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ABSTRACT
Background. Fool’s watercress (Apium nodiflorum) is an edible vegetable with potential
as a new crop. However, little information is available regarding the antioxidant
properties of the plant and the individual phenolics accounting for this capacity are
unknown.
Methods. The antioxidant properties of twenty-five wild populations were analysed
and individual phenolics present in the species reported and compared with celery and
parsley. The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl
hydrate (DPPH) free radical scavenging capacity, and the total phenolics content
(TPC) via the Folin-Ciocalteu procedure. The individual phenolics constituents were
determined via high performance liquid chromatography (HPLC) as aglycones.
Results. The average DPPH and TPC of fool’s watercress were 28.1 mg Trolox g−1 DW
and 22.3 mg of chlorogenic acid equivalents g−1 DW, respectively, much higher than
those of celery and parsley. Significant differences for both DPPH and TPC, which may
be explained by either genotype or environmental factors, were detected among groups
established according to geographical origin. Quercetin was identified as the major
phenolic present in the leaves of the species, unlike parsley and celery, in which high
amounts of apigenin and luteolin were determined. Quercetin represented 61.6% of
the phenolics targeted in fool’s watercress, followed by caffeic acid derivatives as main
hydroxycinnamic acids.
Discussion. The study reports the high antioxidant properties of fool’s watercress
based on a large number of populations. Results suggest that quercetin accounts for an
important share of the antioxidant capacity of this potential new crop. The study also
provides a basis for future breeding programs, suggesting that selection by geographical
locations may result in differences in the antioxidant properties.

Subjects Biochemistry, Food Science and Technology
Keywords Antioxidants, Apium nodiflorum, DPPH, New crops, Total phenolics, Quercetin, Wild
edible plants, Flavonoids

INTRODUCTION
Wild fruits and vegetables are part of the traditional cuisine in many countries of the
Mediterranean region. Besides enriching the cuisine with particular tastes, many of them
have also been used in the past as dietary supplements or sources of bioactive compounds,
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as well as in traditional medicine (Shikov et al., 2017). In the last decades, there has been
an increasing interest in wild vegetables by consumers. Consequently, several works have
evaluated the nutritional value of wild edible species and also assessed their bioactive
health promoting properties (Motamed & Naghibi, 2010; Egea-Gilabert et al., 2013; García-
Herrera et al., 2014).Moreover, domestication of wild species to be grown as new crops is an
opportunity for increasing the offer in foodmarkets. As examples, salad rocket (Eruca sativa
Mill. and Diplotaxis tenuifolia (L.) DC.) and watercress (Rorippa nasturtium-acquaticum
Hayek) have been adapted and developed as common crops (Molina, Pardo-de Santayana
& Tardío, 2016).

Apium nodiflorum (L.) Lag., commonly known as fool’s watercress or water celery, is a
perennial herb from Apiaceae family. Well adapted to damp soils, it can be easily found,
forming clamps, in fresh, shallow water courses such as streams or ditches. The species is
broadly distributed along the temperate areas of central and southern Europe, northern
Africa and western and central Asia (Tardío et al., 2016). It is widely distributed in Spain,
including the Mediterranean coast (Knees, 2003), a region with an ancient agricultural
tradition. However, the alteration in the irrigation system to drip irrigation in agriculture
and the reduction of river flows may negatively affect its natural distribution.

Wild fool’s watercress has been traditionally harvested and consumed in several
Mediterranean countries, such as Spain, Italy, Portugal or Morocco (Tardío et al., 2016).
The edible parts are the young leaves and tender shoots, which are used as a vegetable and
mainly consumed raw in salads, or to a lesser extent boiled or included as a condiment
in soups and other dishes (Parada, Carrió & Vallès, 2011; Guarrera & Savo, 2016). The
species has been reported as appetite enhancer, diuretic, intestinal anti-inflammatory,
antimicrobial and antifungal (Menghini et al., 2010; Maxia et al., 2012; Guarrera & Savo,
2013; Tardío et al., 2016). However, the nutritional and bioactive value of the species
has not been extensively studied. García-Herrera (2014) classified fool’s watercress as a
vegetable with a high content in calcium and sodium, although its consumption should be
moderate for people with kidney damage due to the content in oxalic acid, as revealed by
Morales (2011). The plant may be also considered as a source of vitamin E and B9 (Tardío
et al., 2016). But the greatest interest considering its nutritional capacity is probably due to
the high content in phenolic compounds together with the strong antioxidant activity that
presents (Morales et al., 2012).

