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Abstract

In this paper, mutually sn-permutable subgroups of groups belon-
ging to a class of generalised supersoluble groups are studied. Some
analogs of known theorems on mutually sn-permutable products are
established.
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1 Introduction and statement of results.

All groups considered here will be finite.

This paper is a natural continuation of a series of articles of Vasilev,
Vasileva and Tyutyanov ([5, 6, 7|) where an interesting generalisation of the
class of all supersoluble groups associated with a particular embedding of the
Sylow subgroups is introduced and widely studied.

Following [5], we say that a subgroup H of a group G is P-subnormal in G
whenever either H = G or there exists a chain of subgroups H = Hy C H; C
-+« C H,_1 C H, = G such that |H; : H; 1| is a prime for every i = 1,... n.

In |5, Lemma 1.4] some useful properties of the P-subnormal subgroups
are exhibited. They allow us to prove that a subgroup H of a soluble group
G is P-subnormal in G if and only if H is U-subnormal in G in the sense of
[3, Definition 6.1.2], where U is the class of all supersoluble groups.

By a well-known result of Huppert [10, Satz VI.9.2(b)|, a group G is
supersoluble if and only if every maximal subgroup of G is P-subnormal. As a
consequence, the supersoluble groups are exactly those groups in which every
subgroup is P-subnormal. Bearing in mind this result and the strong influence
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of the embedding of the Sylow subgroups on the structure of a group, the
following extension of the class of all supersoluble groups introduced in [5]
turns out to be natural.

Definition 1. A group G is called widely supersoluble, w-supersoluble for
short, if every Sylow subgroup of G is P-subnormal in G.

The results of |5, Section 2| showed that the class of all w-supersoluble
groups, denoted by wlf, is a subgroup-closed saturated formation of soluble
groups containing U/, which is locally defined by a formation function f such
that for every prime p, f(p) is composed of all soluble groups G whose Sylow
subgroups are abelian of exponent dividing p — 1.

Not every group in wlf is supersoluble (see [5, Example 1]). However,
every group in wl has an ordered Sylow tower of supersoluble type (see |5,
Proposition 2.8]).

In |6, Section 4], the authors considered products of w-supersoluble groups,
and proved the following remarkable result.

Theorem 1. [6, Theorem 4.7] Let G = AB be a group which is the product
of two w-supersoluble subgroups A and B. If A and B are P-subnormal in G
and G4 is nilpotent, then G is w-supersoluble.

Here G* denotes the residual of G with respect to the formation A of all
groups with abelian Sylow subgroups.

The example in [2, Example 4.1.32] shows that the nilpotency of the
A-residual is necessary in Theorem 1.

The main aim of this paper is to analyse mutually sn-permutable products
of w-supersoluble groups. The idea to consider these products arises naturally
from [6, Lemma 4.5]: if G = AB is a product of two subgroups A and B,
and B permutes with every subnormal subgroup of A and A is soluble, then
B is P-subnormal in G.

We recall that two subgroups A and B of a group G are said to be
mutually sn-permutable if A permutes with all subnormal subgroups of B
and B permutes with all subnormal subgroups of A. If every subnormal
subgroup of A permutes with every subnormal subgroup of B, then we say
that A and B are totally sn-permutable. If A and B are mutually (respectively
totally) sn-permutable subgroups of a group G = AB, then we say that G is
a mutually (respectively totally) sn-permutable product of A and B (see [2,
Section 4.1] for more general definition).



Mutually and totally sn-permutable products were first considered by
Carocca [4]; they were also studied in [1].

Unfortunately, the class of all w-supersoluble groups is not closed under
taking mutually sn-permutable product as the following example shows.

Example 1. Let X = (a,b: a* =1 = b2 a® = a™!) be a dihedral group of
order 8, and let V' = (v, v5) be a vector space of dimension 2 over the field
of 5 elements. Then V' can be considered as X-module with the following
action:

o8 = 3vy, V0 = vy, V5 = 20y, V5 =1y

Let G =V x X be the corresponding semidirect product, and consider the
following subgroups of G:

A =V{(a); B = (vv2) x (b)

Note that G = AB. It is clear that A is supersoluble, B is nilpotent and it is
easy to see that G is the mutually sn-permutable product of A and B. But
G is not w-supersoluble.

