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www.scielo.br/tema
doi: 10.5540/tema.2019.020.01.061

An Extended Linear Discontinuous Method for One-group Fixed Source
Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry

I.B. RIVAS-ORTIZ1, D.S. DOMINGUEZ2, C.R.G. HERNANDEZ1,
S.M. IGLESIAS2 and A. ESCRIVÁ3
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ABSTRACT. Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordi-
nates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid
Finite Element Spectral Green’s Function method (FEM-SGF), originally developed to solve eigenvalue
diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formu-
lation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear
Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the
construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous ap-
proximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical
results for benchmark problems are presented to illustrate the accuracy and computational performance of
our methodology. ELD-SN method is free from spatial truncation errors in S2 quadrature, and generate
good results in the other quadrature sets. This method is more accurate than the conventional Diamond
Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green´s Function
(SGF) method, for quadrature order greater than two.

Keywords: fixed source problems, discrete ordinates formulation, hybrid method, linear-discontinuous,
spectral parameters.

1 INTRODUCTION

The neutron population calculations in non-multiplying medium is relevant in different areas
such as nuclear physics and technology, mathematics, radiation protection and material sciences.

*Corresponding author: Dany Sanchez Dominguez – E-mail: dsdominguez@gmail.com – https://orcid.org/

0000-0002-0640-2970

1Instituto Superior de Tecnologı́as y Ciencias Aplicadas, InSTEC, Quinta de los Molinos, Ave. Salvador Allende 1100 e 
Infanta y Rancho Boyeros, Plaza de la Revolución, La Habana, Cuba. E-mail: ibrivas@instec.cu / cgh@instec.cu 
2Programa de Pós-Graduacão em Modelagem Computacional, Departamento de Ciências Exatas e Tec-
nológicas, Universidade Estadual de Santa Cruz, 45662-900, Ilhéus, BA, Brasil. E-mail:dsdominguez@gmail.com/
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62 EXTENDED LINEAR DISCONTINUOUS METHOD IN SN FORMULATION

The neutron transport equation [20] is the mathematical model used to estimate the neutron den-
sity related quantities. As neutrons are not charged particles, they cause ionization through a com-
plicated mechanism involving energetic secondary particles emission. For that reason, neutrons
are often called ”indirectly ionizing particles”. They may be quite penetrating and the shielding
required may be massive and expensive [17]. Therefore, accurate solutions for neutron transport
problems are crucial in nuclear science.

Analytic solutions for neutron transport equation are limited to a few particular simple cases,
involving simplified geometries and rough approximations. This is why numerical approaches
are frequently used. There are two main approaches in computational methods to solve neutron
transport equation: the probabilistic and the deterministic. In this work, we use the determinis-
tic approach based on the discrete ordinates formulation (SN) [8] as mathematical model. The
computational requirements used by SN calculations are expensive in memory and CPU time.
For that reason, researchers have dedicated much effort to obtain accurate numerical solutions in
coarse spatial meshes.

An alternative to performs coarse mesh neutron transport calculations are the Spectral Green’s
Functions (SGF) nodal methods. The first spectral nodal method was proposed in [5] to solve
fixed source one-dimensional SN problems. Since then, several authors extended the SGF meth-
ods to different geometries and formulations for the transport equation, both for fixed source
[6, 12, 13] and eigenvalue problems [11, 3, 4]. Among the advantages of SGF methods are the
high numerical precision and weak dependence on the spatial mesh. However, it has a high al-
gebraic outlay to obtain the sweep equations and also a high computational cost. Recently, some
authors developed numerical approaches that exploit the advantages of SGF methods, minimiz-
ing its deficiencies. Among these, stand out the composite spatial grid methods [14] and the finite
element spectral nodal hybrid methods [24].

In neutron transport problems with azimuthal symmetry, the one-dimensional Cartesian geo-
metry offers good results. For that reason, many authors used this geometry in recent works
[21, 10, 19, 25]. In this paper, we develop the hybrid Extended Linear-Discontinuous method,
for discrete ordinates formulation (ELD-SN), to solve fixed source problems in slab geometry,
considering one energy group approximation and an isotropic scattering. This method extends
the prime work in hybrid methods, proposed by [24] to solve eigenvalue diffusion problems in
one-dimensional Cartesian geometry. The ELD-SN combines a linear discontinuous approxi-
mation inside the spatial cell, common in finite element method, and a quasi-analytic approach,
characteristic in SGF methods for preserving the analytical spectral solutions inside the cell. This
new method offers accurate numerical results and minimizes the drawbacks of SGF methods. We
validate this numerical formulation by solving benchmark problems.

