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“The purest and most thoughtful minds

are those which love color the most.”

- John Ruskin, The Stones of Venice

“Mere color, unspoiled by meaning,

and unallied with definite form,

can speak to the soul in a

thousand di↵erent ways.”

- Oscar Wilde
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“Colors are the feelings with which

we paint our souls.”

Adolfo Molada
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through these years. Your contributions have been essential in bringing color to this thesis. Thanks

also to a simple email. An email that changed my life. Thank you Stephen for responding positively

to my request, and allowing me to take six amazing months in Leeds (UK), collaborating in the

Colour Research Group at the School of Design. A dream come true! Thanks also to Zeynep, for

the month stay at Mimar Sinan Fine Arts University (Istanbul, Turkey). I enjoyed the amazing

sights and monuments. When I think of Istanbul, I remember colors. Thanks to all of you!

Finally, thank you very much to my colleagues in GIFLE. We have laughed, we have

cried (haven’t we, Inés?), but most of all we have enjoyed ourselves. Thanks Silvia and Berta.

“Our meetings in Switzerland” were always the best. Thanks to my University, the Universitat
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Durante el doctorado, han habido momentos de luz y oscuridad. Ha sido un camino largo y

arduo, pero ha merecido la pena. He aprendido mucho. Gracias José Luis y Ángel por haberme
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Summary

Cultural heritage documentation and preservation is an arduous and delicate task but not trivial,

in which color plays a fundamental role. Factors such as the di�culty of reading the pigment, the

complexity of the support and the variations in environmental lighting make color specification

a di�cult undertaking. However, the correct determination of color provides vital information

on a descriptive, technical and quantitative level. Color allows a better understanding of the

study area and o↵ers vital information not only on its current state but also on the aging of the

pigments.

Classical color documentation methods in archaeology were usually restricted to strictly

subjective procedures, based on direct visual observations supported by color charts. However,

this methodology has practical and technical limitations, a↵ecting the results obtained in the

determination of color. Nowadays, it is frequent to support classical methods with geomatics

techniques, such as photogrammetry or laser scanning, together with digital image processing and

enhancement techniques. The use of these novel techniques has represented a notable advance.

In fact, issues such as the precise geometric description of historical objects have been solved.

However, there are still aspects to be addressed, such as the correct specification of color. Although

digital images allow color to be captured quickly, easily, and in a non-invasive way, the RGB data

provided by the camera does not itself have a rigorous colorimetric sense. Therefore, a rigorous

transformation process to obtain reliable color data from digital images is required.

This thesis proposes a novel technical solution, in which the integration of spectrophotometric

and colorimetric analysis is intended as a complement to photogrammetric techniques that

allow an improvement in color identification and representation of pigments with maximum

reliability in 3D surveys, models and reconstructions. The proposed methodology is based on the

colorimetric characterization of digital sensors, which is of novel application in cave paintings.

The characterization aims to obtain the transformation equations between the device-dependent

color data recorded by the camera and the independent, physically-based color spaces, such as

those established by the Commission Internationale de l’Éclairage (CIE).
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The rigorous processing of color and spectral data requires software packages with specific

colorimetric functionalities. Although there are di↵erent commercial software options, they do

not integrate the digital image processing and colorimetric computations together. And more

importantly, they do not allow the camera characterization to be carried out. Therefore, as a key

aspect in this thesis is our in-house pyColourimetry software that was developed and tested taking

into account the recommendations published by the CIE. pyColourimetry is an open-source code,

independent without commercial ties; it allows the treatment of colorimetric and spectral data

and the digital image processing, and gives full control of the characterization process and the

management of the obtained data to the user.

On the other hand, this study presents a further analysis of the main factors a↵ecting the

characterization, such as the camera built-in sensor, the camera parameters, the illuminant, the

regression model, and the data set used for model training. For computing the transformation

equations, the literature recommends the use of polynomial equations as a regression model. Thus,

polynomial models are considered as a starting point in this thesis. Additionally, a regression

model based on Gaussian processes has been applied, and the results obtained by means of

polynomials have been compared. Also, a new working scheme was reported which allows the

automatic selection of color samples, adapted to the chromatic range of the scene. This scheme

is called P-ASK, based on the K -means classification algorithm.

The results achieved in this thesis show that the proposed framework for camera

characterization is highly applicable in documentation and conservation tasks in general cultural

heritage applications, and particularly in rock art painting. It is a low-cost and non-invasive

methodology that allows for the colorimetric recording from complete image scenes. Once

characterized, a conventional digital camera can be used for rigorous color determination,

simulating a colorimeter. Thus, it is possible to work in a physical color space, independent of the

device used, and comparable with data obtained from other cameras that are also characterized.

We are fully confident that the methodology proposed in this thesis will contribute significantly

to improving and simplifying the correct specification of color in cultural heritage documentation

and preservation tasks.



Resumen

Las labores de documentación gráfica de arte rupestre, donde el color desempeña un aspecto

fundamental, son arduas y delicadas por la dificultad de lectura del pigmento, la complejidad

del soporte y las variaciones en la iluminación ambiental. La correcta determinación del color

proporciona información vital a nivel descriptivo, técnico y cuantitativo, permitiendo una mayor

comprensión del área de estudio y ofreciendo información no solo respecto a su estado actual sino

sobre el envejecimiento de los pigmentos.

Tradicionalmente los métodos de documentación en arqueoloǵıa quedaban restringidos a

procedimientos estrictamente subjetivos, basados en observaciones directas a simple vista del

investigador apoyadas con cartas de color. Sin embargo, esta metodoloǵıa conlleva limitaciones

prácticas y técnicas, afectando a los resultados obtenidos en la determinación del color. En este

sentido, el empleo combinado de técnicas geomáticas, como la fotogrametŕıa o el láser escáner,

junto con técnicas de procesamiento y realce de imágenes digitales, ha supuesto un notable avance.

Y aunque el empleo de estas nuevas tecnoloǵıas ha permitido resolver cuestiones como la precisa

descripción geométrica de los objetos históricos, todav́ıa quedan aspectos que resolver, como la

correcta especificación del color. Aunque las imágenes digitales permiten capturar el color de

forma rápida, sencilla, y no invasiva, los datos RGB proporcionados por la cámara no tienen en

śı mismos un sentido colorimétrico riguroso. Se requiere la aplicación de un proceso riguroso de

tranformación que permita obtener datos fidedignos del color a través de imágenes digitales.

En esta tesis se propone una solución cient́ıfica novedosa y de vanguardia, en la que se

persigue integrar el análisis espectrofotométrico y colorimétrico como complemento a técnicas

fotogramétricas que permitan una mejora en la identificación del color y representación de

pigmentos con máxima fiabilidad en levantamientos, modelos y reconstrucciones tridimensionales

(3D). La metodoloǵıa propuesta se basa en la caracterización colorimétrica de sensores digitales,

que es de novel aplicación en pinturas rupestres. La caracterización pretende obtener las

ecuaciones de transformación entre los datos de color registrados por la cámara, dependientes

del dispositivo, y espacios de color independientes, de base f́ısica, como los establecidos por la

Commission Internationale de l’Éclairage (CIE).
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Para el tratamiento de datos colorimétricos y espectrales de forma rigurosa se requiere

disponer de un software de caracteŕısticas técnicas muy espećıficas. Aunque existe software

comercial, lo cierto es que realizan por separado el tratamiento digital de imágenes y las

operaciones colorimétricas. No existe software que integre ambas, ni que además permita llevar

a cabo la caracterización. Por tanto, como aspecto adicional y fundamental, presentamos en

esta tesis el software propio que se ha desarrollado, denominado pyColourimetry, siguiendo las

recomendaciones publicadas por la CIE. pyColourimetry es de código abierto, y ha sido adaptado

al flujo metodológico propuesto, de modo que facilite la independencia y el progreso cient́ıfico

sin ataduras comerciales, permitiendo el tratamiento de datos colorimétricos y espectrales, y

confiriendo al usuario pleno control del proceso y la gestión de los datos obtenidos.

Además, en este estudio se expone con detalle el análisis de los principales factores que afectan

a la caracterización tales como el sensor empleado, los parámetros de la cámara durante la toma,

la iluminación, el modelo de regresión, y el conjunto de datos empleados como entrenamiento del

modelo. Para la determinación de las ecuaciones de transformación, la bibliograf́ıa recomienda el

empleo de ecuaciones polinómicas como modelo de regresión, que es el que se ha tomado como

punto de partida. Adicionalmente se ha aplicado un modelo de regresión basado en procesos

Gaussianos, y se ha comparado con los resultados obtenidos mediante polinomios. También

presentamos un nuevo esquema de trabajo que permite la selección automática de muestras

de color, adaptado al rango cromático de la escena, que se ha denominado P-ASK, basado en el

algoritmo de clasificación K -means.

Los resultados obtenidos en esta tesis demuestran que el proceso metodológico de

caracterización propuesto es altamente aplicable en tareas de documentación y preservación del

patrimonio cultural en general, y en arte rupestre en particular. Se trata de una metodoloǵıa de

bajo coste, no invasiva, que permite obtener el registro colorimétrico de escenas completas. Una

vez caracterizada, una cámara digital convencional puede emplearse para la determinación del

color de forma rigurosa, simulando un coloŕımetro, lo que permitirá trabajar en un espacio de

color de base f́ısica, independiente del dispositivo y comparable con datos obtenidos mediante

otras cámaras que también estén caracterizadas. Confiamos plenamente en que la metodoloǵıa

expuesta en esta tesis contribuirá a mejorar y simplificar la correcta especificación del color en

tareas relacionadas con la documentación y preservación de nuestros bienes culturales.



Resum

Les tasques de documentació gràfica d’art rupestre, on el color compleix un paper fonamental, són

àrdues i delicades per la dificultat de lectura del pigment, la complexitat del suport i les variacions

en la il·luminació ambiental. La correcta determinació de la color proporciona informació vital a

nivell descriptiu, tècnic i quantitatiu, permetent una major comprensió de l’àrea d’estudi i oferint

informació no només pel que fa al seu estat actual sinó sobre l’envelliment dels pigments.

Tradicionalment els mètodes de documentació en arqueologia quedaven restringits a

procediments estrictament subjectius, basats en observacions directes a primera vista de

l’investigador recolzades amb cartes de color. No obstant aixó, aquesta metodologia comporta

limitacions pràctiques i tècniques, afectant els resultats obtinguts en la determinació de la color.

En aquest sentit, l’ús combinat de tècniques geomàtiques, com la fotogrametria o el làser escàner,

juntament amb tècniques de processament i realç d’imatges digitals, ha suposat un notable avanç.

I encara que l’ús d’aquestes noves tecnologies ha permès resoldre qüestions com la descripció

geomètrica precisa dels objectes histórics, encara queden aspectes per resoldre, com la correcta

especificació de la color. Tot i que les imatges digitals permeten capturar el color de forma ràpida,

senzilla, i no invasiva, les dades RGB proporcionades per la càmera no tenen en si mateixos

un sentit colorimètric rigorós. Es requereix l’aplicació d’un procés rigorós de transformació que

permeti obtenir dades fidedignes de la color a través d’imatges digitals.

En aquesta tesi es proposa una solució cient́ıfica innovadora i d’avantguarda, en la qual es

persegueix integrar l’anàlisi espectrofotomètric i colorimètric com a complement a tècniques

fotogramètriques que permetin una millora en la identificació de la color i representació de

pigments amb màxima fiabilitat en aixecaments, models i reconstruccions tridimensionals 3D.

La metodologia proposada es basa en la caracterització colorimètrica de sensors digitals, que

és de novell aplicació en pintures rupestres. La caracterització pretén obtenir les equacions de

transformació entre les dades de color registrats per la càmera, dependents d’el dispositiu, i

espais de color independents, de base f́ısica, com els establerts per la Commission Internationale

de l’Éclairage (CIE).
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Per al tractament de dades colorimètriques i espectrals de forma rigorosa es requereix disposar

d’un programari de caracteŕıstiques tècniques molt espećıfiques. Encara que hi ha programari

comercial, la veritat és que fan per separat el tractament digital d’imatges i les operacions

colorimètriques. No hi ha programari que integri totes dues, ni que permeti dur a terme la

caracterització. Per tant, com a aspecte addicional i fonamental en aquesta tesis, vam presentar

el programari propi que s’ha desenvolupat, denominat pyColourimetry, segons les recomanacions

publicades per la CIE. pyColourimetry és de codi obert, i s’adaptat al flux metodològic proposat,

de manera que faciliti la independència i el progrés cient́ıfic sense lligams comercials, permetent

el tractament de dades colorimètriques i espectrals, i conferint a l’usuari ple control del procés i

la gestió de les dades obtingudes.

A més, en aquest estudi s’exposa amb detall l’anàlisi dels principals factors que afecten

la caracterització tals com el sensor emprat, els paràmetres de la càmera durant la presa,

il·luminació, el model de regressió, i el conjunt de dades emprades com a entrenament d’el

model. Per a la determinació de les equacions de transformació, la bibliografia recomana l’ús

d’equacions polinómiques com a model de regressió, que és el que s’ha pres com a punt de

partida. Addicionalment s’ha aplicat un model de regressió basat en processos Gaussians, i s’han

comparat els resultats obtinguts mitjançant polinomis. També vam presentar un nou esquema de

treball que permet la selecció automàtica de mostres de color, adaptat a la franja cromàtica de

l’escena, que s’ha anomenat P-ASK, basat en l’algoritme de classificació K -means.