Phenolic compounds can be included into different categories attending to their chemical
composition, being flavonoids and phenolic acids the most common classes in plants
(Zhou et al., 2016). They commonly appear as glycosides in plants, conjugated to other
molecules such as sugars, amines, organic acids or other phenolic compounds (Barba,
Esteve & Frígola, 2014). Besides the importance of these metabolites for plants defence
and survival (Cartea et al., 2011), flavonoids and phenolic acids are considered of great
importance for human health due to their antioxidant capacity (Kaushik et al., 2015; Sahidi
& Ambigaipalan, 2015). As antioxidants, they neutralize reactive oxygen species, which in
excess can produce molecular and cellular disorders causing several diseases (Prasad, Gupta
& Tyagi, 2017). However, this capacity is greatly dependent on the chemical structure of
each molecule (Zaluski, Ciesla & Janeczko, 2015).
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Flavonoids and phenolic acids are commonly found in Apiaceae (Sayed-Ahmad et al.,
2017) and daily used spices and aromatic herbs of the family have been studied for these
compounds. For instance, leaves of parsley (Petroselinum crispum (Mill.) Nyman) and
celery (Apium graveolens L. var. dulce) are good sources of apigenin (Pápay et al., 2016;
Zhou et al., 2017), with levels that can reach 630 mg 100 g−1 FW (Justesen & Knuthsen,
2001) and 970 mg 100 g−1 FW (Yao & Ren, 2011), respectively. Polyphenol glycosides
including apigenin, quercetin, chlorogenic acid, caffeic acid or ferulic acid derivatives
have been detected in fennel (Foeniculum vulgare Mill.) (Salami, Rahimmalek & Ehtemam,
2016). And Barros et al. (2012) determined that coriander leaves (Coriandrum sativum L.)
are rich in quercetin derivatives, with a total value of 494 mg 100 g−1 DW, and also present
relevant contents of p-coumaric acid derivatives. However, we have not found references
to the phenolic constituents of the edible organs of fool’s watercress.

We consider that there is a need to evaluate the antioxidant properties and phenolic
composition of fool’s watercress since this edible species has potential as a source of
antioxidants. So far, little information on the diversity for phenolics content and antioxidant
activity in the species is available (Morales et al., 2012). The study of several populations
may offer more accurate information for the antioxidant properties and phenolic content
of the species. Thus, in the present study we evaluated the antioxidant activity of a set of
populations of fool’s watercress. We also determined the main phenolic compounds in
an attempt to correlate them with the antioxidant properties of this species. We included
two related crops with similar uses in the analysis (celery and parsley) in order to compare
data of wild and related cultivated species. The results obtained may be also useful for
considering the domestication of fool’s watercress.

MATERIALS AND METHODS
Plant material and sample preparation
TheHorta Nord of Valencia (Spain), an area withmany irrigation ditches used for centuries
by the farmers, was prospected. The prospection took place in the spring season of 2015
and was focused on the locations where ditches are still in use and a regular water flow
is provided (Fig. 1). A total of twenty-five wild isolated masses of fool’s watercress were
sampled. Samples were grouped by their geographical origin and seven groups were
established according to the following geographical areas: Puerto de Sagunto (FW1),
Puzol-El Puig (FW2), Masamagrell (FW3), Albuixech-Albalat dels Sorells (FW4), Foios-
Meliana town (FW5), Meliana beach-Alboraya-Valencia (FW6) and Pueblo Nuevo-Alfara
del Patriarca (FW7) (Table 1).

The aerial part was air-dried in oven at 37 ◦C, with low humidity conditions, for
three days, in order to prevent water activity (Fig. 1). Dried samples were powdered
with a commercial grinder and used for the determinations, which were carried out in
triplicates. For comparison of results, celery and parsley species were also analysed. Thus,
two commercial samples of celery, and two commercial samples of parsley, each one
coming from different local markets, were acquired and processed in the same way than
samples of fool’s watercress.
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Figure 1 Plant of fool’s watercress. (A) Wild population growing in an irrigation ditch. (B) Sample rep-
resenting the edible part of this plant. Author: C. Guijarro-Real

Full-size DOI: 10.7717/peerj.6296/fig-1

Evaluation of the antioxidant activity and total phenolics content
The antioxidant activity was measured as the 2,2-diphenyl-1-picrylhydrazyl hydrate
(DPPH) free radical scavenging capacity as described by Rufino et al. (2007). Subsamples
of 0.1 g were extracted with 5 mL methanol (50% v/v) plus 5 mL acetone (70% v/v), then
samples of fool’s watercress diluted (1:2). Absorbance was measured at 515 nm after 25 min
of incubation with DPPH (Sigma-Aldrich, Sant Louis, MO, USA) solution (0.025 g/L in
methanol). The antioxidant Trolox (Scharlab S.L., Sentmenat, Barcelona, Spain) was used
as standard and results were expressed as milligrams of Trolox equivalents per gram of dry
weight (mg Trolox g−1 DW).

