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Abstract
We investigate the heat transport and the control of heat current among two spatially separated
trapped Bose–EinsteinCondensates (BECs), each of them at a different temperature. To allow for heat
transport among the two independent BECswe consider a linkmade of two harmonically trapped
impurities, each of them interacting with one of the BECs. Since the impurities are spatially separated,
we consider long-range interactions between them, namely a dipole–dipole coupling.We study this
systemunder theoretically suitable and experimentally feasible assumptions/parameters. The
dynamics of these impurities is treatedwithin the framework of the quantumBrownianmotionmodel,
where the excitationmodes of the BECs play the role of the heat bath.We address the dependence of
heat current and current–current correlations on the physical parameters of the system. Interestingly,
we show that heat rectification, i.e. the unidirectional flowof heat, can occur in our system,when a
periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a
possible setup for the implementation of a phononic circuit.Motivated by recent developments on the
usage of BECs as platforms for quantum information processing, ourwork offers an alternative
possibility to use this versatile setting for information transfer and processing, within the context of
phononics, andmore generally in quantum thermodynamics.

1. Introduction

Control of heat transport has enormous potential applications, beyond the traditional ones in thermal
insulation and efficient heat dissipation. It has been suggested as a resource for information processing, giving
rise to striking technological developments. A series of smart heat current control devices, such as thermal
diodes [1–4], thermal transistors [5], thermal pumps [6–8], thermal logic gates [9] or thermalmemories [10],
have been proposed in the past decade. A key underlying idea in some of these devices is that heat transport
associated to phonons can realistically be used to carry and process information. The science and engineering of
heatmanipulation and information processing using phonons is a brand new subject, termed phononics
[11–13]. In the emerging field of quantum thermodynamics, the issues of heat transfer and heat rectification are
basic ingredients for the understanding and designing heat engines or refrigerators at nanoscales. Besides the
technological interests, highly controlled platforms for heat transport can potentially enable the study of
fundamental theoretical questions, whichwill shed light on the study of thermodynamics of nonequilibrium
systems [14]. In particular, heat conduction in low-dimensional systems has attracted a growing interest because
of itsmultifaceted fundamental importance in statistical physics, condensedmatter physics,material science, etc
[15–18].

In past years, advanced experimental techniques have allowed for theminiaturization of heat transport
platforms down to themesoscopic/microscopic scale. Experimentally, a nanoscale solid state thermal rectifier
using deposited carbon nanotubes has been realized recently [19], and a heat transistor—heat current of
electrons controlled by a voltage gate—has also been reported [20]. Furthermore, it has been shown that thermal
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rectification can appear in a two-level system asymmetrically coupled to phonon baths [21, 22]. In general,
variousmodels for thermal rectifiers/diodes that allow heat toflow easily in one direction have been proposed
[1–4, 21, 23–25]. Among such platforms, interesting examples are those based on ultracold atomic systems, both
at the theoretical level [26–29] aswell as at the experimental one [30]. In theseworks, the paradigmof themodel
used is that of tailored time dependent protocols performing a heat cycle (often anOtto cycle). A cycle here
consist of a series of steps performed infinite timewhere thermodynamic parameters are controlled such that
heat is transferred fromone bath into another. Frequently, the energy that one needs to spend in implementing
the aforementioned protocols is too large for the amount of heat transferred. In addition, in such a heat cycle, the
Hamiltonianmust bemodified as adiabatically as possible to avoid unwanted excitations.We remark that for the
goals of the present work considering adiabatic changes in theHamiltonianwill require long timescales, and
therefore it can have drawbacks, such as exceeding the life time of the Bose–Einstein condensates (BECs). Even
though attempts have beenmade to overcome this problem [29, 31, 32], our proposal circumvents it altogether
by considering a rather different paradigm. Instead of cycles, we consider autonomous heat platforms, where the
workingmedium is permanently coupled to different baths and under the influence of external time-dependent
driving.

The primary aimof the present work is to design amethod to transfer heat between twoBECs—with a
comprehensive analytical description. The BECs are confined in independent one-dimensional parabolic traps,
and kept at a certain distance such that the twoBECs do not spatially overlap.Our second aim is to create
thermal devices in our platform, specifically a heat rectifier. In our platform, theworkingmedium is constructed
with two impurities, each of them immersed in one of these BECs. The two impurities interact through long-
range dipolar interactions (see figure 1 for an schematic of the system considered). Heat transfer through dipolar
interactions has been also proposed recently in two parallel layers of dipolar ultracold Fermi gases [33].Wefirst
show that theHamiltonian of the impurities in their corresponding harmonically trapped BECs can be cast as
that of two bilinearly coupledQuantumBrownian particles interacting bilinearly with the Bogoliubov
excitations of each BEC—which play the role of heat baths for the corresponding impurities.We analytically
derive the spectral density (SD) of the system and construct the quantumLangevin equations describing the out-
of-equilibriumdynamics of the coupled impurities [34].We emphasize that, following this procedure we avoid
approximations involved in an alternative conventional approach based on Lindbladmaster equations, such as
the Born–Markov approximation and the rotatingwave approximation.We solve the quantumLangevin
equations andfind the covariancematrix of the impurities.We henceforth focus on our twomain aims. Firstly,
wefind exactly the steady state heat current between the BECs, and study how it can bemanipulated by
controlling relevant parameters, such as the trapping frequencies, dissipation strengths, and the physical
distance of the BECs. Secondly, we introduce a periodic driving on the trapping frequency of one impurity and
show that our setup can be used as a thermal rectifier. The setup that we present here can be used for
implementing other thermal devices aswell.

The paper is structured as follows: in section 2, we introduce theHamiltonian of our system, present the
main assumptions involved, and rewrite theHamiltonian in a form analogous to that of two coupled Brownian
particles. In section 3we derive theGeneralized Langevin equations ofmotion for the two impurities and study
their solution in both static and periodically driven scenarios. In section 4we present the relevant quantities of
interest and in section 5we present ourmain results, both for heat transfer and rectification. Finally we
summarize the results and conclude in section 6.