As we know, there are several efficient methodologies to solve fixed source problems in SN

formulation for slab geometry [28, 26, 5]. Nevertheless, as there are no previous researches from
the use of hybrid spectral nodal methods in neutron transport formulations, the main goals of this
work are to propose a new numerical approach and to evaluate its performance in the solution of
neutron transport problems.
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In sections 2, 3 and 4 we present the numerical formulation of ELD-SN method. First, we ob-
tain the spatial balance equations, then we describe the spectral analysis, and finally we present
the auxiliary and sweep equations. Section 4, offers numerical results for model problems in
homogeneous and heterogeneous domains. At the end, we conclude our work and give some
suggestions for future work.

2 SPATIAL BALANCE EQUATIONS

In order to develop the proposed ELD-SN method, we consider as a mathematical model, the
one-speed SN formulation in one-dimensional Cartesian geometry with isotropic scattering [20]
in a generic domain D of length L

µm
dψm(x)

dx
+σt(x)ψm(x) =

1
2

[
σs0(x)

N

∑
n=1

ψn(x)ωn +Q(x)

]
, (2.1)

with boundary conditions

ψm (0) = fm µm > 0, ψm (L) = gm µm < 0, (2.2)

where the spatial variable x ∈ D = {x ∈ℜ,0≤ x≤ L}, the subscript m = 1, ...,N identifies the
ordinate direction, ψm(x) is the angular flux of particles traveling in the discrete ordinates direc-
tion µm, σt(x) is the total cross section, σs0(x) is the zeroth order component of the differential
scattering cross section, ωn is the Gauss-Legendre angular quadrature weight for each direction,
Q(x) is the fixed external source, fm and gm are prescribed functions, and N is the number of
discrete ordinates.

In order to obtain a solution for the one-speed SN equations, we divide the domain into I spatial
cells of length hi = xi+1/2− xi−1/2 as represented in figure 1, and solve eq. (2.1) in each of these
cells. The cross sections and the external sources are piecewise constant functions inside the
cells.

Figure 1: The spatial discretization of the domain D.

The first step is to obtain the SN spatial balance equations, then we can use the operator

2l +1
hi

xi+1/2∫
xi−1/2

Pl

[
2(x− xi)

hi

]
dx, f or xi =

xi−1/2 + xi+1/2

2
, (2.3)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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64 EXTENDED LINEAR DISCONTINUOUS METHOD IN SN FORMULATION

where Pl is the Legendre polynomial of l order, and xi is the midpoint of spatial cell. Considering
l = 0 in operator (2.3) and applying in eq. (2.1), we obtain the zeroth-order balance equation

ψm,i+1/2−ψm,i−1/2

αx
m,i

+ψm,i = Si +
Qi

2σt,i
. (2.4)

The first-order balance equation is obtained by considering l = 1

3
[
ψm,i+1/2 +ψm,i−1/2−2ψm,i

]
αx

m,i
+ ψ̂m,i = Ŝi. (2.5)

In spatial balance equations (2.4 and 2.5) we define the zero’th and the first moment of the
angular flux and the scattering source as average quantities in the spatial cell

ψm,i =
1
hi

xi+1/2∫
xi−1/2

ψm (x)dx, (2.6)

Si =
C0,i

2

N

∑
n=1

ψn,iwn, (2.7)

ψ̂m,i =
6

hi
2

xi+1/2∫
xi−1/2

(x− xi)ψm (x)dx, (2.8)

Ŝi =
C0,i

2

N

∑
n=1

ψ̂n,iwn, (2.9)

and the auxiliary constants

C0,i =
σs,i

σt,i
, α

x
m,i =

hiσt,i

µm
. (2.10)

Several numerical methods have been reported in the literature to solve one-energy group,
one-dimensional, fixed source discrete ordinates problems with isotropic scattering. Lewis and
Miller (1984) describes the traditional Diamond Difference (DD) method conforming a march-
ing scheme that follow the direction of neutron travel using the zeroth-order balance equation
(2.4) together with the Diamond Difference relation as auxiliary equation [20]. Also, Hill (1974)
and Barros (1990) studied the Linear Discontinuous (LD) method that forms an iterative linear
system, using the zeroth and first-order balance equations (2.4), (2.5) and two auxiliary sweep
equations [15, 2]. The main difference between the DD and LD methods is the solution represen-
tation inside each cell. The DD method aproximates the solution by continuous linear functions
across the spatial grid. The LD method approximates the solution by discontinuous linear func-
tion across the spatial grid. Therefore, the DD method has one degree of freedon, while the LD
method has two.