Total phenolics were extracted from subsamples of 0.125 g with 5 mL acetone (70% v/v)
containing glacial acetic acid (0.5% v/v) and determined according to the Folin-Ciocalteu
procedure (Singleton & Rossi, 1965) as indicated in Plazas et al. (2014). Absorbance was
measured at 750 nm after 95 min of incubation with the diluted Folin-Ciocalteu reagent
(10% v/v) (Scharlab S.L.). Chlorogenic acid (Sigma-Aldrich) was used as standard and
results were expressed as milligrams of chlorogenic acid equivalents per gram of dry weight
(mg CAE g−1 DW).

Phenolics profile
Phenolic compounds were extracted from subsamples of 0.1 g with 1.5 mL methanol
(80% v/v) including 0.1% (w/v) 2,6-di-tert -butyl-4-methylphenol (BHT) (Sigma-Aldrich)
(Plazas et al., 2014). Then, an hydrolysis was performed by adding 1.2 MHCl for two hours
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Table 1 Geographical situation of the wild populations of fool’s watercress harvested in the region of
Valencia (Spain) and identification of the groups established by their origin.

Geographical groupa Populationb Location Coordinates

FW1 Nod-001 Puerto de Sagunto 39◦37′36′′N 0◦16′49′′W
Nod-002 Puerto de Sagunto 39◦37′55′′N 0◦16′11′′W

FW2 Nod-003 Puzol 39◦36′08′′N 0◦18′08′′W
Nod-004 El Puig 39◦35′09′′N 0◦17′45′′W
Nod-005 El Puig 39◦36′00′′N 0◦18′05′′W
Nod-006 El Puig 39◦35′33′′N 0◦19′16′′W

FW3 Nod-007 Masamagrell 39◦34′04′′N 0◦19′42′′W
Nod-008 Masamagrell 39◦33′59′′N 0◦19′48′′W
Nod-009 Masamagrell 39◦33′42′′N 0◦18′25′′W

FW4 Nod-010 Albuixech 39◦33′04′′N 0◦19′39′′W
Nod-011 Albuixech 39◦32′37′′N 0◦19′55′′W
Nod-012 Albuixech 39◦32′29′′N 0◦19′27′′W
Nod-013 Albuixech 39◦32′43′′N 0◦19′07′′W
Nod-014 Albalat dels Sorells 39◦32′04′′N 0◦19′26′′W

FW5 Nod-015 Foios 39◦31′59′′N 0◦20′31′′W
Nod-016 Foios 39◦32′16′′N 0◦20′49′′W
Nod-017 Meliana (town) 39◦31′26′′N 0◦20′52′′W

FW6 Nod-018 Meliana (beach) 39◦31′01′′N 0◦19′36′′W
Nod-019 Alboraya 39◦30′59′′N 0◦19′37′′W
Nod-020 Valencia 39◦28′57′′N 0◦20′11′′W

FW7 Nod-021 Pueblo Nuevo 39◦30′39′′N 0◦22′57′′W
Nod-022 Pueblo Nuevo 39◦30′39′′N 0◦23′10′′W
Nod-023 Pueblo Nuevo 39◦31′19′′N 0◦23′17′′W
Nod-024 Alfara del Patriarca 39◦31′37′′N 0◦22′36′′W
Nod-025 Alfara del Patriarca 39◦32′21′′N 0◦23′06′′W

Notes.
aCodes FW1 to FW7 refer to the seven geographical groups in which the populations of fool’s watercress have been clustered.
bNod-001 to Nod-025 refer to the codes given to the twenty-five populations of fool’s watercress analysed in the study.

at 95 ◦C for fool’s watercress and celery, and 2 M HCl for four hours for parsley (Justesen
& Knuthsen, 2001), to a final methanol solution of 50% (v/v).