Figure 1. Schematic of the system. The red and blue shaded profiles (and circles) represent the hot and cold Bose–Einstein
condensates, respectively kept atTL andTR. The green profiles (and circles) represent the two impurities trapped in their
corresponding parabolic potentials, plotted as blue lines—we omit the representation of the trap for the BECs. The spring-like blue
line represents the long-range dipolar interaction among the impurities.
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2. Themodel

Weconsider a system composed of two interacting impurities of the samemassm. Each one of these impurities
is embedded in a different BEC, whichwe label as L or R because they are trapped in parabolic potentials of
frequencies WB,L and WB,R, respectively, but one trapping potential is centered around aminima located indL
and the other around dR, with certain distance among them. EachBEChas, respectively,NL andNR interacting
atoms of the same species withmassmB. The two impurities are also trapped in a parabolic potential of
frequenciesΩL andΩR located around the sameminima as their corresponding BEC.We allow for the scenario
of these impurities being driven by an external periodic force. The twoBECs do not overlap among themselves
(wewill specify later the condition over the distance between theminima of the trapping potential).With this,
theHamiltonian describing this setting is

å å= + + + +
Î Î

( ) ( ) ( )
{ } { }

H H H H H H t , 1
j

j j
j

jTot S
L,R
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where x and xB are the three-dimensional position operators of the impurity and the bosons respectively.We
assume contact interactions among the bosons and between the impurity and the bosons, with strength given by
the coupling constants ( )g j

B
and ( )g j

IB
respectively. Here,Hint. denotes the interactionHamiltonian between the

two impurities, whichwewill specify later. For the rest of the paperwe assume that the trapping frequencies in
two directions aremuch larger than in the third one. Therefore, the dynamics in those directions is effectively
frozen andwe can study the system in one dimension. Fromhere onwe assume that theminima of the potential
are located at dL=−d/2 and dR=d/2.We comment here that from the formof theHamiltonian, one can see
that since there is no direct interaction between the twoBECs, any relative phase between them should not play
any role in the dynamics of the system. It would be interesting to study the effects of allowing such an interaction,
e.g. by introducing a coherent coupling between the twoBECs or by studying heat transport in the experimental
setting of homogeneous BEC in ([30]), but this goes beyond the scope of ourwork.

Wenext recast our initialHamiltonian (1), in such away as to describe themotion of two interacting
QuantumBrownian particles in two separate BECs. The procedure, which is the same as that presented [35] for
the case of a single impurity embedded in a harmonically trapped BEC, can be summarized as follows: (i)we
make the BEC assumption, i.e. that the condensate density greatly exceeds that of the above-condensate
particles, which results to only quadratic terms in theHamiltonian; (ii)we perform the Bogoliubov
transformation appropriate for the case of a harmonically trapped BEC; (iii)we solve the relevant Bogoliubov-
de-Gennes equations, in the limit of a one-dimensional BEC that yields a Thomas–Fermi parabolic density
profile, as in [36]; (iv)we finally assume that the oscillations xj of each one of the impurities aremuch smaller
than the corresponding Thomas–Fermi radiusRj,

 ( )x R , 6j j

which physically implies that we study the dynamics of the impurities in themiddle of their corresponding bath
traps, which allows us to obtain a bilinear interaction of the position of the impurities and the positions of their
corresponding baths.

These steps bring theHamiltonian in the form

å å= + +~ ~

Î Î

( ) ( )
{ } { }

H H t H H , 7
j

j
j

jTot S
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q
j

j q j qB, , ,
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The chemical potentialμj of the jth bath is
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At this point, it is important to note thatHamiltonian (7), which is indeed in the formof aHamiltonian
describing two coupled quantumBrownian particles, was derived from the physical initial Hamiltonian.
Therefore, thisHamiltonian lacks the renormalization term that guarantees that no ‘runaway’ solutions appear
in the system,which is often included in conventional open quantum system approaches [37].We are not going
to introduce such a term in order to guarantee the positivity of theHamiltonian and cast the system in the form
of aminimal coupling theorywith ( )U 1 gauge symmetry. Instead, we are going to determine in the next section a
condition on the allowed parameters of the system thatwill guarantee this.

We assume dipole–dipole interactions among the two impurities. From [38]we know that the formof
dipole–dipole interaction is the following:

= ( )H A
r

1
, 14int. 3

where = q
p

-( ( ) )A C 1 3 cos

4
dd

2

, with

m m= ( )C , 15dd
2

0

and m p= -4 10 J

A m0
7

2 being the vacuumpermeability, whileμ is themagneticmoment of the dipole. The angle θ
is that formed between the axis of the two dipoles and it can determined in experiments. Furthermore, in (14),
= + - +∣( ) ( )∣r d x d xR R L L is the distance between the two oscillators, with dL and dR being the centers of the

trapping potentials of the two oscillators.We then rewrite (14) as

= +
--

-( ) ( )H Ad
x x

d
1 , 16int.

3 L R
3

andwe assume that the distance between the two oscillators centers d ismuch larger than the fluctuations xL, xR
and hence thefluctuations difference xL− xR, i.e. x x d,L R . Importantly, let us emphasize that this is not an
additional assumption, because we assumed right from the beginning that the two baths should not overlap.
This indeedmeans that the sumof the Thomas–Fermi radius have to be smaller than the distance between the
impurities,RL+RR<d.With the additional assumptionwemade before, namely that the impurities
oscillations aremuch smaller than their corresponding Thomas–Fermi radius, equation (6), then one concludes
that x x d,L R . One could also tackle the problemof interacting baths, bymaking use of thework in [12]where
one needs to consider the surfaceGreen functions, and in this case then the assumption x x d,L R should be
made explicitly.

Finally, after expanding the binomial series, equation (16) is rewritten as

= -
-

+
--

⎛
⎝⎜

⎞
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( ) ( ) ( )H Ad
x x

d

x x

d
1 3 6 . 17int.

3 L R L R
2

2

One can show that the first two terms in the parenthesis will not contribute to the dynamics of the impurities,
since they are linear in the displacement operators xL, xR and hence theywill appear only as constants in the
equations ofmotion thatwewill study later on,whichwill be obtained from theHeisenberg equations ofmotion.
The third term then is expanded as

= - +- ( ) ( )H Ad x x x x6 2 , 18int.
5

L
2

L R R
2

andwe absorb the termswith xL
2 and xR

2 in the non-interacting part of theHamiltonian by redefining the
frequencies as
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Fromhere onwe omit the tilde in the frequencies to avoid unnecessary complications in the nomenclature.
Thereforewe can rewrite the interaction as

k=~ ( )H x x , 21int. 1 2

whichmodels a spring-like interaction among the two impurities with

k
q

p
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-( ( ) ) ( )C

d

12 1 3 cos

4
. 22dd

2

5

The angle θ can be experimentally controlled aswas recently shown in [39]. This is possible thanks to a rotating
magnetic fieldBrot in the x–y plane that causes the dipoles to rotate at an angle θwith respect to a staticmagnetic
fieldBz along the z axis. The rotation angle is related to themagnitude of the two components by

