂M , and similarly for MU (note that we use the condition
µ({0}) = 0 here). Thus, almost Radon measures are either signed Radon measures
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Chapter 4. Integral representation

or σ-finite positive measures that are Radon except for a “singularity” at the
base point. We must exclude the case of non-finite signed measures because of
indeterminacies of the form ∞−∞ around the base point - instead, such objects
will be treated as the difference between two almost Radon measures.

Notice that, for an almost Radon measure µ, we have supp(µ) = ∅ if and only
if µ = 0. Indeed, for every closed set K not containing 0 we have supp(µ�K) ⊂
supp(µ) = ∅ and hence µ�K = 0 as µ�K is Radon. Also, any almost Radon
measure on M has separable support.

It is also easy to see that every almost Radon measure can be expressed canonically
as a limit of Radon measures. Let us state and prove it explicitly for later reference:

Lemma 4.1.2. Let µ be an almost Radon measure on MU , and for n ∈ N let µn
be defined by dµn = GU−n dµ. Then

(a) each µn is Radon,

(b) µn converges setwise to µ, and

(c) if Lµ ∈ F(M)
∗∗

then Lµn = Lµ ◦WG−n .

Proof. Notice that dµn = GU−n d(µ�Rn) where Rn =
{
ζ ∈MU : ρU (ζ) ≥ 2−n

}
,

therefore µ�Rn and µn are Radon. This establishes (a), and (c) is obvious. For
statement (b), observe that (GU−n) converges pointwise and increasingly to the
characteristic function of the set MU \ {0}. Therefore, for any Borel set E ⊂MU
we have

µ(E) = µ(E \ {0}) =

∫
MU\{0}

χE dµ = lim
n→∞

∫
MU\{0}

χE ·GU−n dµ = lim
n→∞

µn(E)

where χE is the characteristic function of E. Indeed, this follows from either of
Lebesgue’s convergence theorems (monotone or dominated) depending on whether
µ is positive or Radon.

4.2 Functionals induced by measures

In this section we will carry out an analysis of the relationship between measures
and functionals on Lipschitz spaces. We will determine which functionals admit
an integral representation with a measure, which measures give rise to such func-
tionals, and the relationship between the properties of measure and functional in
that case.

Let us start with the observation that a Borel measure µ defined on a complete
metric space M acts by integration on measurable functions, in particular on
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Lipschitz functions, and thus we may define a formal mapping Lµ from Lip0(M)
to the reals or extended reals by

Lµ(f) =

∫
M

f dµ

for f ∈ Lip0(M); at least, for those f that are µ-integrable. More generally, if µ
is a Borel measure on the uniform compactification MU then we denote

Lµ(f) =

∫
MU

fU dµ

for f ∈ Lip0(M). Note that if the integral
∫
M
f dµ (resp.

∫
MU

fU dµ) exists for
every f then this defines a linear functional Lµ on Lip0(M). Let us remark here
that the identification of measures on M as measures on MU is consistent with
this notation.

We will say that a functional φ in F(M) or F(M)
∗∗

is induced or represented by
a measure µ if φ = Lµ. We shall use the notation δζ for the Dirac measure on
ζ ∈ MU ; note the difference with the functional δ(ζ) of F(M)

∗∗
(if ζ ∈ MR),

which is obviously induced by δζ . Let us remark that the measure δ0 induces
the null functional because all f ∈ Lip0(M) vanish at the base point. Thus, any
functional that is represented by a measure µ is also represented by a measure

µ̂ = µ− µ({0}) · δ0 = µ�MU\{0}

such that µ̂({0}) = 0. We shall denote by M0(M) and M0(MU ) the spaces of
such Radon measures with no mass at the base point.

Measures that induce continuous functionals

Let us start by identifying those measures that induce bounded functionals on
Lip0(M). The next two propositions show that they are precisely the measures
with “finite first moment”. This generalizes the first part of [9, Proposition 2.7];
see also [34, Lemma 3.3].

Proposition 4.2.1. Let µ be a Borel measure on MU such that µ({0}) = 0. Then
the following are equivalent:

(i) Lµ ∈ F(M)
∗∗

,

(ii)

∫
MU

∣∣fU ∣∣ d |µ| <∞ for every f ∈ Lip0(M),

(iii)

∫
MU

ρU d |µ| <∞.

If they hold then µ is concentrated on MR, |µ| (K) <∞ for any closed K ⊂ MU

such that 0 /∈ K, and µ is σ-finite. If µ is moreover inner regular then it is almost
Radon.
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Chapter 4. Integral representation

Note that the equivalence (i)⇔(ii) may be regarded as a principle of uniform
boundedness: if Lµ is pointwise finite, i.e. if it correctly defines a linear functional,
then it is automatically continuous.

Proof. The implication (i)⇒(ii) is obvious, as 〈f,Lµ〉 =
∫
MU

fU dµ is finite for
every f ∈ Lip0(M). (ii)⇒(iii) is also obvious taking f = ρ. Now assume (iii), then
for every f ∈ Lip0(M) we have

|〈f,Lµ〉| =
∣∣∣∣∫
MU

fU dµ

∣∣∣∣ ≤ ∫
MU

∣∣fU ∣∣ d |µ| ≤ ‖f‖L · ∫
MU

ρU d |µ|

hence we get (i) with ‖Lµ‖ ≤
∫
MU

ρU d |µ|. In particular, ρU < ∞ a.e.(|µ|) and
therefore µ is concentrated on MR. Moreover, if K is a closed subset of MU such
that 0 /∈ K, then there is r > 0 such that ρU ≥ r on K and so∫

MU
ρU d |µ| ≥

∫
K

ρU d |µ| ≥ r · |µ| (K)

hence |µ| (K) <∞. SinceMU\{0} =
⋃
n∈NKn whereKn =

{
ζ ∈MU : ρU (ζ) ≥ 1

n

}
and µ({0}) = 0, we get that µ is σ-finite. The last statement is obvious.

In the version for measures on M , we get additional information:

Proposition 4.2.2. Let µ be a Borel measure on M such that µ({0}) = 0. Suppose
that either M is separable or µ is inner regular. Then the following are equivalent:

(i) Lµ ∈ F(M)
∗∗

,

(ii) Lµ ∈ F(M),

(iii)

∫
M

|f | d |µ| <∞ for every f ∈ Lip0(M),

(iv)

∫
M

ρ d |µ| <∞,

(v) Lµ =

∫
M

δ(x) dµ(x) as a Bochner integral.

If they hold then µ is almost Radon.

Proof. By considering µ as a Borel measure on MU that is concentrated on M ,
the equivalence of (i), (iii) and (iv) follows from Proposition 4.2.1, as does the last
statement if µ is inner regular. If M is assumed to be separable instead then every
closed K ⊂M with 0 /∈ K is separable and complete (recall that we assume M to
be complete) and hence the finiteness of µ�K implies that it is Radon, thus µ is
again almost Radon.
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The implication (ii)⇒(i) is obvious, as is (v)⇒(ii) since the integrand δ(x) belongs
to F(M) for all x ∈ M . Finally, assume (iv) and we will prove (v). Notice that
the mapping δ : M → F(M) is continuous and its range is µ-essentially separable:
indeed, µ is almost Radon so it is concentrated on supp(µ) which is separable.
Thus δ is µ-measurable and, since∫

M

‖δ(x)‖ dµ(x) =

∫
M

ρ(x) dµ(x)

is finite, the Bochner integral in (v) exists as an element of F(M) (see e.g. [19,
Theorems II.1.2 and II.2.2]), and its action on each f ∈ Lip0(M) is obviously the
same as that of Lµ. This finishes the proof.

Note that the implication (iv)⇒(ii) is contained in [9, Proposition 2.7] without our
assumptions on separability of M or regularity of µ. However, the proof in that
paper appears to have a gap. Indeed, the authors obtain weak∗ continuity by com-
bining Lebesgue’s dominated convergence theorem with the Banach-Dieudonné
theorem. Thus, they are implicitly applying the dominated convergence theorem
to nets instead of sequences, which is not valid in general. In order to reduce
the argument to sequences one needs weak∗ metrizability, and thus µ has to be
concentrated on a separable set. This is precisely where we use our extra hypoth-
esis. We do not know whether the implication (i)⇒(ii) holds for non-separable M
without regularity assumptions on µ, but if it does, the proof of that fact requires
a more delicate argument.

Using the condition that ρ (or ρU ) be µ-integrable, we obtain the following simple
consequence: if Lµ ∈ F(M)

∗∗
then L(µ�E) ∈ F(M)

∗∗
for any Borel subset E of

MU . If moreover M is separable or µ is inner regular then L(µ�E) ∈ F(M) for
any Borel E ⊂M , in particular L(µ�M ) ∈ F(M).

We also get the following immediate consequence:

Corollary 4.2.3. The following are equivalent:

(i) M is bounded,

(ii) every Radon measure on M induces an element of F(M),

(iii) every Radon measure on MU induces an element of F(M)
∗∗

.

Proof. If M is bounded then so are ρ and ρU , and hence ρU is µ-integrable for
every finite measure µ on M or MU . On the other hand, if M is unbounded then
we may find points xn ∈ M such that d(xn, 0) ≥ 2n, and µ =

∑
n 2−nδxn is a

finite Radon measure such that
∫
M
ρ dµ =∞.
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Uniqueness of representing measures

A natural question is whether it is possible for different measures to induce the
same functional on Lip0(M). We can prove that the representing measure must
be unique (up to its content at {0}) without requiring finiteness; instead, we make
a milder assumption of regularity. This will follow from the next result, which
shows that the property of positivity and the support are common for µ and Lµ.
Note that the latter provides additional justification for our choice of the name
“support” in Chapter 3.

Proposition 4.2.4. Suppose that φ ∈ F(M)
∗∗

is induced by an almost Radon
measure µ on MU . Then S(φ) = supp(µ), and φ is positive if and only if µ is
positive.

Proof. For the rest of the proof, we fix a Hahn decomposition A+, A− of MU

associated to µ. We will also consider the open sets

Rn =
{
ζ ∈MU : ρU (ζ) > 2−n

}
for n ∈ N. Note that Rn ⊂ Rn+1 and

⋃
n∈NRn = MU \ {0}.

We will start with the first assertion. Let ζ ∈MU and suppose ζ /∈ supp(µ). Then
there is an open neighborhood U of ζ such that |µ| (U) = 0; by passing to a smaller

neighborhood, we may assume that |µ| (UU ) = 0. If f ∈ Lip0(M) is supported on

U ∩M , then fU is supported on U
U

and 〈f, φ〉 =
∫
U
U fU dµ = 0. Thus ζ /∈ S(φ)

by Proposition 3.5.6.

Now suppose ζ ∈ supp(µ) and let U be a neighborhood of ζ. We will construct
a function f ∈ Lip0(M) such that supp(f) ⊂ U ∩ M and 〈f, φ〉 > 0 and this
will show that ζ ∈ S(φ), again by Proposition 3.5.6. Let U ′ be a neighborhood

of ζ such that U ′
U ⊂ U , then |µ| (U ′ \ {0}) > 0 since µ({0}) = 0. Writing

U ′ \ {0} =
⋃
n∈N(U ′ ∩ Rn) as a nested union, we may find an n ∈ N such that

|µ| (U ′′) > 0 where U ′′ = U ′ ∩ Rn. Since 0 /∈ Rn
U

the measure µ�
Rn
U , hence also

µ�U ′′ , is Radon by assumption. Let B± = U ′′ ∩ A± and, using the Radonness of
µ�U ′′ , choose compact sets K± ⊂ B± such that |µ| (B+\K+) and |µ| (B−\K−) are
less than 1

4 |µ| (U
′′). The compact sets K+, K− and MU \U ′′ are pairwise disjoint,

hence by Proposition 3.4.4 they have pairwise disjoint open neighborhoods V +,
V −, W whose intersections with M are at a positive distance from each other.
Therefore there exists f ∈ Lip0(M) such that |f | ≤ 1, f = 1 on V + ∩M , f = −1
on V − ∩M , and f = 0 on W ∩M . Then supp(f) ⊂ U ′′ ∩M ⊂ U ∩M and fU

vanishes outside of U ′′, and we have

〈f, φ〉 =

∫
MU

fU dµ = |µ| (K+) + |µ| (K−) +

∫
U ′′\(K+∪K−)

fU dµ
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and therefore

|µ| (U ′′)− 〈f, φ〉 = |µ| (B+) + |µ| (B−)− 〈f, φ〉
≤ |µ| (B+ \K+) + |µ| (B− \K−) + |µ| (U ′′ \ (K+ ∪K−))

= 2 |µ| (B+ \K+) + 2 |µ| (B− \K−) < |µ| (U ′′)

thus 〈f, φ〉 > 0 as required.

Now we proceed with the second assertion. If µ is positive then φ is obviously
positive, too. Assume now that µ is not positive, that is |µ| (A−) > 0. Then, as
above, there exists n ∈ N such that 0 < |µ| (A−∩Rn) <∞ and that µ�Rn is Radon.
Let B± = A±∩Rn. By inner regularity there are compact sets K± ⊂ B± such that
|µ| (B+ \K+) and |µ| (B− \K−) are less than 1

3 |µ| (B
−). Since K+ ∪ (MU \Rn)

and K− are disjoint and compact, by Proposition 3.4.4 they have disjoint open
neighborhoods V +, V − such that

d(V + ∩M,V − ∩M) > 0,

and there exists f ∈ Lip0(M) such that 0 ≤ f ≤ 1, f = 0 on V + ∩M , and f = 1
on V − ∩M . Thus fU vanishes outside of Rn and

〈f, φ〉 =

∫
MU

fU dµ = µ(K−) +

∫
RUn\(K+∪K−)

f dµ

≤ − |µ| (K−) + |µ| (B+ \K+) + |µ| (B− \K−)

= − |µ| (B−) + |µ| (B+ \K+) + 2 |µ| (B− \K−) < 0

and, since f ≥ 0, this implies that φ is not positive.

Let us remark that the same argument is valid for φ ∈ F(M) and measures on M ,
with the following adjustments:

• Proposition 3.3.10 is used instead of Proposition 3.5.6,

• Proposition 3.4.4 is replaced by the fact that two disjoint closed subsets A, B
of M , at least one of them compact, can also be separated by neighborhoods
at a positive distance of each other.

Thus we also have:

Proposition 4.2.5. Suppose that m ∈ F(M) is induced by an almost Radon
measure µ on M . Then supp(m) = supp(µ), and m is positive if and only if µ is
positive.

Using the equivalence of supports, we can now prove the uniqueness of the measure
inducing a functional on Lip0(M) as long as it is inner regular.
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Chapter 4. Integral representation

Proposition 4.2.6. Let µ, λ be almost Radon measures on MU (resp. on M),
and suppose that they induce the same functional Lµ = Lλ in F(M)

∗∗
(resp. in

F(M)). Then µ = λ.

Proof. We will prove the statement for functionals in F(M)
∗∗

and measures on
MU , the predual case is proved with an analogous argument. For n ∈ N, let µn, λn
be the measures given by dµn = GU−n dµ and dλn = GU−n dλ. By Lemma 4.1.2,
they are Radon measures on MU and

Lµn = Lµ ◦WG−n = Lλ ◦WG−n = Lλn.

Therefore, from the linearity of the operator L on finite measures and from Propo-
sition 4.2.4 we get that

supp(µn − λn) = S(L(µn − λn)) = S(Lµn − Lλn) = S(0) = ∅,

which implies that µn = λn by Radonness. An application of Lemma 4.1.2(b) now
yields µ = λ as claimed.

Let us remark that the uniqueness result in Proposition 4.2.6 for the bidual is
yet another hint that the uniform compactification is really the “correct” com-
pactification to consider when analyzing F(M)

∗∗
. Indeed, that result fails for

any compactification where we can find two different elements ζ, ξ that cannot be
separated by Lipschitz functions on M (e.g. the Stone-Čech compactification in
Example 3.4.1) as the nonzero measure δζ − δξ induces the null functional.

Something similar happens with the next theorem, which is probably the key
result in this chapter. In order to motivate it, let us first mention an immediate
consequence of Propositions 4.2.1 and 4.2.2: Let µ be an almost Radon measure
on MU that induces a functional in F(M)

∗∗
. If µ is concentrated on M , then the

induced functional is actually in F(M). It is natural to ask whether the opposite
implication also holds. That is, if Lµ ∈ F(M), must µ be concentrated on M?
The answer is negative if we consider any compactification that is strictly larger
than MU , the simplest counterexample being again δζ − δξ as in the previous
paragraph. However, the answer is positive for the uniform compactification.

Theorem 4.2.7. Let µ be an almost Radon measure on MU and suppose that
Lµ ∈ F(M)

∗∗
. Then the following are equivalent:

(i) Lµ ∈ F(M),

(ii) Lµ = L(µ�M ),

(iii) µ is concentrated on M .

In order to prove this theorem, we will require the following property whose proof
may be found within the proof of [53, Theorem 3.43]; in that reference, the property
is actually proved for elements of βM but it is equally valid in MU .
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4.2 Functionals induced by measures

Lemma 4.2.8. For every ζ ∈MU \M there is r > 0 such that, for every p ∈M ,
every net in M that converges to ζ is eventually disjoint from B(p, r).