Samples were analysed on a HPLC 1220 Infinity LC System (Agilent Technologies,
Santa Clara, CA, USA). A BRISA C18 column (150 mm × 4.6 mm i.d., 3 µm particle size;
Teknokroma, Barcelona, Spain) was used and the injection volume was 10 µl. Mobile phase
consisted of two solvents, (A) 0.1% formic acid in water and (B) methanol with gradient
elution. Hydroxycinnamic acids profile was studied under the following conditions (Yildiz
et al., 2008): starting with 7% (B) the first 8 min, raising up to 30% (B) at 13 min, 66%
(B) at 48 min, 75% (B) at 50 min, 100% (B) at 54 min and maintained for 2 min, then
decreasing to initial conditions of 7% (B) at 60 min and equilibrated for 5 min. Flow rate
was 1 mL min−1 and the absorbance was fixed at 320 nm. The study of flavonoids was
performed as described by Bae et al. (2012) with a flow rate of 0.8 mL min−1 and a fixed
absorbance of 360 nm, using the same solvents as above. The gradient elution started with
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Table 2 Phenolic aglycones commonly cited in the literature for the family Apiaceae. It is indicated the class classification according to the
chemical structure as well as the retention time in the current conditions (Rt, min).

Rta Compound Class References

8.0 Quercetin Flavonol Justesen (2000), Justesen & Knuthsen (2001), Barros et al. (2012), Vallverdú-
Queralt et al., (2014) and Salami, Rahimmalek & Ehtemam (2016)

8.4 Luteolin Flavone Crozier et al. (1997), Justesen (2000), Justesen & Knuthsen (2001), Viña &
Chaves (2007), Yildiz et al., (2008) and Barros et al. (2012)

9.0 Kaempferol Flavonol Justesen, Knuthsen & Leth (1998), Justesen (2000), Justesen & Knuthsen (2001),
Yao et al. (2010), Yao & Ren (2011) and Barros et al., (2012)

9.2 Apigenin Flavone Crozier et al. (1997), Justesen & Knuthsen (2001), Yildiz et al. (2008) Hossain et
al. (2011) and Barros et al. (2012)

16.3 Chlorogenic acid Hydroxycinnamic acid Viña & Chaves (2007), Barros et al., (2012), Vallverdú-Queralt et al. (2014)
and Salami, Rahimmalek & Ehtemam (2016)

17.3 Caffeic acid Hydroxycinnamic acid Yao et al. (2010), Hossain et al. (2011), Yao & Ren (2011), Vallverdú-Queralt et
al. (2014) and Salami, Rahimmalek & Ehtemam (2016)

20.7 p- Coumaric acid Hydroxycinnamic acid Yao et al. (2010), Yao & Ren (2011), Barros et al. (2012), Vallverdú-Queralt et
al. (2014) and Salami, Rahimmalek & Ehtemam (2016)

21.9 Ferulic acid Hydroxycinnamic acid Yao et al. (2010), Yao & Ren (2011), Barros et al. (2012), Vallverdú-Queralt et
al., (2014) and Salami, Rahimmalek & Ehtemam (2016)

Notes.
aRt obtained in the conditions described by Yildiz et al. (2008) (hydroxycinnamic acids) or Bae et al. (2012) (flavones and flavonols).

40% (B) following to 100% (B) at 10 min and maintained for 5 min, then decreasing to
the initial conditions at 20 min and equilibrated for 5 min.

A tentative identification of the compounds was performed by comparison of the
retention time from the peaks with commercial standards (Sigma-Aldrich), and with
published data. Standards from common phenolics described in Apiaceae were selected
and used in this study (Table 2), which their general chemical structures are represented
in Fig. 2. Due to the possible partial hydrolysis of chlorogenic acid to caffeic acid under
the above cited conditions, concentration of both compounds were added and considered
together as caffeic acid derivatives.