q = B Btan zrot . In practice, to achieve this in the experiment, the angle θ is controlled by using a calibration
procedure that corrects for the effect of eddy currents. This allowed the authors to determine the amplitude of
the ac current required to produce a given rotation angle θ. For this reason, to simplify our system,we considered
the scenariowhere the angle isfixed.However, it is important to note here that the results that we present in this
paper are valid even if the angle between the dipoles cannot be experimentally controlled, but rather an average
over the angle is considered. The constants in the interactingHamiltonian aswell as the power dependence on
the relative distancewill be different, but in the limit we consider, i.e. when x x d,L R , qualitatively the results
will be the same, with the difference being that the distance at which the oscillators should be kept will change
[40]. This can be understood by considering thework byKeesom in [41], where the angle-averaged interaction
between two dipoles was evaluated. In this case, the initial expression for the distance dependent potential would
depend on r−6, but effectively the same procedure could be followed, that would just result in amodified
expression for the spring constant k.We also note that, inmost ultracold dipolar gases, the dipolar interaction is
present together with the short range interactions arising from low angularmomentum scattering [38, 42].
Usually the latter is dominant and a Feshbach resonance is needed to probe the regimeswhere dipolar effects are
prominent. However in the setting that wewill consider in this work, as wemaintain the twoBECbaths spatially
separated, the effect of the short range interactions is negligible, such that dipole interaction is themain process
throughwhich current is transferred.

Finally, there are a number of ways to drive our system, either by driving degrees of freedomof the central
system, or degrees of freedomof the environment, or their coupling. In this workwe focus on the first case.
There are basically two types of driving that one could consider andwouldmaintain the quadratic formof the
Hamiltonian such that an analytic solution to the resulting equations ofmotion can be obtained. First we could
consider applying a periodically driven ramppotential on the central particles degrees of freedomonly, of the
form = Q -( ) ( ) ( ) ( )H t t t t tf XT

Drive 0 where =( ) ( ( ) ( ))t x t x tX ,1 1 and ( )tf is some periodic function, e.g.
= +w-( )tf f e c.c.t

0
i d with t0 the time at which the driving begins,Ωd the driving frequency and f0 a complex

valued constant column vector, = ( )f ff ,0 0,L 0,R . This type of drivingwas considered in [43], and can represent
the force exerted on the systemby a time dependent electromagnetic field. For this kind of driving however, it
was shown in [7] that with the setupwe assume above, neither a heat engine nor a heat pump can be constructed.
Furthermore, our goal is to construct a phononic diodewith our setupwhichmeans that the driving should be
able to induce a unidirectional flowof heat current, and this is not the case for this type of driving. Therefore, in
ourworkwe consider the only other possible type of driving on our system thatmaintains ourHamiltonian in a
quadratic form, i.e.

= Q -( ) ( ) · ( ) ( )H t t t tX V X
1

2
, 23T

Drive 0

where the driving is either on the trapping frequency of the central oscillators or on their in-between coupling. It
was recently shown in [44] that in such escenario one can observe the appearance of phenomenon of heat
rectification, and also there is the potential to construct a heat engine as it was shown in [45], by introducing a
coherently driven coupling between the two oscillators.We also assume the driving to be periodic,

t+ =( ) ( )t tV V with τ being the time period, such that it can be Fourier expanded as

å= W( ) ( )tV V e , 24
k

k
k ti d

whereΩd=1/τ being the driving frequency. This type of coupling could also be implemented by a laser.
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3.QuantumLangevin equations

Let us nowderive the equations ofmotion for the two impurities. First wewrite theHeisenberg equations of
motion for the bath


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where Î { }j q, L, R and ¹j q.Wefirst solve the bath particles equations ofmotion
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andwe replace these in the impurities equations ofmotion (26)–(27), to obtain
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where ( )B tj plays the role of the stochastic force and reads as

å= +w w-( ) ( ) ( )†B t g b be e . 32j
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,
i ik k

Here l ( )tj is called the susceptibility or noise kernel. In this setting it can also be identified as the self-energy
contributions coming from the bath, and it reads as

 òål w w w w= =
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åw d w w= -( ) ( ) ( )J g , 34j
k

k j k,
2

being the SD. Equation (31) has the formof a generalized Langevin equationwhich describes the evolution of a
systemwithmemory and under the influence of a stochastic force. These terms, ( )B tj and g ( )tj , contain all the
relevant information about the baths. Furthermore, let us assume the Feynman–Vermon initial state
assumption, i.e. that the initial conditions of the impurities and the bath oscillators are uncorrelated

r r r= Ä( ) ( ) ( )0 0 , 35S B

where r ( )0 is the total density state, r ( )0S is the initial density state of the system and ρB is the density state of the
bathwhich is assumed to be thermal and hence is aGibbs state. Then, it can be shown that the Fourier transform
of ( )B tj obeys thefluctuation dissipation relation


w w d l w

w
d w wá ¢ ñ = - ¢

⎛
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⎞
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2
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B

where l w( )j is the Fourier transformof l ( )tj and obeys [46]

l w w w w= - Q - Q -[ ( )] ( ( ) ( )) ( ) ( )JIm . 37j j

Hence one concludes that, upon determination of the SD w( )Jj , one determines the influence of the baths on the
impurities. In [35], it was shown that in the continuous frequency limit, the SD takes the following form
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Note that the ultraviolent cutoff, that is usually introduced to regularize the spectrum in the conventional QBM
model, is now given in terms of a physical quantity, the trapping frequency of the potential well of the jth bath.
Here

t

L
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j
3 plays the role of a relaxation time.Heat transport with a superohmic SDwas considered for example in

the energy transport in the phenomenon of photosynthesis [47]. Note that equation (31) can be rewritten in
terms of the damping kernel g ( )tj which is related to the susceptibility by l g= - ¶

¶
( ) ( )t t

m j t j
1 [48], as

òg k g+ W - + +
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with W = W + å w˜ V ej j k k jj
k t2 2

,
i d and k k= + å w˜ V eq k k jq

k t
,

i d , where the Leibniz rule was used as in [49].
Moreover, in [35], it was also shown that the formof the damping kernel for such a SD reads as
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In the limit t 0 this damping kernel becomes
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In vector form the two coupled equations in (31) read as
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Static case. From the systemof coupled equations (31), one can now identify the condition that guarantees
the positivity of theHamiltonian in the static case, where =( )H t 0Drive . To this end one first diagonalizes the
Hamiltonian, and then requires that the normalmode frequencies are positive.We diagonalize theHamiltonian
bymaking the transformationQ=O·X, that brings (43) into

ò+ +
¶
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I, 44D
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where =( ) · ( ) ·t tD O D OD
T , =( ) · ( )t tB O BD

T T , and the frequencymatrix is diagonalized as
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W

W
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0
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The positivity of theHamiltonian condition is then guaranteed by requiring that W W >{ }, 0D D
L R which in terms

of the original frequencies reads as

g g g g

g g k g g

+ - W - W + + - W - W

- - - W - W + W W <

[ ( ) ( ) [( ( ) ( ) )
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2
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4 0 0 0 0 0. 46

