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Abstract
The limits offlexural wave absorption by open lossy resonators are analytically and numerically
reported in this work for both the reflection and transmission problems. An experimental validation
for the reflection problem is presented. The reflection and transmission offlexural waves in 1D
resonant thin beams are analyzed bymeans of the transfermatrixmethod. The hypotheses, onwhich
the analyticalmodel relies, are validated by experimental results. The open lossy resonator, consisting
of afinite length beam thinner than themain beam, presents both energy leakage due to the aperture
of the resonators to themain beamand inherent losses due to the viscoelastic damping.Wave
absorption is found to be limited by the balance between the energy leakage and the inherent losses of
the open lossy resonator. The perfect compensation of these two elements is known as the critical
coupling condition and can be easily tuned by the geometry of the resonator. On the one hand, the
scattering in the reflection problem is represented by the reflection coefficient. A single symmetry of
the resonance is used to obtain the critical coupling condition. Therefore the perfect absorption can be
obtained in this case. On the other hand, the transmission problem is represented by two eigenvalues
of the scatteringmatrix, representing the symmetric and anti-symmetric parts of the full scattering
problem. In the geometry analyzed in this work, only one kind of symmetry can be critically coupled,
and therefore, themaximal absorption in the transmission problem is limited to 0.5. The results
shown in this work pave theway to the design of resonators for efficient flexural wave absorption.

1. Introduction

Recent studies in audible acoustics have focused onwave absorption at low frequencies bymeans of
subwavelength locally resonantmaterials. In particular, the design of broadband subwavelength perfect
absorbers, whose dimensions aremuch smaller than thewavelength of the frequency to be attenuated, has
recently been proposed [1–5]. Such devices can totally absorb the energy of an incident wave and require solving
the twofold but often contradictory problem: (i) increasing the density of states at low frequencies and (ii)
matching the impedancewith the backgroundmedium.On the one hand, the use of local resonators is a
successful approach for increasing the density of states at low frequencies with reduced dimensions, as it has
been shown in thefield ofmetamaterials [6–13]. On the other hand, the local resonators of suchmetamaterials
are open and lossy ones, implying energy leakage and inherent losses. In these systems the impedancematching
can be controlled by the ratio between the inherent losses of the resonator and the leakage of energy [14].
Particularly, the perfect compensation of the leakage by the losses is known as the critical coupling condition
[15] and has beenwidely used to design perfect absorbers in different fields of physics [16, 17] other than
acoustics.
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The critical coupling condition is also relevant for applications in vibrations owing to the increasing need for
dampingmaterials at low frequencies in several branches of industry [10]. Current passive solutions in thisfield
aremainly based on the use of viscoelastic coatings [18]. Another solution yields in the tuned vibration absorber
(TVA) [19–21] that is used to control flexural waves in beams. The tuning of the resonance frequency of an
undampedTVAhas been analyzed [20], showing that complete suppression of the flexural wave transmission
can be achieved. Inmost cases, TVAhave been used tominimize the transmission of a propagating wave [20],
resulting in practice in heavy treatments at low frequencies. Less attention has been paid to the case of
maximizing the absorption in order to reduce simultaneously both the reflected and transmitted waves.

The purpose of this work is to study the problemof perfect absorption offlexural waves in 1D elastic beams
with local resonators by using the critical coupling condition. Particularly, the absorption of energy is analyzed
through the balance between the energy leakage and the inherent losses in the resonators for the two scattering
problems: the reflection and the transmission offlexural waves. The presented problem is related to the control
offlexural waves in a beamusing a passive TVAbutwith a physical insight that allows the interpretation of the
limits of the flexural wave absorption based on both the critical coupling conditions and the symmetry of the
excited resonances in the resonator. The analyzed systems are composed of amain beam and an open resonator
simply consisting in a reduction of the thickness of themain beam. A thin viscoelastic coating is attached to it,
leading to a compositematerial whose lossmay be tuned. This compositematerial ismodeledwith the Ross–
Kerwin–Ungar (RKU)method [22] and is embedded in themain beam. By tuning the losses, it is possible to
analyze the different limits in both scattering problems. In practice, this type of resonator results in simpler
geometries than that of the TVAwhich consists of complicated combinations ofmass spring systems simulating
a point translational impedance.

