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Abstract 
This paper presents the application of machine learning systems based on neural 

networks (NN) to model the energy consumption of electric metro trains, as a first step 

in a research project that aims to optimise the energy consumed for traction in the Metro 

Network of Valencia (Spain). Experimental dataset was gathered and used for training. 

Four input variables (train speed and acceleration, track slope and curvature) and one 

output variable (traction power) were considered. The fully trained NN shows good 

agreement with the target data, with relative Mean Square Error (rMSE) around 21%. 

Additional tests with independent datasets also give good results, (rMSE = 16%). The 

NN has been applied to five simple case studies to assess its performance, and has 

proven to correctly model basic consumption trends (e.g. the influence of the slope), 

and to properly reproduce acceleration, holding and braking, although it tends to 

slightly underestimate the energy regenerated during braking. Overall, the NN provides 

a consistent estimation of traction power and the global energy consumption of metro 

trains, and thus may be used as a modelling tool during further stages of research.  

 

Keywords 

Energy efficiency, machine learning, neural networks, rolling stock, traction power 

  

                                                 
a Department of Transport Engineering and Infrastructure. Universitat Politècnica de València (UPV), Spain. 

Corresponding Author: Pablo Martínez Fernández. Universitat Politècnica de València (UPV), Camino de Vera s/n, 

46022, Valencia, Spain. Phone: +34 96 387 7007 Ext. 73767. Email: pabmarfe@cam.upv.es  

 

 

mailto:pabmarfe@cam.upv.es


 

Highlights 

 Neural networks (NN) are a powerful computational modelling tool 

 A NN has been trained to model energy consumption of metro trains 

 The NN shows a good fit with the real data measured in the Valencia metro network 

 The NN has been tested with 5 case studies that simulate basic consumption trends 

 This network may be now used to assess energy consumption and improve efficiency 

  



 

1. Introduction 

At present there is an increasing concern regarding the environmental impact of our 

society. Climate change and scarcity of natural resources are clear threats that must be 

addressed at all levels. One of the key elements that define our society and is thus 

greatly related to such threats is transport. Efficient transportation of people and goods 

is essential to our economy and has a great influence in the overall environmental 

impact of human activities. 

Railways is one of the most promising transport means in terms of energetic and 

economic efficiency [1, 2], and has thus become a priority for many governments over 

the past years, particularly in Europe (e.g. EU 2020 Horizon R&D programme and 

Shift2Rail Initiative) and North America (e.g. New High-Speed Networks in the USA 

as part of the 2009 Federal Stimulus Package).  

However, it is not always easy to accurately assess the energetic consumption of a 

railways service. In fact, often railway managers do not know exactly the energy (and 

cost) that each of their trains consume in real-time. This is particularly true for non-

electrified lines, where consumption is normally controlled simply by measuring the 

fuel level at the tank after each service [3]. However, even in electrified lines the most 

common trend regarding energy supply is for electric companies to measure (and 

charge) the energy provided from their substations to railway companies, which 

includes not only the energy used for traction, but also that of auxiliary services, 



 

infrastructure, power losses, etc. Consequently, the exact energy consumed by trains in 

real-time is usually unknown [4]. 

Therefore, in order for railway services to increase their energetic efficiency, it is 

essential that energy consumption is accurately measured and modelled. In this way, the 

influence of factors such as track layout, degree of maintenance, operation schemes, etc. 

may be studied in depth, hence allowing a better management of existing lines and a 

more efficient planning of future networks. 

Several studies have focused on energy efficiency in the railway sector over the past 

years. For example, Douglas et al. [5] carried out a comprehensive review of different 

measures to reduce the energy consumption of railways and their effectiveness, and 

found that reductions up to 30% could be achieved solely by implementing eco-driving. 

Su et al. [6] also assessed different energy saving through a deterministic model 

(Optimal Train Control Model), including not only driving schemes but also 

modifications in both the rolling stock (weight reduction) and the infrastructure (slope 

optimisation). 

