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FACTORIZATION THROUGH LORENTZ SPACES FOR OPERATORS

ACTING IN BANACH FUNCTION SPACES

E. A. SÁNCHEZ PÉREZ

Abstract. We show a factorization through Lorentz spaces for Banach-space-valued oper-

ators defined in Banach function spaces. Although our results are inspired in the classical

factorization theorem for operators from Ls-spaces through Lorentz spaces Lq,1 due to Pisier,

our arguments are different and essentially connected with Maurey’s theorem for operators

that factor through Lp-spaces. As a consequence, we obtain a new characterization of

Lorentz Lq,1-spaces in terms of lattice geometric properties, in the line of the (isomorphic)

description of Lp-spaces as the unique ones that are p-convex and p-concave.

1. Introduction

A well-known relevant fact in the theory of Banach lattices establishes that a Banach func-

tion space over a measure µ that is both p-convex and p-concave, is isomorphic to Lp(gdµ)

for a certain measurable function g. This fact is related to some classical results on Banach

lattices, and an easy proof can be given by applying the so called Maurey-Rosenthal factor-

ization of operators (see [3, 4, 9]) to the identity map in the space (see [7, 9, 11, 14]). As in

the case of Lp-spaces over a measure µ, in this paper we are concerned with the description

of the lattice-geometric-type properties that characterize Lorentz spaces. The main results

on factorization of operators through Lorentz spaces are due to Pisier, and can be found

in [13]. Some generalizations for the case of sublinear operators are also known (see [1]).

More results in this direction can be found in the paper [6] of Kalton and Montgomery-Smith

although the underlying techniques in it are essentially different, since this paper is based

on some domination results among scalar valued capacities and measures. In our case, we

use for solving the problem a separation argument that is also applied in some of the papers

mentioned above. Some ideas of Masty lo and Szwedek presented in [10] has also influenced

the present paper.

The starting point of our analysis is given by the results by Pisier in [13], in which there

is a characterization of the operators from an Ls-space that factor through a Lorentz space

Lq,1 ([13, Theorem 2.1]). We use a different procedure for showing a different factorization

theorem for operators acting in general order continuous Banach function spaces. Concretely,

we show that a factorization through a Lorentz space Lq,1 is equivalent to a concavity-type

inequality, different than the one proposed by Pisier. This kind of arguments have been used
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2 E A. SÁNCHEZ PÉREZ

in [9] for the case of Orlicz spaces; some related ideas involving Lorentz spaces can also be

found in [4].

In the final part of the paper, using the previously obtained factorization and asking for an

additional convexity-type requirement, we give the following characterization of the Lorentz

spaces Lq,1 (Theorem 4.3).

A Banach function space X(µ) is isomorphic to a Lorentz space Lq,1(λ) via the identifica-

tion map —where µ and λ are equivalent— if there are a Banach function space Z(λ) over

λ and constants K,Q > 0 such that

(1) for every f1, ..., fn ∈ L∞(µ),( n∑
i=1

‖fi‖qX(µ)

)1/q
≤ K

∥∥∥ n∑
i=1

|fi|‖fi‖q−1
L∞(µ)

∥∥∥1/q

Z(λ)
,

and

(2) there is an L1-space L associated to λ such that for all f ∈ L∞(λ) there are f1, ..., fn ∈
L∞(λ) such that

∑n
i=1 fi = f and∥∥∥ n∑

i=1

|fi|
(
‖fi‖L∞/‖fi‖L

)1/q′ ∥∥∥
L
≤ Q‖f‖X(µ).

Actually, the space Z(λ) in (i) can be chosen to be X(µ). Thus, both inequalities appearing

in this result play the role of q-concavity —the first one— and q-convexity —the second one—

in the characterization of Lq-spaces: they are the lattice-geometric counterpart for the case

of Lorentz spaces.

2. Preliminaries

Through all the paper (Ω,Σ, µ) will be a finite measure space. We say that (X(µ), ‖·‖X(µ))

is a Banach function space over µ (Köthe function space in the terminology of [8, p.28]) if it

is a Banach lattice with the µ-a.e order that is an ideal of L0(µ) —the space of µ-measurable

functions—, satisfying that

L∞(µ) ⊆ X(µ) ⊆ L1(µ).