Proof. Fix ζ and assume that the lemma fails, then for every n ∈ N there exist

pn ∈M and a net (x
(n)
i ) in M that converges to ζ and such that (x

(n)
i ) is frequently

in B(pn,
1
n ), i.e. fn(x

(n)
i ) < 1

n frequently, where fn : x 7→ d(x, pn). Taking limits
on i we get fUn (ζ) ≤ 1

n . Fix m > n ∈ N, then we can choose an element of the net

(x
(m)
i ) such that fn(x

(m)
i ) < 2

n (because that net converges to ζ) and moreover

x
(m)
i ∈ B(pm,

1
m ), hence

d(pn, pm) ≤ d(pn, x
(m)
i ) + d(x

(m)
i , pm) <

2

n
+

1

m
<

3

n
.

It follows that the sequence (pn) is Cauchy, therefore it converges to some p ∈M .
Now let U be any neighborhood of ζ, then for every n ∈ N we may find m ≥ n such

that pm ∈ B(p, 1
n ) and x

(m)
i ∈ U such that d(x

(m)
i , pm) < 1

m , so d(M ∩ U, p) ≤
d(x

(m)
i , p) < 2

n . Thus Proposition 3.4.4 implies that p ∈ U . We conclude that
ζ = p ∈M , a contradiction.

Proof of Theorem 4.2.7. (iii)⇒(ii) is obvious and (ii)⇒(i) follows from the remarks
after the proof of Proposition 4.2.2.

It is enough to prove the implication (i)⇒(iii) when µ is Radon. Indeed, if (iii)
fails then |µ| (MU \M) > 0 and Lemma 4.1.2 implies that |µn| (MU \M) > 0 for
some n ∈ N, where dµn = GU−n dµ. So Lµn = Lµ ◦WG−n ∈ F(M) but µn is not
concentrated on M . That is, (i)⇒(iii) fails for the Radon measure µn.

Hence, for the rest of the proof we will assume (i) and suppose that µ is Radon. Let
A+, A− be a Hahn decomposition of MU associated to µ, denote B± = A± \M ,
and fix ε > 0. We will prove that |µ| (B±) < 7ε and this will imply (iii).

For every p ∈M consider the 1-Lipschitz function ρp given by ρp(x) = d(x, p) for
x ∈M , and define

s(ζ) = inf
{
ρUp (ζ) : p ∈M

}
for every ζ ∈MU , where each ρp is extended to a continuous function with values
in [0,+∞] by Proposition 3.4.5. It is clear that s(ζ) = 0 if ζ ∈ M , and Lemma
4.2.8 asserts that s(ζ) > 0 when ζ /∈M . Thus MU \M =

⋃
n∈NKn where

Kn =
{
ζ ∈MU : s(ζ) ≥ 1

n

}
.

Since s is the infimum of the continuous functions ρUp , it is an upper semicontin-

uous function on MU and so each Kn is compact. We have then that µ(B±) =
limn→∞ µ(B±∩Kn). Choose n ∈ N such that |µ| (B±\Kn) < ε. By inner regularity
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Chapter 4. Integral representation

of µ we may choose compact setsK± ⊂ B±∩Kn such that |µ| ((B±∩Kn)\K±) < ε,
and hence |µ| (B±\K±) < 2ε. Since K+ and K− are disjoint, by Proposition 3.4.4
there are disjoint open neighborhoods U± of K± such that d(U+∩M,U−∩M) > 0.
Denote

r =
1

2
min

{
1

n
, d(U+ ∩M,U− ∩M)

}
.

Now let F be the family of all finite subsets of M containing 0. For every F ∈ F,
let

fF (x) = 1 ∧ 1

r
d(x, F ∪ (U− ∩M)) (4.1)

for x ∈ M . Then fF ∈ Lip0(M) is such that 0 ≤ fF ≤ 1, ‖fF ‖L ≤
1
r , and

fF = 0 on U− ∩M , hence fUF = 0 on K−. We claim that fUF = 1 on K+. Indeed,
let ζ ∈ K+ and choose a net (xi) in M that converges to ζ. We may assume
that xi ∈ U+ for all i by passing to a subnet, so that d(xi, U

− ∩M) > r. Since
s(ζ) ≥ 1

n > r (because ζ ∈ Kn) and F is finite, we may pass to a further subnet
such that d(xi, p) = ρp(xi) > r for every p ∈ F . Therefore d(xi, F ∪(U−∩M)) > r
and fF (xi) = 1 for all i, proving the claim.

Consider the net (fF )F∈F in Lip0(M), where F is directed by inclusion. It is a
norm-bounded net and it converges pointwise (even monotonically) to 0, as for

any fixed x ∈ M we have fF (x) = 0 whenever F ⊃ {x}. Hence fF
w∗−→ 0.

Since we assume Lµ ∈ F(M), we have 〈fF ,Lµ〉 → 0. But L(µ�M ) ∈ F(M), so
〈fF ,L(µ�M )〉 → 0 as well. Choose F ∈ F such that |〈fF ,Lµ− L(µ�M )〉| < ε.
Then

〈fF ,Lµ− L(µ�M )〉 =

∫
MU\M

fUF dµ

= µ(K+) +

∫
B+\K+

fUF dµ+

∫
B−\K−

fUF dµ

so that
µ(K+) < ε+ |µ| (B+ \K+) + |µ| (B− \K−) < 5ε

and therefore µ(B+) = µ(B+\K+)+µ(K+) < 7ε. A similar construction replacing
U− with U+ in (4.1) shows that |µ(B−)| < 7ε. This finishes the proof.

Note that the net (fF ) used in the proof of Theorem 4.2.7 is pointwise decreasing,
so we have actually proved the following formally stronger result: if Lµ is a normal
functional, then µ is concentrated on M . Of course, this is in fact an equivalent
result due to Theorem 3.2.5.
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4.2 Functionals induced by measures

Functionals that admit an integral representation

To end this section, we now proceed in the opposite direction to Propositions 4.2.1
and 4.2.2 and attempt to identify which functionals in F(M) and F(M)

∗∗
can be

represented by Radon measures. Let us begin with a simple observation:

Lemma 4.2.9. Suppose that φ ∈ F(M)
∗∗

is induced by a Borel measure on MU .
Then φ avoids 0 and infinity.

Proof. Let φ = Lµ where µ is a Borel measure on MU . Then Lµ+,Lµ− ∈ F(M)
∗∗

by the remarks after Proposition 4.2.2. To show that φ avoids 0 and infinity, it

is enough to prove that φ ◦ WΠn
w∗−→ φ, i.e. that 〈fΠn, φ〉 → 〈f, φ〉 for every

f ∈ Lip0(M). Now notice that

lim
n→∞

〈
f+Πn,Lµ+

〉
= lim
n→∞

∫
MR

(f+Πn)U dµ+

= lim
n→∞

∫
MR

(f+)UΠUn dµ
+ =

∫
MR

(f+)U dµ+ =
〈
f+,Lµ+

〉
by Lebesgue’s monotone convergence theorem because ΠUn converges pointwise and
monotonically to χMR\{0}. Note that we have used the fact that µ is concentrated

on MR by Proposition 4.2.1. By replacing f+ with f− and/or µ+ with µ− we get
the desired conclusion.

Lemma 4.2.9 is evidently not a characterization of functionals induced by measures
(consider e.g. derivations). The next two theorems will provide such characteriza-
tions, although some of their implications only hold under assumptions of bound-
edness or positivity. In order to state them, let us introduce the following notation:
if m ∈ span δ(M) is a finitely supported element of F(M), say m =

∑n
k=1 akδ(xk)

for distinct xk ∈M \ {0}, let

‖m‖1 =

n∑
k=1

|ak| .

It is clear that this value is uniquely defined, and that m = Lµ where µ =∑n
k=1 akδxk ∈M0(M) satisfies ‖µ‖ = ‖m‖1.

Theorem 4.2.10. Let φ ∈ F(M)
∗∗

. If φ is induced by a Radon measure on MU ,
then it is the weak∗ limit of a net (mi) of elements of span δ(M) such that ‖mi‖1
is bounded. If φ avoids infinity strongly, or if it is positive and avoids infinity, then
the converse also holds. Moreover, if φ is positive then the (mi) can be chosen to
be positive.

Proof. Suppose that φ = Lµ ∈ F(M)
∗∗

for some µ ∈ M(MU ), and assume
‖µ‖ ≤ 1 without loss of generality. We claim that φ ∈ convw

∗
(±δ(M)), which
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Chapter 4. Integral representation

will prove the forward implication with the bound ‖mi‖1 ≤ 1. Indeed, by the
Krein-Milman theorem we have

µ ∈ BM(MU ) = convw
∗

extBM(MU ) = convw
∗ {
±δζ : ζ ∈MU

}
.

Now notice that if (xi) is a net in M that converges to ζ ∈ MU then δxi
w∗−→ δζ

in M(MU ). We conclude that µ ∈ A
w∗

where A = conv {±δx : x ∈M}, hence
there is a net (µi) in A that converges weak∗ to µ. This implies in particular
that 〈f,Lµi〉 → 〈f,Lµ〉 = 〈f, φ〉 for any bounded f ∈ Lip0(M). It is clear that
mi = Lµi ∈ conv(±δ(M)) and that ‖mi‖1 = ‖µi‖ ≤ 1. Now notice that, for any
f ∈ Lip0(M) and n ∈ N, fHn is a bounded Lipschitz function and therefore

lim
i
〈mi ◦WHn , f〉 = lim

i
〈mi, fHn〉 = 〈fHn, φ〉 = 〈f, φ ◦WHn〉

i.e. mi ◦WHn
w∗−→ φ ◦WHn . But clearly mi ◦WHn ∈ conv(±δ(M)) for all i and

n, hence φ ◦WHn ∈ convw
∗
(±δ(M)). To finish, notice that φ avoids infinity by

Lemma 4.2.9, hence φ ◦WHn → φ and φ ∈ convw
∗
(±δ(M)).

If φ is positive in the argument above, then µ may be chosen to be positive by
Proposition 4.2.4, and we can apply the Krein-Milman theorem to the positive
unit ball B+

M(MU )
instead of BM(MU ), which is a w∗-compact convex set whose

extreme points are 0 and +δζ for ζ ∈MU . We then get that φ ∈ convw
∗
δ(M).

For the converse implication, let φ ∈ F(M)
∗∗

be the weak∗ limit of finitely sup-
ported elements mi of F(M) such that ‖mi‖1 ≤ 1 for all i. Then mi = Lµi where
µi ∈M(MU ) has finite support and ‖µi‖ = ‖mi‖1 ≤ 1. Since BM(MU ) = BC(MU )∗

is w∗-compact, we may replace (µi) with a subnet that converges weak∗ to some
µ ∈ M(MU ), that is, such that limi

∫
MU

g dµi =
∫
MU

g dµ for each g ∈ C(MU ).
In particular, if f ∈ Lip0(M) is bounded then we have∫

MU
fU dµ = lim

i

∫
MU

fU dµi = lim
i
〈f,mi〉 = 〈f, φ〉 .

Suppose first that φ avoids infinity strongly, so φ = φ◦WHn for some n ∈ N. Then
fHn is bounded for every f ∈ Lip0(M), so we have

〈f, φ〉 = 〈f, φ ◦WHn〉 = 〈fHn, φ〉 =

∫
MU

(fHn)U dµ =

∫
MU

fU dλ

where dλ = HUn dµ defines a Borel measure on MU . Note that |λ| (E) ≤ |µ| (E)
for any Borel set E ⊂ MU , therefore λ is finite and its regularity follows easily
from that of µ. Thus λ ∈M(MU ) and φ = Lλ as required.

Now assume that φ is positive and avoids infinity, i.e. φ = limn φ ◦WHn . For any
function f ∈ Lip0(M) and any n, the function fHn is bounded and (fHn)U = 0 on
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4.2 Functionals induced by measures

MU \MR. Moreover, HUn converges pointwise and increasingly χMR . Therefore
for a positive f ∈ Lip0(M) we have

〈f, φ〉 = lim
n
〈f, φ ◦WHn〉 = lim

n
〈fHn, φ〉 = lim

n

∫
MU

(fHn)U dµ

= lim
n

∫
MR

(fHn)U dµ = lim
n

∫
MR

fUHUn dµ =

∫
MR

fUdµ =

∫
MU

fUd(µ�MR)

by Lebesgue’s monotone convergence theorem. Decomposing any f ∈ Lip0(M) as
f = f+ − f−, we may conclude that φ = Lµ�MR . Obviously µ�MR ∈ M(MU )
since µ ∈M(MU ).

To conclude, let us remark that µ, and hence λ (for φ that avoids infinity strongly)
or µ�MR (for positive φ that avoids infinity) are positive if all µi are.

The converse of Theorem 4.2.10 does not hold in general. We have proved that
there is a measure µ whose action coincides with that of φ on all bounded functions
f ∈ Lip0(M), but it might differ for unbounded f when φ is not assumed to avoid
infinity. The following shows that we can find a counterexample whenever M is
unbounded:

Example 4.2.11. Suppose that M is unbounded. Let (xn) be a sequence in M
such that d(xn, 0) → ∞ and define mn = δ(xn)/d(xn, 0). Then ‖mn‖ = 1, so
there is a subnet (mni) that converges weak∗ to some φ ∈ F(M)

∗∗
which is clearly

positive. We claim that φ cannot be represented by a positive Borel measure µ
on MU , even if we allow it to be σ-finite. Suppose otherwise, then we may also
assume that µ({0}) = 0 and Proposition 4.2.1 implies that µ is concentrated on

MR. Since MR =
⋃∞
n=1Bn where Bn = B(0, n)

U
, we have µ(MR) = limn µ(Bn).

Let ρn = ρ ∧ n, then∫
Bn

ρU dµ =

∫
Bn

ρUn dµ ≤
∫
MU

ρUn dµ = 〈ρn, φ〉 = lim
i

ρn(xni)

d(xni , 0)
= 0

which implies that µ(Bn) = 0 for all n. Thus µ = 0 and so φ = 0, but this
contradicts the fact that 〈ρ, φ〉 = 1.

So φ is not induced by a measure even if ‖mn‖1 = 1/d(xn, 0) converges to 0. The
argument in the proof of Theorem 4.2.10 still yields a measure µ such that the
actions of φ and µ agree on bounded functions of Lip0(M): it is just µ = 0.

For elements of F(M) we have a similar result:

Theorem 4.2.12. Let φ ∈ F(M). If φ is induced by a Radon measure on M ,
then it is the limit of a sequence (mn) of elements of span δ(M) such that ‖mn‖1
is bounded. If supp(φ) is bounded or φ is positive, then the converse also holds.
Moreover, if φ is positive then the (mn) can be chosen to be positive.
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Proof. Assume that φ = Lµ ∈ F(M) for some µ ∈ M(M), and identify µ with
an element of M(MU ) that is concentrated on M . Theorem 4.2.10 then yields
a net (vi) in span δ(M) that converges to φ in (F(M)

∗∗
, w∗), or equivalently in

(F(M), w), and such that ‖vi‖1 is bounded. By Mazur’s lemma, φ is the limit of
a sequence (mn) of convex combinations of the vi. Clearly ‖mn‖1 is bounded by
the same value as ‖vi‖1, and the mn are positive if all vi are.

For the converse implication, notice that Theorem 4.2.10 yields a measure µ ∈
M(MU ) such that φ = Lµ: indeed, every φ ∈ F(M) avoids infinity, and it avoids
infinity strongly when its support is bounded. Moreover µ is positive if the mn

are. But φ ∈ F(M), so the measure has to be concentrated on M by Theorem
4.2.7 and therefore can be regarded as a Radon measure on M .

Note that in Theorems 4.2.10 and 4.2.12 the norm ‖µ‖ of the representing measure
µ is related to the sum ‖m‖1 of the coefficients of the approximating elements of
finite support. So we get the following, more succinct characterization:

Corollary 4.2.13. The set of elements of F(M) that can be represented by a
measure in B+

M(M) is precisely conv δ(M). If M is bounded, then the set of el-

ements of F(M)
∗∗

that can be represented by a measure in B+
M(MU )

is precisely

convw
∗
δ(M).

The next example shows that boundedness or positivity are again essential for the
converse to hold in Theorem 4.2.12. In particular, it also shows that the converse
in Theorem 4.2.10 does not hold if φ avoids infinity but is not positive.

Example 4.2.14. Consider the space M from Example 3.3.15, i.e.

M = {0, x1, y1, x2, y2, . . .} ⊂ c0

where xn = 2nen and yn = (2n + 1)en, and let

mn =

n∑
k=1

2−k(δ(xk)− δ(yk)).

Since ‖δ(xn)− δ(yn)‖ = d(xn, yn) = 1, the sequence (mn) is Cauchy and converges
to m ∈ F(M). Moreover ‖mn‖1 < 2 for every n. Nevertheless, m cannot be
represented by a Radon measure on M . Indeed, suppose m = Lµ where µ ∈
M0(M), then µ is supported on supp(m) = M \ {0} by Proposition 4.2.5, and it
is clear that every xn belongs to the support of µ+. Denote Xn = {x1, . . . , xn},
then ∫

M

ρ d |µ| ≥
∫
Xn

ρ d |µ| =
n∑
k=1

2−kρ(xk) = n

for every n, which contradicts Proposition 4.2.2.
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4.3 Majorizable functionals

4.3 Majorizable functionals

In this section, we will study the majorizable elements of F(M) and F(M)
∗∗

.
Recall that a functional in F(M) and F(M)

∗∗
is majorizable if it can be expressed

as the difference between two positive functionals, and that not all functionals are
majorizable in general but all finitely supported elements of F(M) are.