Most studies regarding railways’ energy efficiency aim to reduce energy consumption 

through the optimisation of different operation elements (although the main focus is on 

driving schemes). In order to do so, a good number of authors first develop a modelling 

tool capable of predicting the energy consumption of a train and then use this tool to 

simulate several scenarios and to choose the most efficient ones, often by means of 



 

optimisation algorithms. A noteworthy example of this approach are the works of 

Domínguez et al. [7-10], who have carried out several studies focused on the Madrid 

Metro Network (Spain). These studies rely on a time-step, modular train simulator [11] 

based on the Davis equation [12] with increasing complexity (e.g. adding regenerative 

break, on-board storage systems, multi train modelling, etc.) which is then used to 

create several driving scenarios which are sorted out with regard to their energy 

efficiency by means of heuristic algorithms. The works of Sicre et al. [13-15] follow the 

same pattern, although in this case their focus is on High Speed railway lines. Tian et al. 

[16] also base their study on a deterministic train simulator, which is by far the 

preferred option by all the authors reviewed. 

However, despite being a common choice, time-step deterministic train models have 

also certain drawbacks. They may be time-consuming and their reliability strongly 

depends on the careful definition of several parameters that are not always known or 

properly estimated (e.g. train running resistance, train rotational mass, etc.). An example 

of this complexity can be found in [11].  

A promising alternative as a modelling tool for railways energy consumption are Neural 

Networks (NN), which are computational models that have been extensively used over 

the past years to model many different phenomena in fields as diverse as medicine, 

chemistry or finances. Many of these applications have become common practice in 

their respective areas. 



 

In the field of engineering, one can find examples of the application of NN in areas like 

coastal engineering [17], and structure modelling [18]. However, its use in railways 

engineering is relatively rare, and focused mainly on track quality and maintenance [19, 

20]. Only a few attempts have been made to model train energy consumption with NN 

[21-23], but these are mostly preliminary research where NN only play an auxiliary role 

to other models.  

In contrast with traditional models, a neural network, provided that it is properly 

trained, does not rely on several parameters which must be known beforehand, may 

learn rather complex, non-linear phenomena and may provide a large number of 

simulations with reduced time and computing requirements [24]. 

Therefore, it is clear that there is a gap of knowledge regarding the application of NN to 

model railways energy consumption. This paper aims to fill this gap by developing and 

training a NN capable of modelling the consumption of electric trains. The network is 

trained with actual consumption data measured in the Valencia Metro Network operated 

by Ferrocarrils de la Generalitat Valenciana (FGV), as it was done in a preliminary 

research [25]. However, this time the NN has been trained systematically using a more 

comprehensive set of data that covers the entire Metro Network. Furthermore, the 

trained NN has been thoroughly tested with five schematic case studies designed to 

evaluate its performance and assess whether it properly models the energy consumption 

of a running train with regard to significant factors such as the track slope, speed profile 



 

or driving style. The final objective of the paper is to obtain a fully trained and reliable 

NN that will be used as a modelling tool in further research, aiming at optimising the 

energy consumption of the Valencia Metro Network. 

In the long term, the development of this kind of tool may be useful not only to study 

the energy efficiency of existing railway networks, but also to analyse prospective lines 

before construction through the estimation of their energy requirements. In this way, 

additional technic and economic criteria related to energy costs may be included in the 

long term planning of railway lines. 

The paper is divided as follows: First, the process of data gathering and processing is 

explained, the NN structure is defined and the training process is outlined. Secondly, the 

NN is trained and validated, and it is applied to five predefined case studies. Finally, the 

results obtained are thoroughly discussed, and the main conclusions reached are 

presented. 

 

2. Materials and methods 

2.1. Data gathering and processing 

In order to gather the data required to train the NN, a thorough monitoring programme 

was carried out in the Valencia Metro Network (Spain) operated by FGV. A 4-carriage 

Metro Series 4300 vehicle was equipped with three DC voltage and current sensors 

(MSAV-DC model, developed by Mors Smitt in accordance with EN 50463). One was 



 

placed right below the pantograph to measure the global energy input/output i.e. the 

energy that the catenary supplies to the train and the regenerated energy that the train 

gives back to the catenary. Another one was placed at the electric panel that feeds all the 

vehicle auxiliary systems (heating, cooling, lights, etc.). The last one was placed in the 

rheostatic brake to account for the regenerated energy dissipated during braking. It is 

worth noting that, as the Valencia Metro Network operates with a DC system (1500 V) 

with no on-board energy storage or reversible substations, the energy regenerated during 

braking is only given back to the line if there is another train nearby that may use it for 

traction. Otherwise, the energy regenerated is dissipated in the rheostatic brake. Each 

sensor provides current (I), voltage (V) and electric power (P) data. The train was also 

equipped with an odometer to measure its speed. The energy data measured by the DC 

sensors was sampled at 1 Hz, while the odometer sampling frequency was 100 Hz. 