Els resultats obtinguts en aquesta tesi demostren que el procés metodològic de caracterització

proposat és altament aplicable en tasques de documentació i preservació de el patrimoni cultural

en general, i en art rupestre en particular. Es tracta d’una metodologia de baix cost, no invasiva,

que permet obtenir el registre colorimètric d’escenes completes. Un cop caracteritzada, una

càmera digital convencional pot emprar-se per a la determinació de la color de forma rigorosa,

simulant un coloŕımetre, el que permetrà treballar en un espai de color de base f́ısica, independent

d’el dispositiu i comparable amb dades obtingudes mitjançant altres càmeres que també estiguin

caracteritzades. Confiem plenament en que la metodologia exposada en aquesta tesi contribuirà

a millorar i simplificar la correcta especificació de la color en tasques relacionades amb la

documentació i preservació dels nostres béns culturals.
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Abbreviations

BS Based Stochastic optimization CAT

BSPC Based Stochastic optimization with a Positive Constraint CAT

CAT02 Chromatic Adaptation Transform 2002 (CIE)

CATs Chromatic Adaptation Transforms

CCD Charge Coupled Device

CFA Color Filter Array

CIE Commission Internationale de l’Éclairage

CMCCAT2000 Color Appearance Modeling Chromatic Adaptation Transform 2000 (CIE)

CMFs Color matching functions

CMOS Complementary Metal Oxide Semiconductor

FCC Full ColorChecker

GP Gaussian process

ICC International Color Consortium

ICV Institut Cartogràfic Valencià

IEC International Electrotechnical Commission

JND Just noticeable di↵erence

JS Joined samples

KDP K -means dominant patches

LOOCV Leave-one-out cross-validation

MCMC Markov chain Monte Carlo

NN Nearest n-patches

P-ASK Patch Adaptive Selection with K-means

PCA Principal Component Analysis

Ps Adobe Photoshop

RC Remove ColorChart

Res Fitted CIE XYZ residuals

RL CIE XYZ LOOCV residuals

RMSE Root Mean Square Error

SLR Single Lens Reflex

SPD Spectral Power Distribution

SS Separated Samples

SVD Single Value Decomposition
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2 1. Introduction

1.1 Introduction

Cultural heritage documentation and preservation tasks are a complex process which must be

addressed with the utmost rigor, since they are considered not only a fundamental tool for the

description and conservation of historical assets, but for the analysis, research and dissemination

of knowledge. Thus, it is essential to provide e↵ective solutions that provide accurate and

contrasted information in cultural heritage documentation applications.

We have to take into account that the risks that endanger the cultural heritage sites have

increased alarmingly during the last decades. In addition to erosion, adverse weather conditions

or climate change e↵ects, we have to consider the humans’ acts of vandalism or terrorism that

threaten the integrity of cultural heritage sites (Sesana et al., 2018, Cerra et al., 2016). Particularly

vulnerable are those heritage items located in open-air emplacements such as prehistorical rock

art painting shelters. Thus, it is not surprising that the heads of cultural heritage conservation

agencies, the scientific community and society in general, are especially sensitive about the

potential factors that endanger our heritage places.

Exhaustive and complete documentation is essential to adopt concrete actions to preserve the

heritage assets, especially those under threat. In order to have accurate data, the integration of

novel and improved methodologies as support of common classical techniques used for cultural

heritage documentation is required. In this regard, the application of geomatics techniques such as

photogrammetry provides accurate 3D data which allows the creation of photorealistic 3D in an

easier and faster way. Some examples are 3D photogrammetric and laser scanning documentation

(Lerma et al., 2010, Previtali and Valente, 2019, Pan et al., 2019); augmented reality (Barrile et

al., 2019, Blanco-Pons et al., 2019); automatic change detection techniques (Cerra et al., 2016);

monitoring for control deformation (Tang et al., 2016); microgravimetric surveying technique

(Pad́ın et al., 2012); imaging analysis (Maietti et al., 2018); or enhancement methods (Cabrelles

et al., 2018, Ippolitiand and Calvano, 2019) to name just a few.

Although the introduction of digital technologies has been a breakthrough for cultural heritage

documentation and preservation tasks, there are still aspects that have not been su�ciently

addressed. We refer specifically to the accurate color measurement. Undoubtedly, the correct

color specification is an essential aspect in archaeology and particularly in prehistorical rock art

documentation (Ruiz and Pereira, 2014, Korytkowski and Olejnik-Krugly, 2017). To have accurate

color data allows researchers not only the current state description of historical objects, but the

study and the diagnosis of its degradation over time (del Hoyo et al., 2015, 2019). However, the

color is a physiological and psychophysical phenomenon that occurs in our visual system and

brain (Johnson and Fairchild, 2003). Thus, this makes the color a highly subjective attribute.

Hence the use of rigorous and non-subjective techniques for the correct measurement of color is

required.

The main goal of this thesis is to establish a rigorous colorimetric framework through the

characterization of digital cameras for color measurement from images, and their application in

rock art documentation and preservation tasks. In addition, camera characterization can be used
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in combination with other photogrammetric techniques for the generation of 3D colorimetric

models as close to reality as possible in cultural heritage applications.

Also, as an additional and fundamental aspect of this research, the proposed methodology

has been implemented into a specific open source software, independent of commercial packages,

called pyColourimetry. This software allows the treatment of colorimetric and spectral data, and

most importantly, the camera characterization for the correct measurement of color. Indeed, it

is a pioneering software in its field, since there is a lack of software focused on the colorimetric

characterization of digital cameras.

We would like to note that this research was conducted within the scope of the

project “Spectrophotometric analysis and calibration of cameras applied to rock art studies”

(HAR2014-59873-R), of the Spanish Ministerio de Economı́a y Competitividad, and partly

funded throughout the Research and Development Aid Program PAID-01-16 of the Universitat

Politècnica de València.

1.2 Background and research justification

The precise recording of color is a priority, yet not trivial, aspect in cultural heritage

documentation (Boochs et al., 2014, Korytkowski and Olejnik-Krugly, 2017, Gaiani et al.,

2017). Traditional methodologies for color description in archaeology are mostly based on

visual procedures usually by means of color chip collections such as the Munsell charts or

other commercial color charts designed specifically for photographic applications. However, the

drawback of this approach is that color vision largely depends on the experience of the observer,

and therefore it is ultimately a matter of perception and strictly subjective. Thereby, a color

description based only on visual experiments can considerably a↵ect the results obtained.

To obtain accurate color data it is necessary to rely on non-subjective and rigorous

methodologies based on colorimetric criteria, which can be used in combination with more

innovative techniques already implemented. Correct color registration requires objective

colorimetric measurement in rigorous color spaces, using colorimeters or spectrophotometers.

Usually, the color spaces defined by the Commission Internationale de l’Éclairage (CIE) are

widely used as the standard reference framework for colorimetric measurement and management

(CIE, 2018). However, to avoid any damage to the pigment, direct contact measurements on

painted rock art panels are not allowed. Instead, indirect and non-invasive methods for color

determination are required.

The use of digitization techniques with conventional digital cameras to support rock art

documentation is becoming more and more frequent since the color information obtained

from digital images can be easily captured, stored, and processed (González et al., 2009,

Rogerio-Candelera, 2015, Robert et al., 2016, Fernández-Lozano et al., 2017, López-Menchero

et al., 2017). Thus, the combined use of digital image processing techniques, multispectral

analysis and precise photogrammetric techniques have largely benefited the cultural heritage

documentation processes. The application of these digital recording methods and imagery analysis
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software together with novel technologies o↵er great advantages over traditional techniques. The

acquisition of complete and high-quality digital data is currently possible in a fast and e↵ective

way, reducing the geometric problems associated with classical methods (Yastikli, 2007, Domingo

et al., 2015, Lerma et al., 2015).

However, relying on digital images without any color pipeline correction does not provide

accurate colorimetric results. Trichromatic digital cameras capture color information in the

well-known RGB format. Nevertheless, the drawback of image color data lays on the signal

acquired by the built-in sensor, which is not strictly colorimetric. The signals registered by digital

cameras are indeed referred to as “device-dependent”; that is, di↵erent sensors will record di↵erent

responses even for the same scene under identical lighting conditions. Also, the RGB data do not

satisfy the Luther–Ives condition (Hong et al., 2001, Sharma, 2003). If the values recorded in

the RGB channels were proportional to the input energy, a simple linear relationship between

the RGB data acquired by the digital camera and the CIE XYZ tristimulus values would exist.

However, in general, the RGB data are not a linear combination of CIE XYZ coordinates, and

therefore the spectral sensitivities of the three RGB channels are not linear combinations of the

color-matching functions (Westland et al., 2012). Thus, a colorimetric procedure is required in

order to use the data provided by the digital camera sensor, so that the input RGB data are

transformed into device-independent color spaces.

A common approach for accurate color reproduction based on digital images is based on

the use of ICC color profiles or camera profiles (Ruiz and Pereira, 2014, Korytkowski and

Olejnik-Krugly, 2017). Although the use of ICC color profiles o↵ers good results, it is a closed

process that requires the use of specific software. An alternative workflow for correct color

registration is the most generic digital camera characterization procedure.

Applications of camera characterization devices can be found in disciplines such as biology

(Stevens et al., 2007), medicine (Van Poucke et al., 2010), dentistry (Wee et al., 2007), quality

assessment (Girolami et al., 2013), food industry (Leon et al., 2006) and soil science (Kemp, 2014)

to name a few. Although the characterization procedure is not a new technique, it has never been

applied before in cultural heritage documentation. We are confident that the application of this

methodology will contribute significantly to the tasks of correct color specification in heritage

documentation.

The purpose of camera characterization procedure is to transform the input device-dependent

values captured by the camera sensor, generally in RGB format, into a physically-based,

independent color space, such as those defined by the CIE, usually the CIE XYZ color space

or any of its derivatives (Mart́ınez-Verdú et al., 2003, Westland et al., 2012, Finlayson et al.,

2015). The idea is to obtain quantitative colorimetric information in physically-based color spaces

regardless of the device used in the data acquisition.

Di↵erent factors can a↵ect the model accuracy such as the built-in camera sensor, the

working color spaces, the number of terms for the regression model, the training data size, or the

colorimetric properties. These aspects have been analyzed during the development of the thesis.

The image-based camera characterization procedure proposed in this thesis relies on objective



1.2. Background and research justification 5

methods that are independent of the observer experience. It combines the direct method,

based on colorimetric measurements obtained using specific instruments (colorimeter and

spectrophotometer), and the indirect method, using the RGB values from digital images. We

used RAW image files rather than processed or compressed image files since they provide better

results in characterization (Westland et al., 2012).

A key aspect to consider is the regression model used in characterization. Di↵erent

mathematical models have been applied to determine the relationship between the original

RGB data and well-defined independent color spaces on the camera characterization procedure.

Numerous papers have been written regarding common techniques, such as principal component

analysis (Vrhel and Trussell, 1992), interpolation from look-up tables (Hung, 1993), polynomial

model (Yoon and Cho, 1999, Hong et al., 2001), artificial neural networks (Cheung and Westland,

2002) or spectral recovery techniques (Cheung et al., 2005, Liang and Wan, 2017). However,

the wildly regression model used for the camera characterization is based on polynomial with

least-squares fitting with di↵erent degrees of variation.

Colorimetric camera characterization procedures based on polynomial regression models have

proved to be a suitable approach for the color correction of digital images (Cheung et al.,

2004). Thus, we select a polynomial model for camera characterization as a starting point for

this research. Afterwards, we will compare results with other alternative mathematical with a

di↵erent statistical approach, using Bayesian algorithms, with the aim of improving results in the

characterization of digital cameras.

Moreover, there is an additional issue to solve which is related to the intrinsic characteristics of

rock art shelters. Archaeological caves are generally located in open spaces with di�cult access and

reduced mobility where the use of specific measuring instruments or portable artificial lighting

is unfeasible in most cases. This disadvantage implies that usually, it will not be possible to

work under controlled lighting, simulating laboratory conditions during the data acquisition and

photographic capture. In controlled lighting conditions, i.e. in the laboratory, the characterization

of digital cameras by classical methods obtains satisfactory results. Thus, in rock art applications

it will be necessary to evaluate the influence of the lighting conditions of the working environment

on the color coordinates.

The digital camera characterization procedure is a suitable methodology for proper color

definition in cultural heritage documentation and preservation tasks due to its numerous

advantages. Camera characterization is a low-cost and non-invasive technique that allows the

acquisition of accurate colorimetric data of complete scenes from digital images in a fast way.

After the characterization, once the RGB to CIE XYZ transformation coe�cients are obtained, a

conventional digital camera can be used for rigorous color specification simulating a colorimeter

(Mart́ınez-Verdú et al., 2003). Thus, it is possible to carry out comparisons between di↵erent

characterized images acquired from di↵erent digital devices, since CIE XYZ coordinates are

absolute in nature.

Through the camera characterization it is possible to register accurate color data

independently of the observer expertise, the camera built-in sensor, the light conditions, or
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the factors involved in the photographic shot. Also, the framework proposed for the camera

characterization will be integrated into our own colorimetric software, developed in an open-source

manner and independent of commercial software. The aim is to make it available to the scientific

community for color research and spread its application in di↵erent fields.

In summary, we thought that the research presented in this thesis has a great interest based

on the following aspects:

• The obtainment of accurate color measurement from whole image scenes regardless of the
sensor device used.

• The development of rigorous software from a colorimetric point of view, with open
source modules, will mean new solutions that improve the quality and rigor during the
archaeological documentation process, regardless of the lighting and other environmental
conditions.

• The proposed characterization framework is a suitable methodology for cultural heritage
documentation, as it is a low-cost and non-invasive technique that avoids the subjectivity
of the observer.

• The application of characterization to photographic documentation will allow a fully
reproducible cataloging procedure of cultural heritage with accurate colorimetric data.

1.3 Objectives

The general aim of this thesis is the establishment of a rigorous methodology for the colorimetric

characterization of digital cameras, and its application to cultural heritage documentation tasks.

The methodological framework proposed will be implemented into a specific software (called

pyColourimetry) which will allow the treatment of colorimetric and spectral data.

This research project has its highest aim in the contribution to the protection and preservation

of the archaeological heritage, adapting the new digital technologies to optimize the tasks of

documenting the cultural heritage, contributing to its greater rigor, particularly concerning the

correct recording of color.

The main objective could be split into the following secondary objectives:

• O1. Software development for camera characterization.

• O2. Camera characterization procedure. Application of basic and advanced
colorimetry concepts for the digital camera characterization in rock art scenes; color
adaptation and standardization.

• O3. Regression model improvement. Establishment of advanced regression models
based on Gaussian processes (GP) for model optimization.

• O4. Automated sample selection. Training samples selection for camera
characterization, adapted to color range in rock art scenes based on clustering techniques.
Set the basis for the development of a specific color chart to archaeological applications.
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Questions to be answered:

• Is the camera characterization a suitable procedure for cultural heritage documentation and
preservation tasks?

• Could the GP model provide better results as a regression model for camera
characterization?

• Is the full set of chips from the color checker needed for model learning in the
characterization procedure?

Hypotheses:

• Classical methodologies for color specification in archaeology are generally based on
subjective procedures, depending on the observer experience. Objective methods for color
measurements are needed.

• Integration of novel methodologies and procedures from di↵erent disciplines for accurate
color description.

• The use of digital imaging techniques is currently indispensable as a support tool for
traditional methods in cultural heritage documentation tasks.

• The application of common tools for the analysis, processing and image enhancement
techniques for pigment identification and digital tracings elaboration is not enough to
provide accurate color data.

• Digital images without any colorimetric correction pipeline cannot be used for correct color
specification.

• Lack of homogeneous light conditions in open archaeological sites. Rock art shelters are
usually open site areas where the photographic shot is not taken under controlled illuminant
conditions. Also, the use of specific instruments and accessories are not possible in many
cases, since work sites have di�cult access or are topographically steep.