We shall first tackle the problem of characterizing the majorizable elements of
F(M) and F(M)

∗∗
. Perhaps surprisingly, the results from the last section will

be enough to accomplish that, as there turns out to be a very strong relation-
ship between majorizable functionals and integral representations. The cases for
F(M) and F(M)

∗∗
require similar reasoning so we shall handle them more or less

simultaneously, as was done in the previous section.

Let us start by observing that any element φ ∈ F(M) that is induced by a Borel
measure on M is majorizable. Indeed, suppose φ = Lµ, then |µ| also induces
an element of F(M) by Proposition 4.2.2, therefore φ is majorized by L(|µ|). A
similar argument applies in F(M)

∗∗
, and in that case we moreover know that φ

avoids 0 and infinity by Lemma 4.2.9.

It turns out that the converse of this observation is “almost” true. We may already
prove that it holds under the additional hypothesis that the avoidance of 0 is
strong:

Theorem 4.3.1. Suppose that φ ∈ F(M)
∗∗

avoids infinity and 0 /∈ S(φ). Then φ
is majorizable in F(M)

∗∗
if and only if it is induced by a Radon measure on MU .

Proof. We have already discussed the easy implication. For the other one, recall
that φ avoids 0 strongly by Proposition 3.5.18(b). Assume that φ = φ+−φ− where
φ+, φ− ∈ F(M)

∗∗
are positive. Using the notation of Corollary 3.5.4 we have

φ = φA = lim
n
φ ◦WHn = lim

n
φ+ ◦WHn − lim

n
φ− ◦WHn = (φ+)A − (φ−)A

so, by replacing φ± with (φ±)A, we may assume that they avoid infinity. Similarly
we may assume that they avoid 0 strongly, i.e. that φ± = φ± ◦WG−n for some
n ∈ N.

By Proposition 2.3.4, there is a net (mi) that converges weak∗ to φ+ and such
that every mi is of the form

mi =

N∑
k=1

akδ(xk)
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for some N ∈ N, ak > 0 and xk ∈ M . Thus mi ◦WG−n
w∗−→ φ+ ◦WG−n = φ+.

Each mi ◦WG−n is positive, so by Proposition 2.3.3

lim
i

∥∥mi ◦WG−n

∥∥ = lim
i

〈
ρ,mi ◦WG−n

〉
=
〈
ρ, φ+

〉
=
∥∥φ+

∥∥ ,
hence we may assume that

∥∥mi ◦WG−n

∥∥ is bounded. Now notice that G−n(x) = 0
for x ∈ B(0, 2−n) and therefore, using again Proposition 2.3.3

∥∥mi ◦WG−n

∥∥ =
〈
ρ,mi ◦WG−n

〉
=

N∑
k=1

akG−n(xk)d(xk, 0)

≥ 2−n
N∑
k=1

akG−n(xk) = 2−n
∥∥mi ◦WG−n

∥∥
1

so
∥∥mi ◦WG−n

∥∥
1

is bounded. Since φ+ is positive and avoids infinity, we may
apply Theorem 4.2.10 to conclude that φ+ is represented by a positive Radon
measure µ+ on MU .

The same argument shows that φ− is represented by a positive Radon measure
µ−. Thus φ is represented by µ = µ+−µ− ∈M(MU ) and this ends the proof.

In particular, if M is bounded then the result applies to all φ such that 0 /∈ S(φ).
Notice that the hypothesis that φ avoids infinity cannot be omitted, as witnessed
by the positive element constructed in Example 4.2.11.

A similar argument yields the corresponding result for F(M), but we can also
obtain it as an immediate consequence by combining Theorem 4.3.1 with Theorem
4.2.7, as any element of F(M) avoids infinity. More than that, this also yields
immediately the equivalence of majorizability in F(M) and in F(M)

∗∗
under the

additional assumption that the support does not contain the base point.

Theorem 4.3.2. Let m ∈ F(M) be such that 0 /∈ supp(m). Then the following
are equivalent:

(i) m is majorizable in F(M),

(ii) m is majorizable in F(M)
∗∗

,

(iii) m is induced by a Radon measure on M .

Theorem 4.3.2 does not hold (and therefore, neither does Theorem 4.3.1) for the
case where the base point is contained in the (extended) support of a positive
element, as showcased by the following example.

Example 4.3.3. Assume that the base point of M is not isolated and choose
xn ∈M \ {0} such that d(xn, 0) < 2−n and d(xn+1, 0) < d(xn, 0) for every n ∈ N.
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4.3 Majorizable functionals

Consider m =
∑∞
n=1 δ(xn), which is clearly an element of F(M)+ by absolute

convergence. Suppose that m is represented by a Radon measure µ on M . We
may assume that µ ∈ M0(M) and so µ is positive by Proposition 4.2.5. Let gn
be a Lipschitz function on R with 0 ≤ gn ≤ 1, gn(t) = 0 for t ≤ d(xn+1, 0) and
gn(t) = 1 for t ≥ d(xn, 0). Then

‖µ‖ =

∫
M

dµ ≥
∫
M

(gn ◦ ρ) dµ = 〈m, gn ◦ ρ〉 = n

for any n ∈ N, therefore µ is not finite, a contradiction. Note however that µ is
σ-finite.

The construction in the preceding example immediately provides the following
equivalence:

Proposition 4.3.4. The following are equivalent:

(i) the base point is an isolated point of M ,

(ii) every majorizable element of F(M) can be represented by a Radon measure
on M ,

(iii) every majorizable element of F(M)
∗∗

that avoids infinity can be represented
by a Radon measure on MU .

We shall now extend Theorem 4.3.1 to all positive elements of F(M)
∗∗

that avoid
0 and infinity and show that they can also be represented by a positive measure. It
may not be finite, but it will always be almost Radon; recall that this implies that
it is inner regular, σ-finite, and its restriction to every closed subset separated from
0 is Radon. We will construct the desired measure as an inverse limit of Radon
measures that are supported away from the base point, reversing the construction
from Lemma 4.1.2.

Theorem 4.3.5. Suppose that φ ∈ F(M)
∗∗

is positive and avoids 0 and infinity.
Then φ is represented by a positive, almost Radon measure on MU .

Proof. For n ∈ N denote

An =
{
ζ ∈MU : 2−n ≤ ρU (ζ)

}
and φn = φ◦WG−n . Since φ avoids 0, we have φ = limn φn. Note that S(φn) ⊂ An
by Corollary 3.5.11, so 0 /∈ S(φn) and, by Theorem 4.3.1, each φn is induced by a
Radon measure µn ∈M0(MU ). Proposition 4.2.4 then shows that supp(µn) ⊂ An,
and in particular

µn(E) = 0 for every Borel set E ⊂MU \An. (4.2)
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Chapter 4. Integral representation

We also have

L(µn+1 − µn) = φn+1 − φn = φ ◦WG−(n+1)−G−n .

Since G−(n+1) − G−n = Λ−n ≥ 0, this is a positive element of F(M)
∗∗

and so
µn+1 − µn ≥ 0 by Proposition 4.2.4. That is,

µn+1(E) ≥ µn(E) for every Borel set E ⊂MU . (4.3)

Moreover, combining Proposition 4.2.4 and Corollary 3.5.11

supp(µn+1 − µn) = S(φn+1 − φn) ⊂ supp(Λ−n)
U

hence in particular we get

µn+1(E) = µn(E) for every Borel set E ⊂ An−2. (4.4)

By (4.3), the limit
µ(E) = lim

n→∞
µn(E)

exists and is positive (possibly infinite) for every Borel set E ⊂MU . It is straight-
forward to check that µ is a Borel measure on MU . Notice also that µ({0}) =
µ(MU \MR) = 0 by Proposition 4.2.1. Moreover, (4.4) implies µ�An = µn+2�An
and so

µ(An) = µn+2(An) ≤ ‖µn+2‖ <∞
for every n. Thus, if K is any closed subset of MU such that 0 /∈ K, we have
K ⊂ An for some n and therefore µ(K) ≤ ‖µn+2‖ < ∞, so µ�K is finite and
regular. Hence µ is almost Radon.

We will now finish the proof by showing that φ is represented by µ. Let f ∈
Lip0(M) be positive. Since φ avoids 0 and WG−n ◦WG−(n+2)

= WG−n , we may
write

〈f, φ〉 = lim
n→∞

〈
f, φ ◦WG−n

〉
= lim
n→∞

〈
f, φ ◦WG−n ◦WG−(n+2)

〉
= lim
n→∞

〈fG−n, φn+2〉 = lim
n→∞

∫
MU

(fG−n)U dµn+2

= lim
n→∞

∫
MU

fUGU−n dµn+2

= lim
n→∞

∫
MU

fUGU−n dµ

where the last equality follows from the fact that GU−n = 0 on MU \ An and
µn+2�An = µ�An . But GU−n converge pointwise and increasingly to χMU\{0}, so by
Lebesgue’s monotone convergence theorem we obtain

〈f, φ〉 = lim
n→∞

∫
MU

fUGU−n dµ =

∫
MU

fU dµ.

for every positive f ∈ Lip0(M), and hence for every f ∈ Lip0(M).
92



4.3 Majorizable functionals

Since elements of F(M) also avoid 0 and infinity, appealing to Theorem 4.3.2 we
recover one of the implications from [9, Proposition 2.7] as a corollary:

Theorem 4.3.6. Every positive m ∈ F(M) can be represented by an almost Radon
measure on M .

Let us remark that, as is the case with finiteness, full regularity cannot be achieved
in Theorems 4.3.5 and 4.3.6 in general. Indeed, it is straightforward to check that
any Borel measure µ representing the functional m constructed in Example 4.3.3
satisfies µ(U) = ∞ for every open neighborhood U of 0. Therefore, if µ is outer
regular then µ({0}) =∞ and so µ cannot be σ-finite.

Although stated in terms of positive elements, Theorems 4.3.6 and 4.3.5 also yield
representation results for majorizable elements. For instance, any majorizable
m ∈ F(M) can be written as the difference between two positive elements and
therefore represented as the difference between two almost Radon positive mea-
sures. It is tempting to state that m is represented by a signed σ-finite measure,
but that would be inaccurate because of a potential indeterminacy of the form
∞−∞ around the base point. Therefore the most accurate statement would be
the following:

Theorem 4.3.7. Let φ ∈ F(M)
∗∗

. Then the following are equivalent:

(i) φ is majorizable and avoids 0 and infinity,

(ii) φ is the difference of two elements of F(M)
∗∗

induced by positive almost
Radon measures on MU .

The same holds if F(M)
∗∗

and MU are replaced by F(M) and M , respectively,
and the condition “avoids 0 and infinity” is removed.

Proof. For (i)⇒(ii), write φ = φ+−φ− where φ± are positive and may be assumed
to avoid 0 and infinity as in the proof of Theorem 4.3.1, then apply Theorem 4.3.5
(or Theorem 4.3.6 for the F(M) case). The implication (ii)⇒(i) follows directly
from Lemma 4.2.9.

Let us now summarize our results for a few important particular cases. When M
is bounded, every element of F(M)

∗∗
avoids infinity (strongly, in fact) and hence

by Theorem 3.5.3 it can be expressed as a derivation at 0 plus a functional that
avoids 0 and infinity. So every positive element of F(M)

∗∗
is “a derivation plus a

measure”:

Corollary 4.3.8. Suppose that M is bounded, and let φ ∈ F(M)
∗∗

be positive.
Then φ = φ0 +Lµ where φ0 is a positive derivation at 0 and µ is a positive almost
Radon measure on MU . If moreover 0 /∈ S(φ), then φ0 = 0 and µ ∈M(MU ).
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Chapter 4. Integral representation

If moreover the base point is isolated in M then there are no nonzero derivations
at 0 and we get the following characterization, combining with Theorems 4.2.10
and 4.2.12:

Corollary 4.3.9. Suppose that M is bounded and the base point is isolated. Then
for φ ∈ F(M)

∗∗
the following are equivalent:

(i) φ is majorizable,

(ii) φ is represented by a Radon measure on MU ,

(iii) φ is the weak∗ limit of a net (mi) in span δ(M) such that ‖mi‖1 is bounded.

The same holds if we replace F(M)
∗∗

with F(M), MU with M , “weak∗ limit” with
“norm limit” and “net” with “sequence”, respectively.

The most significant particular case of the preceding analysis is given by compact
metric spaces M . In that case MU = M , so Proposition 4.2.2 shows that Lµ
actually belongs to F(M). Thus the majorizable elements of F(M) and F(M)

∗∗

are almost the same:

Corollary 4.3.10. Suppose that M is compact, and let φ ∈ F(M)
∗∗

be majoriz-
able. Then φ = m+ φ0 where m ∈ F(M) is majorizable and φ0 is a derivation at
0. If moreover 0 /∈ S(φ), then φ ∈ F(M) and it is represented by a Radon measure
on M .

Let us stress that in Corollaries 4.3.8 and 4.3.10 derivations at 0 can only exist if 0 is
not an isolated point in M (if the base point is isolated, then it cannot be contained
in the extended support of any φ ∈ F(M)

∗∗
in view of Proposition 3.5.22). So this

provides yet another example where the order structure of Lipschitz-free spaces
and their biduals depends on the choice of base point.

Minimal majorants

Now we turn to the following problem. Given a majorizable functional φ of F(M)
or F(M)

∗∗
, i.e. one that can be expressed as the difference between two positive

functionals, does it admit a canonical, minimal representation as such a difference?
Let us fix some notation:

Definition 4.3.11. Let X be an ordered vector space, and suppose that x ∈ X
is majorizable. A minimal majorant of x is a majorant x+ of x with the property
that every majorant of x is also a majorant of x+.

Note that we are not using the term “minimal” in the usual partial order theoretical
sense that there is no strictly smaller majorant of x, but rather we require x+ to
be a lower bound for all majorants of x.
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4.3 Majorizable functionals

Our question can be rephrased as: does every majorizable element have a minimal
majorant? It is obvious that the minimal majorant is unique whenever it exists,
and that if x+ is the minimal majorant of x then x− = x+ − x is the minimal
majorant of −x. Moreover, the existence of such a minimal majorant is equivalent
to the existence of an optimal representation x = x+−x− where x+, x− are positive
and minimal, i.e. such that for every expression x = y+ − y− where y+, y− ≥ 0
we have y+ ≥ x+ and y− ≥ x−. This behavior is found in Lip0(M) with the
optimal decomposition f = f+−f−, and also in finite measures where the Jordan
decomposition into their positive and negative parts is optimal in that sense. In
both cases, the minimal majorant of an element can be identified with its positive
part. It is reasonable to expect similar properties from majorizable functionals on
Lip0(M), given their close relationship to measures.

By Theorem 3.5.3, any majorizable functional φ ∈ F(M)
∗∗

can be uniquely de-
composed as φ = φ0 +φs +φ∞ where φs avoids 0 and infinity, φ∞ is concentrated
at infinity and φ0 is a derivation at 0, and all of these terms are majorizable. It is
straightforward to verify that φ has a minimal majorant if and only if each term
φs, φ∞, φ0 does. Let us see that this is the case for φs:

Theorem 4.3.12. Suppose that φ ∈ F(M)
∗∗

avoids 0 and infinity. If φ is ma-
jorizable then it has a minimal majorant that also avoids 0 and infinity. Moreover,
φ+ and φ− = φ+ − φ are represented by positive almost Radon measures on MU

that are concentrated on disjoint Borel subsets of MU .

In the proof we will use the following simple lemma about minimal majorants of
weighted functionals:

Lemma 4.3.13. Suppose that φ is a majorizable element in F(M) or F(M)
∗∗

that has a minimal majorant φ+. Then, for every h ∈ Lip(M)+ with bounded
support, φ ◦Wh is majorizable and its minimal majorant is φ+ ◦Wh.

Proof. Let c = ‖h‖∞, which is finite because supp(h) is bounded. Notice that
Wc−h = cI−Wh is also a w∗-w∗-continuous operator on Lip0(M) (where I stands
for the identity operator).

It is clear that φ ◦ Wh is majorized by φ+ ◦ Wh ≥ 0. Now suppose that ψ ∈
(F(M)

∗∗
)+ is another majorant for φ ◦Wh, then

ψ + φ+ ◦Wc−h ≥ φ ◦Wh + φ ◦Wc−h = cφ.

The minimal majorant of cφ is obviously cφ+, hence ψ + φ+ ◦Wc−h ≥ cφ+ and
therefore ψ ≥ cφ+ − φ+ ◦Wc−h = φ+ ◦Wh as claimed.

Proof of Theorem 4.3.12. We will first prove the theorem under the assumption
that φ avoids 0 and infinity strongly. By Theorem 4.3.1 we have φ = Lµ for some
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µ ∈M(MU ). Let µ = µ+−µ− be the Jordan decomposition of µ. Then φ+ = Lµ+

and φ− = Lµ− are elements of F(M)
∗∗

by Proposition 4.2.1 (see the remarks
after Proposition 4.2.2), and avoid 0 and infinity by Lemma 4.2.9. Clearly φ+ is a
majorant for φ; we claim that it is minimal. Let ψ be another majorant for φ. By
assumption there is n ∈ N such that φ = φ◦WΠn , hence ψ ≥ ψ◦WΠn ≥ φ. Theorem
4.3.1 implies that ψ ◦WΠn is represented by a Radon measure λ ∈M(MU ), which
is positive by Proposition 4.2.4. Then Lλ = ψ ◦ WΠn ≥ Lµ and thus λ ≥ µ
again by Proposition 4.2.4. By the Hahn decomposition theorem, we must have
λ ≥ µ+ and therefore ψ ≥ Lλ ≥ Lµ+ = φ+. This proves our claim. Moreover,
φ = φ+ − φ− and µ+ and µ− are concentrated on disjoint Borel subsets of MU .
That ends the proof of this case.