L R L
2

R
2

L R L
2

R
2 2

L R
2

L R
2

R L
2

R
2

L
2 1 2

This condition guarantees that we do not have negative renormalized normal frequencies in the system and
hence stability of the solution is guaranteed in the long-time limit.With this satisfied, we are in a position to
safely neglect the effects of g ( )0L and g ( )0R in the dynamics of the system.
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Upon rewriting the coupled equations ofmotion for the static case in a vector form as above, and
considering it expressed in terms of the susceptibilities l l( ) ( )t t,L R , one can obtain its solution by taking the
Fourier transformof both sides

w w
w

=( ) ( ) ( ) ( )
m

X G
B

, 47

where

w w w= - + - -( ) ( ( )) ( )G I K L , 482 1

which is understood to play the role of a phononGreen function, and w( )L is the Fourier transformof
l

l
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t

t
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R
, with diagonal elements
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p
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Re iIm
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i , 49
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j j j

j

4 2 2 4

2

j
2

2

where the real part of the susceptibility was obtained through theKramers–Kronig relation l w¢ =[ ( )]Re j

 òl w w w¢ =
p

l w

w w-¥

¥

- ¢
[ [ ( )]]( ) [ ( )]

PIm dj
1 Im j . Here w¢[·]( ) denotes theHilbert transform and P the principal

value. In general, for the parameters we consider in our results, it will always hold that l wW  [ ( )]Rej j
2 such

thatwe safely neglect the effect of l w[ ( )]Re L and l w[ ( )]Re R .
In terms of this solution of the static equations ofmotion, the positivity condition (46), can be interpreted in

a different way: it guarantees that the phonon propagator, i.e. theGreen function w( )G , has no poles in the lower
half plane of the complex plane. This implies that there are no divergencies in the integrals that will be performed
later on andwill involve theseGreen functions [50].

Driven case.Nowwe consider the case where a driving is applied on the central system. In particular we
assume that the driving is either on the oscillators’ frequencies or on their inbetween coupling, as in [44]. The
analytic treatment of this case is slightlymore involved than the static one.We are nowdealingwith a periodic
differential equation, and the analysis of the stability of the long-time steady state solution of the equations of
motion is not straightforward. To be able to perform the stability analysis, what one usually does is to convert the
periodic differential equation to a linear one by resorting to Floquet theory. This is done by converting first all
the terms in the equation ofmotion into periodic ones, and then study the stability of the Floquet–Fourier
components of the resultingGreen function. The basic assumption that enables us to employ the Floquet
formalism is that even though some function ( )f t might not be periodic, another function defined based on this

one as
òw = ¢ - ¢ w - ¢( ) ( ) ( )t t f t tW , d e t ti will indeed be periodic. Furthermore, such periodic function can

always be expressed in terms of its Fourier components as w w= å W( ) ( )tW B, ek k
k ti d . By performing these two

transformations on the equations ofmotion, i.e.
ò ¢ w - ¢( )td e t ti and Fourier expanding, one obtains a set of

equations for the Fourier coefficients w( )Ak of
òw w= ¢ - ¢ = åw - ¢ W( ) ( ) ( )( )t t t tP G A, d e et t

k k
k ti i d that can be

selfconsistently solved. By following this procedure, in [44] the authors were able to obtain expressions for these
coefficients

åw w w w w= + + W +
¹

-( ) ( ) ( ) · · ( ) · · ( ) ( ) ( )jA G G V G V G V , 50
j

j d j j0
0

4

w w w= - - W +( ) ( ) · · ( ) ( ) ( )kA G V G V , 51k d k j
3

where = å W( )tV V ek k
k ti d . Note that wewill assume that the driving strength coefficient is sufficiently small

such that we can ignore terms of the order of( )V j
3 or higher. Furthermore, since the Fourier coefficients w( )Ak

are related to theGreen function, one can interpret them as describing the fundamental processes responsible
for the phonon and hence heat transport. These coefficients tell us that the driving is responsible for a sudden
change of the propagation frequencyω of the phonon by an amount of kΩd. Finally, the solution of the equations
ofmotion in this casewould read as

òå w
w

= w

-¥

¥
- - W( ) ( ) ( ) ( )( )X t

m
A

B
e . 52

k

k t
k

i d

Uncertainty relation. Finally, we comment that we check that the uncertainty relation holds for both cases
thatwe consider, static and driven. This is simply expressed by the condition
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n- ( )1

2
, 53

where n- is theminimum standard eigenvalue of
~( )C 0 (ÿ is assumed to be equal to 1 in this case). In the above

expression, =
~( ) · ( )C W C0 i 0 withW the symplecticmatrix and ( )C 0 the covariancematrix, that both are

defined in the appendix.Note that the covariancematrix can be expressed in terms of theGreen’s function and
the SD, for both static and driven cases as is shown in the appendix.

4.Heat current control between the BECs

Herewe present the thermodynamics quantities of interest, in order to evaluate the performance of our system
as a heat current control platform and as a thermal diode. These quantities cannot be expressed in terms of
analytically known functions, due to the non-ohmic SD that describes the baths. As such, the results in next
section are obtained by numerically evaluating the integrals.

4.1. Static case
Webeginwith the static scenario with =( )H t 0Drive , andwe study the behavior of heat current and the current–
current correlations.

The heat current.When studying a heat engine, a key quantity is the average current JL going from the left
reservoir (assuming it to be the hot reservoir) to the left oscillator [16, 51] (by conservation of current JL=−JR),
or equivalently the average rate at which the left bath does work on the left particle (power). In general, there are
twoways to define the heat current. Thefirst one is derived from considerations of energy conservation on the
system


=

á ñ
-

¶
¶

= ¢~

r
[ ] ( )J

H

t t
H H H

d

d

i
, , 54L

S
S Int ., L L

where k¢ = + +( )H V x x x
p

mL 2 L L L R
L
2

and the average is over the total density state ρ. The second definition is
expressed in terms of the rate of decrease of the bath energy [52]


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= ¢ +
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r

r

r
r
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d

i
,

i
,

d

d
, . 55

L
B,L

B,L Tot

Int ., L L
Int ., L

Int ., L Int ., R

The second term vanishes under steady state conditions andweak system-bath coupling, whereweak is
understood in the sense of assumption (35) (and not ofMarkovian dynamics for the impurity), which is the case
in our study.We are further considering that the correlations among the systembath interactions is negligible,
i.e. á ñ =~ ~

r[ ]H H, 0Int ., L Int ., R B
, sincewe assume that each system interacts onlywith its own reservoir. Under

these criteria the two definitions of heat current are equivalent. In otherwords, in ourmodel, the rate at which
the bath looses/gains energy is equal to the energy that the system gains/looses. Themore general scenario of
strong coupling and hence non-separability of the system-bathwas considered for a spin-bosonmodel in [53],
while the case of interactions among the bathswas studied in [12]. Therefore the heat current considered here is


h= ¢ =~

r r
[ ] ( )