The composite is studied bymeans of an analyticalmodel based on the transfermatrixmethod. The
analytical results, in accordance with the the experimental results, show the limits of themaximal values for the
flexural wave absorption and their physical interpretations in both the reflection and transmission problems.
The interpretations are based on the eigenvalues of the S-matrix for the propagatingwaves, represented in the
complex frequency plane [1]. An experimental prototype is designed andmeasured for the reflection problem.
The experimental results prove the perfect absorption offlexural waves and validate the analytical predictions.

Thework is organized as follows. In section 2, the theoreticalmodel used to analyze the 1D scattering
problems offlexural wave is presented. The physical analysis of the absorption coefficient in the complex
frequency plane are presented in section 3. This analysis is based on an analyticalmodel and the concept of
critical coupling to obtain a perfect absorption offlexural waves. The experimental set-up used to validate the
model for the reflection problem is then presented in section 4 aswell as the experimentalmethodology and
results. Finally, section 5 summarizes themain results and gives the concluding remarks.

2. Theoreticalmodels

This section describes the theoreticalmodel used to study the absorption offlexural waves by open lossy
resonators in 1D systems, following the approach ofMace [23]. The governing equations used in themodel are
first introduced. Two scattering problems are then presented. Thefirst one is the reflection problemwhere the
absorption by a resonatormade of a thinner composite beam located at the termination of a semi-infinite beam
is studied (figure 1(a)). The second one is the transmission problemwhere the absorption of the same resonator
located between two semi-infinite beams is considered (figure 1(b)). The analytical results shown for the two
problems have been tested by numerical simulations, but not shown in the article for clarity of the figures, later
on the analytical results are validated experimentally in the section 4.

2.1. Flexural wave propagation in uniformbeams
Consider a thin uniformbeamwhose neutral axis is denoted by the x-axis. Assuming Euler-Bernoulli
conditions, theflexural displacementw(x, t) satisfies [24]:

Figure 1.Diagrams of the 1D configurations analyzed for the reflection and transmission problems for flexural waves. (a)
Configuration for the reflection problem. (b)Configuration for the transmission problem.
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whereD=EI is the flexural rigidity, E the Youngmodulus, I the secondmoment of area andm the linearmass.
Assuming time harmonic solution of the form eiωt, whereω is the angular frequency, the solution of equation (1)
can bewritten in the frequency domain as the sumof four flexural waves:

w x a a a ae e e e . 2kx
N

kx kx
N

kxi i= + + ++ - + - - -( ) ( )

The complex amplitudes of the propagative and evanescent waves are a and aN respectively, and the signs
+ and−

denote the outgoing and ingoingwaves respectively. The evanescent component is a nearfield component, the

amplitude of which decreases exponentially with distance. Theflexural wavenumber k is given by k m

D
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which is real and positive in the lossless case and complexwhen damping is accounted for. Thewave amplitude is
expressed in the vector formby convenience:
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The relation betweenwave amplitudes along a beamwith a constant thickness are then described by
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where the diagonal transfermatrix f is given by
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2.2. Reflection coefficient in a pure reflection problem
Consider an incident planewave in the configuration described by the figure 1(a), where the system is
terminated by a free termination at one end. The displacementw at any point for x<0 reads as

xw a a a R a0 , 6r< = + = ++ - + +( ) · ( )

whereRr denotes the reflectionmatrix of the resonant termination of the beam at x=0. The incident wave is
transmitted into the resonant termination and reflected at its end, therefore thematrixRr can be evaluated, using
the displacement continuity at the interface and at the boundaries as [23]:

R a a r t fr f r t , 7r 12 12 f 21 21
1 1 1= = + -- +- - -(( ) ) ( )

where rij and tij represent the reflection and transmissionmatrices from sections (i)–(j) of the beam (see
figure 1(a)). Considering continuity and equilibrium respectively at the section change, thesematrices are given
by

t
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Rr is thus a 2×2matrix where the diagonal components correspond to the reflection coefficients of the
propagative and evanescent waves respectively. The study focuses on the reflection of waves in the far-field
(x  -¥ ), i.e. on the propagative waves that carry the energy. Thefirst termof the reflectionmatrix
Rr(1,1)≡Rr is therefore only considered since R R R1, 2 , 2, 1 , 2, 2 0r r r ( ) ( ) ( ) when x  -¥. The absorption
coefficientαR of propagating waves in the reflection problem can then bewritten as:

R x1 , . 11r r
2a = -  -¥∣ ∣ ( )

In the lossless case, i.e. without dissipation,Rr is simply equal to 1 for any purely real frequency as the energy
conservation is fulfilled.