These two methods implement a marching scheme, yielding an iterative algorithm based on the
source term, called Source-Iteration (SI) scheme [20]. This scheme can be used because the

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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auxiliary equations are decoupled in the angular directions. This approximation is weak, because
the contribution of other directions to the average flux is neglected. Nevertheless, the sweeping
equations are simpler. This SI scheme consists of three stages: first, a sweep from left to right for
µm > 0 is made, then, a similar sweep is made, now, from right to left for µm < 0 and finally, the
stopping criterion is verified.

More recently Barros and Larsen (1990) proposed the Spectral Green´s Function (SGF) method
describing a convergent numerical scheme wich generates numerical solutions completely free
of spatial truncation errors in slab geometry. This is because, it preserves the analytic general
solution [5]. This method uses zeroth-order balance equation (2.4) and an auxiliary equation, that
computes the average angular flux inside the cell, considering the contribution of all incoming
discrete directions. The authors solve the SGF equations using the one-Node Block Inversion
(NBI) iterative scheme. This scheme uses the most recent available estimates for the node-edge
angular incident fluxes on a given node, to calculate the exiting angular fluxes in the upwind
directions [6]. So, the NBI sweep involves more difficult algebraic manipulation and needs higher
computational cost per iteration than standard SI sweeps.

The discretization process and the spatial balance equations are common to all numerical ap-
proaches to solve SN formulation, the differences between them, appear in the auxiliary equa-
tions. In the next section we developed auxiliary equations for the ELD-SN method. The
proposed method is compared with DD, LN and SGF methods in section 5.

3 SPECTRAL ANALYSIS

In order to develop the Extended Linear Discontinuous method for discrete ordinate formulation,
it is essential to discuss spectral theory for the analytic solution of the SN equations. The spectral
theory for neutron transport problems began in the late 60’s with Zweifel and Case’s work to
solve analytically the one-speed transport equation for homogeneous infinite medium [9]. Later,
several authors extended these mathematical fundamentals to other formulations and geometries
[5, 4, 23].

First, let’s consider that the general form of local analytic solution of eq. (2.1) inside one given
spatial cell can be written as

ψm,i(x) = ψ
p
m,i(x)+ψ

h
m,i(x), (3.1)

where ψ
p
m,i(x) and ψh

m,i(x) are respectively, the homogeneous and particular components of the
solution. For constant external source, the non-homogeneous solution is x-independent, and
appears as

ψ
p
m,i =

Qi

2σt,i (1− c0,i)
. (3.2)

In order to obtain an expression for the homogeneous component, we consider the ansatz

ψ
h
m,i(x) = am (ν)eσt,ix/ν . (3.3)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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The eigenvectors are normalized using the quadrature parameters in the form

N

∑
k=1

ak(ν)wk = 1. (3.4)

By substituting eq. (3.3) into the homogeneous problem corresponding to eq. (2.1) and con-
sidering normalization restriction, eq. (3.4), we obtain the solution for the m-th eigenvector
component

am(ν) =
c0,iν

2(ν +µm)
. (3.5)

Now, in order to calculate the eigenvalue associated with each eigenvector, we substitute eq. (3.5)
into the normalization condition eq. (3.4). We obtain the dispersion relation

c0,iν

2

N

∑
k=1

wk

(ν +µm)
= 1. (3.6)

When the ratio between scattering cross section and total cross section eq. (2.10), satisfies 0 <

C0,i < 1, the roots of the eq. (3.6) are all simple and real numbers and also, are the eigenvalues
of our system. In symmetric angular quadrature sets, these N-roots appear in pairs, with opposite
signs. Finally, considering the homogeneous [eq. (3.3)] and particular [eq. (3.2)] components the
analytic general solution of eq. (2.1) inside an arbitrary cell appear as

ψm,i(x) =
N

∑
k=1

αk
c0,iνk

2(νk +µm)
eσt,ix/νk +

Qi

2σt,i (1− c0,i)
, (3.7)

where αk are arbitrary constants.

The main idea of the present ELD-SN method is to modify the linear discontinuous auxiliary
equations for preserving the analytic solution of angular flux [eq. (3.7)] inside the spatial cell.
For that reason, two spectral parameters are added to auxiliary equations. These parameters are
used to keep the characteristics of the spectral problem. The auxiliary equations of ELD-SN
method are presented in the next section.