Data analysis
The average values of DPPH and total phenolics content (TPC) in each sample were
used to obtain the mean value and the average standard error of the seven geographical
groups of fool’s watercress (FW1-FW7), celery (GRAV, as average of two samples, Grav-01
and Grav-02), and parsley (CRI, as average of two samples, Cri-01 and Cri-02). Data
were analysed using a one-way factorial analysis of variance (ANOVA) considering the
groups as a factor and significant differences between groups were calculated with the
Student-Newman-Keuls test. Ten selected populations of fool’s watercress with low and
high antioxidant activities and overall representing four geographical groups, plus the two
samples of celery and the two of parsley, were analysed for phenolic profile by HPLC, in
triplicates. Finally, Pearson pairwise comparisons were performed in order to evaluate
correlations between DPPH, TPC and the content in phenolics determined as sum of the
individual phenolics targeted.
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Figure 2 Chemical structure of the phenolic compounds evaluated in the samples of fool’s watercress,
celery and parsley. The phenolics targeted included the following hydroxycinnamic acids (A): caffeic acid
(R1
= R2

= OH), chlorogenic acid (R1
= R2

= OH plus the carboxylic group esterified with quinic acid),
p-coumaric acid (R1

= OH, R2
=H) and ferulic acid (R1

= OH, R2
= OCH3); and the flavonoids (B): api-

genin (R1
= OH, R2

= R3
=H), kaempferol (R1

= R3
= OH, R2

=H), luteolin (R1
= R2

= OH, R3
=H)

and quercetin (R1
= R2
=R3
= OH).

Full-size DOI: 10.7717/peerj.6296/fig-2

RESULTS
DPPH radical-scavenging activity and TPC
A highly significant variation (P < 0.001) between fool’s watercress and celery and parsley
was found for the DPPH scavenging capacity (Table 3). The average DPPH capacity of
fool’s watercress was 28.12 mg Trolox g−1 DW. This value was 3.5-fold higher than the
DPPH value for celery (8.09 mg Trolox g−1 DW) and 12.8-fold higher compared to parsley
(2.20 mg Trolox g−1 DW). Values of the seven geographical groups considered in fool’s
watercress ranged from 15.17 to 36.97 mg Trolox g−1 DW (FW2 and FW7, respectively;
P < 0.01), with continuous variation among them (Table 3).

In the case of TPC, differences were less remarkable in absolute values but also highly
significant (P < 0.001) (Table 3). Celery and parsley presented similar average values of
13.32 mg of chlorogenic acid equivalents (CAE) g−1 DW and 14.98 mg CAE g−1 DW,
respectively, while the average content determined for fool’s watercress was 22.35 mg CAE
g−1 DW. However, the variation in this species ranged from 15.90 (FW2) to 26.19 mg
CAE g−1 DW (FW7), which meant that geographical groups with the lowest content were
comparable to celery and parsley. As in the DPPH radical-scavenging activity, a continuous
variation was observed for the total of groups established with significant differences
(P < 0.01).

Phenolic profile of fool’s watercress, celery, and parsley
Ten populations of fool’s watercress from diverse geographical groups (FW2, FW4, FW5
and FW7) and overall representing samples with low and high antioxidant capacity and
TPC were used for analysing the phenolic profile of the species and comparing it with those
of celery and parsley (Fig. S1). The content in phenolics of fool’s watercress, obtained as sum
of individual phenolics, ranged from 1.20 to 7.12 mg g−1 DW (for populations Nod-004
and Nod-021, respectively), with a mean value of 4.19 mg g−1 DW (Table 4). Samples with
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Table 3 Mean values and range for DPPH radical-scavenging activity and TPC for fool’s watercress,
celery, and parsley groups.N is the number of populations included in each group. Statistics includes
the mean squares values (MS) for group and residuals, and the value of the F-test for differences among
groups.

(mg Trolox g−1 DW) (mg CAE g−1 DW)

Groupa N DPPHb Range TPCb Range

FW1 2 28.19 cd (22.84–33.55) 24.16 c (23.12–25.21)
FW2 4 15.17 bc (10.34–18.20) 15.90 ab (13.26–18.91)
FW3 3 28.61 cd (19.95–36.20) 23.73 c (21.31–26.97)
FW4 5 28.29 cd (19.86–38.22) 22.73 c (18.58–27.56)
FW5 3 25.67 cd (21.14–29.59) 19.82 bc (18.55–21.82)
FW6 3 32.23 d (30.74–33.82) 23.89 c (23.17–24.39)
FW7 5 36.97 d (27.96–43.51) 26.19 c (21.19–28.91)

GRAV 2 8.09 ab (7.47–8.71) 13.32 a (12.71–13.93)

CRI 2 2.20 a (1.87–2.52) 14.98 ab (12.58–17.38)