In [1, Theorem C], the authors prove that if G = AB is the mutually sn-
permutable product of the supersoluble subgroups A and B and the derived
subgroup G’ of G is nilpotent, then G is supersoluble.

The w-supersoluble version of this result follows directly from [6, Lemma
4.5] and Theorem 1, bearing in mind that every w-supersoluble group is
soluble.

Theorem 2. Let G be the mutually sn-permutable product of the subgroups
A and B. If A and B are w-supersoluble and G is nilpotent, then G is
w-supersoluble.

On the other hand, the behaviour of minimal normal subgroups of facto-
rized groups has been an important source of information about their struc-
ture. Stonehewer [11] proves that if NV is a minimal normal subgroup of a
group that can be written as the product G = AB of two nilpotent sub-
groups A and B, then either AN or BN is nilpotent. This result is not
true if we replace nilpotent by supersoluble or w-supersoluble. For instance,
PSL(2,7) can be written as the product of two supersoluble subgroups. In [1,
Theorem A, the authors obtain a supersoluble version of Stonehewer’s result
by asuming that the product is mutually sn-permutable. Our next theorem
confirms that an analogous result holds for mutually sn-permutable products
of w-supersoluble groups.



Theorem 3. let G = AB be the mutually sn-permutable product of the w-
supersoluble subgroups A and B. If N is a minimal normal subgroup of G,
then both AN and BN are w-supersoluble.

As Example 1 illustrates, the mutually sn-permutable product of a nil-
potent group and a w-supersoluble group is not necessarily w-supersoluble.
However, if the nilpotent factor permutes with the Sylow subgroups of the
w-supersoluble one, w-supersolubility is guaranteed.

Theorem 4. Let G = AB be the mutually sn-permutable product of the
subgroups A and B, where A is w-supersoluble and B is nilpotent. If B
permutes with each Sylow subgroup of A, then the group G is w-supersoluble.

In [1, Theorem D], the authors study metanilpotent mutually sn-permutable
products of supersoluble groups and proved that they are supersoluble pro-
vided that the largest nilpotent quotients of the factors have coprime orders.

We obtain a result in this spirit, but we required that the factors are
w-supersoluble.

Theorem 5. Let G = AB be the mutually sn-permutable product of the
w-supersoluble subgroups A and B. If (|[AJ/A%|,|B/BA|) = 1, then G is w-
supersoluble.

2 Proofs.

Proof of Theorem 3 By |5, Theorem 2.3|, A and B are soluble. Therefore
G is soluble by [4, Theorem 3]. Applying |6, Lemma 4.5], we have that A and
B are P-subnormal subgroups of G. Let N be a minimal normal subgroup
of G. Then N is an elementary abelian p-group for some prime p. Next
we see that BN is w-supersoluble. First of all, BN/N is w-supersoluble
since wl is closed under taking epimorphic images. Let () denote a Sylow
g-subgroup of BN. Then QN/N is a Sylow g-subgroup of BN/N and so
QN/N is P-subnormal in BN/N. By [6, Lemma 3.1|, QN is P-subnormal
in BN. If ¢ = p, it follows that N < @ and @ is P-subnormal in BN.
Therefore we may assume that ¢ # p. Then every Sylow ¢-subgroup of BN
is conjugate to a Sylow ¢-subgroup of B. Hence we may assume without
loss of generality that @) is contained in B. Then @ is P-subnormal in B
since B is w-supersoluble. But B is P-subnormal in G. Consequently, () is
P-subnormal in G by [6, Lemma 3.1]. We can apply again |6, Lemma 3.1|
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to conclude that @) is P-subnormal in BN. In both cases, () is P-subnormal
in BN. Analogously, AN is w-supersoluble. This completes the proof of the
theorem.