The monitored train operated normally along lines 1, 2, 3, 5 and 7 of the Valencia Metro 

network between July and October 2014. Up to 229 train services were monitored, 

which accounts for more than 230 hours of data. This data was then processed in 

MATLAB 8.5.0 (The MathWorks, Inc.) to obtain, for each train service, the speed 

profile, travel time and energy consumption. Regarding the latter, at any given second, 

the total energy supplied to the train, the energy share consumed for traction and the 

energy share consumed by auxiliary systems were obtained (or, when braking, the share 



 

of regenerated energy consumed in the rheostatic brake and the share given back to the 

line). 

 

2.2. Neural Network development and training 

NN are computational models based on several simple elements (neurons) that operate 

in parallel. Inspired by the structure of biological nervous systems, they can be trained 

to reach a target output from a certain input by modifying the weights, which are the 

values of the connections between the elements that form the network. 

There are many different network structures depending on the problem to be solved 

(Function fitting, pattern recognition, etc.). In this case, the objective is to obtain the 

train energy consumption (output) depending on variables (input) such as train speed, 

track profile, etc. In order to do so, a three-layer feed-forward structure was chosen, as 

this scheme is rather common and powerful for function fitting [24]. 

The first layer (“input layer”) corresponds to the input data. The second layer (“hidden 

layer”) is made of a certain number of neurons (the exact value being one of the 

parameters to be evaluated during the training process) with a Log-Sigmoid transfer 

function. The third layer (“output layer”) consists of a single neuron with a linear 

transfer function. The overall network equation is: 

𝑂𝑘 = 𝑔̂(∑ 𝑤2𝑘𝑗
𝑀
𝑗=0 ∙ 𝑔(∑ 𝑤𝑖𝑗 ∙ 𝐼𝑖))

𝑁
𝑖=0   (1) 



 

Where Ok is the network output , M is the number of output elements, Ii is the input, N 

is the number of input variables, wij are the weights of the first layer, w2kj are the 

weights of the output layer (bias values correspond to wj0 and w2k0), g is the Log-

Sigmoid transfer function and ĝ is the linear transfer function. This structure allows the 

NN to identify non-linear relations between input and output data [24].  

The network thus created must be then trained and validated. However, prior to that, 

both input and output data should be pre-processed, removing constant values and 

normalizing both vectors within the range [-1, 1], to avoid saturation of the Log-

Sigmoid transfer function [24].  

Training was carried out by means of a Back-propagation method, trying to minimise 

the Mean Square Error (MSE) between the network output and the target data by respect 

to the network weights (w) and bias (b):  

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑜𝑖)

2𝑁
𝑖=1   (2) 

Where N is the number of data, ti is the target output and oi is the network output. The 

specific algorithm used for training was the Levenberg-Marquardt Algorithm [24]. The 

whole process of creating, training and validating the NN was done by using the Neural 

Fitting Tool available in MATLAB 8.5.0 (The MathWorks, Inc.). 

One of the most common issues when trying to train a NN is overfitting i.e. that the 

network performance is affected by the specific error of the data used for training and 

thus fails to properly generalise. This issue is strongly related to the number of neurons 



 

in the hidden layer and hence an optimum network size should be determined [24]. This 

may be done through ‘rules of thumb’ based on previous experience [26] or rather 

through a systematic analysis [17]. In any case, the most common option is to use early 

stopping training [25, 26], dividing the data randomly in three subsets, one for training 

(70% of the data), another for validation (15%) and the last for testing (15%). This 

prevents, to a certain degree, the NN from overfitting, and thus there is not a limit to its 

size a priori [27]: the higher number of neurons in the hidden layer, the better. 

