
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/159524

Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Peyton Jones, J. (2019). Integration of
intermittent measurement from in-cylinder pressure resonance in a multi-sensor mass flow
estimator. Mechanical Systems and Signal Processing. 131:152-165.
https://doi.org/10.1016/j.ymssp.2019.05.052

https://doi.org/10.1016/j.ymssp.2019.05.052

Elsevier



Integration of intermittent measurement from

in-cylinder pressure resonance in a

multi-sensor mass flow estimator

C. Guardiola1 B. Pla1 P. Bares1 ∗ J.C. Peyton Jones2

Universitat politècnica de València 1
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Abstract

A novel technique of trapped mass determination, based on the in-cylinder pressure
resonance, has been recently published by the authors. However, the method only
works when sufficient resonance intensity exists and the current formulation might
preclude its implementation in real-time due to excessive computational burden.

The present paper proposes an iterative algorithm for reducing the number of
operations, an adaptive filter to identify faulty measurements and a Kalman filter
that combines several sensors and models, currently used in commercial light-duty
engines, to ensure a continous estimation of trapped mass, air mass, and exhaust
gas recirculation (EGR).

The filter is implemented using experimental data of a EURO 6 light-duty en-
gine in a world harmonize light-duty test cycle (WLTC), showing the potential of
being implemented in real driving conditions with robustness and harnessing a new
measurement to improve the accuracy and response of current estimations.

Key words: Resonance, Internal combustion engines, Signal processing, observer,
Kalman filter

1 Introduction

A new method for trapped mass determination has been recently published
by the authors[1, 2]. The method analyses the in-cylinder pressure oscilla-
tions created by combustion to determine the cylinder charge by assuming the
gas properties at the end of the combustion. A specific transformation which5
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takes into account the theoretical resonance evolution was developed to avoid
time-frequency analysis [3], such as short time Fourier transform (STFT) or
Wigner distributions (WD). The algorithm does not require any calibration in
pent-roof combustion chambers and a single parameter for bowl-in-piston ge-
ometries. The calibration of such parameter can be derived from experimental10

data by relying in external sensors, e.g. air mass flow with EGR valve closed,
or by using numerical simulations, as demonstrated in [4] by using finite el-
ement methods (FEM). The potential of the method has been highlighted
by improving the accuracy and transient response of some models that need
from a trapped mass estimation. Some examples can be found in [5] for NOx15

modelling, in [6] for exhaust temperature estimation, in [7] for residual gases
modelling, or in [8] for knock prediction.

Nevertheless, the model needs from sufficient resonance intensity to provide
the system with a robust estimation of trapped mass. The requirement of20

sufficient resonance might be an issue in small engines, where resonance is
damped faster, and at some operating conditions where combustion is par-
ticularly smooth and slow, e.g. idle in compression ignited (CI) engines and
low-load in spark ignited (SI) engines.

25

Furthermore, the estimation of many combustion control parameters, e.g. oxy-
gen concentration at the intake or EGR mass flow, require from a combination
of several sensors and models, which may suffer from bias and slow response,
which encourages the design of sensor data fusion algorithms to ensure an
accurate and robust output. Air mass flow sensors have a fast response that30

varies from 30-50 ms [9] but are subjected to severe ageing due to the accumu-
lation of dust on the sensing element [10, 11, 12], injector models suffer from
minor errors in hole diameter, caused by unavoidable manufacturing variations
and to deposits accumulation [13], universal exhaust oxygen sensors (UEGO)
present a linear and fast response (below 100 ms) over a wide range but errors35

above 5% have been reported after 3000 working hours [14], the measurement
of EGR by gas analysers has a slow response due to gas extraction procedure
and might be non-representative when gas mixing is not complete at the probe
location[15, 16, 17], while onboard EGR sensing is not possible nowadays and
must be estimated through the speed density method which might diverge40

from the real behaviour of the engine at off-design conditions, specially in
transient [18, 19].

To combine measurements at various locations, dynamics at the intake is rep-
resented by emptying and filling model: a control volume with the mass and45

energy conservation equations, by assuming no wall heat transfer and perfect
gas mixture composition [20, 21, 22]. Several closed-loop observers have been
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proposed to fuse sensors and models taking into account the dynamics of the
engine. In engines without external gas recirculation, a bias on the volumetric
efficiency is updated by assuming the air mass flow given from the hot-film50

anemometer as an input and considering the dynamics at the intake manifold
[23, 24, 25]. In engines with EGR, Liu et al. and Kolmanovsky et al. proposed
a similar observer but including an EGR estimation by using the orifice model
at the EGR valve [26, 27], while Zhao et al. and Castillo et al. proposed an
observer by considering intake and exhaust dynamics for the oxygen concen-55

tration [28, 29].