Note that since all the spaces involved are Banach lattices these inclusions are continuous.

We write X(µ)+ for the positive cone of the lattice X(µ). If λ is other measure defined on

the measurable space (Ω,Σ), we say that λ is equivalent to µ —and we write λ ∼ µ— if they

have the same null sets.

Some fundamental geometric properties for Banach function spaces —that are defined in

fact for general Banach lattices— are the q-concavity and the q-convexity. A Banach space

valued operator T : X(µ)→ E is q-concave if there exists C > 0 such that( n∑
i=1

‖T (fi)‖qE
)1/q

≤ C
∥∥∥( n∑

i=1

|fi|q
)1/q ∥∥∥

X

for f1, . . . , fn ∈ X(µ). The Banach function space X(µ) is p-convex if there is a constant Q

such that ∥∥∥( n∑
i=1

|fi|p
)1/p ∥∥∥

X
≤ Q

( n∑
i=1

‖fi‖pX
)1/p
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for x1, . . . , xn ∈ X(µ). The reader can find all the information that would be needed about

Banach lattices and Banach function spaces in [8, Ch. 1.d] or [12, Ch.2].

The Köthe dual —or associate space— X(µ)′ of a Banach function space X(µ) is the

subspace of the dual space X(µ)∗ defined by the functionals that can be represented by

integrals. This means that are these elements of the dual space for which there is a measurable

(class of) function(s) g ∈ L0(µ) such that f 7→
∫
fg dµ for all f ∈ X(µ). We will say that

X(µ) is order continuous if for every fn ∈ X such that 0 ≤ fn ↑ f ∈ X(µ) µ-a.e., we have

that fn → f in norm. It is well known that a Banach function space X(µ) is order continuous

if and only if the dual space X(µ)∗ coincides with the Köthe dual X(µ)′ ([8, p.28]).

Let 1 ≤ p. The p-th power X(µ)[p] of a Banach function space X(µ) is defined as the set

of functions

X(µ)[p] := {f ∈ L0(µ) : |f |1/p ∈ X(µ)}.

It is a quasi-Banach space with the quasi-norm ‖ · ‖X(µ)[p] := ‖| · |1/p‖pX(µ) that is in fact

equivalent to a norm if X(µ) is p-convex (see [12, Ch.2]).

We will consider classical Lorentz function spaces, that are a particular example of (quasi)-

Banach function spaces. Let 1 ≤ q <∞. The norm in the Lorentz space Lq,1(µ) is given by

the expression

‖f‖q,1 :=

∫ µ(Ω)

0
t(1/q)−1 f∗(t) dt, f ∈ Lq,1(µ),

where f∗ : [0, 1]→ R is the decreasing rearrangement of f defined as

t 7→ inf{s > 0 : µ(|f | > s) ≤ t}.

For a simple function f =
∑n

i=1 αiχAi , where Ai, i = 1, ..., n are disjoint measurable sets

and |α1| ≥ |α2| ≥ ... ≥ |αn|, the Lorentz (q, 1)-norm can be computed by

‖f‖q,1 := q
n∑
i=1

|αi|(t1/qi − t1/qi−1),

where ti := µ(∪ik=1Ak), i = 1, ..., n (see for example the proof of Theorem 10.9 in [5]; see also

[6, §3]).

The spaces Lq,1(µ) are not p-convex for any p > 1 (see [3, p.159]). There is a well-known

representation formula using real interpolation spaces (see [2]) for the family of classical

Lorentz spaces of functions on the Lebesgue measure space ([0, 1],B([0, 1]), µ). Suppose that

1 ≤ p0, p1 such that p0 6= p1, and suppose that 1 ≤ r and 0 < σ < 1. We define p by the

formula 1/p = (1−σ)/p0 +σ/p1. Then, for every 1 ≤ q0, q1, we have (Lp0,q0 , Lp1,q1)σ,r = Lp,r.