However, in order to keep the NN as simple as possible, a small number of neurons (10) 

was chosen at first, and then more neurons were added to achieve a better fit with the 

target data. Each NN with increasing size was then tested using an additional dataset, 

and when the error obtained with this second test started to increase (or at least no 

further improvement was obtained), no additional neurons were added to the hidden 

layer. 

Another key issue was the definition of the input vector. Different variables (namely 

train speed and acceleration, track slope and track curvature) and combinations thereof 

were tested to determine which ones had more influence in the energy consumption 

[25]. The procedure followed is based on the one found in [28], and relies on the 

following criterion (relative mean square error): 

𝑟𝑀𝑆𝐸 =
𝑀𝑆𝐸

𝑉𝑎𝑟(𝐶)
  (3) 



 

Where MSE is the mean square error as described in (2) and Var(C) is the variance of 

the measured consumption data (C). This is an indication of the proportion of the data 

variance not explained by the model, and allows evaluating the dependence of the NN 

on the particular training data to be fitted. 

Each variable was used as a single input for the NN, and after 100 training runs were 

carried out, the variable with the lowest rMSE (for all three stages: training, validation 

and test) was chosen and combined with each of the remaining variables in a NN with 

two input parameters. After another 100 runs, the best of these pairings in terms of 

lower rMSE was chosen and combined with each of the remaining variables, and so on 

until no further improvement was achieved. 

Furthermore, as a final criterion for the fully trained NN (once both the input variables 

and the network size were defined), the rMSE was required to be lower than 0.25, or, in 

other words, that only 25% or less of the data variance is not explained by the NN. This 

is a somewhat arbitrary threshold, but it is in line with what other authors have 

considered as acceptable [28, 29] when training NN. 

 

2.3. Case studies 

Five case studies were devised to further test the fully trained NN and check its 

reliability. All of them were made up to represent relatively simple scenarios to check 

whether the NN provides sound, logical results and has correctly learned the expected 



 

trends of energy consumption (for instance, that a train accelerating should consume 

more energy than one coasting, under equal conditions). Cases 1 and 2 both represent a 

train running along a flat, straight track stretch, accelerating up to a given top speed, 

then maintaining that speed for a while and then braking until full stop. The difference 

between them is the top speed (60 km/h for case 1 and 40 km/h for case 2) and the 

acceleration and deceleration ratios (1 m/s2 for case 1 and 0.5 m/s2 for case 2). 

Cases 3 to 5 have the same speed profile, which is similar to that of cases 1 and 2 but 

with an in-between acceleration rate (0.8 m/s2) and a top speed of 60 km/h. The 

difference between these case studies is the track slope, which is completely flat for 

case study 3, constantly uphill (20 mm/m) for case 4 and constantly downhill (-20 

mm/m) for case 5. The purpose of cases 1 and 2 is to assess whether the network 

correctly models the traction power required to achieve different top speeds at different 

acceleration rates. The purpose of cases 3 to 5 is to assess whether it correctly takes into 

account the influence of the track slope. Figure 1 shows the speed profile of each case 

study. 

 



 

 

Figure 1. Speed profile for each case study. 

 

3. Results and discussion 

3.1. Data pre-processing 

As explained before, a three-layer feed-forward NN was created and trained to model 

the energy consumption of metro trains. The target variable was traction power (kW), 

which was obtained from the data available by taking all non-traction consumption (i.e. 

auxiliary systems and energy dissipated in the rheostatic brake) from the overall input 

power measured in the pantograph. The dataset chosen for training combined six 

journeys chosen randomly among the 229 measured services with the only condition of 



 

covering the whole metro network. This yields a dataset of up to 14701 elements, of 

which 10291 were used for the training itself (70%), 2205 for validation (15%) and 

2205 for test (15%). The secondary test dataset combined three additional journeys with 

up to 7573 elements. Figure 2 shows an excerpt of the training dataset. 

 

Figure 2. Detail (only one journey) of the training dataset (speed and traction power). 