Let us now handle the general case. For each n ∈ N, φ ◦ WΠn is majorizable
and avoids 0 and infinity strongly, therefore it has a minimal majorant φ+

n by
the previous paragraph. Now let ψ ∈ F(M)

∗∗
be any majorant of φ. Then

ψ ≥ ψ ◦WΠn ≥ φ ◦WΠn and so ψ ≥ φ+
n for any n. Notice that (φ+

n ) is a bounded
sequence since ∥∥φ+

n

∥∥ =
〈
ρ, φ+

n

〉
≤ 〈ρ, ψ〉 = ‖ψ‖ ,

therefore it must have a w∗-cluster point φ+ ∈ (F(M)
∗∗

)+, which will obviously
satisfy φ+ ≤ ψ. Taking weak∗ limits in φ+

n ≥ φ ◦WΠn for the appropriate subnet
yields φ+ ≥ limn φ ◦WΠn = φ. Thus φ+ is a majorant for φ, and it is minimal
because ψ was arbitrary. This proves existence. Moreover, we have φ+

n = φ+◦WΠn

by Lemma 4.3.13, and taking weak∗ limits yields φ+ = limn φ
+ ◦WΠn , i.e. φ+

avoids 0 and infinity.

Let φ− = φ+ − φ and φ−n = φ+
n − φn. We have already proved that φ+

n , φ
−
n are

represented by positive Radon measures µ+
n , µ

−
n concentrated on disjoint Borel sets

A+
n , A

−
n . Since φ+

m = φ+ ◦WΠm ≥ φ+ ◦WΠn = φ+
n for every m ≥ n by Lemma

4.3.13, the linearity of L on Radon measures and Proposition 4.2.4 imply that
µ+
m ≥ µ+

n . Therefore µ+
n (A+

n \ A+
m) = 0 and µ+

n is concentrated on A+
m. It follows

that each µ+
n is concentrated on

⋂∞
m=nA

+
m, and thus also on the set

A+ =

∞⋃
n=1

∞⋂
m=n

A+
m.

By Theorem 4.3.5, φ+ is represented by a positive almost Radon measure µ+ on
MU . We will show that µ+ is the setwise limit of µ+

n as n→∞. This will imply
that µ+ is concentrated on A+. First note that φ+

m ≤ φ+ and thus µ+
m ≤ µ+ by

Proposition 4.2.4. Therefore, since µ+ is concentrated on MR \{0} by Proposition
4.2.1, by inner regularity it will be enough to check that µ+(K) = limm µ

+
m(K)

for every compact K ⊂ MR \ {0}. Fix such a K, then there is n ∈ N such that
K ⊂ Rn where

Rn =
{
ζ ∈MU : 2−n < ρU (ζ) < 2n

}
.
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Let ε > 0. By the Radonness of µ+�Rn , we may choose a compact L ⊂ Rn \ K
with µ+(Rn \ (K ∪L)) ≤ ε. Then K and L∪ (MU \Rn) are compact and disjoint,
so let us construct f ∈ Lip0(M) such that 0 ≤ f ≤ 1, fU = 1 on K, and fU = 0
on L ∪ (MU \Rn). For every m ≥ n we have fΠm = f , therefore

µ+
m(K) ≤ µ+(K) ≤

〈
f, φ+

〉
=
〈
fΠm, φ

+
〉

=
〈
f, φ+

m

〉
≤ µ+

m(K) + µ+
m(Rn \ (K ∪ L)) ≤ µ+

m(K) + ε.

Since ε was arbitrary, we get µ+
m(K) = µ+(K) for m ≥ n as desired.

Finally, recall that if φ+ is the minimal majorant of φ then φ− = φ+ − φ is
the minimal majorant of −φ. Therefore a similar argument with −φ, µ−n and
A−n shows that the almost Radon measure µ− representing φ− is concentrated on
A− =

⋃
n

⋂
m≥nA

−
m. Since A+ and A− are disjoint Borel subsets of MU , this

finishes our proof.

We do not know whether a majorizable functional φ that is concentrated at infinity
must admit a minimal majorant. But if it does, its minimal majorant φ+ must also
be concentrated at infinity. Indeed, by Lemma 4.3.13, φ+ ◦WHn is the minimal
majorant of φ ◦WHn = 0, so it must also be equal to 0 for every n. The same
argument works for minimal majorants of derivations at 0, replacing Hn with G−n.

Since majorizable elements of F(M) avoid 0 and infinity, we can now deduce that
they also have minimal majorants. It is possible to prove this following the ar-
gument used in Theorem 4.3.12, but we will instead deduce it as a consequence.
Moreover, we finally obtain in full generality the promised result that the prop-
erties of being majorizable in F(M) and F(M)

∗∗
are equivalent. We require an

additional observation that deserves to be stated independently:

Lemma 4.3.14. Let φ, ψ ∈ F(M)
∗∗

be such that 0 ≤ φ ≤ ψ. If ψ ∈ F(M), then
φ ∈ F(M).

Proof. Let (fi) be a net of positive functions in BLip0(M) that decreases pointwise
to 0. Then we have 0 ≤ 〈fi, φ〉 ≤ 〈fi, ψ〉 for each i. Since ψ is weak∗ continuous,
〈fi, ψ〉 → 0 and so 〈fi, φ〉 → 0 too. Hence φ is normal, and Theorem 3.2.5 shows
that it is w∗-continuous.

Theorem 4.3.15. Let m ∈ F(M). Then m is majorizable in F(M) if and only
if it is majorizable in F(M)

∗∗
. In that case, it has a minimal majorant m+ that

belongs to F(M). Moreover, m+ and m− = m+ −m are represented by positive
almost Radon measures on M that are concentrated on disjoint Borel subsets of
M .

Proof. It is clear that if m is majorizable in F(M) then it is also majorizable in
F(M)

∗∗
. Now suppose that m is majorizable in F(M)

∗∗
. Since m satisfies the
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hypothesis of Theorem 4.3.12, it has a minimal majorant m+ ∈ (F(M)
∗∗

)+ that
avoids 0 and infinity. Thus m+ is the norm limit of m+ ◦WΠn , so in order to prove
that m+ ∈ F(M) it will be enough to show that m+ ◦WΠn ∈ F(M) for every
n ∈ N. Fix n, then Lemma 4.3.13 implies that m+ ◦WΠn is the minimal majorant
of m◦WΠn . By Theorem 4.3.2 there exists µn ∈M(M) such that m◦WΠn = Lµn.
Then Lµ+

n ∈ F(M)+ by the remarks after Proposition 4.2.2, and it is clearly a
majorant of m ◦WΠn . Hence by minimality we get that m+ ◦WΠn ≤ Lµ+

n , and
Lemma 4.3.14 yields that m+ ◦WΠn ∈ F(M) as well. Thus m is majorizable in
F(M), and clearly its minimal majorant in F(M) is also m+.

Finally, by Theorem 4.3.12, m+ and m− are represented by positive almost Radon
measures µ+, µ− on MU concentrated on disjoint Borel sets. But m± ∈ F(M),
hence µ+, µ− are actually concentrated on M by Theorem 4.2.7. This ends the
proof.

Notice that Theorems 4.3.15 and 4.3.12 show that majorizable elements in F(M)
and F(M)

∗∗
(that avoid 0 and infinity) can almost be represented as measures with

a Hahn decomposition: in general they cannot be represented as a single measure,
but they are always given by a difference of two minimal positive measures that are
concentrated on disjoint Borel sets. Let us remark that this separation property is
valid only in terms of the Borel sets on which the measures concentrate but not for
their closed supports, hence neither for the supports of the functionals themselves,
i.e. we can find simple examples where supp(m+) ∩ supp(m−) 6= ∅.

We conclude this section by introducing a notion of variation for majorizable func-
tionals in analogy with measures. The existence of the variation for majorizable
functionals avoiding 0 and infinity, in particular for elements of F(M), is guaran-
teed by Theorem 4.3.12.

Definition 4.3.16. Suppose that φ ∈ F(M)
∗∗

is majorizable. If φ = φ+ − φ−
where φ+ is the minimal majorant of φ, we call the variation of φ the functional
|φ| ∈ F(M)

∗∗
defined by

|φ| = φ+ + φ−.

Note that by Theorem 4.3.15 the variation of a majorizable element from F(M)
also belongs to F(M). The variation of φ is obviously also its majorant, but
moreover, it majorizes the modulus of φ in the following sense:

Proposition 4.3.17. Let φ ∈ F(M)
∗∗

avoid 0 and infinity and let it be majoriz-
able. Then the variation of φ satisfies

|〈f, φ〉| ≤ 〈|f | , |φ|〉

for every f ∈ Lip0(M). Moreover, |φ| is the smallest element of F(M)
∗∗

with this
property.
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Proof. Assume first that f ∈ Lip0(M) and f ≥ 0. Then

〈f, φ〉 ≤
〈
f, φ+

〉
≤ 〈f, |φ|〉

and
−〈f, φ〉 = 〈f,−φ〉 ≤

〈
f, φ−

〉
≤ 〈f, |φ|〉 ,

hence |〈f, φ〉| ≤ 〈f, |φ|〉. Now decompose any f ∈ Lip0(M) as f = f+ − f− where
f+, f− ≥ 0. Then

|〈f, φ〉| ≤
∣∣〈f+, φ

〉∣∣+
∣∣〈f−, φ〉∣∣ ≤ 〈f+, |φ|

〉
+
〈
f−, |φ|

〉
= 〈|f |, |φ|〉 .

Now suppose that ψ ∈ F(M)
∗∗

is such that |〈f, φ〉| ≤ 〈|f | , ψ〉 for every f ∈
Lip0(M), which clearly implies ψ ≥ 0. Then ψs = limn ψ ◦WΠn has the same
property, so we may assume that ψ avoids 0 and infinity. For positive f we get
〈f, ψ〉 ≥ |〈f, φ〉|, hence ψ ≥ φ and ψ ≥ −φ. Thus, using the minimal majorants,
we must also have ψ ≥ φ+ and ψ ≥ (−φ)+ = φ−. By Theorem 4.3.5, φ+, φ− and
ψ are represented by positive almost Radon measures µ+, µ− and λ on MU , so
Proposition 4.2.4 yields λ ≥ µ+ and λ ≥ µ−. However, by Theorem 4.3.12 µ+ and
µ− are concentrated on disjoint Borel sets, and so it is immediate that we actually
have λ ≥ µ+ + µ−. Thus ψ ≥ φ+ + φ− = |φ| by Proposition 4.2.4.

We finish by establishing the intuitively obvious fact that passing from a ma-
jorizable functional to its minimal majorant or its variation does not increase its
support.

Proposition 4.3.18. Let φ ∈ F(M)
∗∗

be majorizable and avoid 0 and infinity.
Then

S(|φ|) = S(φ+) ∪ S(φ−) = S(φ).

If φ ∈ F(M), the equality holds also for supports in F(M) in place of extended
supports.

Proof. Apply first Corollary 3.5.9 to observe that S(|φ|) ⊂ S(φ+) ∪ S(φ−) and
S(φ) ⊂ S(φ+) ∪ S(φ−). The inclusion S(φ+) ∪ S(φ−) ⊂ S(|φ|) follows from
Corollary 3.5.10(c). Thus it only remains to be proved that S(φ+),S(φ−) ⊂
S(φ). It will suffice to show that S(φ+) ⊂ S(φ), then S(φ−) ⊂ S(φ) follows from
Corollary 3.5.9 again. Moreover, φ+ avoids infinity by Theorem 4.3.12, hence in
view of Proposition 3.5.21 it is enough to prove that S(φ+) ∩MR ⊂ S(φ).

Let ζ ∈ MR \ S(φ). By Proposition 3.5.6 there is a neighbourhood U of ζ such
that 〈f, φ〉 = 0 for any f ∈ Lip0(M) with the support contained in U ∩M . We
may moreover assume that U ⊂

{
ξ ∈MU : ρU (ξ) < ρU (ζ) + 1

}
, so that U ∩M is

bounded. Take other neighbourhoods V , W of ζ such that W
U ⊂ V ⊂ V

U ⊂ U
and define h ∈ Lip(M) so that 0 ≤ h ≤ 1 and that h = 1 on W ∩M and h = 0
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on M \ V . The support of such h is bounded, so we may define ψ = φ+ ◦W1−h.
Then ψ ≤ φ+, and for any positive f ∈ Lip0(M) we have

〈f, ψ〉 =
〈
f(1− h), φ+

〉
≥ 〈f(1− h), φ〉 = 〈f, φ〉 − 〈fh, φ〉 = 〈f, φ〉

since supp(fh) ⊂ U ∩M . Thus ψ is a majorant for φ, and from the minimality of
φ+ it follows that φ+ = ψ. Hence φ+ ◦Wh = 0. But then 〈f, φ+〉 = 〈fh, φ+〉 = 0
for any f ∈ Lip0(M) such that supp(f) ⊂ W ∩ M . Therefore ζ /∈ S(φ+) by
Proposition 3.5.6. This completes the proof for functionals in Lip0(M)∗.

If φ ∈ F(M), then also φ+, φ− ∈ F(M) by Theorem 4.3.15, and the equality for
supports in F(M) follows by intersecting with M and applying Corollary 3.5.7.

4.4 Radially discrete spaces

We have already witnessed that, in general, not all elements of a Lipschitz-free
space F(M) can be represented by a measure, or as the difference between two
positive elements. In this section, we will identify the scenarios where such rep-
resentations are always possible. To this end, we introduce two classes of metric
spaces:

Definition 4.4.1. We will say that a pointed metric space M is radially discrete
if there exists α > 0 such that d(x, y) ≥ α · d(x, 0) for every pair x, y of distinct
points of M . We will say that M is radially uniformly discrete if it is radially
discrete and uniformly discrete.

Note that if M is radially discrete, then the set M \ B(0, r) is uniformly discrete
for every r > 0, and its uniform separation constant increases linearly with r. In
particular, every point of M \ {0} is isolated. However the base point need not
be isolated, so in particular M is not necessarily discrete. In fact, M is uniformly
discrete if and only if the base point is also isolated. Thus, the property of being
radially discrete depends on the choice of base point, but it is easy to see that the
property of being radially uniformly discrete does not.

Notice also that if M is uniformly discrete and bounded then it is also radially
uniformly discrete, taking α = θ(M)/ diam(M) where θ(M) is the uniform sep-
aration constant of M . Unbounded uniformly discrete spaces are not necessarily
radially discrete: consider e.g. M = N with the metric inherited from R.

The following result is our main reason to introduce this class of metric spaces:

Theorem 4.4.2. M is radially discrete if and only if all elements of F(M) are
majorizable.
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4.4 Radially discrete spaces

Proof. Suppose first that M is radially discrete, and let α > 0 be such that
d(x, y) ≥ α·d(x, 0) whenever x 6= y ∈M . Now let m ∈ F(M), and use Proposition
2.3.2 to write m as a series of molecules

m =

∞∑
n=1

anmxnyn =

∞∑
n=1

an
δ(xn)− δ(yn)

d(xn, yn)

where xn 6= yn ∈M and
∑
n |an| <∞. We may assume that an ≥ 0 without loss

of generality. Now notice that∥∥∥∥∥
N∑
n=1

an
d(xn, yn)

δ(xn)

∥∥∥∥∥ ≤
N∑
n=1

an
d(xn, 0)

d(xn, yn)
≤ 1

α

N∑
n=1

an

for every N ∈ N, so the series

m′ =

∞∑
n=1

an
d(xn, yn)

δ(xn)

is absolutely convergent. Thenm′ is a positive element of F(M), and it is clear that
〈m, f〉 ≤ 〈m′, f〉 for any f ≥ 0 in Lip0(M). Hence m ≤ m′ and m is majorizable.

For the converse implication, assume that every element of F(M) is majorizable.
We will first show that every point of M is isolated, except possibly the base point.
Indeed, let x ∈ M \ {0} and suppose that it is not an isolated point of M . Then
we can find sequences (xn) and (yn) of points of M \ {0}, all of them different
from each other, that converge to x and such that

0 < d(xn+1, yn+1) <
1

2
d(xn, yn)

for every n ∈ N. For n ∈ N, let fn ∈ Lip0(M) be such that 0 ≤ fn ≤ 1,
fn(xk) = 1 for k ≤ n, fn(xk) = 0 for k > n, and fn(yk) = 0 for all k ∈ N.
Also let h ∈ Lip0(M) be such that h(xk) = h(yk) = 1 for every k ∈ N. Now let
m =

∑∞
n=1(δ(xn) − δ(yn)) and notice that m ∈ F(M) as the series is absolutely

convergent. By hypothesis there is a positive m+ ∈ F(M) with m+ ≥ m, and we
may assume that supp(m+) ⊂ supp(m) by Proposition 4.3.18. Thus fn ≤ h on
supp(m+), and we get 〈

m+, h
〉
≥
〈
m+, fn

〉
≥ 〈m, fn〉 = n

for every n. This is a contradiction. So x must be isolated, as we claimed.