• Camera characterization procedure was formulated and tested under laboratory conditions,
but not under real rock art work environment scenarios.

Milestones / Activities:

• Learning and testing of basic colorimetry concepts: CIE color spaces, transformation
equations, illuminant and standard observers.

• Establishment of a rigorous methodological proposal for the digital camera characterization
and their application in rock art scenes.

• RAW image data processing.

• Development of open-source software for colorimetric and spectral data processing.
Integration of the methodological process for the characterization of digital cameras.

• Comparison and optimization of the mathematical model based on polynomial regression.

• Testing by means of controlled laboratory/field environmental conditions.
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• Optimization of the mathematical model for the characterization of sensors. Application of
Gaussian processes.

• Automatic selection of training samples adapted to the chromatic range of the scene based
on clustering techniques.

• Introduction to advanced colorimetry. Bibliographical compilation. Analysis of chromatic
adaptation models (CATs). Color standardization.

• Development of Python modules for color adaptation transforms (CATs).

• Optimization and integration of new functionalities in pyColourimetry: Object-oriented
programming (OOP), development of new modules, application of the methodological
improvements obtained.

• Analysis of the training sample size. Automatic selection of training samples adapted to
the color range of the scene. Analysis and publication of results.

• Process automation. Optimization of the modules developed in Python. Application on
images taken in the laboratory under controlled lighting conditions, and rock art scenes.

• Construction of a home-made light cabinet for color assessment and spectral recovery
techniques. Application in rock art scenarios.

• Publication of results in JCR impact journals, communications in congresses (preferably
international with anonymous peer review), attendance to congresses, dissemination and
generation of open-access documentation.

1.4 Case study

The camera characterization framework proposed will be applied on a set of digital images

captured in archaeological rock art sites which are considered part of the 1998 UNESCO World

Heritage list (UNESCO, 1998): the “Cova Remigia”, “Cova Civil” and “Cova dels Cavalls”.

These shelters are one of the most singular rock art caves and a well-known reference of the

Mediterranean Basin in the Iberian Peninsula. It is part of the Valltorta complex, located in

T́ırig, Castellón, in eastern Spain (Figure 1.1).

The images correspond to the main representative hunting scenes from these shelters. These

graphically narrative scenes make it a unique space in Levantine rock art. Figure 1.2 shows some

pictures targeting Levantine rock art motifs taken from these shelters using di↵erent Single Lens

Reflex (SLR) digital cameras (Source for aerial views (Valltorta, 2013)). Undoubtedly, these are

vivid and spectacular human-centered scenes, filled with movement, where the use of reddish

pigment predominates (Sarriá Boscovich, 1988, Mart́ınez and Villaverde, 2002).

In our application research field, only a few colors are representative of the pigments and

the support in cave painting. In fact, the recording of Levantine rock art archaeological shelters

requires a very specific color domain, mostly in the chromatic range of red, brown, and yellow

colors. We are focused on the accurate description of pigments particularly in this chromatic

range by means of camera characterization.
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Figure 1.1: Rock art cave sites location (Source: (ICV, 2020))

Figure 1.2: Rock art scenes: (a,b) Cova dels Cavalls; (c,d) Cova Civil; (a) Canon EOS–1D; (b)
Nikon D40; (c) Fujifilm IS PRO; (d) Sigma SD15.

1.5 Materials

For image acquisition, di↵erent SLR cameras were used. All these digital cameras allow taking

pictures in a RAW format. We prefer using images in RAW format rather than processed since

they o↵er better results after the characterization procedure. Also, we selected these cameras

because they have very di↵erent built-in image sensors, in order to evaluate their behaviors

during the characterization.

Most of the commercial sensors integrated into digital cameras are monochrome arrays with

color filter array (CFA) and Bayern pattern for color interpolation. In this thesis, we included a

camera with a direct trichromatic sensor without CFA, which does not require any interpolation

steps. Table 1.1 shows the principal technical specifications of the cameras used during this thesis

research.
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Table 1.1: SLR Technical specifications

SLR Sensor Size sensor Img. res. MP

Fujifilm IS PRO Super CCD (45°) 23.0⇥15.5 mm 3004⇥2030 6.10
Nikon D40 CCD 23.7⇥15.5 mm 3008⇥2000 6.00
Sigma SD15 CMOS Foveon® X3 20.7⇥13.8 mm 2640⇥1760 4.70
Canon EOS-1D CCD 27.0⇥17.8 mm 2464⇥1648 4.48

The digital pictures used in the characterization must contain a color chart as colorimetric

reference. In our study, we chose the following set of commercial color checkers (Figure 1.3): X-rite

ColorChecker® Digital SD chart (140 patches); X-rite Passport (24 patches); GretaghMacbeth

(24 patches); Munsell (322 patches); and the RAL K-5 (213 patches). The spectral reflectance data

of the color patches from the ColorChecker were measured directly using the spectrophotometer

Konica Minolta CM-600d, under the CIE recommendations (2°standard observer, and D65

illuminant).

(a) (b) (c) (d) (e)

Figure 1.3: Color Checkers: (a) X-rite ColorChecker®Digital SD chart; (b) X-rite Passport; (c)
GretaghMacbeth; (d) Munsell; (e) RAL K-5.

As an additional item, the construction of a low-cost color cabinet is planned, which will allow

measurements taken under controlled lighting conditions (Figure 1.4). The aim is to conduct

spectral recovery experiments. This is a fundamental and novel aspect, since they have not been

applied in rock art yet.

Figure 1.4: Low-cost light color cabinet.
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1.6 Document structure

This document is composed of seven chapters, based on the edited versions of three international

scientific publications and five published conference papers, which summarize the methodological

scheme proposed, the results achieved and its interpretation.

After the introduction, background and research justification exposed in Chapter 1, in Chapter

2 we report on pyColourimetry software that was developed and tested along the lines of the

Commission Internationale de l’Éclairage (CIE). This software allows users to control the entire

digital image processing and the colorimetric data workflow, including the rigorous processing of

RAW data.

Chapter 3 is focused on the establishment of a rigorous camera characterization framework

based on polynomial models. We also present its application on Levantine rock art images as

a novel field of application. Thus, once the camera is characterized, users obtain output images

in the sRGB space that are independent of the sensor of the camera. Three polynomial models

were tested for the transformation between color spaces. The outcomes obtained were satisfactory

and promising, especially with RAW files. The best results were obtained with a second-order

polynomial model, achieving residuals below three CIELAB units. We highlight several factors

that must be taken into account, such as the geometry of the shot and the light conditions, which

are determining factors for the correct characterization of a digital camera.

In Chapter 4 we propose a novel approach to undertake the colorimetric camera

characterization procedure based on a Gaussian process (GP) model, since GPs are powerful

and flexible nonparametric models to model multivariate nonlinear functions. To validate the GP

model, we compare the results achieved with a second-order polynomial model, which is the most

widely used regression model for characterization purposes. Although the output characterized

images show that both regression models are suitable for practical applications in cultural heritage

documentation, the results show that colorimetric characterization based on the Gaussian process

provides significantly better results.

Moreover, in Chapter 5 we introduce a novel framework named the Patch Adaptive Selection

with K -Means (P-ASK), for the automated selection of color samples for model training within

the camera characterization procedure instead of using a whole color checker. We tested the

methodology proposed on a set of prehistoric rock art painting images. The results confirm that

the characterization approach based on the P-ASK framework allows the reduction of the training

sample size and a better color adjustment to the chromatic range of the input scene. Thus, the

P-ASK framework reported is a suitable methodology that improves the colorimetric results for

camera characterization in cultural heritage documentation and preservation tasks.

Finally, in Chapter 6 we set out the discussion, while in Chapter 7 we summarize the main

conclusions, and future research lines based on the results obtained during this research.

Figure 1.5 shows the relationship between the main objectives set in this thesis and the papers

published during the research period.
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Figure 1.5: Relationship between objectives, chapters and papers published.

We summarize below the papers which have been the basis for the elaboration of each

chapter in this document. It should be noted that this document satisfies the guidelines for the

presentation of PhD Theses at the Universitat Politècnica de València (Spain) with previously

published results.

Chapter 2.

Molada-Tebar, A.; Lerma, J.L.; Marqués-Mateu, Á. Camera characterization for improving

color archaeological documentation. Color Res. Appl. 2018, 43, 47–57. [CrossRef]

Molada-Tebar, A.; Lerma, J.L; Marqués-Mateu, Á. Software development for colorimetric

and spectral data processing: PyColourimetry. In Proceedings of the 1st Congress in Geomatics

Engineering, Valencia, Spain, 5–6 July 2017; Volume 1, 48–53. [CrossRef]

Chapter 3.

Molada-Tebar, A.; Lerma, J.L.; Marqués-Mateu, Á. Camera characterization for improving

color archaeological documentation. Color Res. Appl. 2018, 43, 47–57. [CrossRef]

Molada-Tebar, A.; Marqués-Mateu, Á.; Lerma, J.L. Correct use of color for cultural heritage

documentation. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, IV-2/W6,

107–113. [CrossRef]

Chapter 4.

Molada-Tebar, A.; Riutort-Mayol, G.; Marqués-Mateu, Á.; Lerma, J.L. A Gaussian Process

Model for Color Camera Characterization: Assessment in Outdoor Levantine Rock Art Scenes.

Sensors 2019, 19, 4610. [CrossRef]
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2.1 Introduction

Archaeological documentation and preservation tasks are complex processes where the technical

measurement and specification of color is an essential aspect (Boochs et al., 2014, Korytkowski

and Olejnik-Krugly, 2017). The correct color definition allows a more comprehensive graphic

definition, a better understanding of the scene, and provides relevant technical information

especially for study and preservation work (Ruiz and Pereira, 2014). Nevertheless, classical

methodologies for color specification in cultural heritage applications are based mainly on visual

observations using a color chart as colorimetric reference. The issue with those methods is that

perceptual procedures limits the results since they are strictly subjective. Color is a matter of

perception and color vision depends on the observer. Thus, a rigorous colorimetric technique is

necessary to properly support rock art research (Ohta and Robertson, 2005).

The ideal setup would allow taking direct measurements using color rigorous instruments such

as colorimeters or spectrophotometers. However, in most archaeological practical cases, especially

on-site surveys, direct measurements are not viable due to the working environment, or are not

allowed to avoid any damage to the pigments. Nowadays, it is essential to support classical

methodologies with digital techniques. In fact, in the last years cultural heritage documentation

processes have largely benefited from the application of digital recording methods, image analysis

software and technologies that o↵er great advantages over the traditional methods (Boyd et al.,

2016, Higuchi et al., 2016). In the particular case of color communication, the drawback is that

the signals generated by the digital camera (mostly in RGB format) are device-dependent and not

colorimetrically sound. They do not satisfy the Luther–Yves condition, that is, do not directly

correspond to the device-independent tristimulus values based on the CIE standard colorimetric

observer (Hong et al., 2001, Sharma, 2003).

An approach to transforming RGB dependent values into an independent color space (such

CIE XYZ or sRGB which is somehow based on CIE XYZ), is the digital camera characterization

by polynomial regression with least-squares fitting (Balasubramanian, 2003, Malacara, 2011,

Westland et al., 2012). Once the transformation equations are obtained, a conventional digital

camera could be used for a rigorous color determination as if it were a colorimeter (Mart́ınez-Verdú

et al., 2003). In Chapter 3 we provide further information about the framework proposed for

camera characterization procedure.

However, the rigorous processing of color data requires the implementation of objective

methodologies integrated into software packages. In addition, the software must satisfy

specific colorimetric technical characteristics, such as the colorimetric reports published by the

Commission Internationale de l’Éclairage (CIE). There are di↵erent software options, both for the

treatment of colorimetric samples, generally provided by the manufacturer of the instrument used

in the measurement, as well as for the digital image processing (Bergman et al., 2008). Although

in both cases they are, to some extent, versatile software systems with wide functionality,

they generally do not allow the user to have absolute control on the methodological process.

Moreover, it is not usual to find software that allows processing RAW RGB data, characterizing
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digital cameras, and specially applying characterization parameters on input images to obtain

characterized output sRGB images.

Given the importance of color communication in archaeology, and the lack of specific software

for camera characterization, we have developed our own software package for the treatment of

colorimetric and spectral data. In this chapter we describe pyColourimetry, a software system that

was developed and tested taking into account the recommendations of the CIE. Undoubtedly,

this is one of the key aspects framed in this thesis not only from a methodological point of view,

but also for the time and resources invested in the development of the software.

pyColourimetry was developed in Python (v.2.7) which is an interpreted and multiplatform

programming language, released under the GNU general public license, which guarantees end

users the freedom to use, study, share and modify the software (Python Software Foundation,

2020). Originally, the computer platform chosen for programming tasks was Linux, specifically

the Ubuntu 14.04 Desktop distribution (Canonical Ltd, 2020). However, pyColourimetry works

also under the Windows environment (Microsoft, 2020), since it is a multiplatform software that

only requires minor changes to the code.

Python has undergone a remarkable increasing growth as programming language in the

development of scientific applications (Oliphant, 2007, Chudoba et al., 2013). Some Python

development applications are in software engineering, graphical user interfaces, numerical

computing, network and internet programming and data analysis and visualization to name a

few. However, we are very interested in Python programming since it has proved to be a suitable

programming language for geomatics applications such as remote sensing (Clewley et al., 2014),

photogrammetry (Barbero-Garćıa et al., 2020), spatial management data (Westra, 2013), and

GIS tools development (Zambelli et al., 2013, Bunting et al., 2014).

Python emergence during the last decade has made it a potentially competitive open-source

alternative to other programming languages such as MATLAB® or Octave (Chaves et al., 2006).

Python programming o↵ers several advantages compared with compiled languages. Python is

an interpreted, open-source, general-purpose, object-oriented, dynamic and high-level scripting

language (Van Rossum and Drake, 2011, Rocha and Ferreira, 2018). Another important aspect of

Python is its clean, elegant and simple syntax, easy to read and understand, learn and implement,

which in turn significantly reduces the program maintenance cost.

Thus, Python is based on an intuitive and simple read object-based implementation code

which allows to easily integrate additional functions. All these attributes make Python a

suitable language for programming scientific applications. Nevertheless, Python has an important

disadvantage. Python is not recommended for scientific applications which require intensive

computations since it runs slower than compiled languages (Cai et al., 2005, Langtangen and

Cai, 2008). Programmers have to be particularly careful with long nested loops and complex

data structures (Behnel et al., 2011). It is highly recommended to migrate to compiled languages

such C some code parts to settle the lack of e�ciency of Python in these cases.