The traction power signal shows some level of noise, particularly during braking events 

when power is generated by the train engine, in contrast to acceleration events where 

the signal is much clearer. This may be due to driving style, as drivers sometimes tend 

to brake intermittently, applying short, gentle bursts to adjust their speed instead of 

applying a continuous effort as they do when accelerating, thus causing an irregular 



 

energy regeneration. Another reason, compatible with the previous one, is that the 

train’s braking system includes not only the electromechanical device (which 

regenerates energy) but also a pneumatic device (which does not), and both operate 

together to provide the full braking effort required at any given time. Therefore, only a 

fraction of the total kinetic energy is converted into regenerated electric energy, and this 

fraction may be quite irregular. 

In any case, this noise may affect the NN training and thus the signal was filtered to 

remove it. Figure 3a shows the spectrum of the traction power signal. The core of the 

signal is within the 0-0.05 Hz range, while there is some noise between 0.05 and 0.2 Hz. 

Over 2 Hz the spectrum amplitude is negligible. A low-pass Butterworth filter was used, 

trying different number of poles (1 to 4) and cut-off frequencies ranging between 0.05 

and 2 Hz. Finally, a 4-pole filter with a cut-off frequency of 0.15 Hz was used as this 

combination yielded the best results in terms of removing the noise without altering the 

peaks of the signal. Other filters were tried (including a three point weighted moving 

average filter) but gave inferior results compared to the low-pass Butterworth. Figure 3b 

shows a comparison between the original and the filtered signal for an excerpt of the 

training dataset. 

 



 

 

 

Figure 3. a) Unfiltered traction power spectrum (training dataset). b) Original vs filtered 

traction power signal (excerpt from training dataset). 



 

3.2. Network training and validation 

As explained before, four input variables were considered (train speed, train 

acceleration, track slope and track curvature). Table 1 shows the results obtained after 

each training round for each variable (were each value is the average of 100 training 

runs), including the secondary test with the independent dataset. 

From Table 1 it is clear that train acceleration is by far the most influential variable in 

traction power because the obtained rMSE is clearly smaller than the rest, and thus was 

chosen as the first input variable to be included in the final NN. Acceleration was then 

combined with the remaining variables, and it was found that the best results were 

obtained when paired with train speed (second training round). Neither slope nor 

curvature added any significant improvement when combined with speed and 

acceleration, but they were both finally included as they provided a slight improvement 

during the secondary tests. The results for all these training rounds are also shown in 

Table 1. 

  



 

Variable 
Training Validation Test Test 2 

R rMSE R rMSE R rMSE R rMSE 

First training round 

Train speed 0.31 0.900 0.31 0.907 0.30 0.913 0.26 0.937 

Train acceleration 0.73 0.462 0.73 0.466 0.73 0.465 0.74 0.762 

Track slope 0.12 0.983 0.12 0.990 0.11 0.994 0.20 0.966 

Track curvature 0,06 0.994 0.06 1.001 0,05 1.003 0.03 1.000 

Second training round 

Acceleration + Speed 0.87 0.236 0.87 0.236 0.87 0.235 0.92 0.163 

Acceleration + Slope 0.74 0.458 0.73 0.462 0.73 0.458 0.76 0.424 

Acceleration + Curvature 0.73 0.462 0.73 0.464 0.73 0.461 0.75 0.447 

Third training round 

Accel. + Speed + Slope 0.88 0.232 0.87 0.236 0.87 0.235 0.93 0.147 

Accel. + Speed + Curv. 0.88 0.234 0.87 0.238 0.87 0.236 0.92 0.158 

Last training round 

All four variables 0.88 0.230 0.88 0.230 0.88 0.232 0.93 0.147 

Table 1. Mean training results for each combination of variables after 100 training runs. 

Therefore, the NN was finally trained with four input variables (train speed, train 

acceleration, track slope and track curvature) as this was considered enough to reach the 

minimum threshold defined for the rMSE.  

 

3.3. Network size 

In order to identify the optimum number of neurons in the hidden layer (and once the 

number and type of input variables had been determined), a NN was trained several 



 

times with increasing size. Figure 4 shows the average rMSE obtained after 100 training 

runs for each network size, compared with the rMSE obtained for the second, 

independent testing dataset. 

 

Figure 4. Mean rMSE for different network sizes. 