4 AUXILIARY EQUATIONS AND ITERATIVE SCHEME

The first development in the hybrid nodal methods, combining linear discontinuous finite ele-
ment approximations and spectral nodal methods was introduced by Rocha et. al. (2016) [24].
Specifically, that work described the Finite Element Spectral Green’s Function method (FEM-
SGF) to solve the neutron diffusion equation in non-multiplying media for slab geometry. The
present work extends the FEM-SGF method, for one-dimensional SN fixed source problem, in
one energy-group, following a similar methodology used by Larsen (1986) [18] to improve the
standard DD method.

For ELD-SN method we proposed auxiliary equations as a linear approximation involving, zeroth
and first order moments of the angular flux. Then the auxiliary equations appear as

ψm,i(x) = Aψm,i +
2(x− xi)

hi
Bψ̂m,i +

(1−A)Qi

2σt,i (1− c0,i)
, (4.1)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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where A and B are constant, called spectral parameters, wich are to adjust the angular flux inside
the spatial cell to preserve the general analytic solution (3.7). At this point, we proceed to cal-
culate the spectral parameters. The zeroth-order moment of angular flux is defined in eq. (2.6).
Substituting it into eq. (3.7), and solving the integral, we obtain

ψm,i(x) = 2
N

∑
k=1

αk
am (vk)vk

σthi
sinh

(
σthi

2νk

)
e

σt xi
νk +

Qi

2σt,i (1− c0,i)
. (4.2)

Using a similar process for the first-order moment given in eq. (2.8), the result is

ψ̂m,i(x) =
N

∑
k=1

αk
6am (vk)vk

σthi

[
cosh

(
σthi

2νk

)
− 2νk

σthi
sinh

(
σthi

2νk

)]
e

σt xi
νk . (4.3)

In eq. (4.1) we consider the analytical solution (3.7) for the left term, and substitute eqs. (4.2 and
4.3) into the right side. After some algebraic manipulations, we obtain

N
∑

k=1
αkam (νk)e

σt x
νk = A

[
N
∑

k=1
αk

am (vk)vk

σthi
2sinh

(
σt hi
2νk

)
e

σt xi
νk

]
+

2(x− xi)

hi
B

N
∑

k=1
αk

6am (vk)vk

σthi

[
cosh

(
σt hi
2νk

)
− 2νk

σthi
sinh

(
σt hi
2νk

)]
e

σt xi
νk .

(4.4)

For each k-term in the summation, eq. (4.4) is

e
σt x
νk = 2A

vk

σthi
sinh

(
σt hi
2νk

)
e

σt xi
νk +

12B
(x− xi)vk

σth2
i

[
cosh

(
σt hi
2νk

)
− 2νk

σthi
sinh

(
σt hi
2νk

)]
e

σt xi
νk .

(4.5)

Equation (4.5) must be satisfied at the spatial cell edges. So, evaluating it in the left edge (xi−1/2)

and in the right edge (xi+1/2), and after some manipulations we obtain a linear algebraic system
of two equations in the form

e
σt hi
2νk = A

2νk

σthi
sinh

(
σthi

2νk

)
+B

6νk

σthi

[
cosh

(
σthi

2νk

)
− 2νk

σthi
sinh

(
σthi

2νk

)]
, (4.6)

e−
σt hi
2νk = A

2νk

σthi
sinh

(
σthi

2νk

)
−B

6νk

σthi

[
cosh

(
σthi

2νk

)
− 2νk

σthi
sinh

(
σthi

2νk

)]
. (4.7)

Solving this system, we obtain expressions for the spectral parameters A and B:

A =
σth
2νk

coth
(

σth
2νk

)
, (4.8)

B =
σth

6νk

[
coth

(
σt h
2νk

)
− 2νk

σt h

] . (4.9)

As it can be seen in eqs. (4.8 and 4.9), A and B depends on the eigenvalues νk. So, the basic
idea in the ELD-SN method is that the higher eigenvalue is independent of the spatial cell width

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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(hi). To attend this constraint, we fix k = 1 in eqs. (4.8 and 4.9), and we substitute the spectral
parameters in eq (4.1) thus obtaining

ψm,i(x) =
σth
2ν1

coth
(

σt h
2ν1

)
ψm,i +

2(x− xi)σt

6ν1

[
coth

(
σt h
2ν1

)
− 2ν1

σt h

] ψ̂m,i+

Qi

2σt,i (1− c0,i)

[
1− σth

2ν1
coth

(
σt h
2ν1

)]
.