Suppose now, for contradiction, that M is not radially discrete. We claim that we
may find sequences (xn) and (yn) of points of M \ {0}, all of them different from
each other, such that d(xn, yn) ≤ 2−nd(xn, 0). Indeed, we proceed by induction.
Choose any pair (x1, y1) such that d(x1, y1) < 1

2d(x1, 0). Now suppose that the
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Chapter 4. Integral representation

different points x1, y1, . . . , xn−1, yn−1 have been selected. Since all of them are
isolated, we may choose δ > 0 such that none of them have any point of M at
distance less than or equal to δ. We may also take R > 0 such that all of them
are contained in B(0, R). Now let

α = min

{
2−n,

δ

δ +R

}
and, using the fact that M is not radially discrete, choose a pair (xn, yn) of different
points such that d(xn, yn) < α · d(xn, 0). It is easy to check that neither of them
can be 0. If yn was one of the points xk or yk with k < n then we would have

d(xn, yn) ≤ α

1− α
d(yn, 0) ≤ δ

R
d(yn, 0) ≤ δ

so it would have a point xn at distance less than or equal to δ, which is impossible
by construction. Analogously we check that xn cannot be one of the points xk, yk
with k < n. Thus the points x1, y1, . . . , xn, yn are all different, and the claim is
proved.

Let

m =

∞∑
n=1

δ(xn)− δ(yn)

d(xn, 0)
=

∞∑
n=1

d(xn, yn)

d(xn, 0)
mxnyn

and notice that the norm of the n-th term is bounded by 2−n, so the series is
absolutely convergent. For any n ∈ N, let fn ∈ Lip0(M) be such that fn ≥ 0,
fn(xk) = d(xk, 0) for k ≤ n, fn(xk) = 0 for k > n, and fn(yk) = 0 for all
k ∈ N. Once again, by hypothesis and using Proposition 4.3.18 we find a positive
m+ ∈ F(M) such that m+ ≥ m and supp(m+) ⊂ supp(m). But then fn ≤ ρ on
supp(m+) and 〈

m+, ρ
〉
≥
〈
m+, fn

〉
≥ 〈m, fn〉 = n

for every n, a contradiction. This finishes the proof.

Combining this with our previous results on the relation between majorizability
and integral representation, we obtain a characterization of those metric spaces
such that every element of F(M) is represented by a Radon measure on M . Note
that this extends [53, Theorem 3.19] which covers just the compact case.

Corollary 4.4.3. The following are equivalent:

(i) M is radially uniformly discrete,

(ii) all elements of F(M) are represented by Radon measures on M ,

(iii) all elements of F(M) are majorizable, and the base point of M is isolated.
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Proof. (i)⇔(iii): This follows immediately from Theorem 4.4.2 and Definition
4.4.1.

(iii)⇒(ii): If 0 is isolated in M then it is not contained in the support of any
element of F(M), so this implication follows immediately from Theorem 4.3.2.

(ii)⇒(iii): It follows from Proposition 4.3.4 that the base point of M is isolated.
Hence it cannot belong to the support of any element of F(M), and Theorem 4.3.2
yields the desired conclusion.

4.5 Open problems

Theorems 4.2.12 and 4.2.10 characterize the functionals in F(M) (resp. F(M)
∗∗

)
that can be represented by a Radon measure on M (resp. MU ) as those that
can be obtained as limits of finitely supported functionals with a bounded sum of
coefficients. However these characterizations are limited to functionals that avoid
infinity strongly (unless positivity is also assumed). They are valid in general if
M is bounded, but Examples 4.2.11 and 4.2.14 show that they can fail in the
unbounded case. So we may ask for a full characterization that is valid in all
cases:

Problem 4.1. Find a characterization of elements of F(M) (resp. F(M)
∗∗

) that
can be represented by a Radon measure on M (resp. MU ) that is valid also when
M is unbounded.

The following issue is related to Proposition 4.2.2, showing that if a regular Borel
measure on M induces a functional in F(M)

∗∗
then this functional is weak∗ con-

tinuous. If we do not assume regularity of the measure, then we get the same
conclusion if M is separable, but our proof fails for nonseparable M . Therefore
we ask:

Problem 4.2. Does every Borel measure µ on M such that
∫
M
ρ d |µ| <∞ induce

a weak∗ continuous functional Lµ ∈ F(M)?

Note that a negative answer to this question would also solve Problem 3.2, as the
corresponding Lµ would be sequentially normal (by dominated convergence) but
not normal. This question may also be related to Problem 3.3, asking whether
extended supports are always separable. There is a chance that Problem 4.2 is
undecidable and its solution involves metric spaces whose density character is a
measurable cardinal.

The next question is probably the most important one in this section and concerns
the existence of minimal majorants.
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Chapter 4. Integral representation

Problem 4.3. Do all majorizable functionals in F(M)
∗∗

admit a minimal majo-
rant?

We have proved in Theorem 4.3.12 that the answer is positive for functionals that
avoid 0 and infinity. By the decomposition from Theorem 3.5.3, it is enough to
consider two remaining cases: functionals that are concentrated at infinity, and
derivations at the base point.

Our last question is unlikely to have any practical application, but it is still an
interesting mathematical curiosity. Let us notice that all higher duals F(M)∗∗∗,
F(M)∗∗∗∗, . . . can be inductively endowed with a vector space order. We have
seen in Corollary 4.3.10 that all positive (and hence also majorizable) elements of
F(M)

∗∗
are actually elements of F(M) when M is compact and 0 is an isolated

point. So we may ask the following:

Problem 4.4. If M is compact and the base point is isolated, does it follow that
every positive element of the successive duals F(M)(2n) of even order belongs to
F(M)?
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Chapter 5

Extremal structure of the
unit ball

In this last chapter we will use the theory of supports in F(M) developed in
Chapter 3 to analyze the extremal structure of the unit ball of F(M). More
specifically, we will give complete characterizations of all of its preserved extreme
points and of its extreme and exposed points that have finite support. We will
also completely describe extreme, exposed and preserved extreme points of the
positive unit ball. These results appeared originally on a series of papers obtained
in collaboration with Guirao, Pernecká, Petitjean and Procházka [1,5,6]. Here we
have slightly modified the original proofs in an attempt to give a unified treatment
to all of these results.

5.1 Extreme points and metric alignment

Let us begin by recalling the definition of the most usual types of extremal elements
in Banach spaces. There are more notions than those listed here but they fall
outside of the scope of this dissertation; one possible reference is [32].

Definition 5.1.1. Let C be a convex subset of a Banach space X and x ∈ C.
Then x is

• an extreme point of C if it cannot be written as x = 1
2 (y + z) with y, z ∈

C \ {x},
• an exposed point of C if there is x∗ ∈ X∗ such that 〈x, x∗〉 > 〈y, x∗〉 for any
y ∈ C \ {x},

• a preserved extreme point of C if it is an extreme point of C
w∗

in X∗∗,
105



Chapter 5. Extremal structure of the unit ball

• a denting point of C if there are slices of C (that is, sets of the form
{y ∈ C : 〈y, x∗〉 > α} for some x∗ ∈ X∗ and α ∈ R) of arbitrarily small
diameter containing x,

• a strongly exposed point of C if there is a fixed x∗ ∈ X∗ such that there
are slices of C of the form {y ∈ C : 〈y, x∗〉 > α} of arbitrarily small diameter
containing x.

The set of extreme points of C will be denoted by ext(C). Our efforts will be
focused on the case C = BF(M), but later we shall also consider the positive unit

ball C = B+
F(M).

Among the notions presented above, that of extreme point is the weakest one. In
fact, we have the chain of implications described in the following diagram. In the
general setting of Banach spaces there are counterexamples for the reverse of each
implication, but we shall see that the situation is different when we restrict our
attention to the unit balls of Lipschitz-free spaces.

strongly exposed

��

+3 exposed

��

denting

��
preserved extreme +3 extreme

With this setup in place, we may start working on the problem of characterizing
all of these types of extremal elements in the unit ball of a given Lipschitz-free
space. Historically, the first serious breakthrough in this research program was
achieved by Weaver in 1995 [51], when he proved the following:

Theorem 5.1.2 ([53, Corollary 3.44]). Any preserved extreme point of BF(M) is
an elementary molecule in M .

This result cements the status of elementary molecules as the most important
elements of F(M), but more importantly, it opens the way for simple geometric
characterizations of extremal elements of BF(M). Indeed, since a molecule mpq

is determined by just two points p, q ∈ M , it should be possible to express any
such characterization in terms of an equivalent condition on the pair p, q that only
involves the metric structure of M .

After Weaver’s early result, progress in this program was mostly stalled for about
20 years. The first new results to appear were the following, due to Garćıa-Lirola,
Petitjean, Procházka and Rueda Zoca:
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Theorem 5.1.3 ([24, Theorem 5.4]). Let p 6= q ∈ M . Then mpq is a strongly
exposed point of BF(M) if and only if there is C > 0 such that

min {d(x, p), d(x, q)} ≤ C · (d(p, x) + d(q, x)− d(p, q))

for all x ∈M .

Theorem 5.1.4 ([23, Theorem 2.4]). Every preserved extreme point of BF(M) is
also a denting point of BF(M).

Shortly afterwards the author of this dissertation, in collaboration with A. Guirao
[1] and E. Pernecká [5], gave similar geometric characterizations of those molecules
mpq that are extreme or preserved extreme points of BF(M) similar to that de-
scribed in Theorem 5.1.3. These results (Theorems 5.2.6 and 5.2.9) will be proved
in the next section. It should be remarked here that it is not known whether
all extreme points must be molecules (this is only known for preserved extreme
points), so this will not provide a full characterization of all extreme points of
BF(M) yet.

It turns out that these characterizations are very strongly related to notions of
metric alignment of points in the metric space M , so we will first define these
concepts and describe their links to extremality.

Definition 5.1.5. Let p, q ∈M . The metric segment [p, q] is defined as the set

[p, q] = {x ∈M : d(p, q) = d(p, x) + d(q, x)} .

We say that three points p, q, r ∈M are metrically aligned if one of them belongs
to the metric segment spanned by the other two.

Observe that these definitions of metric segment and metric alignment agree with
the corresponding intuitive notions of alignment in the Euclidean plane or space.
More generally, if M is a strictly convex normed space, then the segment [p, q]
coincides with the usual linear segment {λp+ (1− λ)q : λ ∈ [0, 1]}, and p, q, r are
metrically aligned if and only if they are linearly aligned, i.e. if they span an
affine subspace of dimension 1 instead of 2, or equivalently, if p − r and q − r
are linearly dependent. For a general metric space M the segment [p, q] is closed,
always contains p and q, and it is possible for it to contain no other point.

The following is a quantitative way of measuring how far three given points are
from being metrically aligned:

Definition 5.1.6. Let p, q, x ∈M . The Gromov product of p and q at x is defined
as the value

(p, q)x =
1

2
(d(p, x) + d(q, x)− d(p, q)) .
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Note that (p, q)x ≥ 0 by the triangle inequality, and (p, q)x = 0 if and only if x ∈
[p, q]. Note also that (p, q)x ≤ d(x, [p, q]) for any x ∈M ; this is proved by adding
the triangle inequalities d(p, x) ≤ d(p, r) +d(r, x) and d(q, x) ≤ d(q, r) +d(r, x) for
r ∈ [p, q]. Finally, it is straightforward to check that the identity

(p, q)x + (x, q)y = (p, q)y + (p, y)x (5.1)

holds for any p, q, x, y ∈M ; we will need this later.

Although this may not be apparent at first sight, we will also require partial
extensions of these concepts to the uniform compactification MU .1 The mapping
x 7→ (p, q)x is clearly 1-Lipschitz, so it is possible to extend it to a mapping
MU → [0,∞]. We will denote by

(p, q)ζ = lim
i

(p, q)xi

the evaluation of the corresponding extension at ζ ∈ MU (where (xi) is a net in
M that converges to ζ), without explicitly writing the superscript U . We can then
consider the following subset of MU :

Definition 5.1.7. Let p, q ∈ M . The extended metric segment [p, q]U is defined
as the set

[p, q]U =
{
ζ ∈MU : (p, q)ζ = 0

}
.

It should be obvious that [p, q]U is always compact, contains p and q, and that
[p, q] = [p, q]U∩M . We will say that the segment [p, q], resp. the extended segment
[p, q]U , is trivial if it only contains the points p and q.

The following lemma describes the basic link between metric alignment in M and
the extremal structure of BF(M). Indeed, there is a direct relation between trivial
segments and molecules mpq that are extremal elements of the unit ball.

Lemma 5.1.8. Let p, q be distinct points of M .

(a) If mpq is an extreme point of BF(M), then [p, q] is trivial.

(b) If mpq is a preserved extreme point of BF(M), then [p, q]U is trivial.

Proof. (a) For any x ∈M \ {p, q} we have

mpq =
δ(p)− δ(q)
d(p, q)

=
δ(p)− δ(x)

d(p, q)
+
δ(x)− δ(q)
d(p, q)

=
d(p, x)

d(p, q)
mpx +

d(x, q)

d(p, q)
mxq.

If x ∈ [p, q] i.e. d(p, q) = d(p, x) + d(q, x), then this expresses mpq as a convex
combination of elements mpx and mxq of BF(M) so it cannot be an extreme point.

1It is also possible to work with the Stone-Čech compactification βM instead, as was done in
the original treatment of this subject in [1, 5].
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(b) Suppose that (p, q)ξ = 0 for some ξ ∈ MU \ {p, q}. Define the functions
ρp(x) = d(x, p) and ρq(x) = d(x, q) for x ∈M . It is clear then that

ρUp (ξ) + ρUq (ξ)− d(p, q) = (p, q)ξ = 0

so we may find a bounded net (xi) in M that converges to ξ, hence ξ ∈ MR and
δ(ξ) ∈ F(M)

∗∗
. Now define the generalized molecules

mpξ =
δ(p)− δ(ξ)
ρUp (ξ)

and mξq =
δ(ξ)− δ(q)
ρUq (ξ)

.

Notice that mpξ is a well-defined element of F(M)
∗∗

since ρUp (ξ) > 0 as ξ 6= p.
Moreover, for any f ∈ BLip0(M) we have

|〈f, δ(p)− δ(ξ)〉| =
∣∣f(p)− fU (ξ)

∣∣ = lim
i
|f(p)− f(xi)| ≤ lim

i
d(p, xi) = ρUp (ξ)

so actually mpξ ∈ BF(M)∗∗ . Analogously, mξq ∈ BF(M)∗∗ . Then we can write

mpq =
δ(p)− δ(q)
d(p, q)

=
δ(p)− δ(ξ)
d(p, q)

+
δ(ξ)− δ(q)
d(p, q)

=
ρUp (ξ)

d(p, q)
mpξ +

ρUq (ξ)

d(p, q)
mξq.

i.e. mpq is a convex combination of elements inBF(M)∗∗ , so it cannot be a preserved
extreme point.

Lemma 5.1.8, part (a) of which is folklore, shows that trivial (extended) segments
are a necessary condition for (preserved) extremality of molecules. In fact they
are also sufficient conditions, but the proof of this fact is much more elaborate.
The next section will be devoted to that.

The condition that [p, q] = {p, q} has a rather clear geometric interpretation. It
will be convenient to find a similar equivalent condition to [p, q]U = {p, q} that is
stated purely in terms of the geometry of M . That condition essentially means
that it is not possible to have d(p, xi) + d(q, xi)→ d(p, q) unless (xi) clusters at p
or q. Equivalently, the triangle inequality is uniformly strict for x away from p, q.
The precise formulation is the following:

Lemma 5.1.9. Let p, q be distinct points of M . Then the following are equivalent:

(i) [p, q]U is trivial,

(ii) for every ε > 0 there is δ > 0 such that (p, q)x ≥ δ whenever x ∈M satisfies
min {d(p, x), d(q, x)} ≥ ε.

Proof. Suppose (i) is false and there is ξ ∈MU \{p, q} such that (p, q)ξ = 0. Then
there is a net (xi) in M such that xi → ξ and (p, q)xi → 0. Choose ε > 0 such
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that d(xi, p) > ε and d(xi, q) > ε eventually; such an ε exists because {xi} would
otherwise have a subsequence that converges to p or q. Then (ii) is false for this ε.

Suppose now that (ii) is false, and choose ε > 0 such that for every n ∈ N there is
xn ∈ X such that d(p, xn) ≥ ε, d(q, xn) ≥ ε and (p, q)xn < 2−n. Let ξ be a cluster
point of (xn) in MU . Then clearly (p, q)ξ = 0 and ξ 6= p, q, so (i) is false.

5.2 Extreme and preserved extreme molecules

This section will be devoted to proving the converse of Lemma 5.1.8; we will give
an almost joint proof of the converse of both statements in the lemma. Let us
introduce the notation

M̃ =
{

(x, y) ∈M2 : x 6= y
}

for the set of pairs of different points of M , with the topology inherited from
M2 (note that this notation was already used in the proof of Proposition 2.3.2,

although no topology was assigned to M̃ there).

Definition 5.2.1. The de Leeuw transform is the mapping Φ that assigns to a
function f : M → R the function Φf : M̃ → R defined by

Φf(x, y) =
f(x)− f(y)

d(x, y)
.