Although we are not explicitly using this formula in the present paper, it suggests how

interpolated spaces are related for the case q0 = q1 = r = 1: real interpolation of spaces with

parameters σ, 1 gives a Lorentz space with second index equal to 1 too.

3. Factorizations of operators acting in Banach function spaces through

Lorentz spaces

If (Ω,Σ, µ) is a finite measure space, let X(µ) and Y (µ) be two Banach function spaces

which satisfy that simple functions S(µ) are dense in them. Note that this happens in

particular if they are order continuous.
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Lemma 3.1. Let 1 ≤ s ≤ q. Let µ be a finite measure. Let X(µ) be an order continuous

s-convex Banach function space and T : X(µ)→ E an operator. Assume also that Y (µ) is a

Banach function space included in X(µ) in which simple functions are dense. The following

assertions are equivalent.

(i) For f1, ..., fn ∈ Y (µ),( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥( n∑

i=1

|fi|‖fi‖q−1
Y (µ)

)1/s∥∥∥s/q
X(µ)

.

(ii) There is a non-negative function g0 ∈ B(X(µ)[s])
′ such that

‖T (f)‖ ≤ K
( ∫

Ω
|f | g0 dµ

)1/q ‖f‖1/q′Y (µ), f ∈ X(µ) ∩ Y (µ).

Moreover, the function g0 appearing in (ii) can be assumed to satisfy g0 > 0 by changing the

constant K by K + ε if necessary.

Proof. (i) ⇒ (ii) First note that, since the measure µ is finite and 1 ≤ s we have that

X(µ) ⊆ X(µ)[s] (see [12, Lemma 2.21]). A standard separation argument gives the result

(see for example the proof of Theorem 1 in [9]). Indeed, since X(µ) is s-convex, we can

consider the s-th power X(µ)[s], which is a Banach function space (see [12, Proposition 2.23])

after the convexification of the quasi-norm ‖·‖X(µ)[s] := ‖ |·|1/s ‖sX(µ), that gives an equivalent

norm. In fact, it is a norm is the s-convexity constant of the space is equal to 1. For fixed

functions f1, ..., fn ∈ L∞(µ), the inequality in (i) can then be rewritten as( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥ n∑
i=1

|fi|‖fi‖q−1
Y (µ)

∥∥∥1/q

X(µ)[s]
. (3.1)

Note that, since X(µ) is order continuous, X(µ)[s] is so and then the dual of this space is

defined by integrable functions. Consider the functions φ : B(X(µ)[s])
′ → R given by

φ(g) :=

n∑
i=1

‖T (fi)‖q −Kq

∫
Ω

n∑
i=1

|fi| ‖fi‖q−1
Y (µ) g dµ.

All the requirements for applying Ky Fan’s Lemma to the family of all such functions φ are

satisfied, as can be easily checked. The inequality (3.1) is used for proving, using Hahn-

Banach Theorem, that for every φ there is a function gφ such that φ(gφ) ≤ 0. We can assume

that the final function g0 provided by Ky Fan’s Lemma is non-negative

The converse implication (ii) ⇒ (i) is given by a direct computation.

Finally, note that all the computations still work —also the ones for the converse implication—

if we change g0 by the normalization of the function 0 < εg0 + (1− ε)χΩ, for ε as small as we

want. Note also that the new function is still in (X(µ)[s])
′ due to the inclusion X(µ)[s] ⊆ L1(µ)

–and then L∞(µ) ⊆ (X(µ)[s])
′, that holds by the s-convexity of X(µ). �

Remark 3.2. Let Y (µ) be a Banach function space in which simple functions are dense and

such that Y (µ) ⊆ X(µ), with the norm of the inclusion being equal to 1. Let 0 ≤ g ∈ BX(µ)′

and 0 ≤ σ < 1. Consider the functional Ψ1,σ,g : Y (µ)→ R+ defined by

Ψ1,σ,g(f) :=
(∫

Ω
|f |gdµ

)σ
· ‖f‖1−σY (µ), f ∈ Y (µ),
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and consider its convexification, that gives the seminorm