Kalman filters (KF) are a concrete type of closed-loop observers where the
observer gains are continuously adapted to improve the convergence and ac-
curacy of the observer [30]. Several examples can be found in literature for60

automotive applications: in [31], an extended Kalman filter is proposed for
air-charge estimation improvements in SI engines, in [32] the complete adia-
batic manifold model is used in combination of a throttle model and a first
order system modelling the temperature sensor dynamics for predicting the
actual in-cylinder air flow, and in [33] an intake manifold model of a CI engine65

with EGR is used to calculate all the mass flows.

The present paper aims to design a robust filter harnessing the trapped mass
estimation obtained from resonance. Concretely a three steps procedure is
proposed:70

(1) An iterative calculation of the transformation for reducing the computa-
tional burden of the algorithm.

(2) An adaptive filtering to discern outliers with erratic measurements.
(3) And a Kalman filter that combines such intermittent measurement with

sensors and models that can be found nowadays in a EURO 6 light-duty75

engine. The EGR valve is also used as an intermittent input for updating
the volumetric efficiency when the EGR valve is closed.

A four-stroke compression ignited (CI) engine has been tested in specific tran-
sient tests and in a world harmonize light-duty test cycle (WLTC) to validate
the proposed filter.80

The paper is structured as follows: next section describes the experimental
set-up and the main sensors employed, section three and four describe the
algorithm proposed to calculate the trapped mass and discern faulty measure-
ments with the resonance method and the observer that combines all sensor85

and models, section five shows the results of the filter for the tests recorded,
and last section highlights the strengths and future work of the method.
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2 Experimental setup

A four-stroke diesel engine with 1.5-l of total displacement was used for test-90

ing the proposed filter. It is a four-cylinder engine with a turbo-charger and
equipped with common rail injection system. Table 1 summarizes the main
engine characteristics.

Table 1
Main engine characteristics

Units Value

Cylinders [-] 4

Combustion type [-] CI

Unitary displacement (Vdis) [cc] 374.65

Bore (D) [mm] 73.5

Compression ratio [-] 17:1

Figure 1 shows a scheme of the engine, pointing out the main mass flows and95

the sensors used: A hot-film anemometer was used to measure the air mass flow
passing through the compressor (mair), a thermocouple with 1.5 mm of diam-
eter and a piezo-resistive pressure sensor were placed at the intake to measure
the temperature and the pressure of the intake manifold (Tint and pint), an
AVL GU13P piezo-electric sensor was used to measure the in-cylinder pres-100

sure (pcyl), and an UEGO oxygen sensor was placed at the exhaust to measure
oxygen concentration with lambda (λexh). Variables that cannot be measured
by sensors, such as mass and oxygen concentration at the intake (mint and
Fint), mass and oxygen concentration at the exhaust (mexh and Fexh), and
High-pressure EGR mass flow (mEGR−HP ) are also shown in grey.105

4



𝒎̇𝒎𝒂𝒂𝒂𝒂𝒂𝒂 

𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊 
𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊 
 

p𝒆𝒆𝒆𝒆𝒆𝒆 𝑚̇𝑚 𝑖𝑖𝑖𝑖𝑖𝑖  
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖  

𝒑𝒑𝒄𝒄𝒄𝒄𝒄𝒄 

𝑚̇𝑚𝐸𝐸𝐸𝐸𝐸𝐸−𝐻𝐻𝐻𝐻 

𝝀𝝀 𝒆𝒆𝒆𝒆𝒆𝒆 

𝑚̇𝑚 𝑒𝑒𝑒𝑒𝑒 
𝐹𝐹𝑒𝑒𝑒𝑒𝑒  

Fig. 1. Scheme of main mass flows and sensors used

Although some steady and specific transient tests will be shown for illustration
purposes, the validation of the filter will be shown in a WLTP cycle in order to
analyse the method in an homologation test, close to real conditions. Figure
2 shows the break mean effective pressure (BMEP) and engine speed during110

the WLTP cycle. Two repetitions were made: one with the EGR valve closed
during the full tests and other with the default EGR valve controls during the
first part of the cycle.
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Fig. 2. WLTP cycle