We have not made any assumptions on f in the definition above. If f is continuous
then Φf is obviously continuous, too. Moreover, notice that ‖f‖L = ‖Φf‖∞
by definition for any f . So in particular, if f is Lipschitz then Φf belongs to
Cb(M̃), the space of bounded continuous real-valued functions on M̃ , which can be

identified with C(βM̃). Thus we may regard Φ as a linear isometry from Lip0(M)

into C(βM̃). Its adjoint operator Φ∗ : M(βM̃)→ F(M)
∗∗

is therefore a quotient

map, i.e. for every φ ∈ F(M)
∗∗

there exists a Radon measure µ ∈ M(βM̃) such
that Φ∗µ = φ and ‖µ‖ = ‖φ‖. Note that Φf(x, y) = 〈mxy, f〉 for any f ∈ Lip0(M)
and x 6= y ∈M , so clearly Φ∗δ(x,y) = mxy.

The sets Dpq and Epq

For the rest of this section we will fix two distinct points p, q in M in order to
analyze the extremality of the molecule mpq. Let us consider the following sets:

Dpq =
{
ζ ∈ βM̃ : |Φf(ζ)| = 1 for every f ∈ SLip0(M) such that Φf(p, q) = 1

}
Epq =

{
φ ∈ BF(M)∗∗ : 〈f, φ〉 = 1 for every f ∈ SLip0(M) such that 〈mpq, f〉 = 1

}
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Dpq is a compact subset of βM̃ and it always contains the points (p, q) and (q, p).
Similarly, Epq is a weak∗-compact convex subset of SF(M)∗∗ that always contains
mpq. Notice that Epq is almost a “linear counterpart” of Dpq and, in fact, Φ∗δζ ∈
Epq for every ζ ∈ Dpq.2

The relevance of these sets lies in the observation that Epq is a face of BF(M)∗∗ ;
that is, if φ, ψ ∈ BF(M)∗∗ are such that

tφ+ (1− t)ψ ∈ Epq

for some t ∈ (0, 1), then φ, ψ ∈ Epq. Indeed, let f ∈ SLip0(M) be such that
〈mpq, f〉 = 1. Then the inequalities

1 = 〈tφ+ (1− t)ψ, f〉 = t 〈φ, f〉+ (1− t) 〈ψ, f〉 ≤ t+ (1− t) = 1

hold and so 〈φ, f〉 = 〈ψ, f〉 = 1. Hence, in order to show that mpq is an extreme
point of BF(M), it suffices to show that ext(Epq ∩F(M)) = {mpq}. And similarly,
in order to show that mpq is a preserved extreme point, it is enough to show that
ext(Epq) = {mpq}.

The following series of auxiliary results will be devoted to analyzing the properties
of the sets Dpq and Epq and the relationship between them. We start by showing
that, informally speaking, Dpq is contained in [p, q]U × [p, q]U :

Lemma 5.2.2. For every ζ ∈ Dpq there is a net (xi, yi) in M̃ that converges to ζ

in βM̃ , such that (p, q)xi and (p, q)yi converge to 0.

Proof. Let ζ ∈ βM̃ , then there is a net (xi, yi), i ∈ I, in M̃ that converges to ζ

in βM̃ , and we may choose a subnet such that (xi) and (yi) converge to elements
ξ and η, respectively, in MU ; call this subnet (xi, yi) again. We want to prove
that ζ ∈ Dpq implies that ξ, η ∈ [p, q]U . We will do so by contradiction: assume
without loss of generality that η /∈ [p, q]U , and we will construct f ∈ BLip0(M) such
that Φf(p, q) = 1 and |Φf(ζ)| < 1, thus concluding that ζ /∈ Dpq.

We start by establishing the following fact:

Claim 1. Let (zi) be a net in M that converges to ϑ ∈MU \ [p, q]U . Then we can
replace (zi) with a subnet such that

inf
i∈I

(p, q)zi
d(zi, q)

> 0.

2The matching between Dpq and Epq is not perfect due to the absolute value |Φf(ζ)| used in
the definition of Dpq . It is possible to remove it but this complicates the arguments, as it forces

separate handling of points (p, q) ∈ M̃ and their flipped versions (q, p).
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Chapter 5. Extremal structure of the unit ball

Proof of Claim 1. Let (zi) be a net in M such that zi → ϑ. Since (p, q)ϑ > 0,
there is δ > 0 such that (p, q)zi ≥ δ eventually. Now take a subnet such that
either d(zi, q) is bounded by some M < ∞, or d(zi, q) → ∞. In the first case,
we get (p, q)zi/d(zi, q) ≥ δ/M for all i. In the second case, we have d(zi, p) ≥
d(zi, q)− d(p, q)→∞ as well, and

lim sup
i

d(zi, p)

d(zi, q)
≤ lim sup

i

d(zi, q) + d(q, p)

d(zi, q)
= 1 + lim sup

i

d(p, q)

d(zi, q)
= 1.

By symmetry in p and q we get limi d(zi, p)/d(zi, q) = 1. Hence

lim
i

(p, q)zi
d(zi, q)

=
1

2

(
1 + lim

i

d(zi, p)− d(p, q)

d(zi, q)

)
= 1,

so we may take a subnet such that (p, q)zi/d(zi, q) >
1
2 for all i.

Apply Claim 1 with ϑ = η to replace (xi, yi) with a subnet such that

inf
i

(p, q)yi
d(yi, q)

> 0.

Let us write X = {xi : i ∈ I}, Y = {yi : i ∈ I} and Z = {p, q} ∪X ∪ Y . We now
split the rest of the proof into three possible cases that will be handled similarly
but separately:

(1) ξ /∈ [p, q]U .

(2) ξ ∈ [p, q]U \ {p, q}.
(3) ξ ∈ {p, q}.

Case 1: ξ /∈ [p, q]U

By using Claim 1 again with ϑ = ξ, we may assume that

c = min

{
1

2
, inf
i∈I

(p, q)xi
d(xi, q)

, inf
i∈I

(p, q)yi
d(yi, q)

}
is strictly positive. Define g : Z → R by

g(x) =

{
d(p, q) if x = p

(1− c) · d(x, q) if x ∈ Z \ {p} .

It is clear that Φg(p, q) = 1 and |Φg(x, y)| ≤ 1 − c for x, y ∈ Z \ {p}. For any
x ∈ Z \ {p, q} we have

1− Φg(p, x) =
d(p, x)− g(p) + g(x)

d(p, x)
=

2(p, q)x − c · d(x, q)

d(p, x)
≥ c · d(x, q)

d(p, x)
> 0

1 + Φg(p, x) =
d(p, x) + g(p)− g(x)

d(p, x)
=

2(x, q)p + c · d(x, q)

d(p, x)
≥ c · d(x, q)

d(p, x)
> 0
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5.2 Extreme and preserved extreme molecules

so −1 < Φg(p, x) < 1, hence ‖g‖L = 1. Now extend g from Z to M using
McShane’s theorem and let f = g − g(0). Then f ∈ BLip0(M), Φf(p, q) = 1, and
|Φf(ζ)| = limi |Φf(xi, yi)| ≤ 1− c < 1, hence ζ /∈ Dpq.

Case 2: ξ ∈ [p, q]U \ {p, q}

Since p, q, ξ, η are all distinct, we may assume that X and Y are disjoint and do
not contain p or q. We require now a stronger version of Claim 1:

Claim 2. We may replace (xi, yi), i ∈ I, with a subnet such that

inf
i∈I

(p, q)yi
d(yi, q)

> 0, inf
i,j∈I

(xj , q)yi
d(yi, q)

> 0, inf
i∈I

d(yi, q)

d(yi, p)
> 0 and inf

i,j∈I
d(yi, q)

d(yi, xj)
> 0.

Proof of Claim 2. By assumption we may choose a subnet such that d(xi, q) is
bounded. We may further choose a subnet such that d(yi, q) is either bounded or
goes to infinity. We divide the proof into these two cases.

Suppose first that we take a subnet such that d(yi, q) ≤ C1 for some C1 <∞ and
all i ∈ I. The identity (5.1) implies in particular that

(xj , q)yi ≥ (p, q)yi − (p, q)xj

for any i, j ∈ I. Since (p, q)ξ = 0 and (p, q)η > 0, we may pass to a subnet such
that (p, q)yi ≥ δ and (p, q)xi ≤ δ/2 for some δ > 0, so that

(xj , q)yi
d(yi, q)

≥ δ

2C1
and

(p, q)yi
d(yi, q)

≥ δ

C1

for all i, j ∈ I. Also yi → η 6= q, hence we may take a subnet such that d(yi, q) ≥ C2

for some C2 > 0 and all i ∈ I. If C3 < ∞ is such that d(xi, q) ≤ C3 for all i ∈ I,
we obtain

d(yi, q)

d(yi, xj)
≥ d(yi, q)

d(yi, q) + d(xj , q)
≥ C2

C1 + C3

for all i, j ∈ I, and similarly d(yi, q)/d(yi, p) ≥ C2/(C1 + d(p, q)).

Now assume that we take a subnet such that d(yi, q)→∞ instead. Mimicking the
last part of the proof of Claim 1 we obtain

lim
i

(p, q)yi
d(yi, q)

= 1,

so we may take a subnet where (p, q)yi/d(yi, q) and d(yi, q)/d(yi, p) are bounded
below by a positive constant. Also, since d(xi, q) is bounded, we may choose a
further subnet such that d(xj , q)/d(yi, q) ≤ 1/2 for all i, j, and then

(xj , q)yi
d(yi, q)

=
1

2

(
1 +

d(yi, xj)− d(xj , q)

d(yi, q)

)
≥ 1

2

(
1

2
+
d(yi, xj)

d(yi, q)

)
≥ 1

4
.
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Chapter 5. Extremal structure of the unit ball

Finally,
d(yi, xj)

d(yi, q)
≤ 1 +

d(xj , q)

d(yi, q)
≤ 3

2

and so d(yi, q)/d(yi, xj) ≥ 2/3 for all i, j.

Now we continue with the main proof. Using Claim 2, replace (xi, yi) with a
subnet such that

c = min

{
1

2
, inf
i,j∈I

(xj , q)yi
d(yi, q)

, inf
i∈I

(p, q)yi
d(yi, q)

}
and

δ = min

{
1, inf

i,j∈I
d(yi, q)

d(yi, xj)
, inf
i∈I

d(yi, q)

d(yi, p)

}
.

are positive. Define g : Z → R by

g(z) =

{
d(z, q) if z ∈ Z \ Y
(1− c) · d(z, q) if z ∈ Y .

It is clear that Φg(p, q) = 1, |Φg(x, y)| ≤ 1 for x, y ∈ Z \ Y and |Φg(x, y)| ≤ 1− c
for x, y ∈ Y . Moreover, if y ∈ Y then Φg(y, q) = 1 − c, and for any x ∈ X ∪ {p}
we have

1 + Φg(y, x) =
2(x, q)y − c · d(y, q)

d(y, x)
≥ c · d(y, q)

d(y, x)
≥ cδ,

1− Φg(y, x) =
2(y, q)x + c · d(y, q)

d(y, x)
≥ c · d(y, q)

d(y, x)
≥ cδ,

so |Φg(y, x)| ≤ 1 − cδ. We conclude that ‖g‖L = 1. Now extend g from Z to
M and let f = g − g(0). Then f ∈ BLip0(M), Φf(p, q) = 1, and |Φf(ζ)| =
limi |Φf(xi, yi)| ≤ 1− cδ < 1, hence ζ /∈ Dpq.

Case 3: ξ ∈ {p, q}

Assume that ξ = q without loss of generality. Then we may use a simplified version
of the construction in Case 1: let Z = {p, q} ∪ Y and define g : Z → R by

g(x) =

{
d(p, q) if x = p

(1− c) · d(x, q) if x ∈ Z \ {p} .

where

c = min

{
1

2
, inf
i∈I

(p, q)yi
d(yi, q)

}
> 0,

then extend it to M and take f = g − g(0). Then we again obtain f ∈ BLip0(M),
Φf(p, q) = 1 and |Φf(ζ)| ≤ 1− c; we omit the details. This concludes the proof of
Lemma 5.2.2.
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The next result says that if µ ∈ M(βM̃) is such that Φ∗µ ∈ Epq, then µ must be
almost concentrated on Dpq.

Lemma 5.2.3. Let U ⊂ βM̃ be an open neighborhood of Dpq. Then there is a
finite constant CU , depending on U , such that

|µ| (βM̃ \ U) ≤ CU · (‖µ‖ − 1)

for any measure µ ∈M(βM̃) such that Φ∗µ ∈ Epq.

Proof. Denote K = βM̃ \ U , which is a compact set. For any ζ ∈ K we have
ζ /∈ Dpq, so there is fζ ∈ BLip0(M) such that Φfζ(p, q) = 1 and |Φfζ(ζ)| < 1 and,
since Φfζ is continuous, there are cζ ∈ (0, 1) and an open neighborhood Vζ of ζ

such that |Φfζ(ζ ′)| ≤ cζ for every ζ ′ ∈ Vζ . If µ ∈ M(βM̃) is any measure such
that Φ∗µ ∈ Epq, then we have

1 = 〈fζ ,Φ∗µ〉 =

∫
βM̃

(Φfζ) dµ =

∫
Vζ

(Φfζ) dµ+

∫
βM̃\Vζ

(Φfζ) dµ

≤ cζ |µ| (Vζ) + |µ| (βM̃ \ Vζ)
= ‖µ‖ − (1− cζ) |µ| (Vζ)

hence

|µ| (Vζ) ≤
‖µ‖ − 1

1− cζ
.

Now, {Vζ : ζ ∈ K} is an open cover of K, so it admits a finite subcover K ⊂⋃n
j=1 Vζj . Thus, for any µ ∈M((βM̃) such that Φ∗µ ∈ Epq we have

|µ| (K) ≤
n∑
j=1

|µ| (Vζj ) ≤ CU · (‖µ‖ − 1),

where CU =
∑n
j=1(1− cζj )−1 <∞.

With the previous lemma at hand, we can start tightening the net around the
elements of Epq. Let π1, π2 : M̃ → M be the projection mappings given by

π1(x, y) = x and π2(x, y) = y. For a set A ⊂ M̃ , denote π(A) = π1(A)∪π2(A), i.e.
π(A) will be the set of points of M appearing as either coordinate of an element
of A.

Lemma 5.2.4. Let U ⊂ βM̃ be an open neighborhood of Dpq. Then for every

m ∈ Epq ∩ F(M) we have supp(m) ⊂ π(U ∩ M̃).
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Proof. Let A = π(U ∩ M̃) and fix k ∈ N. By Proposition 2.3.2, m admits

a representation m =
∑∞
n=1 anmpnqn where (pn, qn) ∈ M̃ for all n ∈ N and∑∞

n=1 |an| ≤ 1 + 1/k. Let µ =
∑∞
n=1 anδ(pn,qn), then µ belongs to M(βM̃) as the

series is absolutely convergent, ‖µ‖ ≤
∑∞
n=1 |an| ≤ 1 + 1/k, and clearly Φ∗µ = m.

Now let I = {n ∈ N : (pn, qn) ∈ U} and mk =
∑
n∈I anmpnqn . Notice that pn, qn ∈

A for each n ∈ I, hence supp(mk) ⊂ A. Denote K = βM̃ \ U and let CU be the
constant assigned to U by Lemma 5.2.3. For each f ∈ Lip0(M) we have

〈m−mk, f〉 =
∑
n/∈I

anΦf(pn, qn) =
∑

{n∈N:(pn,qn)∈K}
anΦf(pn, qn)

=

∫
βM̃

(Φf) · χK dµ =

∫
K

(Φf) dµ

and it follows that

|〈m−mk, f〉| =
∣∣∣∣∫
K

(Φf) dµ

∣∣∣∣ ≤ ‖Φf‖∞ · |µ| (K) ≤ ‖f‖L · CU/k

and ‖m−mk‖ ≤ CU/k. Hence, if k →∞ then mk → m. Since supp(mk) ⊂ A for
any k we conclude that supp(m) ⊂ A.

Finally we obtain that all weak∗ continuous elements of Epq must be supported on
the metric segment [p, q]. Crucially, the intersection theorem is required to reach
this conclusion.

Lemma 5.2.5. For every m ∈ Epq ∩ F(M) we have supp(m) ⊂ [p, q].

Proof. Let ϕ : M̃ → [0,∞) be the continuous function defined by

ϕ(x, y) = max {(p, q)x, (p, q)y}

and extend ϕ to a continuous function ϕ : βM̃ → [0,∞]. Consider the sets

Sn =
{
x ∈M : (p, q)x ≤ 1

n

}
and

Un =
{
ζ ∈ βM̃ : ϕ(ζ) < 1

n

}
for n ∈ N. Notice that Sn is closed, Un is open in βM̃ , and π(Un ∩ M̃) ⊂ Sn by
definition. For each n, Lemma 5.2.2 implies that Dpq ⊂ Un, and applying Lemma
5.2.4 we conclude that supp(m) ⊂ Sn. Thus the intersection theorem yields

supp(m) ⊂
∞⋂
n=1

Sn = [p, q]

as claimed.
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Extreme molecules

We can now obtain the main result in this chapter as an immediate consequence
of Lemma 5.2.5:

Theorem 5.2.6. Let p, q be different points of M . Then mpq ∈ extBF(M) if and
only if [p, q] is trivial.