‖f‖1,σ,g := inf
{ n∑
i=1

Ψ1,σ,g(fi) :
n∑
i=1

fi = f
}

(3.2)

= inf
{ n∑
i=1

(∫
Ω
|fi|gdµ

)σ
· ‖fi‖1−σY (µ) :

n∑
i=1

fi = f
}
,

f, f1, ..., fn ∈ Y (µ). Note that

‖f‖L1(gdµ) ≤ ‖f‖1,σ,g ≤ ‖f‖Y (µ), f ∈ Y (µ),

and so ‖ · ‖1,σ,g is a norm whenever g > 0. Note also that due to the inclusion in L1(gdµ) of

the normed space (Y (µ), ‖ · ‖1,σ,g), we can say that the completion of this space is again a

function space. Indeed, the convergent limit of a sequence of functions in it converges to a

measurable function f also in L1(gdµ), and so there is a subsequence that converges µ-a.e.

to f , what allows to identify the limit with the function f . Let us write {Y (µ), L1(µ)}1,σ,g
for this space (g > 0) with the norm ‖ · ‖1,σ,g. Note that simple functions are dense in it.

By the construction, the space {Y (µ), L1(µ)}1,σ,g can be identified with the real interpola-

tion space (Y (µ), L1(gdµ))σ,1. However, due to the simplicity of the description given by the

formula (3.2), we prefer to use it for the computations of this section. In the next section the

description as a real interpolation space will be relevant, since this will be the link with the

Lorentz spaces Lq,1(µ).

Following the same ideas, we can consider the following general definition: if Y (µ) and

Z(µ) are Banach function spaces and Y (µ) ⊆ Z(µ), we define the space {Y (µ), Z(µ)}1,σ as

the Banach function space given by the completion of the normed space Y (µ) with the norm

‖f‖{Y (µ),Z(µ)}1,σ := inf
{ n∑
i=1

‖fi‖σZ(µ) · ‖fi‖
1−σ
Y (µ) :

n∑
i=1

fi = f
}
, fi, f ∈ Y (µ).

Proposition 3.3. Let 1 ≤ s ≤ q. Let µ be a finite measure and Y (µ) a Banach function space

over µ in which simple functions are dense. Let X(µ) be an order continuous s-convex Banach

function space containing Y (µ) (norm of the inclusion equal to 1) and let T : X(µ) → E be

an operator. The following statements are equivalent.

(i) For f1, ..., fn ∈ Y (µ),( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥( n∑

i=1

|fi|‖fi‖q−1
Y (µ)

)1/s∥∥∥s/q
X(µ)

.

(ii) There is a function 0 < g0 ∈ B(X(µ)[s])
′ such that T : {Y (µ), X(µ)[s]}1,σ → E is well

defined and factors through the space {Y (µ), L1(µ)}1,σ,g0 as

{Y (µ), X(µ)[s]}1,σ
T //

i
��

E,

{Y (µ), L1(µ)}1,σ,g0
T0

77

where σ = 1/q and T0 is a continuous operator.
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Proof. For (i) ⇒ (ii), note first that by [12, Lemma 2.21] we have that X(µ) ⊆ X(µ)[s], and

X(µ) is dense in X(µ)[s] by the order continuity of these spaces. By Lemma 3.1 we have that

the inequality in (i) gives a positive function g0 such that the inequality

‖T (f)‖ ≤ K
( ∫

Ω
|f | g0 dµ

)1/q ‖f‖1/q′Y (µ)

holds for all f ∈ Y (µ) “up to an ε” (that is, changing K by K + ε if necessary). Taking into

account Remark 3.2, this gives

‖T (f)‖E ≤ K‖f‖1,σ,g, f ∈ Y (µ).

Since X(µ) ⊆ X(µ)[s] and g0 ∈ (X(µ)[s])
′, we have that for σ = 1/q

‖f‖1,σ,g0 ≤ ‖g0‖σ(X(µ)[s])
′ ‖f‖σX(µ)[s]

‖f‖1−σY (µ), f ∈ Y (µ).