Another important advantage is related to the fact that Python supports the vast amount

open source libraries available to programmers. Powerful and optimized scientific packages have
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been developed or ported to cover the needs of users in many research fields. The use of these

packages simplifies the computation of complex numerical operations, for instance NumPy (2020)

or SciPy (2020), or image processing packages (OpenCV, 2020) to name a few. In fact, it is really

easy to find di↵erent Python packages which are developed to solve most of the real-world problem

programming we have to face in.

All the positive aspects exposed above justify our choice of Python as a programming language

for the development of our software. pyColourimetry has as final objective which is to apply a

rigorous procedure for the characterization of cameras based on polynomial models. Since we

will provide in-depth explanations about the camera characterization procedure in Chapter 3, we

present in the following sections a brief description about the methodology proposed, and how

it was integrated in our software. We also want to highlight that pyColourimetry allows users to

achieve a full control during each one of the phases during the characterization process.

In short, pyColourimetry allows users to apply a procedure for the camera characterization

to collect quantitative colorimetric information in physically-based color spaces (McDonald and

Rigg, 1997, Malacara, 2011, Ohta and Robertson, 2005). The idea is to achieve color information

independently of the device used in the data acquisition stage, relying on digital images and

colorimetric measurements only.

2.2 Colorimetric hardware/software vs open source tools

In this section, we expose a general background of the resources available about specific

colorimetric instrumental and software provided by manufacturers, generally under a commercial

license, compared with open-source free tools developed for color management.

Physical color measurement is based on the CIE colorimetric system (Schanda et al., 2007,

CIE, 2018). The instruments used in colorimetry are listed into three basic types: colorimeters,

spectrophotometers and spectroradiometers. A tristimulus colorimeter is the simplest instrument

used for color measurement, designed for psychophysical color analysis since it provides

measurements that are correlated with a human eye-brain perception (McDonald and Rigg,

1997). Like the human vision system a colorimeter has red, green and blue photodetectors. Thus,

a colorimeter provides the tristimulus values (CIE XYZ) or chromaticity coordinates (xyY) from

an object.

On the contrary, spectroradiometers measure spectral quantities of light sources, and

spectrophotometers measure spectral reflectance and transmittance of objects. From the

spectral reflectance data acquired from spectrophotometers the tristimulus CIE XYZ values

can be easily obtained through the color matching functions (CMFs) specified by the CIE

(CIE, 2018). Although tristimulus colorimeters are fast, simple, and cheaper compared with

spectrophotometers, the data recorded by spectrophotometers are more complete (spectral rather

than just three tristimulus values) and accurate. Therefore, for accurate colorimetric measurement

rather than a colorimeter the use of a spectrophotometer is highly recommended. Further detailed
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explanation about components, measurement mode, geometry, critical parameters, errors in color

measurement are provided in the literature (Ohta and Robertson, 2005b, Ohno, 2007).

Table 2.1 shows the main colorimetric instrument manufacturers, and some of their products

available as well. Usually, together with the instrument, the manufacturer provides a limited

license software with the basic operations, which allows the connection with a PC, taking direct

measures, direct data transfer and management, and colorimetric standard computations (BYK,

2020, Topcon, 2020).

Table 2.1: Manufacturer and colorimetric instruments

Manufacturer Country Product

Konica Minolta Japan Luminance color meters

Chroma Meters / Colorimeters

Imaging photometers and colorimeters

Portable spectrophotometers

X-Rite USA Portable spectrophotometers

Imaging Spectrocolorimeter

Topcon Japan Luminance colorimeters

BYK Germany Portable Spectrophotometers

PCE Instruments Germany Colorimeter

Spectrophotometer

Capital instrument China Colorimeters

However, there are more powerful packages developed to compute more complex colorimetric

operations, or for specific applications such as Colibri®for color appearance (X-Rite, 2020d),

CM-SA skin analysis (X-Rite, 2020c) or di↵erent software solutions for quality control in industry

applications (Color iMatch, InkFormulation Software, ColorCert Suite, Color iQC, ColorDesigner

PLUS and NetProfiler (all provided by X-Rite (2020b)). An interesting tool is a mobile app

developed by X-Rite called Color-Eye®, which allows consumers to ensure color match between

items using a smartphone and a calibration card (X-Rite, 2020e).

Two-color measurement instruments are available for this research: a CS-100A Konica Minolta

colorimeter, currently discontinued and replaced by the CS-150 and CS-160 models; and a

CM-600d Konica Minolta spectrophotometer (Figure 2.1 a, c). The manufacturer usually provides

software to connect the instruments to a computer, allowing users the access and management of

the colorimetric recorded measurements. The problem is that commonly, the type of commercial

license purchased conditions the functions of the software available to users. Full access to software

usually implies a substantial increase in equipment cost.

The CS-100A is a portable, non-contact digital tristimulus colorimeter designed for remote

measurement of chromaticity coordinates and luminance value. On the other hand, the CM-600d

is a portable measurement instrument as well, but in this case designed to register the spectral

reflectance of an object, providing more accurate data. Thus, its advanced capabilities make it

an optimal instrument to evaluate, reproduce, and control the color of objects more e�ciently.

https://www.konicaminolta.com
https://sensing.konicaminolta.us/technologies/luminance-color-meters/
https://sensing.konicaminolta.us/technologies/chroma-meters-colorimeters/
https://sensing.konicaminolta.us/technologies/imaging-photometers-and-colorimeters/
https://sensing.konicaminolta.us/technologies/portable-spectrophotometers/
https://www.xrite.com
https://www.xrite.com/categories/portable-spectrophotometers/
https://www.xrite.com/categories/portable-spectrophotometers/rm200qc/
https://www.topcon-techno.co.jp/en/
https://www.topcon-techno.co.jp/en/products-series/bm/
https://www.byk.com
https://www.byk.com/en/instruments/products/index.php
https://www.pce-instruments.com/us/
https://www.pce-instruments.com/us/measuring-instruments/test-meters/colorimeter-kat_159195.htm
https://www.pce-instruments.com/us/measuring-instruments/test-meters/spectrophotometer-kat_159592.htm
http://www.capitalinstrument.com
http://www.capitalinstrument.com/Products_fenlei.asp?xl_id=11
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The CS-100A colorimeter is compatible with the CS-S10w data management software, and

the software for the CM-600d spectrophotometer is SpectraMagic NX (Figure 2.1 b, d). We have

not used the CS-S10w software, since pyColourimetry is designed to perform direct measurements

through the CS-100A colorimeter. However, the colorimetric data from the color checker was taken

using the CM-600d spectrophotometer in order to acquire more accurate data. Thus, we used the

SpectraMagic NX software only to save and transfer the registered data. The colorimetric data

management (such as color space transforms among other operations) were carried out using our

own Python scripts, since we have not full license (Pro version) to use the software. As we will

discuss below, although commercial software provides powerful functions and a high versatility,

it is possible to perform the same operations achieving satisfying results using open source tools.

(a) (b) (c) (d)

Figure 2.1: Instrumental and software available: a) CS-100A colorimeter (Konica Minolta, 2020b);

b) CS-S10w software (Konica Minolta, 2020c); c) CM-600d spectrophotometer (Konica Minolta,

2020); d) SpectraMagic NX software (Konica Minolta, 2020d)

Regarding digital image processing software, there are di↵erent commercial options available.

However, probably one of the most powerful and widely used for graphic designers, photographers,

illustrators and even scientists is Photoshop (Ps) (Adobe Photoshop, 2020). Ps software is able to

read and process RAW images from di↵erent camera sensors through the Adobe Camera RAW

plugging (Adobe Camera RAW, 2020). An open source alternative for Ps is the multiplatform

GIMP image manipulation program (GIMP , 2020). GIMP uses the same method as Ps to read

and edit RAW images, that is, it needs to be supported by an additional plugging. A good option is

to use RawTherapee, which is an open-source and cross-platform RAW image processing program

(RawTherapee, 2020). Although RawTherapee can be used in combination with GIMP, it works

well by itself. RawTherapee is a powerful software, with high level tools that parallel those of Ps,

but with the advantage of being open-source.

Another open-source suitable option for digital image processing including RAW files

processing is ImageMagick, which also provides Python bindings (ImageMagick, 2020). In

fact, Python provides several libraries which allow RAW images management, with interesting

funcionalities and computations. Table 2.2 shows a few examples of Python packages developed,

some of which are based on DCRAW decoding (Co�n, 2020). Thus, using Python packages users

can apply similar operations as when using commercial image processing software.
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Table 2.2: Python packages for RAW image processing.

Package Source

RawPy https://letmaik.github.io/rawpy/api/rawpy.RawPy.html

LibRaw https://www.libraw.org/

rawkit https://rawkit.readthedocs.io/en/latest/index.html

On the other hand, a suitable and widely approach for accurate color reproduction from digital

images is through the application of ICC color profiles or camera profiles (Ruiz and Pereira, 2014,

Korytkowski and Olejnik-Krugly, 2017, ICC, 2020). Although the use of ICC color profiles o↵ers

good results, it is a closed and complex process that requires the use of specific software for camera

profiling. ICC provides a list of existing tools for making, editing and assessing ICC profiles

provided by partners such as Adobe, HP and X-Rite (Profiling tools, 2020). Some examples

are the X-Rite ColorChecker Camera Calibration Software, i1Publish and the app ColorTRUE

(X-Rite, 2020). However, open-source tools for ICC compatible color management system and

camera profiles are available, such as ArgyllCMS (ArgyllCMS, 2020), DCamProf (DCamProf,

2020), dcpTool (SOURCEFORGE, 2020).

To finish this section on color software, we want to focus on di↵erent tools developed

for the computation of colorimetric operations. Specific functions are implemented for

MATLAB® programmers, such as color space conversion, ICC profiling and automatic white

balance (MathWorks®, 2020). Additional colorimetric packages developed in MATLAB® are:

Computational Colour Science (Westland, 2012), and ColorLab which was developed by the

Universitat de València (Malo and Luque, 2002). Moreover, Python users can take advantage

of the functions implemented in colorimetric open-source packages such as color (Colour, 2013)

and colormath (Colormath, 2014). Additionally, it is not uncommon to find web pages that allow

color transformations and other operations to be performed online (ColorMine, 2020, Lindbloom,

2020).

In conclusion, after exposing the di↵erent options about the specific colorimetric instrumental

and software available, both for colorimetric data management and image processing, it is clear

that software which integrates both methodologies is highly recommended. pyColourimetry not

only combines both processes, but also uses them to carry out the digital camera characterization

in order to yield accurate colorimetric data from full images, particularly in RAW format. Our

software covers the main colorimetrical requirements, o↵ers accurate results, and it is actually a

pioneering software not only in color management but in its application to rock art painting color

documentation for cultural heritage tasks. In the following sections, we provide further details

about the pyColourimetry software development.

https://letmaik.github.io/rawpy/api/rawpy.RawPy.html
https://www.libraw.org/
https://rawkit.readthedocs.io/en/latest/index.html
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2.3 pyColourimetry Modules

The computer software pyColourimetry consists of a set of modules that allows users: to

acquire direct measurements using a CS-100A colorimeter (serialport.py); process colorimetric

and spectral data based on the main CIE colorimetric technical recommendations (myColour.py);

obtain the transformation equations for the camera characterization (using polynomial regression

models), and apply the equations on the image to create images in the final sRGB space

(characterization.py).

These modules are managed by users through a graphic user interface or GUI (gui.py). In

Figure 2.2 we present a graphic scheme which shows the interconnection between the developed

modules and their main functionalities. Further details about each one of the modules integrated

in pyColourimetry are provided in the following subsections.

Figure 2.2: Main pyColourimetry modules.

As we discussed in the introduction, the scripts developed in Python can be supported by

a vast amount of specific technical libraries available to programmers. Thus, we can feed on

powerful functions that have already been created and tested by developers, which simplifies

the programming task. Table 2.3 lists the most significant packages used for pyColourimetry

development, the source and a brief description of their general application. Among these

packages, the following stand out: RawPy for the management of digital images in RAW format;

NumPy and SciPy for computing complex operations; and PyQt4 for the design of the GUI.
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Table 2.3: Main packages used in pyColourimetry.

Package Source Application

os https://docs.python.org/2/library/os.html Operative system functions

shutil https://docs.python.org/2/library/shutil.html Operations with files

sys https://docs.python.org/2/library/sys.html Python functions and attributes

glob https://docs.python.org/2/library/glob.html Pathfiles in Unix

pySerial http://pythonhosted.org/pyserial/ Serial Port communication

random https://docs.python.org/2/library/random.html Work with random numbers

PIL http://pythonware.com/products/pil/ Digital images treatment

RawPy https://letmaik.github.io/rawpy/api/rawpy.RawPy.html Treatment of RAW images

math https://docs.python.org/2/library/math.html Mathematical functions

NumPy http://www.numpy.org Matrix calculation

SciPy http://www.scipy.org Scientific computations

matplotlib http://matplotlib.org Plot

colormath http://python-colormath.readthedocs.io/en/latest/ Colorimetric and spectral data treatment

PyQt4 http://pyqt.sourceforge.net/Docs/PyQt4/ Graphic user interface design

2.3.1 Graphical User Interface (GUI)

The GUI (gui.py script) is undoubtedly the heart or key piece of pyColourimetry software. The

rest of the modules complement the colorimetric functions that allow the user to complete the

characterization framework pursued in this thesis. Python has several graphical user interface

(GUI) frameworks available. The native Python GUI is the Tkinter (Tk) package (Python

Software Foundation, 2020b). However, the pyColourimetry GUI has been designed based on

the PyQt4 library funcionalities, which is a multiplatform binding of the Qt graphical library

for Python. PyQt provides useful tools to make a simple, but complete GUI. In addition, the

GUI has been created with the aim of being intuitive, easy-to-use and attractive for users, with

a technical and professional appearance.

Figure 2.3 shows the main objects integrated in the pyColourimetry interface: Menu (basic

operations); ToolBar (Fast icon access menu); MainWindow (to display the user operations and

results) and a StatusBar (to show messages to users). The GUI connects all the functions defined

in each module, and allows users to apply the methodological process in a controlled manner.

Figure 2.4 shows the operations integrated in pyColourimetry (top ToolBar), and its relationship

with the steps defined in the project actions pipeline (bottom pipeline).

The project workflow phases are as follows:

• Project : An active project is required to start the process. It is possible to open a project or

create a new one. Each project has a log file associated, in which all the operations carried

out are recorded. This file can be checked by users anytime (Figure 2.5).