2.3. Reflection and transmission coefficients in a 1D symmetric and reciprocal transmission problem
The transmission problemof the structure shown infigure 1(b) is described in this section, considering b−=0.
Due to the symmetry of the resonator and assuming propagation in the linear regime, the problem is considered
as symmetric and reciprocal. The reflection and transmissionmatricesRt andTt at x=0 and x=L are used to
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define the displacements on each side of the resonator such as:

xw a a a R a0 , 12t< = + = ++ - + +( ) · ( )
x Lw b T a . 13t> = =+ +( ) · ( )

Using the displacement continuity at x=0 and x=L in a similar way as in the previous section,Rt andTt are
written as

R r t fr f r t , 14t 12 23 21 2112
1 1= + -- -(( ) ) ( )

T a a t I fr f r ft . 15t 23 21 23 12
1 1= = -- +- -( ( ) ) ( )

Therefore the absorption coefficient of the transmission problem is defined as

T R x1 , 16t t t
2 2a = - -  ¥∣ ∣ ∣ ∣ ( )

whereRt=Rt(1,1)when x  -¥ andTt=Tt(1,1)when x  +¥.

2.4. Viscoelastic losses in the resonator: theRKUmodel
The inherent losses of the resonator are introduced by a thin absorbing layer of thickness hl as shown in
figures 1(a), (b) and are considered frequency independent. The complex YoungModulus of the absorbing layer
isEl(1+iηl), where ηl is its loss factor. Using the RKUmodel [22], this region ismodeled as a single composite
layer with a given effective bending stiffnessDcwritten as:

D E I j e h j
h e h j

e h j
1 1

3 1 1

1 1
, 17c c c l

c c c l l

c c l
2 2 2

3
2

2 2h h
h h h h

h
= + + + +

+ + - + +
+ +

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) [ ( )]
( )

( )

where the indices 2 and l stand for the parameters of the thin beamand of the absorbing layer respectively,

ec=El/E2 and hc=hl/h2. Thewave number kc of the compositematerial can then bewritten as kc
h

D
4 c

c

2

= r w
,

where h=hl+h2 and ρch=ρ2h2+ρlhl.

3. Limits of absorption for the reflection and transmission problems

This section describes the limits of absorption forflexural waves in the reflection and transmission problemby
using open, lossy and symmetric resonators. It provides tools to design absorbers with amaximal absorption in
both problems. For this purpose, the eigenvalues of the scatteringmatrix of the propagative waves are
represented in the complex frequency plane as in [1]. Thematerial and geometric parameters used in the
following sections are described in table 1.

3.1. Properties of the S-matrix
Consider a two-port, 1D, symmetric and reciprocal scattering process for the systems described infigure 1(b) in
the casewhere x  ¥. The relation between the amplitudes a+ and b−of the incomingwaves and a−and b+

of the outgoingwaveswhen x  ¥ is given by

Table 1.Geometric andmaterial parameters of the studied systems. The
value of ηldepends on the experimental set-up used, seemain text for the
used values retrieved from experiments.