3 Trapped mass estimation115

Top plot of Figure 3 shows the in-cylinder pressure and the apparent heat re-
lease rate of a cycle at 2400 rpm and 88 Nm of torque. The pilot combustion,
which consists in a single phase of premixed combustion, can be located be-
tween -8 and -3 crank angle degrees after the top dead center (CAD-ATDC),
while the main combustion can be divided in a first premixed combustion from120
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10 to 20 CAD-ATDC and a second diffusive phase, from 20 to 45 CAD-ATDC.
The bottom plot shows the result of high-pass filtering the in-cylinder pres-
sure signal at 3.5 kHz. It can be appreciated that, although the pilot injection
only represented a 6.63% of the total fuel injected (1.4 over 21.1 mg/str) the
oscillation created is on the same range than the oscillation created by the125

main injection, while at the main injection event, the resonance excitation is
mainly caused by the first pre-mixed autoignition, and not the later diffusive
combustion. This is also coherent with the work developed by Kyrtatos et al.
in CI combustions [34, 35]. A good overview of internal combustion engines
fundamentals can be found in [36], while an analysis of the resonance excita-130

tion of various combustion modes has been recently presented in [37].
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Fig. 3. In-cylinder pressure and apparent heat release rate (top plot) and high-pass
filtered in-cylinder pressure of a cycle at 2400 rpm and 88 Nm of torque

C.S. Draper solved the wave equation by using cylindrical contour conditions
and Bessel functions. He found a proportional relation between the speed of
sound (a) and the frequency of the in-cylinder pressure resonance (fres) [38],135

following:

fres =
Ba

πD
=
B
√
γpV

πD
√
m

(1)

where B is a Bessel constant (1.842 for the first radial mode), γ the ratio of
the heat capacities, D the bore of the engine, V the instantaneous chamber
volume, p the in-cylinder pressure, and m the trapped mass.

140

Equation (1) was obtained by assuming that the combustion chamber is cylin-
drical. Although this assumption can be used when the piston is far from the
TDC, it is not completely true in bowl-in-piston combustion chambers when
the piston approaches the TDC. The effect of the bowl can be obtained exper-
imentally or by a finite element method simulation, such as demonstrated in145
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[4]. For the present engine a 13% difference was found near the TDC (B = 2.1
instead of 1.842) but the effect can be considered negligible after 40 CAD-
ATDC.

The authors, proposed an application in [1] and [2] of the work done by C.S.
Draper, by identifying the evolution of the resonant frequency with a time-150

frequency analysis (concretely the STFT), and later obtaining the trapped
mass by rearranging (1), such as:

m =
B2γpV

(πDfres)
2 (2)

To improve the precision and reduce the number of operations of the algorithm,
the authors presented a modification of the Fourier transform by including155

Draper’s equation in the signal processing [3]. The proposed transformation
converts the in-cylinder pressure in the time-domain (or crank angle based)
into several pressure waves characterized by virtual masses. The real trapped
mass will maximize this transformation, in the same way that a peak is ob-
tained in a Fourier transform when processing a constant frequency harmonic.160

A high-pass filter (or a band pass) is suggested to eliminate the effect of the
low-frequency components which are associated with the pressure rise caused
by combustion and the piston movement and not the resonance of the chamber.
Furthermore, in order to analyse only the range excited by resonance a window165

function is also applied to the high-pass filtered pressure php, as following:

S(m) =
α=α1∑
α=α2

w(α− α1)php(α)e
−j2π

∑φ=α

φ=0
T (φ)

B(φ)
√
γ(φ)p(φ)V (φ)

πD
√
m T (α) (3)

where α1 and α2 is the interval where the resonance analysis is performed, w is
a window function of α2 − α1 length, and T (α) is the instantaneous sampling
rate, which is constant only in time-based in-cylinder pressure acquisition or
if the instantaneous engine speed fluctuations are negligible.170

An appropriate window length is crucial for a robust and accurate estimation
of the trapped mass. Wider windows might add noise content by including
in-cylinder pressure without resonance (before combustion or when resonance
is already damped), but if they are properly located, using wide windows more175

resonance information is included, which improves the trapped mass accuracy
and facilitate the noise rejection. Figure 4 shows the result of the resonance
transformation over the in-cylinder pressure signal shown in Figure 3 for three
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different lengths (20, 40 and 60 CAD) using a blackman-harris window located
at 20 CAD-ATDC. Here, equation 3 was processed from 300 to 1000 mg/str180

with a resolution of 1.4 mg (500 samples).
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Fig. 4. Resonance transformation for trapped mass estimation proposed in [3] ap-
plied to one in-cylinder pressure cycle, working at 2400 rpm and 88 Nm of torque

Regarding the precision, the shape of the transformation gives an insight of
how precise is the method. In this work, the mass deviation leading to an
amplitude in the transformation of 95% of its maximum value (Smax) is con-
sidered an appropriate quality indicator (Iq) of the precision of the method ,
such as:

Iq = ∆m[∆S=0.05Smax] (4)

In the example shown in Figure 4 the 95% of the amplitude of S(m), for each
window length, has been marked with crosses: a window length of 20 CAD
would have an associated precision of ±50 mg/str, a 40 CAD window would185

have an associated precision of ±25 mg/str, while a 60 CAD window would
have an associated precision of ±18 mg/str.