• Data acquisition: For characterization procedure, two di↵erent data sets are required: RGB

from an image, and the CIE XYZ from a color checker. pyColourimetry allows users to

collect direct colorimetric data or import previous measurements as CSV files; load spectral

https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/sys.html
https://docs.python.org/2/library/glob.html
http://pythonhosted.org/pyserial/
https://docs.python.org/2/library/random.html
http://pythonware.com/products/pil/
https://letmaik.github.io/rawpy/api/rawpy.RawPy.html
https://docs.python.org/2/library/math.html
http://www.numpy.org
http://www.scipy.org
http://matplotlib.org
http://python-colormath.readthedocs.io/en/latest/
http://pyqt.sourceforge.net/Docs/PyQt4/
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data from TXT files and convert to CIE XYZ; and to extract RGB data from images

collected by di↵erent camera sensors (preferred in RAW format).

• Characterization: To compute the RGB-CIE XYZ transformation equations, and give the

statistics for the model assessment.

• Sample: To apply the transform coe�cients to full images, or to obtain the CIE XYZ values

for specific specimens from an image.

Figure 2.3: GUI

Figure 2.4: ToolBar options and their relationship with the project work pipeline



2.3. pyColourimetry Modules 25

Figure 2.5: Project options

In the following subsections, we provide further details as pyColourimetry covers each of

the project workflow phases enumerated above. However, we want to note that each of these

steps is supported by a complex set of functions designed in the script modules, which serve as

pyColourimetry body, while the GUI acts as brain interconnecting all the functions developed.

Thus, the users are well informed during the project workflow, and can adjust the operations

taking into account the specific requirements of each project.

2.3.2 Serial port communication

An outstanding pyColourimetry feature is that it allows users to take direct measurements using a

Konica Minolta CS-100A colorimeter through the serialPort.py module. It is possible to connect

the colorimeter according to the communication specifications of the manufacturer to retrieve

colorimetric data (Figure 2.6). Additionally, it would be possible to add other instruments to

pyColourimetry if the communication parameters are known.

Figure 2.6: Colorimeter serial port connection

Figure 2.7 displays the workflow scheme to acquire direct measurement using the CS-100A

colorimeter connected through pyColourimetry. The user should first check if the CS-100A
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colorimeter is connected to one of the computer ports. If the connection has been made correctly,

the software returns the name of the port and the connection configuration, and the rest of the

options in the menu and the toolbar is activated. However, a test mode was designed in the event

that not active port is detected. The test mode allows simulating the connection with a virtual

colorimeter, taken fictitious measurements. This mode was designed mainly as a debugging tool

to check the correct performance of the code.

Figure 2.7: SerialPort module workflow scheme

As outlined in Figure 2.7, the main functions implemented in the serial port module are:

• scanPorts : Search for the colorimeter serial port connected.

• openSerialPort : Start communication with the colorimeter. If any port is detected, the Test

Mode is available for users.

• getMsg : Message with the coordinates given by the colorimeter.

• getRandomMsg : Random measurement in Test Mode.

• ErrType: Error message to the user if communication with the colorimeter fails.

As a result of the direct measurement, the colorimetric data given by the colorimeter can

be easily saved to a CSV file and loaded by the user when required. However, users can load

measurement from di↵erent colorimetric instruments in properly formatted text files.

2.3.3 Colorimetric data treatment

Although there are specific Python libraries for colorimetric data processing (colormath, Table

2.3), an object-oriented module called myColour.py has been implemented in pyColourimetry,

based on the main technical recommendations published by the CIE (Table in Figure 2.2,
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CIE (2018)). The myColour.py script allows users to handle the main CIE color spaces for

the 2°standard observer and the D65 illuminant such as CIE XYZ, Yxy, RGB, CIELAB and

CIELCH, as well as to compute transformation among color spaces and calculate color di↵erences

between samples. In addition, the most widely CIE chromatic adaptation transforms (CATs) are

included in our module (CIE, 2004), and two new derived from the von Kries model by numerical

optimization (Bianco et al., 2010)

These are some of the operations programmed in our colorimetric module:

• CIE Color spaces: Yxy, XYZ, CIELAB, CIELCH

• Additional color spaces: RGB, LMS

• Functions for color space transform: YxyToXYZ, XYZToYxy, XYZToRGB, RGBToXYZ,

XYZToCIELAB, CIELABToXYZ, CIELABToCIELCH, XYZToLMS,

• Color Di↵erence equation: �E⇤
ab (CIE (2018), Eq. 3.3)

• Chromatic Adaptation Transforms (CATs): von Kries, Bradford, Sharp, CMCCAT2000,

CAT02, BS and BSPC.

The use of our colorimetric software o↵ers several advantages. The functions implemented are

designed to make calculations more flexible, and adapted to specific requirements. For example,

in pyColourimetry, the user can specify the white reference used for the transformation among

CIE XYZ and CIELAB color spaces. On the contrary, this option is not viable in the color

transformations functions available in the colormath package; only the use of theoretical white

references are allowed. However, we based the spectral data treatment on the color conversion

function implemented from colormath, since it is a complex operation. Thus, it is possible to load

spectral datasets collected with spectrometers from TXT files and convert to CIE XYZ data and

export them to a CSV file (Figure 2.8).

Figure 2.8: Spectral curve generation example
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2.4 Camera characterization procedure

Although in Chapter 3 we provide further explanation about image-based camera characterization

procedure, it is required a brief description of the framework proposed. Figure 2.9 displays

the basic pipeline for camera characterization, which establishes the following steps: (1) Data

acquisition; (2) Training data; (3) Model fit; (4) Model assessment; and (5) Output sRGB image.

Figure 2.9: Basic characterization workflow.

The workflow described above is fully integrated into pyColourimetry software (cf. Figure 2.9

and Figure 2.10). The graphic scheme shown in Figure 2.10 was designed based on a set of GUI

screen captures from pyColourimetry. Thus, it can be clearly observed how users can apply each

one of the steps exposed using pyColourimetry. Hereunder we give additional comments on these

basic steps.

Figure 2.10: Camera characterization procedure using pyColourimetry software
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In camera characterization, we need several sets of samples with RGB data from the selected

color patches found in the original image. Interestingly, pyColourimetry is capable of extracting

RGB data in RAW format from the main commercial digital image formats (such as RAF, NEF,

X3F, CR2). The theoretical CIE XYZ tristimulus values from the color checker are required as

well. Both data sets were used as training data for setting the characterization parameters which

establish the relationship between the RGB data and the CIE XYZ coordinates. Additionally, a

testing sample to evaluate the quality of the applied adjustments is required.

As indicated above, the CIE XYZ data can be measured directly using the CS-100A

colorimeter and saved as a CSV file. Nevertheless, the colorimetric data can be taken using

a di↵erent instrument, importing the data through exchange files in a specific format.

By means of the camera characterization, we establish the relationship between the

device-dependent RGB data and the tristimulus values defined by the CIE standard colorimetric

observer. The colorimetric camera characterization process is carried out in two steps. First,

non-linearity correction (linearity.py) of the pixel values is computed when is required (for RAW

RGB data it is not mandatory since they are linear). In the second step, the coe�cients of the

RGB to CIE XYZ transformation equations are obtained from a number of selected patches of

the color chart (characterization.py).

In pyColourimetry we implemented the polynomial method because it gives substantially the

same results as other methods and o↵ers lower pre-processing and computational cost. Three

polynomial models were considered: linear, second and third-order. The number of coe�cients to

be determined is 3, 10 and 19, respectively, depending on the degree of the polynomial. However,

the use of polynomial regression models is a starting point. Chapter 4 provides a new model

regression based on Gaussian Processes to improve the characterization results.

In order to evaluate the results obtained after characterization, pyColourimetry provides

statistical estimators, the root-mean-square errors (RMSE) and residuals to analyze the quality

of the applied adjustments. Additionally, color accuracy is measured by computing the �E⇤
ab (see

Eq. 3.3) di↵erence formula (CIE, 2018), between the imaged results of the standard target patches

and their theoretical color values. It also provides a report in TXT format when the regression is

finished. The generated document allows users to select the optimum number of coe�cients for

device characterization as well.

Once the parameters are calculated, we apply the RGB to CIE XYZ transformation equations

on the input image. However, a final transformation from CIE XYZ to sRGB space is still

necessary to obtain the output image in a device-independent, physically-based color space,

which can be rendered in all devices compatible with the sRGB color space. After computing

all transformation parameters a conventional digital camera can be used to determine rigorous

object colors simulating a colorimeter.
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2.5 Conclusions

The digital camera characterization procedure proves to be a suitable approach for correct color

data measurement in cultural heritage documentation applications. Its use is widely justified

since it is a low-cost, non-invasive technique, and a fast method to record accurate data.

However, specific colorimetric software is required to carry out the camera characterization.

The pyColourimetry software reported in this chapter can be considered as rigorous colorimetric

software since it was developed and tested according to well-accepted recommendations published

by the CIE. In addition, pyColourimetry covers every single step required for proper camera

characterization, and gives the user full control of the overall computation process. It also

facilitates data acquisition and measurement tasks as well as the processing of colorimetric

samples, setting the polynomial parameters, and applying them to finally obtain the output

image in the sRGB space. Another key aspect of pyColourimetry is the rigorous processing of

RAW data from images regardless of the sensor being characterized.

In conclusion, the camera characterization procedure integrated into pyColourimetry allows

the correct color specification in a non-subjective way, following a low-cost solution for color

communication and dissemination. Once the camera is characterized, users have the potential

to obtain output images in the sRGB space that is independent of the sensor of the camera.

Besides, we are working to adapt pyColourimetry functionalities to future specific needs of both

information users and information providers.

In the following chapter, we present the results achieved on a rock art study which confirm

that the framework proposed for camera characterization through pyColourimetry is a suitable

methodology for proper color specification in cultural heritage color documentation.
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3.1 Introduction

Color is a fundamental feature for proper cultural heritage documentation in general, and

archaeological rock art documentation in particular. The correct determination of color provides

vital information, not only at a descriptive level, but also, especially, at a technical and

quantitative level. This allows a better understanding of specimens in the study area and provides

useful information regarding the origin and aging of the pigments.

Traditionally, rock art documentation methods were restricted to subjective procedures based

on direct observations of the researcher with the use of color charts (for instance the Munsell Color

Book). Despite its clear advantages, this methodology entails practical and technical limitations,

a↵ecting the results obtained in determining the color (Ruiz and Pereira, 2014). The problem

is that color is a matter of perception and subjective interpretation. There is no single physical

and universal scale for its measurement (Brill, 1996, Lang, 1997). In the particular case of visual

assessments, even if several observers examine the same object, they can obtain di↵erent references

and experiences and may express the same color stimulus with completely di↵erent words. It is

obvious that verbal expressions cannot be used to communicate color information.

Moreover, in the last decades, cultural heritage documentation processes have largely benefited

from the application of digital recording methods, imagery analysis software and technologies that

o↵er great advantages over the traditional techniques (Iturbe et al., 2018). More and more it is

becoming frequent to combine classical documentation techniques based on perceptual procedures

with rigorous procedures, supported by colorimetric measurements and digital images.

The drawback of those digital recording methods stems from the digital cameras themselves

which capture color information in the well-known RGB color space. Nevertheless, the

device-dependent nature of RGB data makes them unsuitable for rigorous colorimetric purposes

since they do not satisfy the Luther–Yves condition (Hong et al., 2001, Sharma, 2003), that is,

the output RGB data do not directly correspond to the device-independent tristimulus values

based on the CIE standard colorimetric observer (CIE, 2018). Thus, a colorimetric procedure is

required in order to use the data provided by the digital camera sensor.

A common and acceptable approach is the digital camera characterization procedure. By

characterization we refer to the determination of the transformation equations so that the

acquired RGB information is brought into physically-based color spaces such as those introduced

by the CIE, that is, the CIE XYZ space and its derivatives. In this way, a conventional

digital camera could be used for rigorous color determination, somehow simulating a colorimeter

(Balasubramanian, 2003, Mart́ınez-Verdú et al., 2003, Westland et al., 2012). Once characterized,

we can work in a physical color space, which is independent of the device and comparable with

other devices already characterized.

The camera characterization framework proposed in this chapter is based on objective

methods that are independent of the observer experience. It combines the direct method,

based on colorimetric measurements obtained using specific instruments (colorimeter and

spectrophotometer), and the indirect method, using digital images with RGB data (Figure 3.1).
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Figure 3.1: Image-based characterization workflow.

Di↵erent techniques are used for colorimetric camera characterization and numerous papers

have been written regarding common models. Table 3.1 summarizes the main mathematical

models used in camera characterization during the last decades. It seems clear that models based

on polynomial transformation with least-squares regressions predominate, since they provide

accurate results and are computationally simple (Hong et al., 2001, Westland et al., 2012).

Table 3.1: Mathematical models used for camera characterization procedure.

Author Model Samples Color di↵erence

Vrhel and Trussell (1992) Principal Component Analysis (PCA) – –

Hung (1993) Look-up-table 65 �E⇤
uv

Chang-Rak and Maeng-Sub (1999) Multiple regression 24,33,42,60,96 CMC(1 : 1)

Thomson and Westland (2001) Parametric fitting 24,120 –

Pointer et al. (2001) Polynomial Regression 24,225 �E⇤
ab

Hong et al. (2001) Polynomial regression 264, 2095 (textile) CMC(1 : 1)

Cheung and Westland (2002) Artificial Neural Networks (ANN) 192 –

Cheung et al. (2005) Multispectral imaging technique 166 �E⇤
ab

Bianco et al. (2007) Pattern Search Optimization 228 �E⇤
ab

Jackman et al. (2012) Advanced Regression 24 �E⇤
ab

Finlayson et al. (2015) Root-Polynomial Regression 96, 180 �E⇤
uv

The colorimetric camera characterization based on polynomial regression models can be

considered as an appropriate starting point. Currently, further studies have focused on spectral

reflectance reconstruction (Liang and Wan, 2017, Heikkinen, 2018). However, results from

previous research show that good results can be obtained using polynomial transformation

equations, especially those of second or third-order (Mart́ınez-Verdú et al., 2003, Westland et

al., 2012).
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Cheung et al. (2004) made a comparative study between characterization by means of neural

networks and polynomial regression. The study shows that although both approaches are capable

of producing similar results when adequately used, polynomial models o↵er a better alternative

for camera characterization. These are mathematically simpler models, require smaller training

sets, and therefore less computing time.

Although the accuracy of the characterization generally increases as the number of terms

in the polynomial grows (Bianco et al., 2009), in pyColourimetry software we implemented the

polynomial method because it gives substantially the same results as other methods at lower

pre-processing and computational cost (See Chapter 2). In particular, to obtain the RGB–CIE

XYZ transformation equations, three polynomial models were considered in this study: linear,

second and third-order.

Additionally, we should note that the camera characterization framework proposed is not

a restrictive methodology, and can be used in a complementary way to other techniques for

the study and conservation of rock art specimens, for instance, laser scanning together with

photogrammetric techniques, which allow the generation of 3D photorealistic models of rock art

paintings (Domingo et al., 2013).