( )
( )J H H t

p t

m

i
, , 56L Int ., L L L

L

B B

where the second equality is valid in steady state with òh l= - +( ) ( ) ( ) ( )t t s x s s B td
t

mL 0 L L
1

L , and it is

obtained after solving the bath particles equations ofmotion.Note that in (56) the current is a scalar, which is the
average current, and it is averaged under steady state condition i.e. at the long time limit which is independent of
the initial state of the system. In [16, 51, 54], by using a direct solution of the equations ofmotion for a non-
interacting systemof bath particles, the average current is proven to be equal to

òp
w w w w wá ñ = - = -á ñ á ñr

-¥

¥
( ) [ ( ) ( )] ≕ ( )J f T f T J J

1

4
d , , , 57L L R RB

with


w = -
-w⎡⎣ ⎤⎦( )f T, e 1j

1
k TjB , the phonon occupation number for the respective thermal reservoir and

 w w w w w=( ) [ ( ) [ ( )] ( ) [ ( )]] ( )†G L G L4 Tr Im Im , 58L R

w l w w l w= =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( )L L

0
0 0

,
0 0
0

, 59L
L

R
R

being the transmission coefficient for phonons at frequencyω. This is called the Landauer formula. Note that
 w( ) can be related to the transmittance of planewaves of frequencyω across the system as in [55]. The
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transmission coefficient, interestingly, depends on all the parameters of the system. That is, it depends on the
parameters of the baths (apart from temperature) as well as the parameters of the coupling between the system
and the baths.

Equation (57) describes the situationwhere the central region is small in comparisonwith the coherent
length of thewaves, which is the assumptionwe also abide to, so that it is treated as purely elastic scattering
without energy loss. The dissipation resides solely in the heat baths. This implies ballistic thermal transport,
which corresponds to direct point-to-point propagation of energy, contrary to the transport in bulk and
disordered structures which is referred to as diffusive transport. Indeed, within the framework ofmodeling
thermal baths bymeans of quantumLangevin equations, ballistic transport has been observed for chains of
quantumharmonic oscillators [56], and hence this is also our case. Furthermore, note that the Landauer formula
can also capture phonon tunneling, i.e. the casewhen phonons off-resonance with the systems vibrations cross
the ‘junction’, showing features of quantum tunneling [57]. Finally, it is worth commenting on an implicit
assumptionwemade.We assumed here that a unique steady statewas reached, or equivalently that there are no
bound states in our system, i.e. that nomodes outside the bath spectrum are generated for the combinedmodel
of system and baths. The problem is that thesemodes are localized near the system and any initial excitation of
themode is unable to decay [58].

It is interesting to comment on two limits of (57), namely the linear limitD - ≔T T T TL R where

= +T T T

2
L R and the classical limit,  w 0

k TB
whereω refers to the bath frequencies. In the first limit, the current

reduces to

òp
w w w

w
á ñ =

D ¶
¶

¥
( ) ( ) ( )J

T f T

T2
d

,
, 60

0

such that once the two baths are at the same temperature there is no currentflow. In the second limit, it becomes

òp
w wá ñ =

D ¥
( ) ( )J

k T

2
d , 61B

0

where the current is independent of the temperature of the bathsTL,TR but it only depends on their
differenceΔT.

We concludewith one last comment regarding our system and the role that entanglement could play on the
amount of heat current transported fromone BEC to the other. From [44], it is known that the static current can
also be expressed in terms of the off-diagonal elements of the covariancematrix. This,might lead one to consider
that entanglement, the presence of which is understood to be related to these off-diagonal elementsmight play a
role in the amount of heat current transported.However, it was shown in [59, 60] that in a systemof two
harmonic oscillators coupled to distinct baths, as is our case, there is no long-time entanglement present.

Current–current correlations.Next, we focus on the current–current correlationswhich is an easily accessible
quantity from an experimental point of view. This is because these correlations are related to noise, which can be
experimentallymeasured. They contain valuable information on the nature of the fundamental processes
responsible for the heat transport. Furthermore, from the current–current correlationmany other quantities
can be obtained, such as the thermal conductance [16, 51] and the local effective temperature of driven
systems [61].

The current–current time correlations ¢( )JJ t t,LL , which is sometimes referred to as current fluctuations in
time or current noise, is defined as the symmetrized correlation function of the current, that is

¢ = á - á ñ ¢ - á ¢ ñ ñab a a r b b r r( ) [ ( ) ( ) ( ) ( ) ] ( )JJ t t J t J t J t J t,
1

2
, . 62

B B B

Weare interested in the steady state correlations, for which an expression for this can be obtained using the non-
equilibriumGreen’s functions aswasmentioned above. Hence the correlation function of interest is a function
only of the time difference, ¢ = - ¢( ) ( )JJ t t JJ t t, . Therefore, the noise strength is characterized by the zero
frequency component ò=ab ab-¥

¥
( )JJ JJ t td , which obeys abJJ 0 according toWiener–Khinchine theorem.

It is current conserving, i.e. the sumof currents entering the system from all reservoirs is equal to zero at each
instant of time, and gauge invariant and hence physicallymeaningful [62, 63]. Current conservation implies
JJLL=JJRR.

Oneway to obtain such an expression is byfirst deriving the cumulant generating function c m( ), employing
the non-equilibriumGreen’s functions techniquewithin theKeldysh formalism, and noting that

ab
c m
m m

¶
¶ =≔ ∣( )JJ 0
2

2 (see e.g. [16, 51, 64]). In this case, one can show that the currentfluctuations read as [62, 63]


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 
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Thefirst two terms of this expression correspond to the equilibriumnoise, while the third corresponds to the
non-equilibriumnoise, also referred to as shot noise. At high energies, the latter is negligible. Note that the shot
noise is negative and hence contributes to diminish the noise power in comparisonwith having the equilibrium
noise alone. The expression above equation (63) is true only under the assumption of independence of the two
baths.

Finally let us address the linear and the classical limits of the correlations. In the first limit, the current–
current correlations read as





ò w
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w
w w

w
w
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. 64LL
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In the classical limit it becomes

 òp
w w wá ñ = D +r

¥
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2
d Tr 2 . 65LL

B
2
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Note that (64), contrary to the expression for the current (60) at the same limit, does not vanishwhenD T 0,
which results in nonzerofluctuations of the current even in the scenario that no average currentflows in the
system.