(4.10)

The decision to preserve the dominant eigenvalue guarantees that all eigenvalues does not tend to
infinity or become complex for any hi value. In this sense, the proposed method presents a weak
dependence to spatial mesh dimensions if compared with another numerical approaches. Also, it
is important to note that numerical solution is completely free of spatial truncation errors for S2

angular quadrature order. This is because, in this case, we have two eigenvalues, ν1 =−ν2, then
in S2 problems all eigenvalues are preserved.

At this point, we obtain the iterative sweep equations of the source iteration scheme, for the ELD-
SN method. Note that, in our spatial mesh (see Fig. 1), the set of zeroth and first-order balance
eqs. (2.4 and 2.5) with boundary conditions eqs. (2.2), form an undetermined linear algebraic
system with 3NI+N unknowns (ψm,i±1/2, ψm,i, ψ̂m,i) and 2NI+N equations. In order to obtain
a full determined linear system, we need to add NI auxiliary equations (4.1) for each sweep. In
the µm > 0 sweep, when we compute the emergent angular fluxes in the right spatial cell edge,
eq. (4.10) is evaluated at xi+1/2. For the µm < 0 sweep, the computed emergent angular fluxes
appear in the left spatial cell edge, and eq. (4.10) is evaluated at xi−1/2. The result for each sweep
is

ψm,i±1/2 = Aψm,i±Bψ̂m,i +
(1−A)Qi

2σt,i (1− c0,i)
, (4.11)

considering the upper-sign for the right-to-left sweep, and the lower-sign for the left-to-right
sweep. To simplify the notation in eq. (4.11) we use the spectral parameters A and B from eqs.
(4.8, 4.9).

Now, we obtain the iterative sweep equation for the average neutron angular flux, substituting
eq. (4.11) into the zeroth order balance equation (2.4) and solve

ψm,i =

(
6B+

∣∣∣αx
m,i

∣∣∣)ψm,i∓1/2 +
∣∣∣αx

m,i

∣∣∣(3B+
∣∣∣αx

m,i

∣∣∣)[Si +
(A−C0,i)Qi

2σt,i (1−C0,i)

]
(

3B+
∣∣∣αx

m,i

∣∣∣)(A+
∣∣∣αx

m,i

∣∣∣)+B(6−3A)

∓
B
∣∣∣αx

m,i

∣∣∣[Ŝi−
3(1−A)Qi

2σt,i (1−C0,i)

]
(

3B+
∣∣∣αx

m,i

∣∣∣)(A+
∣∣∣αx

m,i

∣∣∣)+B(6−3A)
.

(4.12)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Finally, we get the iterative sweep equation for first-order moment of angular flux using eq. (4.11)
in the first-order balance equation (2.5). That is,

ψ̂m,i =

∣∣∣αx
m,i

∣∣∣(A+
∣∣∣αx

m,i

∣∣∣)[Ŝi−
3(1−A)Qi

2σt,i (1−C0,i)

]
(

3B+
∣∣∣αx

m,i

∣∣∣)(A+
∣∣∣αx

m,i

∣∣∣)+B(6−3A)

∓
(6−3A)

∣∣∣αx
m,i

∣∣∣[Si +
(A−C0,i)Qi

2σt,i (1−C0,i)

]
(

3B+
∣∣∣αx

m,i

∣∣∣)(A+
∣∣∣αx

m,i

∣∣∣)+B(6−3A)

±

(
3
∣∣∣αx

m,i

∣∣∣+6A−6
)

ψm,i∓1/2(
3B+

∣∣∣αx
m,i

∣∣∣)(A+
∣∣∣αx

m,i

∣∣∣)+B(6−3A)
.

(4.13)

Equations (4.11, 4.12 and 4.13) are used in the source iteration scheme for the ELD-SN method.
In these equations the upper-sign is used for the right-to-left sweep (µm > 0), and the lower-sign
for the left-to-right sweep (µm < 0). Using an approximation for scattering source we compute
the exiting fluxes in the right/left sweeps for each arbitrary spatial cell i, and also, for each angular
direction m, by following these three steps:

1. In eqs. (4.12 and 4.13) we use scattering source estimates (Si, Ŝi) and incident cell-edge
angular flux in the m−direction ψm,i∓1/2, to compute the average angular flux ψm,i and the
first-order moment of angular flux ψ̂m,i, respectively.

2. Then, auxiliary equation (4.11) and computed moments of angular flux are used to estimate
the exiting cell-edge angular flux ψm,i±1/2.