Iterative algorithm

Using an equispaced grid of virtual masses to find the maximum of the function190

defined in Equation (3) with sufficient resolution might imply a non-admissible
computational cost for a real-time implementation in an electronic control unit
(ECU). In this paper an iterative fixed-point algorithm is proposed to avoid
such intensive data processing.

195

The mass value for the initialization of the algorithm (m0) was obtained by
using the speed density method, but other alternative methods might be used,
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such as using a few mass candidates with a coarse initialization grid. For com-
pleting the initialization of the algorithm, the function at the initial point
and at a near location (m0 + ∆m) are analysed to determine if the function200

increases or decreases. Once the sign of the derivative is known, the iterative
procedure can be started.

The new mass candidate (mnew) is obtained by multiplying the previous mass
(mold) by 1±K, where K determines how fast the maximum of the function205

S(m) is located. A small value of K would imply small steps in mass and
hence a slow convergence, but a big value of K might excessively surpass the
actual mass and would also slow down the number of iterations required. A
good initial value of K might be the expected error of the initial method, i.e.
in this work, as the speed density method was used with a constant volumetric210

efficiency of 0.85, a 10% variation at each step is considered, i.e. K0 = 0.1.

To ensure the convergence of the algorithm, K should be reduced once the
maximum is surpassed, i.e. the sign of the derivative of the mass (mnew−mold)
changes. If K is reduced too fast, the algorithm might last many iterations to215

reach again the maximum, but if K is reduced smoothly, the algorithm might
be going from one side to the other side of the peak without a proper conver-
gence. In the presented algorithm a reducing factor (kred) of 0.33 is proposed,
i.e. K is divided by three each time the maximum is reached.

220

Regarding the window length used for the function S(m): wide windows have
a more concise spectrum, which might induce to errors if the initial trapped
mass estimation is far away from the real trapped mass, henceforth, small win-
dows are preferred at the first iterations, while wider windows might be used
at the final steps. In the designed algorithm the initial window is relatively225

small (20 CAD) and is increased each time that the maximum is surpassed,
until a maximum length (60 CAD) is reached.

The convergence criteria of the iterative algorithm is smaller mass variations
than a given algorithm resolution (εm), but a maximum of 100 iterations is230

also imposed. Figure 5 summarizes the implemented algorithm.
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Evaluate initial point 
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚0 
𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚0 + ∆𝑚𝑚 
𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 20 𝐶𝐶𝐶𝐶𝐶𝐶 
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆(𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜) 
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛) 
If 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 > 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 
   s=1 (increasing) 
else (𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜) 
   s=-1 (decreasing) 
end 
𝑁𝑁𝑖𝑖 = 0 

 

 
Update mass value 

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 
𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 
If s=1 (increasing) 
     𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 1 + 𝐾𝐾  
else (decreasing) 
     𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 1 − 𝐾𝐾  
end 
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆(𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛) 

 

Check if maximum is crossed 
If 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 < 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 
   𝑠𝑠 = 𝑠𝑠 · −1   
   𝐾𝐾 = 𝐾𝐾 · 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟  
   𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 10 𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 60  
end 
𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑖𝑖+1 

Stopping criteria  
𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 −𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 𝜀𝜀𝑚𝑚 or  𝑁𝑁𝑖𝑖 > 100 

 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛 

Iterative procedure 

Fig. 5. Scheme of the iteration method proposed to find the actual trapped mass

where s is the state (increasing or decreasing mass).