Using the density of the space Y (µ) in X(µ)[s], and convexifying this inequality, we get

‖f‖1,σ,g0 ≤ ‖g0‖σ(X(µ)[s])
′ ‖f‖{Y (µ),X(µ)[s]}1,σ

for all f ∈ {Y (µ), X(µ)[s]}1,σ. Note that this implies in particular that T is well-defined as

an operator from {Y (µ), X(µ)[s]}1,σ to E.

The converse is given by a straightforward calculation using the continuity of the factor-

ization and the density of Y (µ) in all the spaces involved. �

To extreme cases are relevant in the Proposition 3.3: the case Y (µ) = X(µ) and the case

Y (µ) = L∞(µ). The first one gives the following results. The second one will be analyzed in

the next section.

Corollary 3.4. Let 1 ≤ s ≤ q, µ a finite measure and let X(µ) be an order continuous s-

convex Banach function space. Let T : X(µ) → E be an operator. The following statements

are equivalent.

(i) For f1, ..., fn ∈ X(µ),( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥( n∑

i=1

|fi|‖fi‖q−1
X(µ)

)1/s∥∥∥s/q
X(µ)

.

(ii) There is a function 0 < g0 ∈ B(X(µ)[s])
′ such that T factors as

X(µ)
T //

i
��

E,

{X(µ), X(µ)[s]}1,σ
i
// {X(µ), L1(µ)}1,σ,g0

T0

OO

where σ = 1/q, the “i”s are inclusion maps and T0 is a continuous operator.

Corollary 3.5. Let 1 ≤ q, µ a finite measure and let X(µ) be an order continuous Banach

function space. Let T : X(µ)→ E be an operator. The following statements are equivalent.

(i) For f1, ..., fn ∈ X(µ),( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥ n∑
i=1

|fi|‖fi‖q−1
X(µ)

∥∥∥1/q

X(µ)
.
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(ii) There is a function 0 < g0 ∈ BX(µ)′ such that T factors as

X(µ)
T //

i
��

E,

{X(µ), L1(µ)}1,1/q,g0
T0

66

where i is an inclusion map and T0 is a continuous operator.

Example 3.6. Let 1 < q and X(µ) = Y (µ) = Lq(µ). Then we have that an operator T :

Lq(µ)→ E that satisfy the inequalities( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥ n∑
i=1

|fi|‖fi‖q−1
Lq(µ)

∥∥∥1/q

Lq(µ)

= K
(∫

Ω

[ n∑
i=1

|fi| ·
( ∫

Ω
|fi|qdµ

)1/q′]q
dµ
)1/q

,

f1, ..., fn ∈ X(µ), factors through the space {Lq(µ), L1(µ)}1,1/q,g0 for a certain g0 ∈ Lq
′
(µ).

Using the well-known representation formulas for the real interpolation of Lp-spaces, we

obtain that this space coincides with the real interpolation space (Lq(µ), L1(g0 dµ))1/q,1. For

example, if µ is Lebesgue measure in [0, 1] and g0 = χ[0,1], we have that the factorization

space is the Lorentz space Lp,1[0, 1], for p = (q′ + q)/(q′ + 1).

This inequality is different —but of course equivalent— to the one given in Theorem 2.1

of the paper [13] of Pisier.

Example 3.7. Suppose now that Y (µ) = X(µ) is an order continuous Banach function space,

and consider the identity map T = i : X(µ)→ X(µ). Suppose that the inequalities( n∑
i=1

‖fi‖q
)1/q

≤ K
∥∥∥ n∑
i=1

|fi|‖fi‖q−1
X(µ)