We comment here on the experimental feasibility of themeasurements of the two proposed quantities
above, namely the heat current and the current variance. As is proven in detail in [44] in appendix C, the heat
current depends on the covariancematrix element ( )C 0XP defined in appendix of our paper, where the nonzero
elements of thismatrix are á ñx pi j with ¹i j. Hence one needs tomeasure simultaneously the position of one

particle and themomentumof the other. It should be experimentally feasible tomake thismeasurements almost
instantaneously. For the former type ofmeasurement, that of position, there are already experiments inwhich
one is able to evaluate them [65]. The idea is that, onemeasures the position of the particle using a time-of-flight
experiment, by implementing a resonant in situ absorption imaging technique, in a systemwith a two species
ultracold gas, inwhich one of the species ismuchmore dilute–dilute enough as to consider its atoms as
impurities immersed in amuch bigger BEC. Amuchmore recent technique could be used tomake
measurements of both the position and themomentum. In particular, a quantum gasmicroscope [66, 67]may
be an option. This technique uses optical imaging systems to collect thefluorescence light of atoms, and it has
been used in the study of atoms in optical lattices, achievingmuch better spatial resolution [66, 67], and avoiding
the aforementioned problemwith time-of-flight experiments. In the past such a technique has been used to
study spatial entanglement between itinerant particles, bymeans of quantum interference ofmany body twins,
which enables the directmeasurement of quantumpurity [68]. Finally, having thesemeasurements at hand, one
can evaluate the ( )C 0XP . The current–current correlation then is the variance of the current, which could be
obtained by the data collected. This would be the protocol to follow in order tomeasure the heat current.
Nevertheless, we can only give an idea of ameasurement protocol, leaving open for future research the question
of whether the resolutionwhenmeasuring the correlations in current experimental set-upswould be enough as
to infer the heat current.

4.2. The dynamic case
For the driven case, the steady-state averaged heat current is given by [44]




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, 66

j
D

j j

q j
qj j jq q

where the new transmission coefficient reads as

åw w w w w w= - W - W ( ) ( ) [ [ ( )] ( ) [ ( )] ( )] ( )†T k kL A L Atr Im Im , 67jq
k

d j d k q k

and

åw w=
b

 ( ) ( ) ( )T T . 68j jq

This expressionwas also obtained in [63, 69–71], while in [72] a similar expressionwas obtained for transport
through quantumdots. Unlike the static case, these transmission coefficients are not symmetric, i.e.

w w¹ ( ) ( )T Tjq qj . Crucially, this symmetry breaking, attributed to the driving that is now expressed in the formof
the transmission coefficients, is responsible for the appearance of heat rectification as addressed in [44]. To
observe and quantify rectification, it is useful to evaluate the rectification coefficient
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, 69
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j
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j
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where ( )Jj
D
,r is the value of the current, once the temperature gradient is reversed, i.e. when the two baths’

temperatures are interchanged. Notice that this coefficient takes values between 0 and 2, namely,R=0when
= -( ) ( )J Jj

D
j
D
,r , with the current being symmetric under reversing the temperature gradient. The upper bound is

achievedwhen the current remains unaffected by reversing the temperature gradient.When either of the two
currents is blocked, the coefficient is equal to one.

5.Main results

Before presenting ourmain results, let us summarize themajor assumptionswemade for our system, and the
restrictions that these impose on the parameter regimes that we can consider:

(i) Linearization of the impurity-bath coupling, which is achieved by assuming that the impurity is in the
middle of its corresponding trap (see equation (6)). This in practice imposes a restriction on themaximum
temperature we can consider [35]

=
W

 ( )T T
m R

k
. 70j j

j jmax
2 2

B

Note that in the scenariowhen the impurity is driven, W j
2 is replaced by W + å W( )Vmin et j k k jj

k t2
,

i d .

(ii) BEC independence conditionRL+RR<d.

(iii) Positivity condition, equation (46).

In our analysis belowwe consider the BECs of Rubidium (Rb) atoms. The impurities areDysprosium (Dy)
atoms, which are the atomswith the largestmagneticmoment known at present,μ=10μB, whereμB is the
Bohrmagneton.

5.1. Static system
5.1.1. Heat current
Infigure 2(a)weplot the heat current with the temperature differenceΔT=TL−TR, wherewe keepfixed the
temperature of the left reservoirTL. As expected, the heat current increases with increasing temperature
difference, while it is zerowhen there is no temperature gradient.We see that the current depends linearly on the
temperature gradient. This is in accordance to the linear limit for the heat current in equation (60). In addition,
we studied heat current in the scenariowhere the temperature difference between the two baths wasfixed to
some value, in particularΔT=10 nK,withTL=T andTR=T+ΔT, andwe considered the simultaneous
variation of the temperatures of both baths, in the temperature regimeT=10–100 nK. In this case we saw that
the heat current remained constant as a function ofT and hencewe conclude that the regime inwhichwe could
study the systemwas that of the classical limit equation (61). Afigure for this case is omitted since the current was
just constant as a function ofT. From figure 2(a)we also observe that increasing the distance of the two
impurities results in decreasing the heat current flow (red versus blue curves), while increasing the impurity-
BEC couplings results in an increase of the current (red versus green curves).

Figure 2(b) depicts the heat current against the trapping frequencies of the BECs. In particular wefix one of
the trapping frequencies and vary the other. Firstly, we observe that the heat current is reaches amaximumwhen
the trapping frequencies of the two impuritiesmatch, i.e.ΩR=ΩL. This is understood as follows. The current
density, whichwe define as  w w w w-

p
≔ ( ) [ ( ) ( )]J f T f T, ,den.

1

4 L R ismaximizedwhenever the denominator

of the transmission function  w( ), given by w w w w- + - - + - -- -( ( )) (( ( )) )I K L I K L T2 1 2 1 isminimized.
In the regimewe are looking,

t

W
j

j
3 come out to be of the order of 10−4, while the values ofκ that are allowed, are of

the order of 10−5. These aremuch smaller than the trapping frequencies WL
2 , WR

2 , such that the denominator is
minimizedwhenever w w- W + - W( ) ( )2

L
2 2 2

R
2 2 isminimized. This happens whenω=ΩL=ΩR. Secondly—

for the specific parameters that we choose—contrary tofigure 2(a), increasing the impurity-BEC coupling
strength results in reducing the current.

We study the dependence on the impurity-BEC coupling strength infigure 2(c), wherewe see current
reaches amaximumat some optimal coupling. Keeping the coupling constant of the left impurity fixed and
varying that of the right impurity, wefind that if the impurity is weakly coupled to the BECs, then current cannot
be carried fromone BEC to the other through the vibrations of these impurities. If on the other hand, this is
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coupled too strongly, the effect of the noise induced by the baths (BECs) reduces the current that can be
transmitted This is in agreementwith the findings infigures 2(a) and (b).