Figure 6 shows the result of the iterative method in the cycle shown in figure235

3 for an initial mass assumption with a 20% error. The iterations, marked
with crosses, have been represented with various colors indicating the window
length used. Note how the window length is increased and the mass steps are
being reduced in order to converge to the final solution.
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Fig. 6. Mass and amplitude results for an iteration starting with an initial error of
20 % of the actual trapped mass

The parameters chosen for the iterative method, namely K and kred, ensure a
fast and robust convergence, even in case of an initial mass guess with a signif-
icant bias: Figure 7 shows the convergence of the algorithm for various initial
masses with errors ranging from -40% to 40%. The algorithm lasts between
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18 and 25 iterations to locate the maximum within 1 mg resolution, while a 6245

mg confidence (εm < 1%) is achieved before 15 iterations.
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Fig. 7. Convergence of the algorithm for various values of initial mass

The iterative method only gives few points of the transformation at each win-
dow length, thus complicating the estimation of a method precision indicator
based on the shape of the peak. Nevertheless, the peaks can be described by250

a quadratic function, following:

S(m) = Smax − kq(m−mmax)
2 (5)

and kq can be found with the second derivative of the the function, such as:

d2S(m)

dm2
= 2kq (6)

In the discrete domain the peaks are fully described with three points, follow-
ing:

[
dS(m)

dm

]
m=

mk+1+mk
2

≈ Sk+1 − Sk
mk+1 −mk

(7)

[
d2S(m)

dm2

]
m=

mk+1+mk
2

≈

[
dS(m)

dm

]
k+1
−
[

dS(m)
dm

]
k

mk+1 −mk

(8)

Figure 8 has separated the points shown in Figure 6 with different window255

length. At each subplot, the points used have been represented with crosses,
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the final function modelled by (5) has been plotted with a continuous line,
and the actual function obtained with a equispaced grid of virtual masses was
represented with a dashed line. Here, kq has been found by using the three
last points at each iteration step.260
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Fig. 8. Model estimation of quadratic peak for an iteration event separating point
with different window lengths

It must be noticed that using only three points the shape of the function is
captured with sufficient precision to provide the system with an estimation
of the quality indicator. Concretely, the mass variation required to lower the
amplitude to 95 % of the maximum value can directly obtained through:

Iq = ∆m[∆S=0.05Smax] =

√
0.05Smax

kq
(9)

Table 2 shows the results of the index quality using three points with the
quadratic assumption for the six initial masses shown in Figure 7. Note that
although the points used for the calculation have changed, the method is ob-
taining a similar value of the quality metrics at each window length.265
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Table 2
Estimated mass length for 95% of the maximum amplitude for various iteration
events (Iq)

Window m0 − 40%εm m0 − 20%εm m0 − 10%εm m0 + 10%εm m0 + 20%εm m0 + 40%εm

60 CAD 50.9740 49.6127 48.9297 47.5167 57.7301 58.7931

50 CAD 35.3174 35.4807 34.5190 33.7420 35.5127 34.1561

40 CAD 25.9756 26.0884 26.0718 26.1513 26.1633 25.8334

30 CAD 21.7032 21.6002 21.7915 21.6403 21.6501 21.7641

Adaptive filtering

Some combustion events do not sufficiently excite resonance to estimate the
trapped mass with reliability, e.g. idle. The amplitude of the resonance trans-
formation is a good indicator and can be used to directly discard most of the270

erratic measurements. Figure 9 shows the result of the resonance transform in
part of the WLTC test (5000 cycles): the amplitude of the transformation has
been represented in the color-scale, being lighter colors, cycles related with
more intense pressure oscillations.
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Fig. 9. Trapped mass estimation from sensors and from the resonance method for
5000 cycles in a WLTP with the EGR valve closed (the amplitude of the resonance
transformation is represented by the colorscale)

The effect of removing cycles with low intensity is highlighted in Figure 10
where all the cycles with a resonance amplitude below 0.5 bar have been rep-
resented with a different color. Note that most of the cycles with sufficient
resonance are coherent with the value obtained from sensors.

280
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Fig. 10. Sensor measurement and result of the resonance method for 5000 cycles in
a WLTP with the EGR valve closed (points with low amplitude have been coloured
with light gray)

Nevertheless, the method can give erratic measurements at some cycles when
other phenomena are confused with the first radial model of resonance (B =
1.842), two of the most common interferences are:

• Combustion: The representative frequencies of normal combustion are com-
monly located below 2kHz [39], and they are easily eliminated with a high-285

pass filter. Nevertheless, at fast combustions, they might also exhibit high
frequencies which can be confused with resonance, creating peaks in S(m)
at higher values of virtual masses than the actual one.
• Other resonant modes: The first radial mode corresponds to B = 1.842,

while the second one to B = 3.05, so they can be properly separated with a290

proper band pass or using the appropriate initial mass for iteration, as the
second mode gives a mass 2.73 times smaller than the actual one. However,
because of aliasing, higher resonant modes can be associated to lower fre-
quency components if the sampling frequency does not reach the Nyquist
criteria (Fs >= 2fres), and hence, creating virtual masses around the whole295

spectrum.