∥∥∥1/q

X(µ)
,

f1, ..., fn ∈ X(µ), hold for each finite set of functions. They are equivalent, by Corollary 3.5,

to a factorization through an interpolation space. The continuity of the first arrow in this

scheme gives the inequality

‖f‖X(µ) ≤ K1

(∫
Ω
|f | g dµ

)1/q ∥∥f∥∥1/q′

X(µ)
, f ∈ X(µ),

where g ∈ B(X(µ))′ . We then have
∫

Ω |f | g dµ ≤ ‖g‖(X(µ))′ ‖f‖X(µ) ≤ ‖f‖X(µ), and so

‖f‖X(µ) ≤ K1

(∫
Ω
|f | g dµ

)1/q ∥∥f∥∥1/q′

X(µ)
≤ K1 ‖f‖1/qX(µ) ‖f‖

1/q′

X(µ) = K1 ‖f‖X(µ),

f ∈ X(µ). Therefore,

‖f‖X(µ) ≤ K
q
1

∫
Ω
|f | g dµ ≤ Kq

1 ‖f‖X(µ), f ∈ X(µ).

This gives that X(µ) = L1(gdµ) isomorphically. Reading the same inequalities other way

round we get that the converse is also true. Note also that a direct calculation on the original

inequality shows that this requirement is equivalent to 1-concavity.
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4. Geometric characterization of the Lorentz spaces Lq,1

A fundamental result in the theory of Banach spaces is the characterization of the Lp-

spaces in terms of the geometric inequality that it satisfies. Having the roots in the classical

theory developed by Kakutani, and due to more recent contributions by Krivine, Rosenthal,

Maurey and Reisner, among others, this characterization can be written as follows: if X(µ)

is a Banach function space such that it is q-convex and q-concave, then X(µ) is the space

Lq(g dµ), where g is a measurable function such that |f |qg ∈ L1(µ) for all f ∈ X(µ).

In this section we show which are the geometric inequalities that provide the equivalent

result for the case of the Lorentz function spaces Lq,1(µ). In order to do it we use the re-

sults previously obtained for the case Y (µ) = L∞(µ) in Proposition 3.3. After Section 3,

the attentive reader has already noticed the type of inequalities —extending the notions of

q-convexity and q-concavity— that may occur in this context. However, we will need to

introduce stronger versions of the properties provided in the previous section for giving a

complete characterization of Lorentz spaces by means of lattice-geometric inequalities.

Throughout the section note that we are just proving the results for functions in L∞(µ).

The reason is that we are always assuming that simple functions are dense in all the spaces

appearing in it: order continuous Banach function spaces and L∞-spaces.

Lemma 4.1. Let X(µ) be an order continuous Banach function space over the finite measure

µ. Consider another finite measure λ such that λ ∼ µ and another Banach function space

Z(λ). Let T : X(µ)→ E be an operator. The following assertions are equivalent.

(i) For f1, ..., fn ∈ L∞(µ),( n∑
i=1

‖T (fi)‖q
)1/q

≤ K
∥∥∥ n∑
i=1

|fi|‖fi‖q−1
L∞(µ)

∥∥∥1/q

Z(λ)
. (4.1)

(ii) There is a function g0 ∈ B(Z(µ))′ such that for each f ∈ L∞(µ),

‖T (f)‖ ≤ K
(∫

Ω
|f |g0dλ

)1/q ∥∥f∥∥1/q′

L∞(µ)
.

Proof. Note that L∞(µ) = L∞(λ), and so L∞(µ) ⊆ Z(λ) due to the fact that Z(λ) is a

Banach function space. The same proof that works in the case of Lemma 3.1 —for s = 1,

Y (µ) = L∞(µ) and changing B(X(µ))′ by B(Z(µ))′— is also valid in this case. �

Remark 4.2. If X(µ) is an order continuous Banach function space, consider the identity

map i : X(µ)→ X(µ) and suppose that (4.1) holds for it. Let us show that in this case the

(continuous) inclusion Lq,1(λ) ↪→ X(µ) holds, where λ(A) =
∫
A g0dµ, A ∈ Σ.