Infigure 2(d)we see how the heat current varies as a function of the distance between the two impurities. As
expected, we see that increasing the distance between the impurities reduces the heat current. In particular, we
find ká ñ µJ 2—in the parameter regime thatwe study. It is possible that, at shorter distances, another resonance
effect occurs between the value of the spring constant, which depends inversely on the distance between the
impurities and the trapping frequencies of the impurities. Anyhow,we do not study the system at such small
distances because the approximation of independence of the BECs breaks down.

Finally we remark here that one could also consider studying homogeneous gases instead of harmonically
trapped ones and the induced heat current could be examined for this case, by studying the system in the spirit of
[73]. Experimentally, homogeneous gases could be created as in [74]. Fromour studies, we observe that as
expected one can still have current in this case, but since the SD is different in this case, even though still
superohmic, there is a quantitative difference in the amount of current. Nevertheless we focused on the
harmonically trapped casewhich ismore conventionally implemented experimentally. From [35] it is known
that the two spectral densities result in a different degree of non-Markovianity, and it would be interesting in the
future to study the effect of non-Markovianity on the heat current. This however exits the scope of this paper.

5.1.2. Current–current correlations
Infigure 3(a) the behavior of the current–current correlations is illustrated as a function of temperatureTwhile
keeping the temperature differenceΔT constant. From thefigure, we see that, for smallΔT, such that thefirst
termof equation (65) prevailed, the current–current correlations are proportional toT2. On the contrary when
ΔT is large, and for relatively smallT, the current–current correlations depended linearly on the temperatureT.
Nevertheless the behavior seems to be independent ofΔT as the temperature increases, and appears to depend
on the square ofT as expected in the classical limit.

Infigure 3(b)we study the dependence of current–current correlations on the temperature differenceΔT.
At large temperature difference, i.e. beyond the linear limit considered in (64), the correlations depend linearly
onΔT.We comment here that this is not directly evident from the LogLog plot, butwe checked that this is
indeed the case of a linear relation from the corresponding current–current correlation versus temperature
difference plot before taking the logarithms. For smallΔT, where (63) is well approximated by equation (64),
indeedwe find the saturation on the correlations predicted by the second termof equation (63). This implies that

Figure 2. (a)Heat current J against the temperature difference of the two bathsΔT, withfixedTR. As expected current increases
linearly withΔT. Furthermore, the current decreases with increasing distance, and increases with increasing the coupling strength of
the impurities to the bath. (b)Current as a function of the trapping frequencyΩR of the right impurity.We observe resonance at
ΩR=ΩL. Furthermore, forΩR larger than the trapping frequency of the bath—which is also the cutoff for the spectral density—the
current vanishes quickly.Moreover, current decreaseswith distance as before. In this regime, current decreases as the impurities
couple stronger to their respective baths (note that the coupling strengths are different frompanel (a)). (c)Current as a function of the
coupling strength of the right impurity. Current reaches amaximum in the range studied. (d)Current as a function of the distance
between the impurities -∣ ∣d d1 2 . Current decreases linearly with increasing distance in the regimewewere allowed to study, that is
under the restriction that is imposed on the lower distance in order tomaintain the twoBECs spatially independent. Current is found
to scale asκ2. See table 1 for the parameters that we use here.
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even asD T 0—inwhich case current is zero— thefluctuations are still present. Onemight expect quantum
effects to appear in this regime then, butwe studied the entanglement in this system, bymeans of the logarithmic
negativity as in [49], and no entanglement could be detected in this regime.

5.2.Driven case: heat rectification
Heat rectification is quantified by the heat rectification, equation (69).We use the particular formof driving

w= ( )( ) ( ) ( )t v tV 2 cos 1 0
0 0

, 71d

i.e. we drive the frequency of thefirst oscillator. The parameters that we use are given in table 2. The temperatures
we choose are upper bounded by {TL,TR}<103 nK.

Infigure 4we depict the heat rectification coefficientR as a function of Wd , the driving frequency.Wefind
that it shows tomaxima at for two values of the driving frequencyΩdä {Ω, 3Ω}. Note that, as shown in [44],
heat rectification should bemaximumat the following frequencies

n nW = ∣ ∣ ( ). 72d j i

Figure 3. (a)Current–current correlations against temperatureT at constantDT .Hereweobserve that for smallΔT and at large
temperaturesT as expected fromequation (65), current–current correlations scale as∝T2. At sufficiently largeT this is expected tohappen
for largeΔT aswell, howeverwewere restrictedon the rangeofmaximumtemperatureswe could consider. (b)Current–current
correlations as a functionof the temperaturedifferenceof the twobathsΔT. For small values ofΔT, i.e. in the linear regime, the correlations
have anonzero value as predicted in equation (64). This implies that even asD T 0, where current also vanishes, correlations still persist.
For large enoughvalues ofΔT the correlations increase linearlywithΔT. See table 1 for theparameters thatweusehere.

Table 2. List of default parameters—unless otherwisementioned—used in the
dynamic case, corresponding to figure 4.

Left BEC and impurity Right BEC and impurity Other parameters

TL=15 nK TR=1 nK d=35aho
NL=7.5×104 NR=7×104 aho=0.7 μm
ηL=0.5 ηR=0.5 Ω=200πHz

= ´ -( )g 5 10 J mB
L 39 = ´ -( )g 4.5 10 J mB

R 39 v=0.1Ω

ΩL=2Ω ΩR=2Ω
ΩB,L=2.5Ω ΩB,R=2.5Ω

Table 1. List of default parameters—unless otherwisementioned—used in the
static case, corresponding to figures 2 and 3.

Left BEC and impurity Right BEC and impurity Other parameters

TL=75 nK TR=7.5 nK d=9.5aho
= ´N 7.5 10L

4 NR=7×104 aho=0.7 μm
ηL=0.5 ηR=0.5 Ω=200πHz

= ´ -( )g 2.5 10 J mB
L 40 = ´ -( )g 2 10 J mB

R 40

ΩL=Ω ΩR=Ω

W = W 3B,L W = W 3B,R
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Here Î{ } { }i j, L, R with ¹i j and νiʼs are the normalmodes of the coupled impurities

n k k= W + +
D

+
D

⎛
⎝⎜

⎞
⎠⎟ ( )

2 4
, 73L,R

2
L
2 2

2 1 2

withD = W - WR
2

L
2 . In our case, equation (72) indeed suggests that rectification should bemaximumat

Ωd ä {Ω, 3Ω}which explains the results infigure 4.Note that we also studied dependence of the rectification
coefficient on the other parameters of the system, apart from the driving frequency. In particular, wefind that in
the regime of parameters we study,maximum rectification decreases when the impurities couplemore strongly
to their respective baths.On the contrary, decreasing the number of atoms significantly increasesR, in fact
reachingR>1.What ismore, rectification could also be optimizedwith respect to the detuning between the
trapping frequencies of the impurities as in [44].