3. Finally, after finish the right and left sweeps, the stopping criterion is checked to finish the
iterative process or the scattering source moments eqs. (2.7 and 2.9) are updated for the
next iteration.

In order to quantify the computational cost of each method, we use the definition made by De
Barros (1990) [1] for the flop (floating point operation). In the DD method, the amount of work
required by the SI-scheme for one spatial cell is approximately 4(N+2) flops and for LD method,
is about 8(N+3). This flop count only considers the floating-point operations necessary to evalu-
ate the exiting cell-edge angular flux in one direction, including the scattering source calculation
as the transport sweeping is performed. We notice, that as the quadrature order N increases, the
amount of work required by the LD method per direction and per iteration is approximately two
times greater than the amount of work required by the DD method [1].

De Barros (1990) also reported that the amount of work required by the SGF method with the
NBI scheme is 2[N(N+2)+4] flops. It is important to notice that this flop count does not include
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the preliminary calculations necessary in this method, for example, calculation of the eigenvalues
and the node-average Green´s function matrices.

On the other hand, the amount of computational work demanded by the proposed ELD-SN
method with the SI scheme is the same that the LD method, which is 8(N + 3) flops. So, the
computational cost per direction and per iteration is significantly less than the amount of work
required by the SGF method.

5 NUMERICAL RESULTS AND DISCUSSION

In this section, we solved a numerical benchmark to illustrate the accuracy and performance of
the developed ELD-SN hybrid method. Then, we compared this method with the DD, LN and
SGF methods on a heterogeneous domain.

The benchmark problem was adapted from Barros (1990) [7]. It is a heterogeneous slab 0 ≤
x ≤ 100 divided into three regions without external source (Q = 0). The boundary conditions,
geometry and material regions parameters are shown in figure 2. We use four quadrature sets (S2,
S8, S16 and S32) and different spatial meshes to obtain the numerical solutions. In tables 1 and 2
we show the scalar flux at the region interfaces, the iteration number, the maximum deviation (δ ),
execution time (CPU) and the relative cost efficiency (κ). To calculate the relative deviation we
used as the reference solution, the results of SGF method for a fine mesh (2000× 5000× 3000
cells). The relative efficiency was proposed by [5] as a ratio between CPU time consumed by
each method and CPU time used to generate SGF comparable results (differences less than 5%
at any mesh point) on the same computer. The convergence number to stop the iterative process
was 1E−08.

Figure 2: Heterogeneous benchmark problem used to compare the proposed ELD-SN method
with DD, LN and SGF methods.

In Table 1, we can observe that SFG and ELD-SN methods are completely free of spatial trunca-
tion errors for S2 quadrature, this means that the numerical results do not depend on the spatial
mesh. In this quadrature order the spectrum has only two elements, and these are the eigenvalues
and their eigenfunctions, which are preserved for all hi values.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Table 1: Numerical results for the benchmark problem with S2 and S8 quadratures.

Met. Mesh X = 20 X = 70 Iter δ (%) CPU (s) κ

S2 quadrature
16Ma 9.3369e-06b 1.1045e-18 353 3.80e-02 2.25e+00 22.0

DD 4M 8.4298e-06 7.1176e-19 356 4.68e-01 5.84e-01 -
M 8.1057e-07 1.3127e-23 449 1.03e+00 1.83e-01 -

16M 9.3981e-06 1.1360e-18 352 7.73e-04 2.93e+00 28.7
LD 4M 9.3155e-06 1.1010e-18 353 4.39e-02 7.52e-01 7.35

M 5.9930e-06 2.0222e-19 368 9.08e-01 1.92e-01 -

ELD-
SN

16M 9.3996e-06 1.1366e-18 352 < 1.0e-08 2.70e+00 26.4
4M 9.3996e-06 1.1366e-18 353 < 1.0e-08 6.82e-01 6.67
M 9.3996e-06 1.1366e-18 357 < 1.0e-08 1.86e-01 1.81

16M 9.3996e-06 1.1366e-18 83 0 3.75e+00 36.7
SGF 4M 9.3996e-06 1.1366e-18 64 0 7.07e-01 6.91

M 9.3996e-06 1.1366e-18 37 0 1.02e-01 1.00
S8 quadrature

16M 1.2559e-05 8.5630e-17 330 2.82e-02 4.49e+00 6.08
DD 4M 1.1477e-05 6.3293e-17 332 3.72e-01 1.12e+00 -