First notice that a direct application of Lemma 4.1 for the identity map and the convexity

of the norm of X(µ) give the inclusion of the space

{L∞(µ), L1(µ)}1,1/q,g0

in X(µ). This is a consequence of the fact that simple functions are dense in both spaces,

and for such a function ‖f‖X(µ) ≤ K‖f‖1,1/q,g0 . Note that g0 > 0, since otherwise we should

find a measurable set A0 such that µ(A0) > 0 and
∫
A0
g0dµ = 0. This would give by the
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domination that for a non-null function fχA0 ,
∫

Ω fχA0g0dµ = 0 and so ‖fχA0‖X(µ) = 0, a

contradiction. This gives the injectivity of the identification map.

Now we just need to show that the domination appearing in Lemma 4.1 —equivalently,

the domination by the norm of {L∞(µ), L1(µ)}1,1/q,g0— implies the domination by Lq,1(λ).

It is just a direct calculation; we follow the one given in the proof of Theorem 10.9 in [5].

First note that, due to the fact that g0 > 0 we have that L∞(µ) = L∞(g0dµ). Recall that for

disjoint sets Ai ∈ Σ, i = 1, ..., n, and scalars |α1| ≥ |α2| ≥ ... ≥ |αn|, the norm of the simple

function f =
∑n

i=1 αiχAi in the the Lorentz (q, 1)-norm is given by

‖f‖q,1 := q
n∑
i=1

|αi|(t1/qi − t1/qi−1),

where ti := λ(∪ik=1Ak), i = 1, ..., n. Note also that we can write a representation of f as

f =

n−1∑
i=1

((
|αi| − |αi−1|

)(∑
j≤i

(αj/|αj |)χAj
))

+ |αn|
( n∑
j=1

(αj/|αj |)χAj
)
.

Together with the triangle inequality for the norm ‖ · ‖X(µ) and using the domination given

by Lemma 4.1, it can be easily seen that there is a constant K > 0 such that

‖f‖X(µ) ≤ K
(( ∑

i≤n−1

(|αi| − |αi+1|)t1/qi

)
+ |αn|t1/qn

)

= K
( n∑
i=1

|αi|(t1/qi − t1/qi−1)
)

=
K

q
‖f‖Lq,1(λ).

Since this holds for simple functions, we get the result.

Note that we have shown in particular that if g0 > 0, then

‖f‖{L∞(µ),L1(µ)}1,1/q,g0
≤ ‖f‖Lq,1(λ)

for all functions in Lq,1(λ). The converse inequality also holds, since an straightforward cal-

culation shows that there is a constant c > 0 such that for each function f ∈ L∞(g0dµ),

‖f‖Lq,1(λ) ≤ c‖f‖
1/q
L1(λ)

‖f‖1/q
′

L∞(λ)

(see [5, p.205]).

Let us consider now the converse geometric property, in order to close the diagram. It

is related to the fact that X(µ) must be included in the Lorentz space associated to λ —a

measure equivalent to µ—. Concretely, it must exist a function space Z(λ) and a constant

Q > 0 such that for every f ∈ L∞(λ) there is a decomposition f =
∑n

i=1 fi in L∞(λ) which

satisfies
n∑
i=1

‖fi‖1/qZ(λ)‖fi‖
1/q′

L∞(λ) ≤ Q ‖f‖X(µ).

In the case that Z(λ) is an L1-space, we obtain the inequality (4.3) below, that can be

understood as a dual version of the geometric inequality (4.1).

Theorem 4.3. Let X(µ) be an order continuous Banach function space over the finite mea-

sure µ. The following assertions are equivalent.
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(i) There is an order continuous Banach function space Z(λ) over a finite measure λ ∼ µ
such that for every f1, ..., fn ∈ L∞(µ),( n∑

i=1

‖fi‖qX(µ)

)1/q
≤ K

∥∥∥ n∑
i=1

|fi|‖fi‖q−1
L∞(µ)

∥∥∥1/q

Z(λ)
, (4.2)

and

inf
{ n∑
i=1

‖fi‖1/qZ(λ)‖fi‖
1/q′

L∞(µ) :
n∑
i=1

fi = f
}
≤ Q‖f‖X(µ), fi, f ∈ L∞(µ)

for two fixed positive constants K,Q > 0.