MS group 373.28 64.28
MS residual 36.98 7.02
Prob F- test <0.0001 <0.0001

Notes.
aGroups FW1 to FW7 refer to the seven geographical groups in which the populations of fool’s watercress have been clustered
(see Table 1). GRAV refers to the celery group, including Grav-01 and Grav-02 samples. CRI refers to the parsley group, in-
cluding Cri-01 and Cri-02 samples.

bDifferent letters indicate significant differences according to the Student-Newman-Keuls test (confidence level 95.0%).

the highest values corresponded to the geographical group FW7 (mean value 6.71 mg g−1

DW) while those with low content belonged to the geographical groups FW2 and FW5
(mean values 1.92 and 2.76 mg g−1 DW, respectively). Populations from geographical
group FW4 showed intermediate content (mean value 4.15 mg g−1 DW). On the other
hand, the mean values for celery and parsley were 7.63 and 4.76 mg g−1 DW, respectively.

In addition, the relative content of each compound against the sum of the phenolics
targeted was determined (%, indicating mg of each compound mg−1 of total compounds)
(Fig. 3). In general, flavonoid compounds comprised the most representative group
considering the total identified, with an average relative abundance of 76.4%, 92.7% and
97.0% for fool’s watercress, celery and parsley, respectively. Nevertheless, the profile
of individual phenolics varied considerably between species, both qualitatively and
quantitatively. Quercetin was the major flavonoid in fool’s watercress (61.6%), while
this flavonoid represented less than 0.3% in celery and parsley. On the contrary, apigenin
was found as the major phenolic in parsley (90.7%) but it only represented 0.8% in fool’s
watercress. This flavonoid ranked second in concentration in celery (35.8%), after luteolin
(56.3%). Compared to celery, luteolin abundance was 6.6-fold lower in fool’s watercress
and 11-fold lower in parsley. Finally, kaempferol was present in fool’s watercress in a
relative abundance of 4.3% in contrast with parsley, in which represented only 0.9%. This
compound was not detected in celery.
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Table 4 Mean values for the content of individual phenolics targeted, DPPH radical-scavenging activity and TPC in individual samples of
fool’s watercress, celery, and parsley. The content of each phenolic targeted is expressed as µg g−1 DW, the sum of the individual phenolics
targeted (6 i.p.) as mg g−1 DW, the DPPH as mg Trolox g−1 DW and the TPC as mg CAE g−1 DW. Statistics includes the mean squares values (MS)
for species and residuals, and the value of the F-test for differences among species.

CF der CMA FRA AP KM LT QR 6 i.p. DPPH TPC

Nod-003a 640.9 139.9 55.8 12.2 91.2 214.8 1478.0 2.6 17.6 15.1
Nod-004 203.4 43.9 12.3 15.1 67.7 105.8 751.1 1.2 10.3 13.3
Nod-011 445.6 89.7 28.7 19.9 172.5 215.2 2232.7 3.2 21.2 18.6
Nod-013 935.5 238.8 43.3 33.7 207.8 400.3 2567.7 4.4 38.2 27.6
Nod-014 1100.7 213.1 96.3 43.2 146.4 490.3 2729.0 4.8 37.9 24.8
Nod-016 449.7 107.7 32.0 21.7 132.1 184.9 1920.0 2.8 21.1 18.5
Nod-017 703.7 146.9 42.6 22.2 112.4 226.6 1407.6 2.7 26.3 19.1
Nod-021 1178.7 260.8 56.7 54.9 235.7 652.0 4684.2 7.1 39.2 28.2
Nod-022 1041.6 228.9 48.6 36.1 295.7 448.7 4004.1 6.1 39.6 26.5
Nod-024 1299.5 250.5 65.3 59.0 231.4 747.1 4252.3 6.9 43.5 28.9
Mean 799.9 172.0 48.1 31.8 169.3 368.6 2602.6 4.2 29.5 22.0
Cri-01 – 138.7 – 3828.1 54.1 179.8 23.0 4.2 1.9 12.6
Cri-02 – 149.0 – 4815.7 27.3 319.6 – 5.3 2.5 17.4
Mean – 143.8 – 4321.9 40.7 249.7 11.5 4.8 2.2 15.0
Grav-01 511.0 287.8 33.9 2742.5 – 3593.3 32.6 7.2 7.5 12.7
Grav-02 148.9 128.0 36.2 2695.3 – 5058.0 – 8.1 8.7 13.9
Mean 329.9 207.9 35.0 2718.9 – 4325.6 16.3 7.6 8.1 13.3
MS
species 1.3·106 2.1·103 2.9·102 1.9·107 2.8·104 1.3·107 9.6·106 9.9 8.6·102 90.6
residual 1.3·103 5.9·103 4.7·102 4.5·104 4.8·103 1.4·105 1.4·106 3.4 1.1·102 28.5
P. F- test 0.022 0.712 0.454 <0.001 0.037 <0.001 0.013 0.098 0.007 0.082