Proof. One direction is given by Lemma 5.1.8(a). For the other one, suppose that
[p, q] = {p, q}. We already remarked that it suffices to show that

ext(Epq ∩ F(M)) = {mpq} .

In fact, something stronger holds: we have Epq ∩ F(M) = {mpq}. Indeed, if
m ∈ Epq ∩ F(M) then supp(m) ⊂ [p, q] = {p, q} by Lemma 5.2.5, hence m =
aδ(p) + bδ(q) for some a, b ∈ R, and it is straightforward to check that m ∈ Epq if
and only if m = mpq.

In fact, this result characterizes all extreme points of BF(M) with finite support:

Corollary 5.2.7. Let m ∈ span δ(M). Then m ∈ extBF(M) if and only if
m = mpq where p, q are different points of M such that [p, q] is trivial.

Proof. Let K = supp(m). If m ∈ extBF(M) then also m ∈ extBFM (K). But
FM (K) is finite dimensional, hence every extreme point of the unit ball is preserved
extreme and thus a molecule by Theorem 5.1.2. Now it suffices to apply Theorem
5.2.6.

An application of Theorem 5.2.6 allows us to show that there exists a complete
metric space M such that all of its elementary molecules are extreme but none of
them are preserved. This provides a rather strong example of the fact that the
implication (preserved extreme ⇒ extreme) cannot be reversed.

Example 5.2.8. Let M be the space described in [35, Example 2.4]. It is shown
there to have the following properties:

(i) it is a closed subset of a strictly convex Banach space,

(ii) it contains no nontrivial linear segments,

(iii) it is “almost metrically convex”, i.e. a length space.

It follows from (i) and (ii) that M contains no nontrivial metric segments, hence
Theorem 5.2.6 implies that all elementary molecules are extreme points of BF(M).
However, by (iii) and [24, Proposition 5.9], BF(M) has no preserved extreme point.
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Preserved extreme points

The other main result, the characterization of preserved extreme points, follows
from the particular case of Lemma 5.2.3 where we take ‖µ‖ = 1.

Theorem 5.2.9. The preserved extreme points of BF(M) are exactly the molecules
mpq for p 6= q ∈M such that [p, q]U is trivial.

Recall that the geometric characterization of this condition within the metric of
M is given in Lemma 5.1.9.

Proof. One implication is given by Theorem 5.1.2 and Lemma 5.1.8(b). For the
other one, assume that [p, q]U = {p, q}. Since Φ∗ is a quotient map, for any φ ∈ Epq
there is µ ∈ SM(βM̃)

such that Φ∗µ = φ. If U ⊂ βM̃ is any open neighborhood of

Dpq then |µ| (βM̃ \ U) = 0 by Lemma 5.2.3, hence

|µ| (βM̃ \ Dpq) = sup
{
|µ| (βM̃ \ U) : U ⊃ Dpq open

}
= 0

by regularity. Thus µ is concentrated on Dpq. But [p, q]U is trivial, so Lemma
5.2.2 implies that

Dpq = {(p, q), (q, p)} ∪Ap ∪Aq

where Ap (resp. Aq) is a (possibly empty) subset of βM̃ all whose elements are

limits of nets (xi, yi) in M̃ such that (xi) and (yi) converge to p (resp. q). Hence

µ = aδ(p,q) + bδ(q,p) + µ′

for some a, b ∈ R and some µ′ ∈ M(βM̃) that is concentrated on Ap ∪ Aq. In
particular, we have

1 = |µ| (βM̃) = |a|+ |b|+ ‖µ′‖ .

Suppose that mpq = 1
2 (φ1 + φ2) for some φi ∈ SF(M)∗∗ . It was already observed

that φi ∈ Epq in that case, so we have φi = Φ∗µi where µi ∈ SM(βM̃)
has the form

µi = aiδ(p,q) + biδ(q,p) + µ′i and µ′i is concentrated on Ap ∪Aq.

Now let U and V be neighborhoods of p and q, respectively, such that d(U, V ) > 0.
Use McShane’s theorem to build a function g ∈ Lip(M) such that g = d(p, q) on
U and g = 0 on V , then let f = g − g(0). Clearly f ∈ Lip0(M) and Φf(p, q) = 1.

Moreover, Φf = 0 on Ap: indeed, for any ζ ∈ Ap choose a net (xi, yi) in M̃ that
converges to ζ, then xi, yi are eventually in U , hence Φf(xi, yi) = 0 eventually and
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so Φf(ζ) = 0. Similarly Φf = 0 on Aq. But then we get

1 = 〈mpq, f〉 =
1

2
〈f, φ1 + φ2〉

=
1

2

(
(a1 − b1 + a2 − b2) 〈mpq, f〉+

∫
βM̃

(Φf) d(µ′1 + µ′2)

)
=

1

2
(a1 − b1 + a2 − b2)

and it follows that

2 = a1 − b1 + a2 − b2 ≤ |a1|+ |b1|+ |a2|+ |b2|
≤ |a1|+ |b1|+ ‖µ′1‖+ |a2|+ |b2|+ ‖µ′2‖ = 2.

Therefore all the inequalities are in fact equalities, in particular ‖µ′1‖ = ‖µ′2‖ = 0
and thus φi = (ai − bi)mpq are scalar multiples of mpq. It is then immediate that
φ1 = φ2 = mpq and mpq ∈ extBF(M)∗∗ as we wanted to prove.

When M is compact, or more generally when it is a Heine-Borel space, it is easy
to see that [p, q]U = [p, q]. This implies easily that Mol(M) cannot contain unpre-
served extreme points of BF(M):

Corollary 5.2.10. Suppose that M is a Heine-Borel space and let p, q be different
points of M . Then the following are equivalent:

(i) mpq is a preserved extreme point of BF(M),

(ii) mpq is an extreme point of BF(M),

(iii) [p, q] is trivial.

Proof. (i)⇒(ii) is trivial and (ii)⇒(iii) is Lemma 5.1.8(a). Now suppose (i) fails,
then by Theorem 5.2.9 there is ξ ∈ [p, q]U \ {p, q}. Let (xi) be a net in M that
converges to ξ. Since d(p, xi) + d(q, xi) converges to d(p, q), we may assume that
(xi) is bounded. The Heine-Borel property then implies that (xi) has a cluster
point x ∈M that is different from p, q and clearly d(p, x) +d(q, x) = d(p, q). Thus
(iii) also fails.

We remark that Corollary 5.2.10 is no longer true when we remove the hypoth-
esis that M is Heine-Borel. Simple counterexamples may be constructed using
Theorem 5.2.9, such as the following one:

Example 5.2.11. Let M ⊂ c0 consist of 0, p = 2e1, and qn = e1 + (1 + 1
n )en for

n ≥ 2. Since d(qn, qm) > 1 for different n,m ≥ 2, the sequence {qn} has no cluster
point in M , and M is not compact. Also (p, 0)qn = 1

n , so the segment [0, p] is
trivial. However, if ξ is a cluster point of qn in MU then (p, 0)ξ = 0, hence mp0 is

119



Chapter 5. Extremal structure of the unit ball

not a preserved extreme point by Theorem 5.2.9. However it is an extreme point
by Theorem 5.2.6.

A metric space is called concave when all of its metric segments are trivial, i.e.
when no triple of different points of M is metrically aligned. As an immediate
consequence of Corollary 5.2.10 we obtain the following equivalence, which solves
an open problem posed by Weaver in [52, p. 53].3

Corollary 5.2.12. Suppose that M is a Heine-Borel space. Then M is concave if
and only if every elementary molecule of M is a preserved extreme point of BF(M).

Classical examples of concave spaces are given by Hölder spaces Mθ, which are
constructed from metric spaces (M,d) by equipping them with the metric dθ where
θ ∈ (0, 1). Indeed, for distinct p, q, r ∈M we have

d(p, q)θ ≤ (d(p, r) + d(r, q))θ < d(p, r)θ + d(r, q)θ

so that no set of three distinct points can be metrically aligned in Mθ. We remark
that not all compact concave spaces are Hölder spaces, as shown by the following
example:

Example 5.2.13. Consider strictly decreasing sequences λn → 1 and an → 0,
with a1 < 1. Then aλnn + (1 − an)λn < (an + 1 − an)λn = 1, so we can choose
positive bn → 0 such that

(a2
n + b2n)λn/2 + ((1− an)2 + b2n)λn/2 < 1.

Note that the terms in parentheses are all smaller than 1. Let M be the subset
of `2 consisting of 0, e1, and rn = ane1 + bnen for n ≥ 2. Then M is compact
because rn → 0, and any triple of distinct points of M spans an affine subspace
of `2 of dimension 2 so they cannot be metrically aligned because `2 is strictly
convex; hence M is concave. However M cannot be θ-Hölder for any θ ∈ (0, 1).
Indeed, suppose there was a metric d on M such that ‖x− y‖2 = d(x, y)θ for any
x, y ∈M , and choose n such that λn < 1/θ. Then

d(0, rn) + d(rn, e1) = ‖rn‖1/θ2 + ‖e1 − rn‖1/θ2

= (a2
n + b2n)1/2θ + ((1− an)2 + b2n)1/2θ

< (a2
n + b2n)λn/2 + ((1− an)2 + b2n)λn/2

< 1 = d(0, e1)

violating the triangle inequality.

3A different proof, which appears in [53], was found independently by Weaver himself.
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5.3 Other extremal elements

We will end this chapter by collecting a few additional results on the extremal
structure of F(M). Namely, we will characterize molecules that are exposed points
of BF(M), extreme points of BF(M) that can be written as a positive functional
plus a finitely supported element, and extreme points of the positive unit ball
B+
F(M).

Exposed molecules

We will start by showing that every molecule that is an extreme point of BF(M) is
also exposed. The proof uses completely different techniques as that of Theorem
5.2.6 (although both require the use of supports or the intersection theorem), and
in fact it provides a shorter proof of Theorem 5.2.6. However, it relies on previous
knowledge of a candidate exposing functional for mpq: it is the function fpq defined
by

fpq(x) =
d(p, q)

2

d(x, q)− d(x, p)

d(x, q) + d(x, p)
+ C

for x ∈ M , where the constant C is chosen so that fpq(0) = 0. It is clear that
fpq ∈ SLip0(M) and that 〈mpq, fpq〉 = 1. This function was introduced and studied
in [35,36], where the following property was proved:

Lemma 5.3.1. Let p 6= q ∈ M . If u 6= v ∈ M and ε ∈ [0, 1] are such that
〈muv, fpq〉 ≥ 1− ε, then u, v ∈ [p, q]ε where

[p, q]ε =

{
x ∈M : d(p, x) + d(x, q) ≤ 1

1− ε
d(p, q)

}
.

Using the intersection theorem, we can now prove the next strengthening of Lemma
5.3.1.

Lemma 5.3.2. Let p 6= q ∈ M . If m ∈ BF(M) is such that 〈m, fpq〉 = 1, then
supp(m) ⊂ [p, q].

Proof. Let δ, ε > 0. It follows from Proposition 2.3.2 that we may find an expres-
sion m =

∑∞
n=1 anmxnyn where xn 6= yn ∈ M for n ∈ N and

∑
n |an| < 1 + δε.
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Let I = {n ∈ N : |〈mxnyn , fpq〉| ≥ 1− ε}. Then

1 = 〈m, fpq〉 =

∞∑
n=1

an 〈mxnyn , fpq〉

=
∑
n∈I

an 〈mxnyn , fpq〉+
∑
n∈N\I

an 〈mxnyn , fpq〉

≤
∑
n∈I
|an|+ (1− ε)

∑
n∈N\I

|an|

< 1 + δε− ε
∑
n∈N\I

|an| .

Hence
∑
n∈N\I |an| < δ, and it follows that∥∥∥∥∥m−∑

n∈I
anmxnyn

∥∥∥∥∥ =

∥∥∥∥∥∥
∑
n∈N\I

anmxnyn

∥∥∥∥∥∥ ≤
∑
n∈N\I

|an| < δ.

Notice that xn, yn ∈ [p, q]ε if n ∈ I, by Lemma 5.3.1. Thusmmay be approximated
by elements of F(M) supported on [p, q]ε, hence supp(m) ⊂ [p, q]ε. But ε > 0 was
also arbitrary, so supp(m) ⊂

⋂
ε>0[p, q]ε = [p, q].

Theorem 5.3.3. Let p 6= q ∈M . Then the following are equivalent:

(i) mpq is an extreme point of BF(M),

(ii) mpq is an exposed point of BF(M),

(iii) [p, q] is trivial.

Proof. (ii)⇒(i) is trivial, and (i)⇒(iii) is Lemma 5.1.8(a). Now assume (iii) and
let us check that mpq is exposed by fpq. Indeed, fpq ∈ SLip0(M) and 〈mpq, fpq〉 = 1.
If m ∈ BF(M) is such that 〈m, fpq〉 = 1, then supp(m) ⊂ [p, q] = {p, q} by Lemma
5.3.2. Thusm = aδ(p)+bδ(q) for some a, b ∈ R, and a straightforward computation
shows that only m = mpq satisfies the constraints ‖m‖ ≤ 1 and 〈m, fpq〉 = 1. This
proves (ii).

Extreme points of the positive ball

Let us now consider the extreme points of B+
F(M). The following theorem com-

pletely characterizes them, and it moreover shows that all of them are actually
preserved.

Theorem 5.3.4. The extreme points of B+
F(M) are precisely the normalized eval-

uation functionals, i.e. 0 and δ(x)/d(x, 0) for x ∈M \ {0}. Moreover, all of them
are preserved.
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Proof. First we will show that all extreme points are normalized evaluation func-
tionals, or equivalently, their support does not contain more than one point. Let
m ∈ B+

F(M) with ‖m‖ = 1 be such that supp(m) contains at least two points a

and b; we will show that m is not an extreme point of B+
F(M). We may assume

a, b 6= 0: if 0 ∈ supp(m) then 0 must be an accumulation point of supp(m), hence
supp(m) is infinite.

Denote r = d(a, b)/3. Let h ∈ Lip(M) be defined by

h(x) = 0 ∨
(

1− d(x,B(a, r))

r

)
for x ∈M , so that 0 ≤ h ≤ 1, h�B(a,r) = 1, h�B(b,r) = 0, and supp(h) is bounded.
Notice that m ◦Wh 6= 0. Indeed, using McShane’s theorem choose f ∈ Lip0(M)
such that f ≥ 0, f(a) = 1 and supp(f) ⊂ B(a, r), then 〈m ◦Wh, f〉 = 〈m, f〉 > 0
by (3.13) and Proposition 3.3.12(a) because a ∈ supp(m). A similar argument
using a function supported on B(b, r) shows that m◦W1−h 6= 0. Since h and 1−h
are both positive, so are m ◦Wh and m ◦W1−h = m−m ◦Wh and thus

‖m ◦Wh‖+ ‖m ◦W1−h‖ = ‖m ◦Wh +m ◦W1−h‖ = ‖m‖ = 1

by Proposition 2.3.3. But then

m = ‖m ◦Wh‖
m ◦Wh

‖m ◦Wh‖
+ ‖m ◦W1−h‖

m ◦W1−h
‖m ◦W1−h‖

is a nontrivial convex combination of elements of B+
F(M), as was to be shown.

Now let x ∈ M and m = δ(x)/d(x, 0) if x 6= 0 or m = 0 if x = 0; we will show
that m is really a preserved extreme point of B+

F(M). Suppose that m = 1
2 (φ+ψ)

where φ, ψ ∈ B+
F(M)

w∗

are positive elements of BF(M)∗∗ . Then 0 ≤ 1
2φ ≤ m,

so φ ∈ F(M) by Lemma 4.3.14. Moreover, Proposition 3.3.12(c) implies that
supp(φ) ⊂ {x}. Using Proposition 3.3.8, this is enough to conclude that φ = ψ =
m, which finishes the proof.

Let us note that 0 is always an exposed point of B+
F(M), but mx0 = δ(x)/d(x, 0) is

exposed if and only if [0, x] is trivial. Indeed, one implication is immediate from
Theorem 5.3.3. The other one follows from the fact that f ∈ BLip0(M) norms mx0

if and only if f(x) = d(x, 0), but then f(y) = d(y, 0) for any y ∈ [0, x] so f norms
my0 too.
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Extreme points which are almost positive

Finally, we will extend the conclusion of Corollary 5.2.7 to those elements of BF(M)

that may be expressed as a finitely supported perturbation of a positive element
of F(M). We shall prove that these extreme points must have finite support and
hence be elementary molecules.

Let S be a non-empty subset of M . We can then define a generalization of the inf-
convolution given by (2.1) as follows. For α > 0 and f ∈ Lip(S) with ‖f‖L ≤ α,
let E+

α f : M → R be the function defined by

(E+
α f)(x) = inf {f(q) + α · d(x, q) : q ∈ S}

for x ∈ M . Notice that we have just replaced ‖f‖L in (2.1) by the constant α.
It is immediate then from Proposition 2.1.9 that E+

α f is the largest α-Lipschitz
extension of f to M . That is, unlike the inf-convolution E+f , this extension
does not preserve the Lipschitz constant of f ; instead, the Lipschitz constant may
increase up to a value of α. We will only be concerned with the particular case
α = 1.