(ii) There is an L1-space L over a finite measure λ ∼ µ such that for every f1, ..., fn ∈
L∞(µ), ( n∑

i=1

‖fi‖qX(µ)

)1/q
≤ K

∥∥∥ n∑
i=1

|fi|‖fi‖q−1
L∞(µ)

∥∥∥1/q

L
,

and for all f ∈ L∞(λ) there are f1, ..., fn ∈ L∞(λ) such that
∑n

i=1 fi = f and∥∥∥ n∑
i=1

|fi|
(
‖fi‖L∞/‖fi‖L

)1/q′ ∥∥∥
L
≤ Q‖f‖X(µ), (4.3)

for two fixed positive constants K,Q > 0.

(iii) There is a function g0 > 0 such that X(µ) and Lq,1(g0dλ) are isomorphic.

Proof. For (i) ⇒ (ii), use Lemma 4.1 for obtaining a function 0 < g ∈ B(Z(λ))′ such that for

all f ∈ L∞(µ),

‖f‖X(µ) ≤ K
(∫

Ω
|f |gdλ

)1/q ∥∥f∥∥1/q′

L∞(µ)
.

This clearly gives the first inequality in (i). For the second one, fix Q < Q′. Take a function

f ∈ L∞(µ) and find a decomposition of f in this space, f =
∑n

i=1 fi, such that

n∑
i=1

‖fi‖1/qZ(λ)‖fi‖
1/q′

L∞(µ) ≤ Q
′‖f‖X(µ).

Then ∫
Ω

( n∑
i=1

|fi| ‖fi‖1/q
′

L∞
( ∫

Ω
|fi|gdλ

)−1/q′
)
g dλ =

n∑
i=1

( ∫
Ω
|fi|gdλ

)1−1/q′ ‖fi‖1/q
′

L∞

≤
n∑
i=1

‖fi‖1/qZ(λ) ‖fi‖
1/q′

L∞ ≤ Q′‖f‖X(µ).

(ii) ⇒ (iii). Note that gdλ ∼ µ, and so g > 0 and there is a µ-integrable function h > 0

such that ghdλ = µ. Using again Lemma 4.1 we obtain that the inequalities in (ii) implies

that the norm of {L∞(µ), L1(gdλ)}1,1/q,h = {L∞(λ), L1(λ)}1,1/q,gh is equivalent to the norm

of X(µ). By Remark 4.2, we have that the identity gives the isomorphism of Lq,1(g0dλ) and

X(µ), where g0 = gh.

Finally, for (iii) ⇒ (i) we only have to take λ = g0dλ and Z(λ) = L1(g0dλ). Then for

f1, ..., fn ∈ L∞(µ) = L∞(λ), ( n∑
i=1

‖fi‖qX(µ)

)1/q
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≤ K
( n∑
i=1

(
‖fi‖1/qZ(λ) ‖fi‖

1/q′

L∞(λ)

)q)1/q
= K

( n∑
i=1

(
‖fi‖1/qL1(g0dλ)

‖fi‖1/q
′

L∞(λ)

)q)1/q

= K
( n∑
i=1

‖fi‖L1(g0dλ)‖fi‖
q−1
L∞(µ)

)1/q
= K

∥∥∥ n∑
i=1

|fi|‖fi‖q−1
L∞(µ)

∥∥∥1/q

Z(λ)
.

The second requirement is a direct consequence of the representation of Lq,1(λ) given in

Remark 4.2.

�

Note that Z(λ) in (i) of Theorem 4.3 can be chosen in particular to be X(µ), obtaining

in this way a non-standard concavity-type property for X(µ) involving just this space and

L∞(µ). To finish this paper, let us remark also that the inequalities appearing in (i) and

(ii) of Theorem 4.3 are of (lattice) geometric nature: the first one is some sort of “(q, 1)-

concavity”, while the second one is a dual notion, associated to a convexity-type property for

an expression involving the norm in L.
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1 (1973)

[8] Lindenstrauss, J., Tzafriri, L.:Classical Banach Spaces II. Springer, Berlin (1979)
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