Notes.
aSamples Nod-003 to Nod-024 refer to the ten samples of species fool’s watercress evaluated. Samples Cri-01 and Cri-02 refer to the two samples of parsley evaluated. Samples
Grav-01 and Grav-02 refer to the two samples of celery evaluated.
CF der, caffeic acid derivatives; CMA, p-coumaric acid; FRA, ferulic acid; AP, apigenin; KM, kaempferol; LT, luteolin; QR, quercetin.

Differences in the composition of phenolic acids were also determined. The only
hydroxycinnamic acid detected in leaves of parsley was p-coumaric and represented 3.0% of
the total phenolics. On the contrary, the four hydroxycinnamic acids targeted were detected
in fool’s watercress and celery. The relative concentration of these compounds in leaves of
celery ranged from 0.5% for ferulic acid to 4.5% for caffeic acid derivatives. Ferulic acid was
also the minor phenolic acid detected in fool’s watercress (1.2%), followed by p-coumaric
acid (4.2%). Caffeic acid derivatives were determined as the main hydroxycinnamic acids
of fool’s watercress (19.4%).

Correlation between antioxidant parameters
The Pearson linear correlation coefficient (r) between the DPPH radical-scavenging activity
and TPC in fool’s watercress populations was r = 0.903 (P < 0.001). For those samples
of fool’s watercress that were analysed by HPLC, correlation coefficient values between
DPPH, TPC and the content in targeted phenolics were also studied. The content in targeted
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Figure 3 Relative abundance and standard error (µg compoundµg−1 total) of individual phenolics
identified. (A) Phenolics identified in the samples of fool’s watercress. (B) Phenolics identified in the
samples of celery. (C) Phenolics identified in the samples of parsley. The abbreviations correspond to: caf-
feic acid derivatives (CF der), p- coumaric acid (CMA), ferulic acid (FRA), apigenin (AP), kaempferol
(KM), luteolin (LT) and quercetin (QR).

Full-size DOI: 10.7717/peerj.6296/fig-3

phenolics as sum of the individual compounds presented high correlation coefficients
with both the DPPH scavenging activity and TPC (r = 0.924 and r = 0.933, respectively;
P < 0.001).

DISCUSSION
The present study highlights the antioxidant capacity of fool’s watercress in terms of
DPPH scavenging activity and TPC. These results are in agreement with published data.
For example, Morales et al. (2012) analysed four wild leafy vegetables (A. nodiflorum,
F. vulgare, Montia fontana L. and Silene vulgaris (Moench) Garcke.) and obtained the
highest values for DPPH and TPC in fool’s watercress. In addition, fool’s watercress also
has high antioxidant activity compared to other common aromatic herbs and spices from
the same family. Hossain et al. (2011) evaluated those parameters for fennel, celery, cumin
and parsley. Values of DPPH-radical scavenging activity in these spices were 1.7 to 9.7-fold
lower than the antioxidant capacity of fool’s watercress. On the contrary, the TPC calculated
there for the four spices were quite similar to the range determined in fool’s watercress.
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Comparison among different geographical groups of fool’s watercress revealedmoderate
differences for the TPC and the DPPH radical scavenging activity. The production and
accumulation of these secondary metabolites can be affected by the environmental
conditions and stress situations as well as by genetic diversity (Kaulmann et al., 2014;
Galieni et al., 2015). Thus, differences between geographical groups may result from
genotypic differences or by divergence of particular environmental conditions. The
evaluation of genetic and environmental effects needs to be studied in future selection
programmes aimed at the development of fool’s watercress as a new crop with high
antioxidant properties as added value.