An adaptive filter has been designed to reject outliers when the value obtained
from the resonance method (mcyl) is far away from the expected value. The re-
jection of the outliers is based on intake pressure variations and an estimation
of the cycle-to-cycle trapped mass variations (σm). The adaptive filter consists
on updating the cycle-to-cycle trapped mass variations with an infinite impute
response (IIR) filter, characterized by kf , as follows:

σkm = kfσ
k−1
m + (1− kf )|mk

cyl −mk−1
filt | (10)

where mk
cyl−mk−1

filt is used to update the cycle-to-cycle variability and mfilt is
the trapped mass filtered value. In the final work mfilt is given by the observer
that will be defined later. The value of kf comprised between 0 and 1, must
be chosen to ensure a fast adaptation of σm when operating conditions are300
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varied but rejecting the noise caused by outliers. In the present work a value
of 0.9 has been selected.

The trapped mass measurement mk
cyl is accepted only if:

m̂k
cyl ε [mk−1

cyl

pkint
pk−1
int

− kσσkm,mk−1
cyl

pkint
pk−1
int

+ kσσ
k
m] (11)

where kσσ
k
m is the margin related to cycle-to-cycle trapped mass variations.

Note that in order to consider cycle-to-cycle trapped mass variations caused by
sharp intake mass flow changes, e.g. variable geometry turbine (VGT) steps,
intake pressure (pint) variations are used to estimate the increase at the intake
mass flow, such as:

mk
int ≈ mk−1

int

pkint
pk−1
int

(12)

Here, the intake temperature (Tint), the fuel mass (mfuel) and the volumetric305

efficiency (ηv) variations are not considered.

In Equation (11), kσ defines the margin for measurement acceptance. Here,
outliers are rejected when the trapped mass variations are above five times
the expected cycle-to-cycle variability (kσ = 5).310

Figure 11 illustrates the outliers identification procedure over a VGT step,
with the engine working at 1250 rpm and 60% load. In this example, the
filtered trapped mass has been obtained by using another IIR filter over the
trapped mass estimation (mcyl). Note that all the raw measurements (even out-315

liers) are used for the adaptation of σm as it is required to contemplate sudden
changes in the trapped mass or different cycle-to-cycle dispersion, while the
update of the filtered trapped mass does not take into account the identified
outliers for its calculation.
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Fig. 11. Outliers identification procedure in a VGT step working at 1250 rpm and
60% load

Sensor data fusion320

Up to now, only in-cylinder pressure was used to provide the system with a
trapped mass estimation. However, engine ECU has several sensors and mod-
els which might be also harnessed to estimate engine mass flows. The present
paper proposes a simple observer design to provide the system with a contin-
uous estimation of EGR and air mass flows.325

The aim of the observer is to estimate the EGR mass flow (mEGR) by updat-
ing a bias on the volumetric efficiency (θη) and a possible bias on the hot-film
anemometer (θair). Mass flows, represented by ṁ when are measured or ex-
pressed in kg/h, can be also converted in mass per stroke (represented by m)330

using the engine speed for the conversion.

In order to consider the accumulation effects at the intake manifold its dy-
namics must be considered. In this engine, an inter-cooler lowers the EGR
temperature close to the temperature of the gases at the intake, consequently,335

the isothermal model was used, which is defined by:

pk+1
int = pkint +

T kintR

Vm

(
mk
air +mk

EGR −mk
int

)
(13)

where R is the gas constant, Vm the intake manifold volume, and mint the
intake mass flow, which can be computed by using the volumetric efficiency,
through:
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mk
int = ηkv

pkintVdis
RT kint

(14)

The intake manifold volume has been inferred by performing VGT steps with340

the EGR valve closed. Figure 12 shows the VGT step performed at 1250 rpm
and 60% load, where the intake pressure was varied from 1.16 to 1.45 and
back to 1.16 bar. The isothermal model represented by a black line was feed
with the fitted value of intake manifold volume, which was 1.89 l.