In this chapter, we will present the results obtained in the characterization of a picture with

Levantine rock art motifs using the pyColourimetry software. Prior to these results, we briefly

describe the main CIE color spaces which are used in this study and other essential colorimetric

elements to add some context to the reader.

3.2 CIE Color spaces

Since 1931, the CIE has developed systems to express color numerically. Color spaces define the

quantitative relationship between physical signals in the electromagnetic visible spectrum, and

physiological perceived colors in human vision. The mathematical relationships that define these

color spaces are essential tools for color management (CIE, 2018).

Two well-known color spaces that provide consistent approaches in relation to the human

visual system are the CIE xyY and the CIE L⇤a⇤b⇤, both based on the so-called CIE XYZ

tristimulus values.

3.2.1 CIE XYZ

The CIE 1931 XYZ color space allows any color stimulus (usually expressed in terms of radiance

at fixed wavelength intervals in the visible spectrum) to be represented with three parameters

XYZ called tristimulus values. CIE XYZ tristimulus values are fundamental measures of color

and are directly used in a number of color management operations. This color space is actually

a reference to define many other color spaces.

It is based on the additive color mixing principle. All color signals can be matched by the

additive mixture of three primaries. In this color space, the primary colors used are not real

colors, in the sense that they cannot be generated with any light spectrum.
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The second coordinate Y represents the luminance, which is the total radiation reflected in

the visible spectrum. Z is quasi-equal to blue stimulation (or the S cone response of the human

eye), and X is a linear combination of cone response curves chosen to be non-negative (Westland

et al., 2012, CIE, 2018).

The CIE XYZ tristimulus values (Eq. 3.1) can be obtained as follows (CIE, 2018):

X = k
X

�

��(�)x̃(�)��

Y = k
X

�

��(�)ỹ(�)�� (3.1)

Z = k
X

�

��(�)z̃(�)��

k =
100P

� S(�)ỹ(�)��

where ��(�) denotes the spectral distribution of the color stimulus function; x̃(�), ỹ(�), z̃(�) are

color-matching functions of a standard colorimetric observer; k is a normalizing constant; and

S(�) is the relative spectral power distribution of the illuminant.

3.2.2 CIELAB

The three-dimensional color space produced by plotting CIE tristimulus values XYZ in

rectangular coordinates is not visually uniform (CIE, 2018). Equal distances in this space do

not represent equally perceptible di↵erences between color stimuli. For this reason, in 1976, the

CIE introduced two new color spaces (CIELAB and CIELUV) whose coordinates are non-linear

functions of X, Y and Z. This non-linear transform of the XYZ values provided partial solutions

to both the problems of color appearance and color di↵erence.

The CIE 1976 L⇤a⇤b⇤ color space provides a three-dimensional color space where the a⇤ � b⇤

axes form a plane to which the L⇤ axis is orthogonal. It separates the color information into

lightness (L⇤) and color information (a⇤, b⇤) on two axes known as red/green (a⇤) and yellow/blue

(b⇤). The lightness of a color stimulus ranges from 0 representing black to 100 representing white.

As the position of color moves from the central region toward the edge of the sphere, its saturation

(or chroma) increases.
The transformation from tristimulus values to L⇤a⇤b⇤ coordinates is given by the well-known

equation (CIE, 2018):

L⇤ = 116 · f( Y
Yn

)� 16
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
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)� f(

Y

Yn
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where X, Y , Z are the tristimulus values of test color stimulus; and Xn, Yn, Zn are the

corresponding tristimulus values of a specified white color stimulus.

3.2.3 Color di↵erence �E⇤
ab

The CIE XYZ color space does not match well to the human perception of color di↵erences. The

color di↵erences perceived equally in di↵erent color regions can lead to very di↵erent distances

in the CIE XYZ color space (Luo, 2006). In classical colorimetry, color di↵erence metrics are

determined using formulas based on the CIELAB color space that is more perceptually uniform

than the CIE XYZ space. The non-linear transform of tristimulus values in the CIELAB equations

allows the Euclidean distance between two points in the new space to better predict the visual

color di↵erence between the color stimuli represented by two points (�E).

Given a pair of color stimuli in CIELAB space, we establish the�E⇤
ab or CIE76 color di↵erence

by the following equation (CIE, 2018):

�E⇤
ab =

p
(�L⇤)2 + (�a⇤)2 + (�b⇤)2 (3.3)

It is advisable to work with CIELAB di↵erences since we work in a uniform space, whereas

this condition is not fulfilled in the CIE XYZ color space. It is for this reason that CIELAB color

di↵erences are useful to establish color tolerances between sample measurements and standards,

and determine if the samples are considered acceptable. The criterion that allows us to establish

color tolerances is based on the concept of “just noticeable di↵erence” (JND), that is, a hardly

perceptible di↵erence between two sensory stimuli.

If �E⇤
ab approximates to 2.3, being in any case less than to 3 (Mahy and Van Eycken, 1994,

ISO, 2004) it is accepted that color di↵erences are hardly perceptible by the human eye. Further,

in cultural heritage digitalization, we can use two guidelines that provide measures to assess

the color quality of digital images: FADGI (Federal Agencies Digitization Guidelines Initiative,

(FADGI, 2016, Files and Griggs, 2016)) from the US and Metamorfoze (Netherlands national

programme for the preservation of paper heritage (Metamorfoze, 2012, Van Dormolen, 2012))

from the Netherlands. The Metamorfoze guideline measures color quality using the CIE76 color
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di↵erence formula, and defines a tolerance average (“color accuracy”) �E⇤
ab of 4 (Van Dormolen,

2012, Korytkowski and Olejnik-Krugly, 2017). In this study, we set the maximum acceptable

value �E⇤
ab to three CIELAB units.

There are a number of proposed improvements to the original �E calculation. Although

CIEDE2000 is the most recent standard to compute color di↵erences (CIE, 2014) we used the

CIE76 because it fits better with typical working environments found in archaeological sites.

Moreover, the CIEDE2000 report establishes a number of “reference conditions” such as sample

size (4 degrees), sample-sensor separation (contact) and sample homogeneity (textureless) which

are too demanding in practical archaeological applications. None of these conditions can be totally

guaranteed in archaeological sites or even in rock art specimens under laboratory conditions.

Therefore, in this study, we used the CIE76 color di↵erence formula (CIE, 2018) for analyzing

the results achieved after camera characterization.

3.3 Material and Methods

3.3.1 Image data

It has been stated above that trichromatic digital cameras capture color information in the

well-known RGB format. The signal generated by the digital camera is device-dependent. By

means of the characterization we establish the relationship between device-dependent RGB values

and the tristimulus coordinates defined by the CIE standard colorimetric observer.

The steps required for the characterization of the camera are: (1) to collect an image of a color

chart; (2) to extract the RGB data from the image; (3) to obtain the CIE XYZ coordinates of

the patches present in the color chart; and (4) to compute the transformation from RGB to CIE

space. Although it is recommended to use RAW image files rather than processed or compressed

image files such as JPEG or ECW, this functionality is rarely found in available packages.

The data used herein consist of a number of digital images taken on a rock art site, called

“Cova Remigia” (Figure 1.1). Its vividly and graphically narrative scenes make it a unique space

in Levantine rock. A Fujifilm IS PRO camera (with a 60 mm spherical lens) was used to take

RAW images. This device has high sensitivity and a low noise CCD sensor with a depth of 14

bits/pixel (Table 1.1). The X-rite ColorChecker SG Digital Color Chart with 140 patches was

included in the visual field of this rock art scene (Figure 3.2).

The CIE XYZ tristimulus coordinates of the color patches are usually provided by the

manufacturer. However, it is recommended to perform a direct measurement that allows us to

control the conditions of the data collection, which in general di↵er from those of the published

chart. The instrument used in our experiments was the spectrophotometer Konica Minolta

CM-600d, which was calibrated before the measurement sessions (Figure 2.1 c). An average of four

measurements was obtained for each color patch using a standard 2°observer and D65 illuminant.

The data with the CIE XYZ coordinates were stored in a text file for further processing.
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Figure 3.2: Example of data acquisition on site. Partial view of the Shelter V, Cova Remigia.

Finally, we obtained three subsets of samples (grey samples, training samples, and testing

samples) with RGB data from a number of selected patches using the pyColourimetry software

(Figure 3.3). We used these RGB data sets to determine the transformation equations, as well as

to evaluate the results obtained after the characterization process.

Figure 3.3: Measuring RGB data with pyColourimetry software.

3.3.2 Data processing workflow

For the characterization of the digital camera, we transformed the original data in the

device-dependent RGB space into the physically-based CIE XYZ color space. Once the

transformation equations are determined, we can represent the image in the sRGB color space.

In the methodological process, we considered the basic colorimetric recommendations

published in the CIE report (CIE, 2018). Some fundamental aspects described in the report

are the usage of illuminants, observers, reference standards for reflectance, viewing conditions,

lighting, calculation of tristimulus values, chromaticity coordinates, color spaces, color di↵erences

and auxiliary formulas.
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Once the initial datasets are prepared, we di↵erentiate two stages in the procedure. The first

stage aims specifically at the characterization of the camera, which gives the coe�cients of the

polynomial transformation equations between the RGB and CIE XYZ spaces. In the second stage,

the transformation equations are applied to the input image to obtain the definitive sRGB image

(Figure 3.4).

Figure 3.4: Flow chart to show the characterization implemented for digital cameras.

In the process, we need three sets of samples with RGB data from the selected color patches:

(1) a grey sample to obtain the coe�cients for the non-linearity correction; (2) a training sample

to determine the transformation equations; and (3) a testing sample, which will allow us to

evaluate the quality of the applied adjustments (Westland et al., 2012).

The first dataset contains the 15 grey-scale patches. The p coe�cients (Eq. 3.4) for the

non-linearity correction are calculated from this first sample (Westland et al., 2012). After

checking for linearity, the training sample data set is used to determine the characterization

equations. A total of 54 patches of the most characteristic colors of the scene are selected to set

the system of equations. The training dataset provides su�cient redundancies for the least-squares

adjustment.

Finally, the equations are applied to the third testing sample dataset. The software provides

statistical estimators and residuals to carry out the quality assessment of the applied adjustments

and select the optimum coe�cients for the characterization. This information is essential to make

right decisions during the camera characterization process.

3.3.3 First stage: Characterization of the digital camera

The characterization is carried out in two steps. First, the need for non-linearity correction of

the pixel values is analyzed. Although the initial response of the CCD sensor is almost linearly

related to the intensity of the incident light, it is unlikely that the RGB output of the camera is

linearly related to the CIE XYZ tristimulus values of the scene surface. The RAW RGB data are
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transformed by means of a complex sequence of operations to obtain RGB output values, such

as pre-processing, linearization, white balance adjustment, demosaicing and color transformation

(Ramanath et al., 2005).

It is recommended correction for the non-linearity of the pixel responses as a pre-processing

stage in the characterization of cameras according to Eq. 3.4. The exponential p coe�cients are

calculated from the relationship between the response of each RGB channel and the luminance

(CIE Y tristimulus value), so that the relationship between the Ci and C 0
i values is linear

(Westland et al., 2012). The formula is:

Ci = C 0
i
p (3.4)

where C 0
i is the camera’s response on channel i (red, green and blue); p is the exponential

coe�cient; and Ci is the pixel value after the application of the correction for channel i. It

is worth noting here that RAW values present highly linear behavior and this correction is not

required.

In the second step, the coe�cients of the RGB to CIE XYZ transformation equations are

obtained from the selected patches of the color chart. The software implements three polynomial

models: linear, second and third-order (Balasubramanian, 2003, Westland et al., 2012). The

number of coe�cients to be determined is 3, 10 and 19, respectively, depending on the degree of

the polynomial (Table 3.2).

Table 3.2: Transformation coe�cients matrix (first, second and third order).

Order Coe�cients

1st R G B

2nd R G B R2 G2 B2 RG RB GB 1

3rd R G B R2 G2 B2 RG RB GB R3 G3 B3 R2G R2B G2R G2B B2R B2G 1

3.3.4 Second stage: Transformation to sRGB space

The coe�cients from the previous stage allows the transformation of RGB pixel values into CIE

XYZ tristimulus values. However, in order to adhere to current digital color standards, a final

transformation from CIE XYZ to sRGB space is still necessary. This transformation is calculated

following technical recommendations from the International Electrotechnical Commission (IEC)

(IEC, 1998).

The matrix formulas to transform into the sRGB space are (Eq. 3.5):

2

4
RsRGB

GsRGB

BsRGB

3

5 =

2

4
3, 2406 �1, 5372 �0, 4986
�0, 9689 1, 8758 0, 0415
0, 0577 �0, 2040 1, 0570

3

5 ·

2

4
X
Y
Z

3

5 (3.5)

where XYZ are the CIE tristimulus values.
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The CIE XYZ values are first transformed to non-linear sR0G0B0 values as follows:

If RsRGB, GsRGB, BsRGB  0.0031308 then

R0
sRGB = 12, 92 ·RsRGB

G0
sRGB = 12, 92 ·GsRGB

B0
sRGB = 12, 92 ·BsRGB

otherwise, that is, if RsRGB, GsRGB, BsRGB > 0.0031308 then

R0
sRGB = 1, 055 ·RsRGB

(1.0/2.4) � 0.055

G0
sRGB = 1, 055 ·GsRGB

(1.0/2.4) � 0.055

B0
sRGB = 1, 055 ·BsRGB

(1.0/2.4) � 0.055

Then, the non-linear sR0G0B0 values are converted to digital code values. This conversion
scales the above sR0G0B0 values by using the following equations (for a black count of 0 and
white digital count of 255 for 8�bits encoding):

R8bit = 255 ·R0
sRGB

G8bit = 255 ·G0
sRGB

B8bit = 255 ·B0
sRGB (3.6)

The outcome of the process is a digital image represented in a device-independent,

physically-based color space, which can be rendered at maximum quality in devices compatible

with the sRGB color space.

3.3.5 RAW data processing

An operating characteristic of modern digital cameras is that the captured RAW RGB data are

transformed by means of a complex sequence of operations applied by the camera software, such

as pre-processing, white balance adjustment, demosaicing and color transformation (Ramanath

et al., 2005). All these operations alter the numerical values of the RGB pixel data used during

the characterization, therefore a↵ecting the calculation of the RGB - CIE XYZ transformation

parameters. In our camera, the output of these operations is a tagged image file format (TIFF)

picture, which minimizes the e↵ects of the internal pre-processing.