Our results also reveal differences in the phenolic profile of the three species. Fool’s
watercress displayed low amounts of apigenin and luteolin in contrast to parsley and celery,
vegetables described as sources of these compounds (Zhou et al., 2016). On the contrary,
quercetin was detected as the main flavonoid of fool’s watercress. Quercetin has been also
detected within the Apiaceae in fresh herbs such as coriander, dill or fennel (Barros et
al., 2012; Salami, Rahimmalek & Ehtemam, 2016; El-Zaeddi et al., 2017). Regarding to the
hydroxycinnamic acids studied (caffeic acid, chlorogenic acid, p-coumaric acid and ferulic
acid), the four of them have been previously detected in fennel (Salami, Rahimmalek &
Ehtemam, 2016); these authors found that chlorogenic acid was the main phenolic acid.
Chlorogenic acid is rapidly hydrolysed to caffeic acid in alkaline conditions (Mattila &
Kumpulainen, 2002), while it is considered more stable at low pH. However, we noted a
partial hydrolysis of chlorogenic acid to caffeic acid under the current conditions. Due to
this reason, we considered both hydroxycinnamic acids, that is, chlorogenic and caffeic
acids, together as caffeic acid derivatives, and the individual values were not given.

In agreement with our results, positive, strong correlation between DPPH and TPC
has been previously established in other vegetables, including common spices and wild
species (Morales et al., 2014; Skotti et al., 2014; Tang et al., 2015). However, in other cases
this correlation was not so clear (Albano & Miguel, 2011). Discrepancies may be explained
in part by the composition of the evaluated matrix, as well as the possible interferences of
different compounds others than phenolics with the reagents, as they could be tocopherols,
aminoacids or, commonly to many fruits, ascorbic acid (Craft et al., 2012). However, the
ascorbic acid is an unstable metabolite highly sensitive that can be easily degraded with
the consequence of losing the antioxidant capacity. Conditions such as exposure to oxygen
(e.g., during the extraction step and storage of extracts), humidity, or temperature of drying
and store can affect the stability of ascorbic acid (e.g., Kaya, Aydin & Kolayli, 2010; Van
Bree et al., 2012).Moreover, this molecule is commonly stabilized withmeta-phosphoric, in
order to preserve it from degradation during storage of the extract (Chebrolu et al., 2012).
On the contrary, phenolic compounds are stable molecules, not affected by the drying
process (Bianchi & Lo Scalzo, 2018). Our results suggest that the antioxidant capacity of the
dried leaves in this species is mainly due to the phenolic compounds, according to the high
correlation established between the two parameters. In the same way, the high correlation
between the sum of the individual phenolics of fool’s watercress detected byHPLC and both
the DPPH radical-scavenging activity and TPC indicated that the compounds identified
account for the antioxidant activity of the species.
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Although celery presented the highest values of phenolics measured by HPLC and
contents determined in parsley were also remarkable, the antioxidant capacity measured in
these species was lower than the obtained in fool’s watercress, especially in the case of DPPH
radical-scavenging activity. A possible reason may be found in the chemical structure of
the major compounds detected in the different species, as well as the synergistic effects
of different phenolic compounds present in specific species. The number and position of
hydroxyl groups affect the antioxidant capacity of polyphenols (Cartea et al., 2011; Zaluski,
Ciesla & Janeczko, 2015). The antioxidant capacity of these compounds would decrease
in the following order: quercetin >luteolin >apigenin (Yildiz et al., 2008), which could
explain the relatively poor DPPH activity of parsley in comparison with the two other
species. In celery, both apigenin and luteolin would account for an important share of
the antioxidant capacity. Finally, the highly remarkable DPPH radical-scavenging activity
of fool’s watercress would be correlated to the content in quercetin, which is in addition
a molecule that has been related with a protective and inhibition action against several
cancers, in cellular models but also in vivo in mammals (Sharmila et al., 2014).

CONCLUSIONS
Our results reveal that fool’s watercress is a leafy vegetable with high antioxidant activity,
especially in comparison to the related cultivated parsley and celery. The high correlation
between DPPH radical scavenging activity and TPC suggested that the antioxidant activity
of this species ismainly caused by the phenolic compounds accumulated in the leaves.When
the phenolic profile was analysed, we observed that, unlike celery and parsley, quercetin
was the main compound present in the species. This finding may explain the greatest
antioxidant activity of fool’s watercress, resulting from the higher antioxidant capacity of
this flavonoid compared to apigenin and luteolin, the main compounds detected in parsley
and celery, respectively (Rice-Evans, Miller & Paganga, 1996). In addition, results revealed
differences among the geographical groups established for the total of populations of fool’s
watercress, indicating that selection among geographical origins may result in differences in
bioactive properties. Although these differences may be caused by either genetic variation
or environmental conditions, our results offer a starting point for future domestication
and breeding programs.
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