As the figure shows, the training, validation and test rMSE tend to decrease as the 

number of neurons increase. This is because a more complex NN (i.e. with more 

neurons) is more capable of fitting the training data. On the other hand, the 2nd test 

rMSE stays somewhat stable (albeit with some oscillations) between 10 and 60 neurons, 

then rises steadily until it surpasses the training rMSE and keeps rising as the network 

size increases. Taking into account these results, and trying to keep the NN as simple as 

possible, its size was finally set to 60 neurons. This yields both a good training rMSE 

(21%) and 2nd test rMSE (18%). 



 

3.4. Definitive training results 

Once the NN size and input variables have been properly determined, the NN is fully 

trained. Figure 5 shows the comparison between measured and modelled traction power 

for the complete training dataset (including validation and test subsets). 

 

Figure 5. Modelled vs measured traction power. Training dataset. 

The total energy consumed by all the journeys included in the dataset was measured as 

573.51 kWh, while the NN yielded a value of 562.04 kWh. The difference represents a 

2%. With regard to the NN performance, the rMSE obtained was 0.21 for training, 0.2 

for validation, 0.21 for the first test and 0.16 for the secondary test. All these values are 

within the required thresholds.  



 

While the overall result is good enough, it is clear that the NN tends to underestimate 

the negative peaks, which correspond to regenerated energy during braking events. This 

may be due to the facts explained in section 3.1 regarding the signal noise, which was 

only partially removed by the applied filter. Nevertheless, the overall result is rather 

good as shown by the aforementioned rMSE values. 

Figure 6 shows the comparison between the NN output and the second, independent 

testing dataset. In this case, the total energy measured was 267.40 kWh while the NN 

yielded a value of 291.72 kWh (a 9.1% difference). The same trend of good agreement 

during traction and slightly worse during braking can be seen in this case. 

 

Figure 6. Modelled vs measured traction power. Second test dataset. 

 



 

In any case, the results obtained show that the NN has been fully trained according to 

the pre-established criteria and yields a good estimation of the traction power. 

 

3.5. Application to case studies 

The fully trained NN was then applied to the predefined five case studies, whose 

purpose is to serve as an additional test of the NN performance as well as to make sure 

that it has properly learned logical energy consumption trends. Figure 7 shows the 

comparison between modelled and measured traction power for case studies 1 and 2. 

 

Figure 7. Traction power modelled by the trained network for tests 1 and 2. 

The results are consistent with the expected behaviour of a train. In case 1 the train 

accelerates faster and reaches a higher top speed, hence the higher power consumed for 



 

traction during the acceleration stage with regard to case 2. The power required to keep 

the speed constant is also higher in case 1. Finally, during the braking stage, in both 

cases the NN yields a negative traction power (i.e. regenerated power) which is higher 

in case 1 than in case 2 as the deceleration rate is bigger. Overall, the NN provides a 

result that is in agreement with the logical, expected outcome. Table 2 shows the total 

energy consumed at each of the three stages (acceleration, constant speed, deceleration) 

in both cases, further pointing out that the NN delivers a sound estimation. 

Case study Acceleration Constant speed Braking Global 

Case 1 4.03 1.55 -2.25 3.32 

Case 2 2.43 0.41 -1.18 1.66 

Case 3 4.68 1.59 -2.26 4.01 

Case 4 4.29 5.13 -1.87 7.56 

Case 5 4.63 0.52 -1.75 3.40 

Table 2. Energy consumption (in kWh) at each stage for case 1 to 5. 

Figure 8 shows the modelled traction power given by the NN for case studies 3 to 5. 

The NN correctly models the first traction peak in the three cases, which corresponds to 

the acceleration stage until the train reaches a speed of 60 km/h. There is no clear 

difference between the three traction peaks, perhaps because the difference in slope is 

not big enough to affect the traction power required to reach 60 km/h, given the 

relatively small acceleration rate. 



 

 

Figure 8. Traction power modelled by the trained network for tests 3 to 5. 