A completely di↵erent approach for the camera characterization is to use the RAW RGB

data instead of the processed TIFF data. This approach, dubbed as RAW-based characterization

eliminates the influence of those automatic operations from the characterization process, and

provides the advantage of computing the parameters of polynomial models straight from the

sensor response (Figure 3.5).
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Figure 3.5: Comparative characterization workflow for RAW and TIFF images.

Although the use of RAW data is better for precise characterization (Westland et al.,

2012), it is uncommon to find software packages with this characteristic. A number of technical

complications may explain the lack of such systems, for instance, the handling of non-standard

file formats or the computational load due to the RAW data high dynamic range. In spite of those

complications, we decided to write a software package with RAW data processing characteristics

called pyColourimetry (Chapter 2).

3.4 Results

From the sets of training and testing samples, three least-squares adjustments using first, second

and third-order polynomials were conducted (Figure 3.6). In order to determine the optimal fit for

the RGB to CIE XYZ transformation, we analyzed both the residuals and mean color di↵erences.

We also provide results for two di↵erent processing approaches based on TIFF images and RAW

images.

Figure 3.6: Adjustment results for the characterization of the digital camera (pyColourimetry).
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3.4.1 TIFF data results

Regarding tristimulus values residuals, there are no great di↵erences between the transformations

of second and third-order. In fact, these transformations gave the smaller residuals (Figure 3.7).

As the degree of the polynomial increases, the statistical and residual results of the adjustment

improve markedly. On the other hand, the adjustment with the greatest residuals is that of

the linear transformation. Therefore, according to this initial criterion, the linear transformation

should be discarded.

Figure 3.7: Residuals in the CIE XYZ space with TIFF data (1st, 2nd and 3rd order): a) X; b)

Y; c) Z.

The examination of the �E⇤
ab CIELAB color di↵erences shows again the contrast between

the linear adjustment on the one hand, and the second and third-order adjustments on the other

(Figure 3.8). In the linear transform, only a few color patches are below the acceptable value set

at 3 CIELAB units. In accordance with this criterion, the linear polynomial fit is discarded. The

second and third-order settings yield close values for most patches. It is therefore recommended,

as other authors state in previous research, to use either the second or the third-order adjustments

for the camera characterization (Balasubramanian, 2003, Westland et al., 2012).
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Figure 3.8: �E⇤
ab CIELAB color di↵erences with TIFF data.

As for the colorimetric characterization of the input image (Figure 3.9), the transformation

equations computed with the three adjustments (first, second and third-order) were applied

to three specimens that appear in the scene representing a wild boar, a hunter, and a nest

(Sarriá Boscovich, 1988). As a result, we obtained output images in the sRGB space for the three

transformations (Figures 3.10 and 3.13, upper row).

(a) (b) (c)

(d)

Figure 3.9: Specimens selected in the scene: a) wild board; b) hunter; c) nest; and d) layout of

specimens.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: sRGB output images: a, b, c) Animal detail; d, e, f) Hunter detail; a, d) 1st order;

b, e) 2nd order; c, f) 3rd order.

3.4.2 RAW data results

In this section, we give further numeric results and pictures obtained from the adjustments using

TIFF data versus RAW RGB data (Table 3.3 and Figure 3.11). As in the previous section, the

linear model adjusted with TIFF pictures gives large residuals, and therefore this model must be

discarded for color processing. However, the linear model computed from the RAW data provides

RMSE errors that are half the magnitude of those from the TIFF data.

Table 3.3: Comparative adjustment standard deviation results for the characterization of the

digital camera with TIFF and RAW data.

TIFF Picture RAW Picture

Linear Second Third Linear Second Third

X 6.3167 2.3625 2.2622 3.1098 1.8692 2.2882

Y 5.4823 1.5005 1.3857 2.5051 1.4779 1.8963

Z 5.4591 1.1516 0.9614 2.4153 1.3640 1.9415

�E⇤
ab 8.3943 3.3918 2.9088 4.4079 3.0201 3.6570

The second and third-order models have di↵erent behavior. In the TIFF data adjustments, the

third-order model has the minimum residuals, whereas in the RAW adjustments, the second-order

model yields the best result. A comparison between TIFF and RAW adjustments shows slightly

better results in the TIFF adjustments. According to these figures, a user should apply either

the third-order model with TIFF pictures or the second-order model with RAW pictures, with

an apparent preference for the former.



46 3. Image-based camera characterization

Color di↵erences (�E⇤
ab) follow a similar trend as that observed in XYZ residuals (Figure

3.12). The linear model gives the highest values, although in the RAW adjustment the di↵erence

is 4.4 CIELAB units, which is very close to the JND threshold. The color di↵erences in the second

and third-order models are reasonably acceptable. Again, a casual user might be tempted to use

the third-order model with TIFF pictures since it has a lower value (2.9 units). However, this

point deserves further discussion (see Section 3.5 and Figure 3.13).

Results from RAW data adjustments show that the polynomial of higher order does not

improve the result (Table 3.3). Instead, the second-order polynomial gives the lower color

di↵erence with a similar value to that of the third-order polynomial with TIFF. The advantage

of using the second-order model is the reduction of the order of the polynomial. In this line,

authors recommend using polynomials of first or second-order, against polynomials of higher-order

(Westland et al., 2012, Cheung et al., 2004).

Figure 3.11: Residuals in the CIE XYZ space with RAW data (1st order; 2nd order; 3rd order):

a) X; b) Y; c) Z.
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Figure 3.12: �E⇤
ab CIELAB color di↵erences with RAW data

(a) (b) (c)

(d) (e) (f)

Figure 3.13: sRGB output images of the nest detail: a, b, c ) TIFF data; d, e, f ) RAW data; a,

d) 1st order; b, e) 2nd order; c, f) 3rd order.

3.5 Discussion

The processing of TIFF files gives mean color di↵erences �E⇤
ab in CIELAB units of 8.4 for the

linear model, 3.4 for the second-order model, and 2.9 for the third-order model. It is clear that

color di↵erences decrease numerically as we increase the degree of the polynomial. The worst

result is obtained in the linear adjustment. In this case, the value of 3 CIELAB units established

as tolerance in terms of JND is exceeded, so the linear model should be discarded since it does

not adequately describe the relationship between the device RGB color space and CIE XYZ

color space. The best results are obtained with the third-order polynomial, where the mean color

di↵erence is less than three CIELAB units.
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It is quite interesting to consider the results obtained in the third specimen, the nest. While

the linear transformation might be thought to be discarded, after checking the output images

obtained for both the wild boar and the hunter, in the latter specimen, it seems clear that the

best results are obtained with the linear transformation. Despite the high residual value and

mean �E⇤
ab color di↵erences, the final sRGB image obtained for the nest with the linear model

is better (Figure 3.13 a). A smaller number of saturated pixels appears, and the color obtained

after the characterization is closer to the color observed in the field site. In the images obtained

with either the second or the third-order polynomial transformations, the number of saturated

pixels is substantial. With this particular example, we proved that an increase in the order of the

polynomial gave lower adjustment errors, but also created saturated sRGB output images that

became useless for color documentation purposes.

It should be noted that the nest is in the upper-right area of the scene, which is less illuminated

due to the prominent relief and curvature at the roof of the shelter. On the contrary, the central

area of the image containing the other specimens is nearly vertical and flat. Obviously, the

geometry of the cave a↵ects lighting conditions, and this modifies fundamental colorimetric factors

such as the reflectivity and color appearance of the object. In addition, the color chart was placed

on the bottom-right area of the image with higher illumination.

The coe�cients determined for the transformation equations with the TIFF data were

therefore adequate for imaging areas with lighting conditions similar to those of the area where

the color chart was placed, that is, the area close to the wild boar and hunter specimens. In

dimly lit areas, as it is the case of the upper side of the image containing the nest specimen, these

equations do not function properly.

The most interesting finding of this study was the high performance of the camera

characterization when using RAW data. In general, the models created from RAW data gave

the lower residuals in terms of both XYZ residuals and color di↵erences. However, the true

improvement of RAW-based characterization lays in the quality of the output images. The sRGB

images created with the RAW-based characterization contain colors that remind one of the true

colors at the archaeological site. Moreover, the process proved to be very robust, and worked well

with specimens imaged under illumination conditions di↵erent to those of the color chart.

3.6 Conclusion

The results presented in this chapter confirm that the initial objective of establishing a

methodological process for the characterization of digital cameras in archaeological research was

achieved. It requires the joint processing of both radiometric and colorimetric data. The results

are satisfactory and very promising for proper color documentation in rock art studies.

The proposed workflow for the characterization of digital cameras is adequate and takes the

most important technical colorimetric aspects such as illuminants, standard observers, calculation

of tristimulus values, chromaticity coordinates, color spaces, color di↵erences and auxiliary

formulas into account.
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According to the results of the study, we recommend applying the RAW-based

characterization with second-order polynomial equations to transform data from the camera RAW

RGB space to the CIE XYZ color space. The usage of a linear or third-order transformation should

be restricted to very specific cases due to the higher residual values achieved in the adjustments.

One of such cases may be the processing of image features with illumination conditions

di↵erent to those in the color chart area. Although these cases are rare and must be avoided

in common practice, researchers must deal with them occasionally. Careful use of artificial light

sources and detailed photographic shots containing the color chart next to the rock art specimen

are good practices to avoid troublesome scenarios.

The computer application developed in this study, pyColourimetry, covers all steps of the

methodological process, including the measurement and processing of colorimetric samples, the

characterization and creation of the output image in the sRGB space. Moreover, our software

gives the user full control of the overall computation process.

Future research must include the processing of RAW data from additional sensors and cameras

with specific file formats, the optimization of the code implemented for the development of the

pyColourimetry toolbox, as well as the inclusion of advanced statistical models to obtain improved

transformation equations for the characterization of digital cameras.





4

A Gaussian Process Model for

Camera Characterization

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Case Study: Cova dels Cavalls . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Image-Based Camera Characterization Methodology . . . . . . . . . . . 53

4.2.3 Gaussian Processes for Camera Characterization . . . . . . . . . . . . . 55

4.2.3.1 Gaussian Process Model . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.4 Second-Order Polynomial Model . . . . . . . . . . . . . . . . . . . . . . 57

4.2.4.1 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.5 Model Checking and Comparison . . . . . . . . . . . . . . . . . . . . . . 59

4.2.6 Induced Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Model Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1.1 CIE XYZ Residuals . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1.2 �E⇤
ab Color Di↵erences . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.3 Analysis of Color Chart Patches . . . . . . . . . . . . . . . . . 64

4.3.1.4 Induced Noise Results . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Output sRGB Characterized Images . . . . . . . . . . . . . . . . . . . . 68

4.3.3 �E⇤
ab Mapping Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.4 Rock Art Specimen Detail Images . . . . . . . . . . . . . . . . . . . . . 70

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

51



52 4. A Gaussian Process Model for Camera Characterization

4.1 Introduction

The colorimetric characterization of digital cameras based on polynomial models is an appropriate

starting point in this thesis; they are widely accepted, mathematically simpler and require smaller

training sets and less computing time (Bianco et al., 2009, Cheung et al., 2004). Previous

experiments using second-order polynomials applied in rock art paintings gave also good results

(Molada-Tebar et al., 2018). However, they tend to be rigid models and su↵er from overestimation

or underestimation when many or few data are provided. Furthermore, the lack of reliable

generalization of predictions in polynomial models is well-known, especially when extrapolating

or in the case of modeling wiggly functions (Bishop, 2006). Therefore, it is desirable to improve

the results by means of more flexible, robust and accurate models.

In this chapter, we introduce a novel approach for documenting rock art paintings based on a

Gaussian process (GP) model. GPs are natural, flexible non-parametric models for N -dimensional

functions, with multivariate predictors (input variables) in each dimension (Bernardo et al., 1998,

Rasmussen and Williams, 2006). The defining property of a GP model is that any finite set of

values is jointly distributed as a multivariate Gaussian function. A GP is completely defined

by its mean and co-variance function. The co-variance function is the crucial ingredient in a

Gaussian process as it encodes the correlation structure which characterizes the relationships

between function values at di↵erent inputs. GP allows not only nonlinear e↵ects and handling

implicit interactions between covariates, but also improves generalization of function values for

both interpolation and extrapolation purposes. Due to their generality and flexibility, GPs are

of broad interest across machine learning and statistics (Neal, 1997, Rasmussen and Williams,

2006).

GP models are formulated and estimated within a Bayesian framework, and all inference is

based on the multivariate posterior distribution. Computing the posterior distribution is often

di�cult, and for this reason, di↵erent computation approaches can be used. The Markov chain

Monte Carlo (MCMC) is a sampling method that provides a sample of the joint posterior

distribution of the parameters (Brooks et al., 2011, Durmus et al., 2018).

The GP model results were compared to the common approach based on polynomial regression

models. The main advantage of non-parametric over parametric models is their flexibility (Green

and Silverman, 1993, Ruppert et al., 2009). In a parametric framework, the shape of the functional

relationship is a prespecified, either linear or nonlinear, function, limiting the flexibility of the

modeling. In a non-parametric framework, the shape of the functional relationship is completely

determined by the data, allowing for a higher degree of adaptability.

The goodness of fit and predictive performance of the models is assessed by analyzing the

adjustment residuals and the leave-one-out cross-validation (LOOCV) residuals. The quality of

the characterized image is also evaluated in terms of colorimetric accuracy by means of color

di↵erences among observed and fitted colors using the CIE framework. In addition, we evaluate

the induced noise into the output image which is recognized as a drawback for some digital image

processing applications such as image matching or pattern recognition.
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4.2 Materials and Methods

4.2.1 Case Study: Cova dels Cavalls

The working area is a rock art scene located in Shelter II of the “Cova dels Cavalls” (Figure 1.1).

The images were taken using two di↵erent SLR digital cameras, a Sigma SD15 and a Fujifilm

IS PRO. The images contain the hunting scene located in the central part of this emblematic

archaeological site. Parameters such as focal, exposure time, aperture, and ISO were controlled

during the photographic sessions for both cameras. Photographs were taken in the RAW format

under homogeneous illumination conditions.

The main di↵erence between the Fujifilm IS PRO and the Sigma SD15 cameras lies in the

integrated sensors (Table 1.1). The Fujifilm incorporates a 12 megapixels Super CCD imaging

sensor, with resolution of 4256 ⇥ 2848 pixels and a color filter array (CFA) with a Bayer pattern.

The use of CFA implies that the color registered in every individual pixel is not acquired directly

but as a result of interpolation between channels. On the other hand, the Sigma carries a

three-layer CMOS Foveon®X3 sensor of 2640 ⇥ 1760 pixels, which makes it a true trichromatic

digital camera, capable of registering color without interpolation (Sigma Corporation, 2012).