Geometric

parameters Material parameters

Main beam h1=5 mm ρ=2811 kg m−3

b=2cm E=71.4 GPa

η=0
ν=0.3

Resonator

beam

h2=0.217 mm ρ2=2811 kg m−3

b2=2 cm E2=71.4 GPa

L=1.6 cm η2=0
ν2=0.3

Coating layer hl=1.5 mm El=6.86×10−3 GPa

bl=2 cm ρl=93.3 kg m−3

Ll=1.6 cm ηl

νl=0.3

4
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where S is the scatteringmatrix or the S-matrix of the propagative waves. The complex eigenvalues of the S-
matrix areψ1,2 = Tt ± Rt. An eigenvalue of the S-matrix equal to zero implies that the incident wave is
completely absorbed (a−=b+= 0). This happenswhenTt=±Rt and the incident waves [a

+, b−] correspond
to the relevant eigenvector.When the eigenvalues are evaluated in the complex frequency plane [1], poles and
zeros can be identified. The pole frequencies correspond to the resonances of the resonator (zeros of the
denominator of the eigenvalues)while the zero frequencies (zeros of the numerator of the eigenvalues)
correspond to the perfect absorption configuration. In the case of a reflection problem, the eigenvalues are
reduced to the reflection coefficient.

Since the systems analyzed in this work are invariant under time-reversal symmetry, the scatteringmatrix, as
defined in equation (18), presents unitary property [25] in the lossless case (i.e. without dissipative losses):

S S I. 19* = ( )

The complex frequencies of the eigenvalue poles of the propagative S-matrix are complex conjugates of its
zeros. Poles and zeros appear therefore symmetric with respect to the real frequency axis in the lossless case.

3.2. Reflection problem
3.2.1. Lossless case
In the reflection problem,where nowave is transmitted, the reflection coefficientRr represents the scattering of
the system. Thus,Rr corresponds directly to both the S-matrix and its associated eigenvalue (ψ=Rr). Its zeros
correspond to the cases inwhich the incident wave is totally absorbed. In the lossless case, R 1r =∣ ∣ for any purely
real frequency and the pole-zero pairs appear at complex conjugate frequencies. Figure 2(a) depicts Rlog r10(∣ ∣) in
the complex frequency plane. Themain beam, the resonator beam and the coating layer have the geometric and
material parameters given in table 1.Note that the Youngmoduli are purely real in the lossless case
(η=η2=ηl=0). As shown in section 3.1, the poles and zeros appear in pairs and are symmetric with respect
to the real frequency axis.Moreover the value of Rr∣ ∣along the real frequency axis is equal to 1. It is alsoworth
noting that the imaginary part of the pole in the lossless case represents the amount of energy leakage by the
resonator through themain beam [1].With the time dependence convention used in this work, thewave
amplitude at the resonance frequency decays as e tIm polew- ( ) . Thus the decay time τleak can be relatedwith the

quality factor due to the leakage as Q leak
Re

2

Re

2Im

pole leak pole

pole
= =

w t w

w

( ) ( )
( ) , where the leakage rate can be defined as

Γleak=1/τleak=Im(ωpole). The imaginary part of the poles and zeros increases when the real part of the
frequency increases,meaning thatmore energy leaks out through the resonator at high frequencies.

Figure 2.Analysis of the scattering in the reflection problem. (a)Representation of Rlog r10(∣ ∣) in the complex frequency plane for the
lossless case. (b)–(d) Rlog r10(∣ ∣) in the complex frequency plane in the lossy case for configurationswith ηl=0.02, 0.15 and 0.4
respectively. The casewhen the critical coupling condition is fulfilled (ηl=0.15) is represented in (c). (e)Trade-off of the absorption
at the first resonance frequency of the resonator as the inherent loss ηl is increased in the system. The points along the absorption curve
represent the values of the absorption for the configurations represented infigures (b)–(d). Red continuous (Black dashed) line
represents the absorption (reflection) coefficient as a function of etal at 673 Hz, corresponding to thefirst resonance frequency of the
termination.
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3.2.2. Lossy case
For the sake of clarity, this section only focuses on the first pole-zero pair of the systempreviously described. The
discussion can nevertheless be extended to any pole-zero pair of the system in the complex frequency plane.
Losses are now introduced into the systemby adding an imaginary part to the Youngmodulus of the damping
material such that it can bewritten asEl(1+iηl).