 

The second stage, which corresponds to the train running at constant speed, yields a 

constant traction power which is clearly higher when running uphill (case 4) than 

downhill (case 5). The traction power required to maintain speed on a flat track (case 3) 

is in between the other two, as expected. Finally, some energy is regenerated during 

braking, and the highest peak occurs when running uphill, although the highest amount 

of energy regenerated occurs in case 3 (flat track). This result does not correspond to the 

expected outcome (although the differences are minimal, as shown in Table 2), and 

again points out that the NN performance during braking events is not as good as during 

traction. Nevertheless, the global energy consumption for each case study is reasonable, 

with case 4 (uphill track) having the higher value, followed by case 3 (flat track) and 

case 5 (downhill track). 



 

Taking into account the results obtained for the five case studies, the NN has apparently 

learned certain consumption trends such as the influence of the slope and correctly 

models accelerating and braking stages, particularly the former.  

 

3.6. Limitations and future work 

According to the results obtained, the trained NN provides a reliable estimation of the 

energy consumed by a metro train when traveling along the Valencia Metro Network. 

There are, however, a couple of limitations that should be taken into account.  

The first one is inherent to any function-fitting NN and the theory they are based on: 

They provide good results when interpolating within the conditions used for their 

training, but they are unreliable when extrapolating beyond those limits. Therefore, the 

trained NN should only be applied to settings where each of the variables considered 

(speed, acceleration, slope, curvature and traction power) are within the ranges used for 

training. This puts a limit on the scope of scenarios that may be modelled by the NN 

without further training. However, as a metro network is a rather closed environment 

where changes in layout, rolling stock or operation conditions are relatively constrained, 

the obtained NN will be still useful to assess rather diverse scenarios.  

The second limitation is particular to this case, and is the already discussed 

underperformance with regard to braking and regeneration. This may be due to the 

signal noise aforementioned (noise that has been only partially filtered), which may in 



 

turn be caused by certain aspects (such as the actual, detailed composition of the train’s 

braking system) that have not been taken into account. In any case, despite barely 

affecting the overall NN performance, this drawback may hamper its capability to 

accurately model the energy consumption under certain circumstances. This issue may 

be addressed by expanding the training dataset, by more thorough data filtering or by 

using a combination of NN instead of a single one (e.g. one for traction and one for 

braking). Combining NN with other methods such as fuzzy logic may also contribute to 

a more accurate estimation of the energy consumed and regenerated. 

In any case, the trained NN may be now used as a tool for further research on the 

optimisation of the energy consumption in the Valencia Metro Network. For instance, 

the NN may be used to compare the energy consumed by different driving styles in 

order to choose the most energy efficient (eco-driving), or to analyse the energy savings 

obtained by modifying the track layout (efficient track profile, design of new lines). 

Furthermore, as the Valencia Metro Network does not have, at present, any equipment 

available to make the most of the regenerated energy, the NN could be used to 

accurately quantify said energy and to assess whether an investment on reversible 

substations or on-board storage systems is feasible.  

 

 

 



 

4. Conclusions 

The main aim of this study is to develop and train a neural network (NN) capable of 

modelling the energy consumption of electric metro trains. The development of this tool 

represents the first stage of a research project whose purpose is to model, analyse and 

optimise the energy consumption of the Metro Network of Valencia (Spain). The NN 

has been trained using a comprehensive experimental dataset gathered by means of an 

instrumented metro train. The developed NN has four input variables (train speed, train 

acceleration, track slope and track curvature), one output variable (traction power) and 

60 neurons in the hidden layer. After extensive, systematic training, the NN provides a 

good agreement with the target data, (rMSE  21%) as well as with an independent 

dataset used as a secondary performance test (rMSE  16%). The trained NN has been 

applied to five simple case studies, and has proven to correctly model the traction power 

during acceleration stages and to include the influence of the track slope. The NN is also 

capable of modelling the regenerated power during braking events, although it tends to 

underestimate regenerative energy peaks. Overall the NN provides a reliable estimation 

of the traction power and the global energy consumption of metro trains, and thus may 

be used as a modelling tool during further stages of research. Nevertheless, certain 

improvements may be carried out to enhance the NN performance, particularly with 

regard to braking and regeneration. Developing and training two different NN (one for 

traction and one for braking), a more thorough data filtering and the inclusion of fuzzy 



 

logics or stochastic methods are a few possible options to increase the reliability of the 

simulation.  
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