345

Fig. 12. Intake pressure variations in a VGT step (from 1.16 to 1.45 and back to
1.16 bar), working at 1250 rpm and 60% load

The system is fully defined with four states:

θk+1
η = θkη (15)

θk+1
air = θkair (16)

mk+1
EGR =mk

EGR (17)

pk+1
int = pkint +

RT kint
Vm

(
mk
air + θkair +mk

EGR −
(
ηkv + θkη

) pkintVdis
RT kint

)
(18)

And the trapped mass can be obtained by combining the intake mass flow
with the injected fuel mass (obtained through an injector model or by using
an UEGO sensor at the exhaust), following:350

mk
cyl =

[
mk
fuel +

(
ηkv + θkη

) pkintVdis
RT kint

]
(19)

An extended Kalman filter (EKF) was designed to update the observer gain
in order to obtain an optimal solution of the system. A discrete form with one
cycle step was chosen, following the state space representation of the system:
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xk+1 = f(xk, uk) + wk (20)

yk = g(xk, uk) + vk (21)

where x are the states, modelled by f(xk, uk), y the outputs described by
g(xk, uk), u the inputs, w the associated noise to the states equation, and v355

the noise associated to the outputs. Concretely:

x =



θη

θair

mEGR

pint


, y =


mcyl

uEGR

pint

 , u =



mair

mfuel

Tint

ηv


(22)

Here, the valve control (uEGR) is used to force EGR mass flow to zero when
the EGR valve is closed. The KF of the state vector is defined by:

x̂k|k−1 = f(x̂k−1, uk) (23)

ek = yk − g(x̂k|k−1, uk) (24)

x̂k = x̂k|k−1 +Kkek (25)

The KF is characterized for minimizing the expected estimation error by solv-360

ing an iterative Riccati matrix equation and updating the value of the Kalman
gain (K). Following:

Pk|k−1 = (FkPk−1F
T
k +Qk) (26)

Kk =Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1
(27)

Pk = (I −KkHk)Pk|k−1 (28)

where w and v are modelled as a Gaussian distribution with zero mean and
covariance matrices Qk and Rk, respectively, which are constant and diagonal.365

Fk and Hk are the linear state matrices representing Equations (20) and (21).
As these equations are non-linear an extended Kalman filter (EKF) was used
by linearising them, such as:
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Fk,ij =
dfi
dxj
|x=x̂k =



1 0 0 0

0 1 0 0

0 0 1 0

−Vdisp
k
int

Vm

RTkint
Vm

RTkint
Vm

1− Vdis(ηkv+θkη)
Vm


(29)

Hk,ij =
dgi
dxj
|x=x̂k =


pkintVdis
RTkint

0 0
(ηkv+θkη)Vdis

RTkint

0 0 1 0

0 0 0 1

 (30)

Note that inputs (u) and outputs (y) are indistinctly measurements or esti-
mation of models. The formulation of the observer has been designed to tune370

the response of the Kalman filter by including noise at each equation.

Furthermore, the noise related to the trapped mass and EGR measurements
(R1,1,R2,2) are varied online:

• R1,1 is changed to a high value (≈ ∞) when a failure in the resonance375

method has been identified, i.e. the measurement is discarded, and it is set
to Iq if the estimation is accepted, i.e. the noise depends on the transfor-
mation. For avoiding failures in the peak detection method, R1,1 has been
bounded between 5 and 50 mg/str.

380

• R2,2is set to 0 when the EGR valve is closed, i.e. EGR is certainly 0, and it
is changed to a high value (≈ ∞) when it is opened, i.e. the measurement
is not used.

The observer has been validated by filtering the output of the resonance
method in a WLTP cycle. Table 3 collects the values used in the present385

work for matrices Q and R.

4 Results

The complete procedure has been applied to the trapped mass estimation of
the resonance method in a WLTP cycle. Figure 13 shows the result of the filter390

in the cycle tested with the EGR valve closed: top plot shows the trapped mass
output of the filter which is compared with the accepted measurements of the
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Table 3
Noise (Q and R) suggested for the Kalman filter: the last column gives dimensionless
value of the noise by using the average value in the test

Variable Value [unit] Dimensionless [%]

Q1,1 θη 0.005 [-] 0.54

Q2,2 θair 1 [mg/str] 0.42

Q3,3 mEGR 10 [mg/str] 5.5

Q4,4 pint 100 [mbar] 0.91

R1,1 mcyl 5-50 (or ∞)[mg/str] 1.1-11

R2,2 uEGR 0 (or ∞) [mg/str] 0

R3,3 pint 10 [mbar] 0.0091

resonance method, medium plot shows the volumetric efficiency correction,
and bottom plot shows the bias correction at the air mass flow anemometer
to reach such value of trapped mass.395
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Fig. 13. WLTP cycle with the EGR valve closed: trapped mass (top plot), volumetric
efficiency bias correction (medium plot), and air mass flow bias correction (bottom
plot)