As a consequence, the symmetry between the poles and zeroswith respect to the real frequency axis is
broken, since the property of equation (19) is nomore satisfied in the lossy case. Figures 2(b)–(d) depict

Rlog r10(∣ ∣) in the complex frequency plane around the first resonance frequency for three different increasing
values of ηl. Figure 2(b) represents the case forwhich the losses are small (ηl=0.02). In this case, the pole-zero
pair is quasi-symmetric with respect to the real frequency axis. As the losses in the damping layer increase
(ηl=0.15 infigure 2(c) and ηl=0.4 infigure 2(d)), the zeromoves to the real frequency axis. In particular, the
zero of the reflection coefficient is exactly located on the real frequency axis infigure 2(c). In this situation, the
amount of inherent losses in the resonator equals the amount of energy leakage. This situation is known as the
critical coupling condition [15] and implies the impedancematching, leading to a perfect absorption.

The value of the absorption coefficient of the first resonant peak as a function of ηl is depicted infigure 2(e).
The position of the zero in the complex frequency plane is directly related to the value of the flexural wave
absorption.When the zero approaches the real frequency axis, the value of the absorption is close to one, being
equal to 1when the zero is exactly located in the real frequency axis. It should be noted that the perfect
absorption cannot occur once the zero has crossed the real frequency axis. This propertymight appear
counterintuitive since itmeans that adding a large amount of losses in the systemmight lead to a deterioration of
the absorbing properties of the structure.

3.2.3. Design of perfect absorbers for flexural wave in the reflection problem
A theoretical design for the perfect absorption offlexural waves is shown in this section based on the
configuration represented in thefigure 1(b) and the parameters given in table 1. Considering that there is no
inherent losses in themain beam and the resonator beam (η=η2=0), the loss factor of the coating layer has to
be ηl=0.15 to obtain a perfect absorption at the first resonance frequency of the system.

Figures 3(a), (b) depict Rlog r10(∣ ∣) for the lossless and lossy configurations in the complex frequency plane
respectively. Figure 3(b) shows particularly thefirst pole-zero pair of the system in the perfect absorption
configurationwhere the critical coupling condition is fulfilled, showing the zero exactly located on the real
frequency axis. Figure 3(c) shows the corresponding absorption (red continuous line) and reflection (black
dashed line) coefficients according to real frequencies for the critical coupled configuration. These coefficients
are calculatedwith the analyticalmodel described in previous sections. The incident wave is totally absorbed at
thefirst resonance frequency of the composite beam.

Figure 3.Representation of the perfect absorption for the reflection problem. (a), (b) Show the representation of the Rlog r10(∣ ∣) for the
lossless and lossy configurations respectively. (c)Red continuous and black dashed lines show the analytical absorption and reflection
coefficients for the critical coupled configuration respectively.
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3.3. Transmission problem
For the transmission problem, the S-matrix is defined in equation (18) and has two eigenvaluesψ1,2. The
scatterer beingmirror symmetric, the problem can be reduced to two uncoupled sub-problems: a symmetric
problemwhereψs=Tt+Rt and an anti-symmetric, whereψa=Tt−Rt.

ψs corresponds to the reflection coefficient of the symmetric problemwhileψa corresponds to the reflection
coefficient of the anti-symmetric problem. The absorption coefficient can also be expressed asα=(αs+αa)/2
where 1s s

2a y= - ∣ ∣ and 1a a
2a y= - ∣ ∣ . Similarly to the reflection problem, poles and zeros ofψs andψa can

be identified in the complex frequency plane. The following sections focuses on the first resonantmode of the
beam resonator, the displacement distribution of which is symmetric. The interpretation of the results can
nevertheless be applied to the higher ordermodes with anti-symmetric distributions of the displacement field. It
is worth noting that the displacement distribution of the resonantmodes changes from symmetric to anti-
symmetric as themode increases due to the geometry of the resonators [26].

3.3.1. Lossless case
Figures 4(a) and (b) show the variation of log s10 y(∣ ∣) and log a10 y(∣ ∣) evaluated respectively in the complex
frequency plane in the lossless case for thefirst resonantmode. Themain beam, the resonator beam and the
coating layer of the studied systemhave still thematerial and geometric parameters of table 1, where
η=η2=etal=0 in the lossless case. The symmetric and anti-symmetric problems exhibit pole-zero pairs
similarly to the reflection problem in the lossless case. These pairs are also symmetrically positionedwith respect
to the real frequency axis. The absence of dissipation is shown along the real frequency axis where T R 1t t =∣ ∣
for any real frequency. This section focuses only on the first resonantmodewhich has a symmetric distribution
of the displacementfield. Therefore, only the symmetric problempresents a pole-zero pair at the corresponding
resonance frequency, while the anti-symmetric one does not.