M 2.7522e-03 3.6120e-08 159 5.21e+13 1.52e-01 -
16M 1.2632e-05 8.7318e-17 330 4.98e-04 6.01e+00 8.14

LD 4M 1.2545e-05 8.5723e-17 330 2.84e-02 1.51e+00 2.05
M 8.7954e-06 3.1527e-17 340 7.81e-01 3.92e-01 -

ELD-
SN

16M 1.2634e-05 8.7346e-17 330 1.66e-04 5.77e+00 7.81
4M 1.2636e-05 8.7386e-17 330 5.17e-03 1.42e+00 1.93
M 1.2618e-05 8.7550e-17 332 3.89e-02 3.64e-01 0.49

16M 1.2634e-05 8.7345e-17 75 0 2.94e+01 39.8
SGF 4M 1.2634e-05 8.7345e-17 54 0 5.31e+00 7.20

M 1.2634e-05 8.7345e-17 31 0 7.38e-01 1.00
aM = 8×20×12 meshes

In addition, analyzing tables 1 and 2 for higher quadrature orders, we see that the DD, LD and
ELD-SN results converge to the reference solution when the spatial mesh becomes finer. How-
ever, the SGF results are free of spatial truncation errors. The proposed method is more accurate
than the DD and LD methods but is not free from spatial truncation error. This is because the two
higher eigenvalues are preserved for all hi but the N− 2 remaining eigenvalues are not. Similar
behavior has been observed in Larsen (1986), who implemented the Extended Diamond Differ-
ence method [18]. We remark that for higher order quadrature calculations the ELD-SN generates
more accurate results than the DD and the LD methods, with respect to the SGF results.
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Table 2: Numerical results for the benchmark problem with S16 and S32 quadratures.

Met. Mesh X = 20 X = 70 Iter δ (%) CPU (s) κ

S16 quadrature
16M 1.2539e-05 8.5637e-17 330 2.83e-02 7.56e+00 2.78

DD 4M 1.1459e-05 6.3302e-17 333 3.73e-01 1.91e+00 -
M 7.3003e-03 3.3784e-05 155 5.49e+17 2.30e-01 -

16M 1.2612e-05 8.7327e-17 330 5.94e-04 1.06e+01 3.91
LD 4M 1.2525e-05 8.5736e-17 330 2.87e-02 2.60e+00 0.96

M 8.7709e-06 3.1529e-17 340 7.81e-01 6.70e-01 -

ELD-
SN

16M 1.2614e-05 8.7356e-17 330 7.54e-04 9.98e+00 3.67
4M 1.2617e-05 8.7406e-17 330 6.85e-03 2.57e+00 0.94
M 1.2597e-05 8.7573e-17 332 3.60e-02 6.30e-01 0.23

16M 1.2614e-05 8.7352e-17 73 0 1.03e+02 37.8
SGF 4M 1.2614e-05 8.7352e-17 53 0 1.86e+01 6.83

M 1.2614e-05 8.7352e-17 31 0 2.72e+00 1.00
S32 quadrature

16M 1.2535e-05 8.5628e-17 330 2.83e-02 1.38e+01 1.32
DD 4M 1.1868e-05 6.3255e-17 333 3.89e-01 3.50e+00 -

M 9.5642e-03 5.4869e-04 154 2.74e+19 4.20e-01 -
16M 1.2608e-05 8.7318e-17 330 1.30e-03 1.91e+01 1.84

LD 4M 1.2519e-05 8.5726e-17 330 2.87e-02 4.78e+00 0.46
M 8.7631e-06 3.1519e-17 340 7.81e-01 1.25e+00 -

ELD-
SN

16M 1.2610e-05 8.7348e-17 330 1.72e-03 1.82e+01 1.74
4M 1.2612e-05 8.7401e-17 330 6.34e-03 4.58e+00 0.44
M 1.2592e-05 8.7569e-17 332 3.51e-02 1.16e+00 0.11

16M 1.2609e-05 8.7343e-17 72 0 3.87e+02 37.2
SGF 4M 1.2609e-05 8.7343e-17 53 0 7.10e+01 6.82