Proof of Theorem 4 Assume the result is not true and G is a minimal coun-
terexample. Let L be a minimal normal subgroup of G. Then, by [2, Lem-
mas 4.1.8 and 4.1.10|, G/L = (AL/L)(BL/L) is a mutually sn-permutable
product of the subgroups AL/L and BL/L and BL/L permutes with the
Sylow subgroups of AL/L. Moreover, AL/L is w-supersoluble and BL/L is
nilpotent. The minimal choice of G implies that G/L is a wid-group. Since
wl is a saturated formation of soluble groups, it follows that G is a primi-
tive soluble group, and hence G has a unique minimal normal subgroup, N
say; N is an elementary abelian p-group and N = Cg(N) = F(G) = O,(G).
Applying Theorem 3, we know that AN and BN are w-supersoluble. Let
q be the largest prime dividing the order of G and assume that g # p. We
can suppose without loss of generality that ¢ divides |AN|. Since AN has
a Sylow tower of supersoluble type, we have that AN has a unique Sylow
g-subgroup, (AN), say. Then (AN), centralizes N and thus (AN), = 1 since
Cg(N) = N, which is a contradiction. Consequently p is the largest prime
dividing |G|. Since G is a primitive soluble group, we can write G = NM,
where M is a maximal subgroup of G and N N M = 1. Then M is w-
supersoluble. Since O,(M) = 1 by [8, Theorem A.15.6], and M is a Sylow
tower group of supersoluble type, it follows that p does not divide the order
of M and so N is a Sylow p-subgroup of G.

Assume that B is a p-group. Then G = AN is w-supersoluble, contrary
to assumption. Since B is nilpotent and N is self-centralising in G, it follows
N is not contained in B and B has a non-trivial Hall p’-subgroup, B,, say.
Then AB,, is a subgroup of G because the product is mutually sn-permutable.
Then 1 # Bﬁ < AB,, and hence N < AB,,. Since N is a p-group, we have
that N is contained in A.

Let A, be a Hall p’-subgroup of A. Note that 1 # A, because BN is a
proper subgroup of G. Since B permutes with every Sylow subgroup of A
amd N is not contained in B, it follows that A, B is a proper subgroup of
G. However, G = NA,, B since A, B contains a Hall p’-subgroup of G'. Since
NNAyB = NN B is a normal subgroup of G and N is a minimal normal
subgroup of G that is not contained in B, it follows that N N B = 1 and
so B is a p/-group. Let N; be a minimal normal subgroup of A such that
N; < N. Then N, B is a subgroup of G and N = N& < N, B. Consequently
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N = Nj. Since N is self-centralising in A, we have that N is the unique
minimal normal subgroup of A and O, (A) = 1.

On the other hand, note A permutes with every Sylow subgroup of B.
Thus G is the mutually Syl-permutable product of A and B. Applying
[2, Proposition 4.1.16], we have that A N B is a subnormal subgroup of G.
Moreover AN B is a p-group and O, (G) = 1. This implies that AN B = 1.
By |2, Proposition 4.1.16], G = AB is the totally sn-permutable product of
A and B.

Since A has a Sylow tower of supersoluble type and A is not a p-group,
there exists a prime g # p and a Sylow g-subgroup A, of A such that N A,
is a normal subgroup of A. The hypotheses of the theorem implies that
X = (NA,)B is a subgroup of G which is the totally sn-permutable product
of NA, and B. By [5, Theorem 2.13], NA, < A is supersoluble since it
is metanilpotent. Applying [1, Theorem 1|, we have that X is supersoluble.
Also Oy (X) =1 and O,(X) = N. Thus A,B is an abelian group with ex-
ponent dividing p — 1. Hence B centralises A,. Arguing analogously with
every A-conjugate of A, we obtain that B centralises the normal closure AqA.
Since N < Aj;‘, we have that B < Cg(N) = N. Consequently B = 1 and
G = A. This final contradiction proves the theorem.

Proof of Theorem 5 Assume that the theorem is false and take a minimal
counterexample G = AB. Arguing as in Theorem 4, we have that G is a
primitive soluble group. Then G = NM, where N is the unique minimal
normal subgroup of G, M is a maximal subgroup of G, NN M = 1 and
Cg(N) = N. We also know that N is a p-group for some prime p. Similar
arguments to those used in the proof of Theorem 4 allow us to conclude that
p is the largest prime dividing the order of G and N is a Sylow p-subgroup of
G. Applying Theorem 3, we know that AN and BN belong to wl{. Moreover
O, (AN) = Oy(BN) = 1. The local definition of the saturated formation wi/
implies that A/ANN ~ AN/N and B/BN N ~ BN/N have abelian Sylow
subgroups. Therefore A and B have abelian Sylow subgroups. Furthermore
A4 < N and B* < N so that (|[AN/N|,|BN/N|) = (JA/JAN N|,|B/B n
N|) = 1. Hence G has abelian Sylow subgroups. Consequently we can apply
Theorem 2 to conclude that G is w-supersoluble. This final contradiction
proves the theorem.
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