3.3.2. Lossy case
Unlike the reflection problem, the condition for perfect absorption is stronger in the transmission one andneeds
to place the zeros of bothψs andψa at the same frequency in the real frequency axis. Once this condition is
fulfilled, a+ and b−correspond to the relevant eigenvector and the system satisfies the coherent perfect
absorption condition [2, 9, 27].

Losses are introduced in the system in the sameway as for the reflection problem, i.e. by increasing the loss
factor ηl of thematerial of the damping layer. Once the losses are introduced, the position of the pole-zero pair of
the symmetric eigenvalue in the complex frequency plane shifts towards the upper half spacewhile the anti-
symmetric problem remains unchangedwithout pole-zero pairs, as shown infigures 4(c) and (d). Therefore,
only the zero of the symmetric problem can be placed on the real frequency axis, i.e. only half of the problem can
be critically coupled. Figure 4(e) shows the dependence of the reflection, transmission and absorption coefficient

Figure 4.Representation of the eigenvalues of the S-matrix for a transmission problem in the lossless and lossy case. (a) and (b)
Lossless case for log s10 y(∣ ∣) and log a10 y(∣ ∣) in the complex frequency plane. (c) and (d) Lossy case for log s10 y(∣ ∣) and log a10 y(∣ ∣) in the
complex frequency plane. (e)Trade-off of the transmission (blue dotted line), reflection (black dashed line) and absorption (red
continuous line) for themaximumabsorption of thefirstmode as the loss factor of the coating layer increases. (f)Red continuous,
black dashed and blue dotted lines represent the absorption, reflection and transmission coefficients respectively for the half critically
coupled configuration.
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on the inherent losses in the resonator for the firstmode. Themaximumabsorption obtained is 0.5 since only
the symmetric problem is critically coupled (α=(αs+αa)/2; (1+0)/2=1/2).

3.3.3. Design ofmaximal absorbers for flexural wave in the transmission problem
Based on the results discussed previously, a configurationwithmaximal absorption forflexural waves in the
transmission problem is designedwith the parameters given in table 1. As for the reflection problem, no inherent
losses are considered in themain beam and the resonator beam (η=η2=0). The loss factor of the coating layer
is ηl=2.21. The reflection, transmission and absorption for this configuration is analyzed infigure 4(f),
showing that themaximumabsorption is 0.5 at the resonance frequency of the beam. This result is in accordance
with the ones previously obtained [2, 9, 21], even if the resonator is not a point translational impedance. The
absorption is limited to 0.5 since only one kind of geometry of resonantmode can be excited. The problem is
therefore half critically coupled. To obtain a higher absorption, other strategies based on breaking the symmetry
of the resonator [5] or on the use of degenerate resonators are needed [28]. In these cases, both eigenvalues
present poles and zeros located at the same real frequencies. It would then be possible to fully critically couple the
problem and so obtain a perfect absorption (i.e.α=1) at the appropriate frequency.

4. Experimental results

This section presents the experimental results of the reflection coefficient [29, 30] for an aluminumbeam system
with the configuration described in section 3.2.3.

4.1. Experimental set-up
The beam is held vertically in order to avoid static deformation due to gravity. The extremity at which the
reflection coefficient is estimated is oriented towards the ground (seefigure 5(a)). The used coating layer have
been experimentally characterized showing an ηl=0.15, which is the value forwhich perfect absorption can be
observed. A photograph of the resonator with the coating layer is shown infigure 5(b). Themeasurements are
performed along the beamat 21 points equidistant of 5mmand located on its neutral axis in order to avoid the
torsional component. Themeasurement points are also located sufficiently far from the source and the

Figure 5. (a)Diagramof the experimental set-up. (b)Photograph of the resonator. (c)Black crosses and red open circles show
respectively Rr

2∣ ∣ andαr for the critical coupled configurationmeasuredwith the experimental set-up. Black dashed and red
continuous lines show Rr

2∣ ∣ andαr calculatedwith the analyticalmodel.
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extremity of the beam to consider far-field assumption and neglect the contribution of evanescent waves. In this
case, far-field assumption is fulfilled at a distance lf fromboth the source and the resonator forwhich the
evanescent wave loses 90%of its initialmagnitude. The low frequency limit of themeasurements is then
estimated using e 0.1klf = . The shaker excites the beamwith a sweep sine. The displacement field versus
frequency is obtained from themeasurements of the vibrometer at eachmeasure point.