We require the following simple observation, which amounts to the fact that finding
the maximum of a given function can be accomplished in a stratified way, i.e.
finding maxima subjected to certain constraints and then looking for the maximum
among all possible sets of constraints.

Lemma 5.3.5. Let µ, λ ∈ F(M) be such that λ ≥ 0. Let S = supp(µ) ∪ {0} and
define

N(f) =
〈
µ+ λ,E+

1 f
〉

for f ∈ BLip0(S). Then N is a concave function that attains its maximum on
BLip0(S), and

max
f∈BLip0(S)

N(f) = ‖µ+ λ‖ .

Proof. It is obvious that N(f) ≤ ‖µ+ λ‖ for any f ∈ BLip0(S). By the Hahn-
Banach theorem, there is g ∈ BLip0(M) such that ‖µ+ λ‖ = 〈µ+ λ, g〉. Let f =

g�S , then f ∈ BLip0(S) and E+
1 f ≥ g, so

〈
λ,E+

1 f
〉
≥ 〈λ, g〉. Moreover, (E+

1 f)�S =

g�S and hence
〈
µ,E+

1 f
〉

= 〈µ, g〉 by Proposition 3.3.9. It follows that

N(f) =
〈
µ,E+

1 f
〉

+
〈
λ,E+

1 f
〉
≥ 〈µ, g〉+ 〈λ, g〉 = ‖µ+ λ‖ .

To show that N is concave, note that this is equivalent to the map f 7→
〈
λ,E+

1 f
〉

being concave, i.e. to〈
λ,E+

1 (cf + (1− c)g)
〉
≥ c

〈
λ,E+

1 f
〉

+ (1− c)
〈
λ,E+

1 g
〉
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for any f, g ∈ BLip0(S) and c ∈ (0, 1). Since λ ≥ 0, it suffices to show that

E+
1 (cf + (1− c)g) ≥ cE+

1 f + (1− c)E+
1 g

pointwise, that is

inf
q∈S

(
cf(q) + (1− c)g(q) + d(x, q)

)
≥

c · inf
q∈S

(
f(q) + d(x, q)

)
+ (1− c) · inf

q∈S

(
g(q) + d(x, q)

)
for every x ∈M . But this is obvious.

Theorem 5.3.6. Let λ, µ ∈ F(M) be such that λ ≥ 0 and µ has finite support. If
λ+ µ is an extreme point of BF(M), then it has finite support.

Proof. Let S = supp(µ)∪{0}, and consider the functionN : F(M)+×BLip0(S) → R
given by N(λ, f) =

〈
λ+ µ,E+

1 f
〉
. Denote also Nλ(f) = N(λ, f). By Lemma 5.3.5,

‖λ+ µ‖ is the maximum of Nλ(f) for f ∈ BLip0(S), and Nλ is a concave function
for fixed λ. Moreover, it is easy to verify directly that Nλ is continuous using the
boundedness of S. It follows from concavity that Nλ(f) = ‖λ+ µ‖ if and only if
f is a local maximum of Nλ, i.e. if and only if〈

λ,E+
1 (f + g)− E+

1 f
〉
≤
〈
µ,E+

1 f − E
+
1 (f + g)

〉
= 〈−µ, g〉

for all g ∈ Lip0(S) in a neighborhood of 0 such that f + g ∈ BLip0(S).

Suppose now that λ has infinite support, and let f ∈ BLip0(S) be such that
‖λ+ µ‖ = Nλ(f). We will show that there is a nonzero v ∈ F(M) such that
λ ± v ≥ 0,

〈
v,E+

1 f
〉

= 0, and
〈
v,E+

1 (f + g)− E+
1 f
〉

= 0 for all g ∈ Lip0(S) in a
neighborhood of 0. The argument above will then imply that

‖λ± v + µ‖ = N(λ± v, f) = N(λ, f)±
〈
v,E+

1 f
〉

= N(λ, f) = ‖λ+ µ‖

so λ+ µ cannot be an extreme point of BF(M). Thus if λ+ µ is extreme then λ,
and therefore also λ+ µ, must be finitely supported.

For every non-empty subset K ⊂ S, define the set

AK =
{
x ∈M : (E+

1 f)(x) = f(q) + d(x, q) if and only if q ∈ K
}
.

That is, AK contains those points x ∈ M where the infimum in the definition of
(E+

1 f)(x) is attained exactly for all q ∈ K and nowhere else. Since S is finite, the
sets AK form a finite partition of M . Choose K of the smallest possible cardinality
such that supp(λ) ∩AK contains at least three different points p1, p2, p3 6= 0. Let

ε =
1

4
min

{(
f(q′) + d(pi, q

′)
)
−
(
f(q) + d(pi, q)

)
: q ∈ K, q′ ∈ S \K, i = 1, 2, 3

}
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and choose r ∈ (0, ε) such that the balls B(pi, r) are disjoint, do not contain the
base point, and do not intersect the finite sets supp(λ) ∩ AL for any L ( K. By
Proposition 3.3.10, for i = 1, 2, 3 there exist non-negative functions hi ∈ Lip0(M)
supported on B(pi, r) such that 〈λ, hi〉 > 0. Now choose real constants c1, c2, c3,
not all of them equal to zero, such that

c1 〈λ, h1〉 + c2 〈λ, h2〉 + c3 〈λ, h3〉 = 0

c1
〈
λ, h1 · E+

1 f
〉

+ c2
〈
λ, h2 · E+

1 f
〉

+ c3
〈
λ, h3 · E+

1 f
〉

= 0

and |ci| ≤ 1/ ‖hi‖∞. Let h = c1h1 + c2h2 + c3h3 and v = λ ◦Wh.

Let us check that v satisfies the required conditions. By construction, we have
〈λ, h〉 = 0 and

〈
v,E+

1 f
〉

=
〈
λ, h · E+

1 f
〉

= 0. Also,

〈λ± v, g〉 = 〈λ, g ±Wh(g)〉 = 〈λ, g · (1± h)〉

for any g ∈ Lip0(M). By the choice of ci we have 1± h ≥ 0 and so 〈λ± v, g〉 ≥ 0
whenever g ≥ 0, that is, λ±v ≥ 0. Also, choose i ∈ {1, 2, 3} such that ci 6= 0, then
there is ϕ ∈ Lip0(M) such that ϕ = 1 on B(pi, r) and ϕ = 0 on supp(h) \B(pi, r),
hence 〈v, ϕ〉 = ci 〈λ, hi〉 6= 0. This shows that v 6= 0.

Finally, let x ∈ supp(v). Then x ∈ supp(λ) ∩ supp(h) by (3.13), so there is
i ∈ {1, 2, 3} such that x ∈ B(pi, r). Therefore, if q ∈ K, q′ ∈ S \K then

f(q′) + d(x, q′) ≥ f(q′) + d(pi, q
′)− d(x, pi)

≥ f(q) + d(pi, q) + 4ε− d(x, pi)

≥ f(q) + d(x, q) + 4ε− 2d(x, pi)

≥ f(q) + d(x, q) + 2ε

and so x ∈ AL for some L ⊂ K, hence x ∈ AK by construction. If we now take
any g ∈ Lip0(S) such that ‖g‖∞ < ε and ‖f + g‖L ≤ 1, then

f(q′) + g(q′) + d(x, q′) > f(q) + g(q) + d(x, q)

for any q ∈ K, q′ ∈ S \ K, and it follows that (E+
1 (f + g))(x) = (E+

1 f)(x) + γ
where γ = minq∈K g(q). Thus we get〈

v,E+
1 (f + g)− E+

1 f
〉

= 〈λ, h · γ〉 = γ · 〈λ, h〉 = 0.

This completes the proof.
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5.4 Open problems

The most important open question about the extremal structure of F(M) is pre-
cisely the main one motivating the present work. Unfortunately we have not been
able to solve it during the course of this thesis.

Problem 5.1. Are all extreme points of BF(M) elementary molecules?

No counterexample is known at the time of writing, but it follows from the results
presented here that any such counterexample must necessarily have infinite support
(Corollary 5.2.7) and cannot be expressed as a positive functional plus a finite
sum of evaluation functionals (Theorem 5.3.6). By passing from F(M) to the
Lipschitz-free space over the support, we may assume that the support of any
candidate counterexample is the whole metric space.

Let us also mention that, due to Theorem 5.3.3, Problem 5.1 can be equivalently
split into the following pair of subproblems:

Problem 5.1a. Are all extreme points of BF(M) exposed?

Problem 5.1b. Are all exposed points of BF(M) elementary molecules?

Indeed, the answer to Problem 5.1 is positive if and only if the answer to the two
smaller problems also is. They are probably easier to answer individually, as one
does not just have to consider the exposed points but also the associated exposing
functionals, which in this case are functions in Lip0(M).

We will now briefly summarize the current knowledge about those metric spaces
M where Problem 5.1 is known to have a positive answer. For the most important
case we need to introduce a few definitions. Let us raise a warning here that there
are conflicting naming and notation standards for the following concepts:

Definition 5.4.1.

(a) A function f : M → R is said to be locally flat at p ∈ M if for every ε > 0
there exists δ > 0 such that x 6= y ∈ B(p, δ) implies that

|f(x)− f(y)|
d(x, y)

≤ ε.

If f is locally flat at every point of p, then we just say that f is locally flat. If
moreover the value of δ depends only on ε but not on p, then f is uniformly
locally flat .

(b) A function f : M → R is said to be flat at infinity if for every ε > 0 there
exists a compact set K ⊂M such that x 6= y ∈M \K implies that

|f(x)− f(y)|
d(x, y)

≤ ε.
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(c) The little Lipschitz space lip0(M) is the space of all functions f ∈ Lip0(M)
that are uniformly locally flat and flat at infinity.

The space lip0(M) is most often considered in the compact and Heine-Borel cases.
In those cases it is easy to see that if f is locally flat and flat at infinity then it is
uniformly locally flat, and if M is compact then every f ∈ Lip0(M) is obviously
flat at infinity.

Definition 5.4.2. Let Y be a subspace of Lip0(M). We say that Y separates
points of M uniformly if there exists a constant C <∞ such that, given any pair of
different points x, y in M , there is f ∈ Y with ‖f‖L ≤ C and f(x)−f(y) = d(x, y).

We may now state our desired sufficient condition for Problem 5.1:

Theorem 5.4.3 ([53, Theorem 4.38 and Corollary 4.414]). If M is a Heine-Borel
space and lip0(M) separates points of M uniformly, then F(M) ∼= lip0(M)∗ and
every extreme point of BF(M) is an elementary molecule.

Some known cases where the hypothesis of Theorem 5.4.3 holds, and therefore
Problem 5.1 has a positive solution, are Heine-Borel spaces that are either count-
able [17] or Hölder [53, Proposition 4.31]. Other weaker cases that are enough to
answer Problem 5.1 arise when M is not Heine-Borel but F(M) has a predual that
is a subspace of lip0(M) with certain additional properties (see [23] for the exact
definitions and results).

A completely unrelated sufficient condition was proved recently: Problem 5.1 has
a positive solution when M is a subset of an R-tree, since every extreme point of
BF(M) is preserved in that case (see [7] for the definition of R-tree and the proof
of that result). This includes all closed subsets of R and all ultrametric spaces.

Since the solution to Problem 5.1 might be hard to obtain, it would be equally
worthwhile to pursue partial answers for important but fairly general cases: when
M is compact, when F(M) is a dual space, or when M is uniformly discrete.
The solution is not even known when M is assumed to be compact and F(M) is
assumed to be a dual space. Indeed, if lip0(M) is a predual of F(M) then the
answer is positive by Theorem 5.4.3, but it is currently unknown whether it is
possible for F(M) to be dual without lip0(M) separating points of M uniformly.5

4Here we feel obliged to mention that the proof of Corollary 4.41 given in [53] is not correct,

as it merely shows that, for every m ∈ extBF(M), there is ζ ∈ βM̃ such that 〈m, f〉 =
〈
f,Φ∗δζ

〉
for any f ∈ lip0(M) instead of any f ∈ Lip0. This does not imply that m = Φ∗δζ as is claimed
to complete the proof. However, it is possible to complete the argument by applying Proposition
4.21 therein and carrying out a case-by-case analysis. The proof of the weaker version found in
the first edition of the book is correct [52, Corollary 3.3.6].

5This question has been solved, in a joint work by the author and Chris Gartland, soon after
finishing the initial manuscript of this dissertation.
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As a final problem we may propose the following:

Problem 5.2. Characterize the metric spaces M such that every extreme point
of BF(M) is preserved.

The results in [7] show that this is true whenever M is a subset of an R-tree. A
positive solution to Problem 5.1 would also imply that any compact or Heine-Borel
space satisfies this, thanks to Corollary 5.2.10.
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List of symbols

‖f‖L Lipschitz constant of f , 9
Lip(M) Space of real-valued Lipschitz functions on M , 10
Lip0(M) Lipschitz space over M , 12
ρ Distance to the base point, 13
E+f Inf-convolution of f , 14
E−f Sup-convolution of f , 14
δ(x) Evaluation functional on x, 16
δ Canonical embedding of M into F(M), 16
F(M) Lipschitz-free space over M , 17
Lip0(M,X) X-valued Lipschitz space over M , 19
FM (K) Lipschitz-free subspace, 20
mxy Elementary molecule on points x, y, 21
Mol(M) Set of elementary molecules on M , 21
X+ Positive elements of X, 22
B+
X Positive unit ball of X, 22

Wh Weighting operator associated to h, 30
φ ◦Wh Weighted version of φ ∈ F(M)

∗∗
, 31

Hn Weighting function Hn, 32
Gn Weighting function Gn, 32
Λn Weighting function Λn, 32
Πn Weighting function Πn, 32
φs Sum of the Kalton decomposition of φ, 33
IM (K) Ideal of functions that vanish at K, 40
H(Y ) Hull of Y , 40
supp(m) Support of m, 43
βM Stone-Čech compactification of M , 49
MU Uniform compactification of M , 50
fU Continuous extension of f to MU , 50

A
U

Closure of A in MU , 50
MR Lipschitz realcompactification of M , 51
φ0 Part of φ concentrated at the base point, 56
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List of symbols

φ∞ Part of φ concentrated at infinity, 56
φA Part of φ that avoids infinity, 58
S(φ) Extended support of φ, 59
JM (K) Ideal of functions that vanish at K and are locally

flat at K, 62
µ+ Positive variation of measure µ, 74
µ− Negative variation of measure µ, 74
|µ| Total variation of measure µ, 74
µ�A Restriction of measure µ to A, 75
M(X) Space of Radon measures on X, 75
Lµ Functional induced by measure µ, 77
δx Dirac measure on x, 77
M0(X) Radon measures on X that vanish at 0, 77
s(ζ) Eventual separation of ζ from M , 83
‖m‖1 Weight of a finitely supported functional m, 85
|φ| Variation functional of φ, 98
[p, q] Metric segment between p and q, 107
(p, q)x Gromov product of p and q at x, 107
[p, q]U Extended segment between p and q, 108

M̃ Pairs of different points of M , 110
Φ de Leeuw transform, 110

Dpq Elements of M̃ coupled to (p, q), 110
Epq Face of BF(M)∗∗ containing mpq, 110

π1, π2 Projections from M̃ onto M , 115
fpq Ivakhno-Kadets-Werner exposing function, 121
[p, q]ε Neighborhood of the segment [p, q], 121
E+
α f Maximal α-Lipschitz extension of f , 124

lip0(M) Little Lipschitz space over M , 128
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Index of terms

compactification, 49
Stone-Čech, 49
uniform, 50

de Leeuw transform, 110
derivation, 51
diameter, 7

function
flat at infinity, 127
Lipschitz, 9
locally flat, 62, 127
non-expansive, 9
positive, 23
uniformly locally flat, 127

functional
avoids 0, 54
avoids infinity, 54
concentrated at 0, 54
concentrated at infinity, 54
evaluation, 16
finitely supported, 21
induced by measure, 77
majorizable, 24
normal, 34
positive, 23
sequentially normal, 70
variation, 98

Gromov product, 107

Hahn decomposition, 75
hull, 40

ideal, 40
incremental quotient, 10

inf-convolution, 14
isometry, 9

Jordan decomposition, 74

Kalton decomposition, 33

Lipschitz constant, 9
Lipschitz realcompactification, 51

majorant, 24
minimal, 94

measure
almost Radon, 75
Borel, 74
concentrated on a set, 75
Dirac, 77
inner regular, 74
negative variation, 74
outer regular, 74
positive variation, 74
Radon, 74
regular, 74
total variation, 74

metric segment, 107
extended, 108
trivial, 108

molecule, 21

norming set, 42

ordered vector space, 22

partition of unity, 15
point

base, 6

137



Index of terms

denting, 106
exposed, 105
extreme, 105
metrically aligned, 107
preserved extreme, 105
strongly exposed, 106

radius, 7

space
concave, 120
equilateral, 25
Hölder, 120
Heine-Borel, 51
Lipschitz, 12
Lipschitz-free, 17
Lipschitz-free sub-, 20
little Lipschitz, 128
pointed, 6
radially discrete, 100
radially uniformly discrete, 100
uniformly discrete, 50

sup-convolution, 14
support

extended, 59
of a measure, 74
of an element of F(M), 43

theorem
extreme molecule, 117
intersection, 42
McShane, 14
normal functional, 36
Rademacher, 26
universal extension, 18

variation, 98

weighting operator, 30
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