The volumetric efficiency has been set as a constant value which would be
continuously adapted to achieve the actual trapped mass given by the res-
onance method. A 2D open loop model could be included to improve the
Kalman filter innovation when changing the operating conditions, but in this400

tests a constant value was preferred to analyse the observer under the worst
estimation. Note that the volumetric efficiency varies between ±10% which is
consistent with experimental data. The air mass flow given by the hot-film
anemometer was corrected by ±40 mg/str (3.18% in average), which is also
consistent given the range of operating conditions and sharp variations tested.405

Figure 14 shows 100 cycles where the air mass flow has been sharply varied.
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The sum of air and fuel mass from hot film anemometer and injection model
has been plotted together with the output of the filter and the trapped mass
estimation from resonance. It must be noticed that resonance gives a direct es-410

timation in the in-cylinder combustion chamber while the air mass flow sensor
is located at the beginning of the intake manifold, and thus, intake manifold
dynamics must be considered. The observer proposed takes into account both
measurements to provide the system with an adequate transient estimation.
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Fig. 14. Zoom over a sharp variation of air mass flow at cycle 17000

Figure 15 shows the output of the filter for the first 12500 cycles of the WLTP
cycle when the EGR valve was controlled to fulfil EURO 6 NOx regulation. The
estimation of the trapped mass was used to correct the volumetric efficiency
(in the same way that when the EGR valve was closed), but as the Kalman
filter has released one extra degree of freedom (the EGR mass flow), the cor-420

rections at the hot-film anemometer were nearly negligible (±1%), while the
EGR mass flow was continuously estimated from the trapped mass, the air
mass flow and the intake pressure to follow the isothermal model of the intake
manifold dynamics.

425
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Fig. 15. WLTP cycle with EGR activated: trapped mass (top plot), volumetric
efficiency bias correction (medium plot), and EGR mass flow estimated (bottom
plot)

In this test the volumetric efficiency range is also on a normal range while the
estimated EGR, from 0 to 50%, does agree with the value expected in such
conditions. Indeed, the observer provides the system with an online transient
estimation of EGR which is unaffordable with the current set of sensors in-
stalled in commercial vehicles. Nowadays, EGR is computed from the speed430

density method, but the volumetric efficiency is stored in 2D tables and does
not represent a direct feedback of the engine, as open-loop models might be
affected by ageing or other non-modelled phenomena.
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5 Conclusions435

The authors have recently published a method for trapped mass estimation
by analysing in-cylinder pressure resonance. However, the method fails when
there is no sufficient resonance intensity and the computational burden might
preclude its use in future ECUs.

440

The present paper proposes an iterative algorithm for reducing the computa-
tional cost, an adaptive filtering for detecting method failures and an observer
for ensuring a continuous estimation when the method fails.

• The iterative algorithm is based on a fixed point iteration by modifying445

the range analysed at each step. The new algorithm reduces the number of
operations from 500 to 20 for the same trapped mass resolution (25 times
faster). The shape of the peak, which gives an indicator of the method pre-
cision, is obtained by assuming a quadratic behaviour at the peak.

450

• The adaptive filter directly discards cycles with low resonance intensity by
analysing the amplitude of the resonance transformation and detects out-
liers by updating a trapped mass uncertainty with an IIR filter and using
the intake pressure variation for computing the trapped mass confidence
interval.455

• Finally, an observer has been designed to combine several sensors commonly
found in commercial vehicles: air mass flow sensor, intake temperature and
pressure sensors, and a lambda or an injector model for fuel estimation, by
considering the intake manifold dynamics.460

The volumetric efficiency is updated with the trapped mass estimation
(when it exist). The hot-film anemometer can be corrected when the EGR
valve is closed and its output is used to estimate the EGR in the rest of the
cycles.

465

The complete procedure has been applied to experimental data in two tests of
WLTP cycle: by closing the EGR valve during the full test and by using the
ECUs EGR control during the first part of the WLTP cycle.

The method ensures a continuous estimation of trapped mass, air mass flow,470

and EGR, by updating the volumetric efficiency, by estimating the EGR, and
by correcting a bias for the air mass flow measurement. The volumetric effi-
ciency was varied ±10% in both tests, the air mass flow sensor was corrected
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in 3.18 % when the EGR valve was closed, and EGR was estimated between 0
and 50% in the part of the test where it was controlled. Unfortunately, the set475

of sensors used in the tests do not offer an adequate fast estimation of EGR
for comparison, future tests would be focused on using fast gas analysers in
order to validate the transient response of the observer.
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