4.2. Experimental estimation of the reflection coefficient
Consider theflexural displacementW(xi,ω)measured at the point x i 0, 20i Î( [ ]) for a given angular frequency
ω as

W x A B, e e . 20i
kx kxi ii iw w w= +-( ) ( ) ( ) ( )

The set ofW(xi,ω) for eachmeasurement point can bewritten in amatrix format [30] such as
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The amplitudesA(ω) andB(ω) can then be derived from equation (21)which forms an overdetermined system.
From these amplitudes, the reflection coefficient of the propagative waves can be deduced for anyω as:

R
A

B
. 22r w

w
w

=( ) ( )
( )

( )

4.3. Experimental evidence of perfect absorption forflexural waves
Experimental results obtainedwith the experimental set-up are depicted infigure 5(c). A drop of reflection is
noticed at the first resonant frequency of the terminationwith aminimumvalue of R 0.02r

2 =∣ ∣ at 667 Hz for
the experiment and R 0r

2 =∣ ∣ at 673 Hz for the analytical result. The gap between the analytical and
experimental resonant frequency is 0.9%. This frequency shift between themodel and the experiment ismainly
due to the geometric uncertainty in the resonator thickness, induced by themachining process. This geometrical
uncertainty induces also an estimation uncertainty of the energy leakage of the resonator. The absorption is then
experimentally limited toαr=0.98. Evidence of perfect absorption forflexural waves bymeans of critical
coupling is shown experimentally here.

Three experimental scans of thewhole beam at 500, 670 and 800 Hz have beenmeasured3. At 500 or 800 Hz
the reflection coefficient is very close to one. The standingwaves in themain beamare visible at these
frequencies. At 670 Hz, the termination absorbs totally the incident waves. There is therefore no standingwaves
and thewaves are propagating in themain beam.

5. Conclusions

Absorption of propagative flexural waves bymeans of simple beam structures is analyzed in this work. Themain
mechanisms are interpreted in terms of both the critical coupling conditions and the symmetries of the
resonances for both the reflection and the transmission problems. The positions of the zeros of the eigenvalues
of the scatteringmatrix in the complex frequency plane give informations on the possibility to obtain the perfect
absorption. The perfect absorption condition is fulfilledwhen these zeros are placed on the real frequency axis,
meaning that the inherent losses are completely compensating the energy leakage of the system. In the reflection
problem, the physical conditions of the problem lead to perfect absorption at low frequencies. In this case a
single symmetry for the resonance is excited and perfect absorption can be obtainedwhen the inherent losses of
the systembalance the energy leakage of the system. In the transmission problem, the requirement to obtain
perfect absorption is stronger than for the case in reflection as two kinds of symmetries of the resonances are
required to be critically coupled simultaneously. In the case presented in this work, or in the general case of point
translational impedances, dealing onlywith one type of symmetry for the resonantmodes [21] limits the
absorption to 0.5. Therefore for the perfect absorption in the transmission case, two strategies are needed: (i)
breaking the symmetry of the resonator in order to treat the full problemwith a single type of symmetry of the
resonancemode [5]; (ii) using degenerate resonators with two types of symmetries at the same frequency being
critically coupled [28]. The resonator used in this study has been chosen as an integral part of themain beam for

3
See supplementarymaterial is available online at stacks.iop.org/NJP/21/053003/mmedia: videos 500 Hz.avi, 670 Hz.avi and 800 Hz.avi
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experimental set-up reasons. However, the presented approach can be applied to any class of 1D resonant-
systemprovided that the resonators are local, open and lossy ones. These properties of the resonator are the
essential points to achieve the perfect absorption at low frequency by solving the following problems: increasing
the density of states at low frequencies andmatching the impedancewith the backgroundmedium.
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