M 1.2609e-05 8.7343e-17 31 0 1.04e+01 1.00

We observe that regarding the CPU time reported in tables 1 and 2, the proposed ELD-SN gener-
ates accurate results using less CPU time than the other methods. This behavior is confirmed by
its relative efficiency parameter that reports values lower than 1 for coarser meshes and higher
quadratures. If we consider computational performance for one-sweep iteration (See section 4),
ELD-SN has a similar computational cost as DD and LD methods, also, it is cheaper than the
SGF method. Besides, it can be noticed in these tables, that the SI scheme requires more trans-
port sweeps than the NBI scheme, the same behavior reported by De Barros and Larsen (1990)
[6] when they analyzed these two iteration schemes. If we use convergence acceleration methods
as it is described in [19, 16], the iteration sweep number in SI scheme would be significantly re-
duced, consequently, the computational performance of the ELD-SN method could be improved.
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Finally, the ELD-SN method shows better computational performance that the SGF method for
higher order quadratures on coarse mesh calculations, considering the same spatial mesh.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we present the ELD-LN method to solve fixed source problems of neutron transport
using, as the mathematical model, the one-group discrete ordinates formulation in slab geometry
with isotropic scattering. The fundamental idea behind this method is to partially preserve the
analytic general solution inside the spatial cell by introducing two spectral parameters in the
linear auxiliary equations. Thus, this method can combine the spectral nodal methods’ accuracy
with the linear approximation’s simplicity.

Analysing the results, we observe that for S2 quadrature the ELD-SN method is free of spatial
truncation errors, however, for other quadratures is not. Even so, the method is more accurate than
the DD and LD methods and also, generates good results in problems with strong flux gradients.
If compared with the SGF method, the ELD-SN method generates the same numerical results for
S2 quadrature, and for the other quadratures, the results are very close.

The proposed method, based on the SI sweep scheme, is simpler than the SGF method. Also, it
presents a satisfactory computational performance, surpassing the SGF method for the same spa-
tial grid. Nevertheless, the ELD-SN method is not free of spatial truncation error, as is in the SGF
method. The mesh independence of the SGF allows it to generate accurate solutions with only
a spatial cell per region. For that reason, in slab geometries, SGF offers a better computational
performance than the ELD-SN method.

Knowing that there is several analytical, semi-analytical and numerical methodologies to solve
discrete ordinates problems in slab geometry [28, 26, 5, 27, 22], the main contribution of this
work is to explore the hybrid spectral nodal methods in the solution of SN formulation using
an elementary problem. So, we establish the bases to extend this simpler approach to more com-
plex scenarios as multi-group problems, anisotropic mediums, and multidimensional geometries,
where its simplicity and computational performance improvement would be relevant.

In the multi-group approach, we will consider slab geometries and in the multidimensional case,
the X ,Y -Cartesian geometry. In both cases, the spectrum cardinality of the SN equations in-
creases. As the ELD-SN method just preserves two spectral elements, the method approximation
is rougher. We can improve the approximation by increasing the finite element polynomial order.
That is, extending the method to cubic discontinuous (CD); fifth-degree discontinuous (5D), etc.
The CD method will be able to preserve four elements of the kernel, the 5D should preserve six;
and so forth. To extend ELD-SN method to anisotropic problems we should introduce the corre-
sponding terms in the scattering source and reproduce the mathematical procedure described in
sections 2, 3 and 4.
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RESUMO. Atualmente, a obtenção de uma solução numérica precisa para problemas de
fonte fixa em ordenadas discretas é relevante em muitas áreas da engenharia e das ciências.
Neste trabalho, estendemos o método hı́brido Elementos Finitos-Espectro Nodal (FEM-
SGF), que foi originalmente desenvolvido para resolver problemas de autovalores de di-
fusão, para problemas de fonte fixa usando a formulação de ordenadas discretas em um
grupo de energia, dispersão isotrópica e geometria Cartesiana unidimensional. Este novo
método Linear Descontı́nuo Extendido-Ordenadas Discretas(ELD-SN) baseia-se no uso
das equações do balanço de nêutrons e na construção de uma equação auxiliar hı́brida.
A equação auxiliar combina uma aproximação descontı́nua linear com parâmetros espec-
trais para aproximar o fluxo angular de nêutrons dentro da célula. São oferecidos resul-
tados numéricos de problemas modelo para ilustrar e comparar a precisão e o desem-
penho computacional do método proposto. O método ELD-SN mostrou-se livre de erros
de truncamento espacial na quadratura S2 e gerou bons resultados nos demais conjuntos de
quadratura. Este método é mais preciso do que os métodos convencionais Diamond Differ-
ence (DD) e Linear Discontinuous (LD), mas é superado em precisão pelo Método Espectro
Nodal (SGF) para quadraturas maiores que S2.

Palavras-chave: problemas de fonte fixa, formulação de ordenadas discretas, método
hı́brido, linear descontı́nuo, parâmetros espectrais.
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