6. Conclusions

In this work, we studied in detail the heat transport control and heat current rectification among twoBEC. To
this aim, we took an open quantum system approach, and focused on experimentally realistic conditions and
parameter regimes. In particular we considered a system composed of two harmonically trapped interacting
impurities immersed in two independent harmonically trapped 1DBECs kept at different temperatures. The
impurities interact through a long range interaction, in particular a dipole–dipole coupling—that under suitable
conditionswewere able to treat as a spring-like interaction. In this workwe considered the particular case of a
fixed angle,motivated by the results in [39], but the results should also hold under an angle-averaged scenario,
by taking advantage of the results in([41]).We showed the dynamics of these impurities can be describedwithin
the framework of quantumBrownianmotion, where the excitationmodes of the gas play the role of the bath. In
this analogy, the SDof the bath is not postulated, but it is rather derived exactly from theHamiltonian of the
BEC,which turns out to be superohmic. By solving the relevant generalized Langevin equations, wefind the
steady state covariancematrix of the impurities, which contains all the information describing ourGaussian
system. In particular, we use such information to study the heat currents and current–current correlations and
their dependence on the controllable parameters of the system.Wefind that, the heat current scales linearly with
temperature difference among the twoBECs. Furthermore, we observe that heat current ismaximumwhen the
trapping frequencies of the impurities are at resonance. Finally, we showed the existence of an optimal coupling
strength of the impurities on their respective baths.

What ismore, by periodically driving one of the impurities, we can conduct heat asymmetrically, i.e. we
achieve heat rectification—which is in full agreement with the recent proposal of [44]. In particular, we see that
one can achieve heat rectification at the driving frequencies predicted in [33], even though our bath is
superohmic.

Motivated by recent developments on the usage of BECs as platforms for quantum information processing,
as e.g. in [49], ourwork offers an alternative possibility to use this versatile setting for information transfer and
processing, within the context of phononics. The possibility of quantumadvantages usingmany-body
impurities inour platform remains an interesting openquestion (see [27] too). Another future direction is to study
heat control in 2D and3DBECs. Inprinciple this gives rise to a different SD,whichopens a newwindow for further

Figure 4.Rectification coefficient against the driving frequency. As predicted analytically, we observe nonzero rectification at the
vicinity of frequenciesΩd={Ω, 3Ω} corresponding to n n∣ ∣j i . Furthermore, we see that rectification decreaseswith increasing
coupling to the baths in this regime of parameters. See table 2 for the parameters that we use here.
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manipulation of heat current. Finally, it is desirable to investigate scenarioswhere the system is nonlinear, which
raises difficulties in solving theproblemanalytically, nonetheless, it offers theopportunity to rectify heat even
without periodic derivation.Moreover,motivatedby the results in [75, 76]where the squeezing inposition of a
single impurity embedded in aBECwas used tomeasure the temperature of theBEC in the sub-nano-Kelvin
regime, onemay study if thepresent two-particle set-up can beused for applications inquantum thermometry.
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Appendix. The uncertainty relation

Here, we present how the covariancematrix of our system is obtained, (both for the static and driven cases)
whichwe used in order to verify that our system fulfils the uncertainty principle. This allows us to guarantee that
the systemunder study, for the parameters considered and accordingwith the assumptions that we have
imposed, is a physical system. To do so, one needs to obtain the covariancematrix of the system

=
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( ) ( )C C
C C

C 0
0 0
0 0

, A.1XX XP

PX PP

where = ( ( ) ( ))p t p tP , T
1 2 and

- ¢ = á ¢ + ¢ ñr( ) ( ) ( ) ( ) ( ) ( )C t t t t t tA B B A
1

2
. A.2T T

AB B

Weemphasize that the state of the system-bath is assumed to be a product state as in (35). Hence the average is
taken over the thermal state of the bath, while the state of the system is assumed to have reached its unique
equilibrium state by considering the long-time, steady state limit  ¥t which is equivalent to consider that
w L L ,L R. The 4×4matrix in (A.1) is constructed from the vector =( ) ( ( ) ( ) ( ) ( ))t x t x t p t p tY , , , T

1 2 1 2 as

the product á ¢ ¢ ñr{ ( ) ( ) ( ( ) ( )) }t t t tY Y Y Y,T T T1

2 B
.

The uncertainty relationwill then be expressed as a condition on the symplectic transformof the covariance
matrix

~( )C 0 , where the latter is obtained as =
~( ) · ( )C W C0 i 0 withW the symplecticmatrix

=
-

-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟W

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

. The uncertainty relation then simply reads as

n- ( )1

2
, A.3

where ν− is theminimum standard eigenvalue of
~( )C 0 (ÿ is assumed to be equal to 1 in this case).

Static covariancematrix.The elements of the covariancematrix in the static case, in terms of the phonons
propagator functions, can be expressed as


òp

w w=
-¥

¥
( ) ( ) ( )C Z0

2
d , A.4x x jqj q


òp

w w w=
-¥

¥
( ) ( ) ( )C m Z0

2
d i , A.5x x jqj q


òp

w w w=
-¥

¥
( ) ( ) ( )C m Z0

2
d , A.6x x jq

2 2
j q

where

åw w w
w

w= -
=

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟( ) ( ( )) [ ( )] · ( ( )) ( )Z

k
G L

T
GIm coth

2
, A.7jq

k s
js

sk

kq
, 1

2

B

with =
⎛
⎝⎜

⎞
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T
T

T
0

0
L

R
being the temperatures of each bath.
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Driven case. In the driven case, since the solution of the equations ofmotion is periodic, so are the elements
of the covariancematrix aswell. In particular, in terms of the Fourier components of the expansion of the
periodic phononGreen function, the covariancematrix elements read as


ò åp

w w= ~
-¥

¥
( ) ( ) ( )C Z0

2
d , A.8x x

k l
jq kl

,
,j q


ò åp

w w w= - W ~
-¥

¥
( ) ( ) ( ) ( )C m l Z0

2
d i , A.9x x

k l
d jq kl

,
,j q


ò åp

w w w w= - W - W ~
-¥

¥
( ) ( )( ) ( ) ( )C m k l Z0

2
d , A.10x x

k l
d d jq kl

,

2
,j q

where

åw w w
w

w= -~ w

=

-
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⎤
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