4.2.2 Image-Based Camera Characterization Methodology

The output RGB digital values registered by the camera depend on three main factors: the sensor

architecture, the lighting conditions, and the object being imaged. Even assuming the same object

and lighting conditions, other factors can still produce di↵erent RGB responses within and across

scenes. Some elements such as the internal color filters or user settings (exposure time, aperture,

white balance, and so on) can modify the output digital values. As a result, the original RGB

data registered by the sensor cannot be used rigorously for the quantitative determination of

color, and native RGB camera color spaces are said to be device-dependent. A way to transform

the signal captured by the camera sensor into a physically-based, device-independent color space

is by means of camera characterization (See workflow in Figure 4.1 and Chapter 1).

Figure 4.1: Schematic diagram designed for the camera characterization.
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To carry out the characterization, various training and test datasets are required. An

important aspect on the camera characterization process is the establishment of the working

color spaces. Some of the most common color spaces used are the input RGB data and the

output tristimulus coordinates (Westland et al., 2012). In the preliminary stages of the study,

four di↵erent transformations between color spaces were tested, including RGB-CIE XYZ,

RGB-CIELAB, LMS-CIE XYZ, and LMS-CIELAB. The transformation that worked the best

was the RGB-CIE XYZ, whose results are reported below in this chapter.

On the other hand, the digital RGB values are available after a complex process driven by

the built-in software and electronics of the camera (Ramanath et al., 2005). Usually, a set of

pre-processing operations, e.g. demosaicing, white balance, gamut mapping, color enhancement,

or compression, are applied automatically to the RAW image (Figure 4.2). It is thus preferable

to work with RAW data versus RGB processed or compressed image files.

Figure 4.2: RAW images versus processed images workflow.

The RAW RGB training and test sample data were extracted from the images using our

software pyColourimetry which was developed in previous research. This software was written

in the Python programming language following the CIE recommendations. It allows RAW RGB

data extraction from conventional camera formats and implements other colorimetric functions

such as transformation among color spaces, color di↵erence calculation, or spectral data treatment

(Molada-Tebar et al., 2017).

Also, the data acquisition includes the direct measurement of the tristimulus values of the

patches present in the color chart and the RAW RGB data extraction from the digital image.

Thus, a color chart has to be included as a colorimetric reference in the photographic shot to

carry out the camera characterization. For this experiment, we used an X-Rite ColorChecker SG

Digital Color Chart as a color standard. This chart is routinely used in digital photography for

color calibration. It consists of an array of 140 color patches. The number of patches is supposedly

enough to cover the color domain present in the scene as well as to provide training and test data

sets to analyze the results after the camera characterization.

CIE XYZ values for the ColorChecker patches must be known prior to undertaking the

camera characterization. An accepted option is to use those tristimulus values provided by

the manufacturer. Nevertheless, it is highly recommended to carry out a new measurement,

preferably by means of a colorimeter or spectrophotometer, using the setup of the specific
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experiment. The spectral reflectance data were acquired using the spectrophotometer Konica

Minolta CM-600d, following CIE recommendations (2°standard observer under D65 illuminant).

CIE XYZ coordinates are obtained by transforming the spectral data using well-known CIE

formulae (CIE, 2018).

To visualize the tristimulus coordinates, it is necessary to perform a final transformation

of the CIE XYZ values into the sRGB color space, which is compatible with most digital

devices. This transformation is carried out based on the technical recommendations published

by the International Electrotechnical Commission (IEC, 1998). Thus, the final outcome of the

characterization consists of an sRGB output image for each regression model.

Once the digital camera is colorimetrically characterized, it can be used for the rigorous

measurement of color simulating a colorimeter (Mart́ınez-Verdú et al., 2003). Using a

characterized camera, we can obtain accurate color information over complete scenes, which is

a very important requirement to properly analyze rock art. The use of conventional cameras for

color measurement allows researchers to take pictures with low-cost recording devices, suitable

for carrying out heritage documentation tasks using noninvasive methodologies (Molada-Tebar

et al., 2018).

4.2.3 Gaussian Processes for Camera Characterization

The main goal of camera characterization is to find the mapping function between the RGB color

values and the CIE XYZ tristimulus coordinates:

f : RGB 2 IR3 ! XY Z 2 IR3 (4.1)

Commonly, this multivariate mapping function is divided into independent functions for each

single XYZ tristimulus value. In this chapter, we propose a Gaussian process (GP) to estimate

these functions, with di↵erent model parameters, ✓1, ✓2, and ✓3, for each mapping function:

f1 : RGB 2 IR3 GP (✓1)����! X 2 IR

f2 : RGB 2 IR3 GP (✓2)����! Y 2 IR (4.2)

f3 : RGB 2 IR3 GP (✓3)����! Z 2 IR

4.2.3.1 Gaussian Process Model

A GP is a stochastic process that defines the distribution over a collection of random variables

(Bernardo et al., 1998, Rasmussen and Williams, 2006). The defining property of a GP is that

any finite set of random variables is jointly distributed as a multivariate normal distribution. A

GP is completely characterized by its mean and co-variance functions that control the a priori

behavior of the function. GP can be used as prior probability distributions for latent functions in

generalized linear models (Gelman et al., 2013). However, in this study, we focus on GP in linear
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models (a normal outcome), as we can assume that the CIE XYZ color coordinates are normally

distributed.

A GP for a normal outcome y = {y1, y2, . . . , yn 2 IR} 2 IRn, paired with a matrix of D input

variables (predictors) X = {x1,x2, . . . ,x3 2 IRn} 2 IRn⇥D, consists of defining a multivariate

Gaussian distribution over y conditioned on X:

y|X ⇠ N (µ(X),K(X|✓) + �2I) (4.3)

where µ(X) is an n-vector, K(X|✓) is an n⇥ n co-variance matrix, �2 is the noise variance, and

I the n⇥ n diagonal identity matrix. The mean function µ : X 2 IRn⇥D ! IRn can be anything,

although it is usually recommended to be a linear model or even zero. The co-variance function

K|✓ : X 2 IRn⇥D ! IRn⇥n must be a positive semidefinite matrix (Neal, 1997, Rasmussen and

Williams, 2006). In this work, we use the square exponential co-variance function, which is the

most commonly used function of the Matérn class of isotropic co-variance functions (Rasmussen

and Williams, 2006). The squared exponential co-variance function for two observed points i and

j (i, j = 1, . . . , n) takes the form

K(X, ✓)ij = ↵2exp

 
�1

2

DX

d=1

1

`2d
(xdi � xdj)

2

!
(4.4)

where ✓ = {↵, `}; ↵ is the marginal variance parameter, which controls the overall scale or the
magnitude of the range of values of the GP; and ` = {`d}Dd=1 the lengthscale parameter, which

controls the smoothness of the function in the direction of the d-predictor, so that the larger the

lengthscale the smoother the function.

4.2.3.2 Bayesian Inference

Bayesian inference is based on the joint posterior distribution p(✓,�2|y, X) of parameters given

the data, which is proportional to the product of the likelihood and prior distributions,

p(✓,�2|y, X) / p(y|✓,�2, X)p(✓)p(�2) (4.5)

In the previous equation,

p(y|✓,�2, X) =
Y

i

N (yi|0,Kii(X|✓) + �2)

is the likelihood of the model, where the mean function µ(X) has been set to zero for the sake of
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simplicity, and

p(↵) = N (↵|0, 10)

p(`) =
DY

d=1

Gamma(`d|1, 0.1)

p(�2) = N+(�2|0, 10}

are the prior distributions of the parameters of the model. These correspond to weakly informative

prior distributions based on prior knowledge about the magnitude of the parameters.

Predictive inference for new function values ỹ for a new sequence of input values X̃ can be

computed by integrating over the joint posterior distribution

p(ỹ|y) =
Z

p(ỹ|✓,�2, X̃)p(✓,�2|y, X)d✓d�2 (4.6)

To estimate both the parameter posterior distribution and the posterior predictive distribution

for this model, simulation methods and/or distributional approximations methods (Gelman et

al., 2013) must be used. Simulation methods based on MCMC (Brooks et al., 2011) are general

sampling methods to obtain samples from the joint posterior distribution. For quick inferences

and large data sets, where iterative simulation algorithms are too slow, modal and distributional

approximation methods can be more e�cient and approximate alternatives.

4.2.4 Second-Order Polynomial Model

This is the most extended model in practical camera characterization. The N -dimensional

collections of random observations X, Y , and Z are the CIE color variables, where Xi, Yi,

and Zi represent the color coordinates of the ith order observation i (i = 1, · · · , N). Each X,

Y , and Z N -dimensional variable is considered to follow a normal distribution depending on an

underlying second-order polynomial function f and noise variance �2,

p(X|fx,�x) = N (X|fx,�
2
xI)

p(Y |fy,�y) = N (Y |fy,�
2
yI) (4.7)

p(Z|f z,�z) = N (Z|f z,�
2
zI)

where I is the N ⇥N identity matrix. The latent second-order polynomials functions fx, fy, and

f z take the form

fx = a0 + a1 ·R+ a2 ·G+ a3 ·B + a4 ·R ·G+ a5 ·R ·B + a6 ·G ·B + a7 ·R2 + a8 ·G2 + a9 ·B2

fy = b0 + b1 ·R+ b2 ·G+ b3 ·B + b4 ·R ·G+ b5 ·R ·B + b6 ·G ·B + b7 ·R2 + b8 ·G2 + b9 ·B2 (4.8)
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fz = c0 + c1 ·R+ c2 ·G+ c3 ·B + c4 ·R ·G+ c5 ·R ·B + c6 ·G ·B + c7 ·R2 + c8 ·G2 + c9 ·B2

where the vectors a = a1, . . . , a9, b = b1, . . . , b9 and c = c1, . . . , c9 represent the polynomial

coe�cients, and R, G, and B are the N -dimensional variables in the input RGB space.

The likelihood functions of the variables X, Y and Z (given the coe�cients a, b, c), the

variance parameters �2 = �2
x,�

2
y ,�

2
z , and the variables R, G and B, take the form

p(X|a,�x,R,G,B) =
NY

i

N (Xi|a,�2
x, Ri, Gi, Bi)

p(Y |b,�y,R,G,B) =
NY

i

N (Yi|b,�2
y, Ri, Gi, Bi) (4.9)

p(Z|c,�z,R,G,B) =
NY

i

N (Zi|c,�2
z , Ri, Gi, Bi)

where the subscript i represents the ith observed value.

4.2.4.1 Bayesian Inference

The joint posterior distributions are proportional to the product of the likelihood and prior

distributions:

p(a,�2
x|X) / p(X|a,�2

x,R,G,B)p(a)p(�2
x)

p(b,�2
y |Y ) / p(Y |b,�2

y ,R,G,B)p(b)p(�2
y)

p(c,�2
z |Z) / p(Z|c,�2

z ,R,G,B)p(c)p(�2
z)

We set vague prior distributions p(a) = N (a|0, 1000), p(b) = N (b|0, 1000), p(c) =

N (c|0, 1000), and p(�) = N+(�|0, 1) for the hyperparameters a, b, c, and �, respectively, based

on prior knowledge about the magnitude of the parameters.

Predictive inference for new function values X̃, Ỹ , and Z̃ for a new sequence of input values

R̃, G̃, and B̃ can be computed by integrating over the joint posterior distributions

p(X̃|X) =

Z
p(X̃|a,�2

x, R̃, G̃, B̃)p(a,�2
x|X)dad�2

x

p(Ỹ |Y ) =

Z
p(Ỹ |b,�2

y , R̃, G̃, B̃)p(b,�2
y |Y )dbd�2

y

p(Z̃|Z) =

Z
p(Z̃|c,�2

z , R̃, G̃, B̃)p(c,�2
z |Z)dcd�2

z

Simulation methods based on MCMC are used for estimating both the parameter posterior

distribution and the posterior predictive distribution of these models.
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4.2.5 Model Checking and Comparison

For model assessment, common checking procedures of normality, magnitude and trends on the

fitted and predicted residuals are used. Fitted residuals can be useful for identifying outliers or

misspecified models and give us the goodness of the fit for the sampling patches. Furthermore, the

performance of each model was assessed using the LOOCV approach (Stone, 1974). The LOOCV

procedure has been previously used in color science multiple times (Li et al., 2009, Qian et al.,

2017, Vazquez-Corral et al., 2014, Xiong et al., 2007), although its origins can be traced back

to early practical statistics methods (Stone, 1974) and is routinely used in modern data science

applications (Gareth et al., 2013).

In our study, the LOOCV consists of setting aside an individual patch and calculating the

prediction model. Then, the predicted value is compared to its observed value which gives a

measure of the model predictive accuracy. This allows obtaining an average of the predictive

accuracy for unobserved patches as well as individual quality indicators for each color patch.

In addition to the residual analysis, it is required the assessment of the models using

colorimetry metrics (Iturbe et al., 2018). Also, a LOOCV procedure was conducted to assess

the predictive performance in terms of color di↵erences. In classical colorimetry, color di↵erence

metrics are determined using formulas based on the CIELAB color space, such as �E⇤
ab (Eq. 3.3),

also known as the CIE76 color di↵erence (CIE, 2018).

The CIE XYZ color space is not uniform, that is, equal distances in this space do not

represent equally perceptible di↵erences between color stimuli. Contrarily, CIELAB coordinates

are nonlinear functions of CIE XYZ, and more perceptually uniform than the CIE XYZ color

space (CIE, 2007, 2018). The �E⇤
ab between the theoretical tristimulus coordinates against the

predicted values are computed, which gives a measure of the model adjustment in a well-defined

color metric.

4.2.6 Induced Noise Analysis

The radiometric response of a digital camera is the outcome of a number of factors, such as

electromagnetic radiation, sensor electronics, the optical system, and so forth (Lebrun et al.,

2013, Colom et al., 2014, Sur and Grédiac, 2015, Zhang et al., 2018, Naveed et al., 2019). The

noise present on a single image is basically composed of two components: the photoresponse noise

of every sensor element (pixel) and the spatial non-uniformity or fixed pattern noise of the sensor

array (Riutort-Mayol et al., 2012, Marqués-Mateu et al., 2013).

The nonlinear transformation functions in camera characterization models modify the input

data which are themselves a↵ected by noise. In the camera characterization procedure, noise is

transferred from the original image to the characterized image and transformed in di↵erent ways.

In this research, the analysis of noise is carried out by comparing the coe�cients of variation in

the original and the characterized images. The noise assessment was conducted on four selected

patches of the color checker (C7, D7, C8, and D8).
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4.3 Results and Discussion

4.3.1 Model Performance Assessment

For model assessment we processed the CIE XYZ residuals and the �E⇤
ab color di↵erences values

after the characterization procedure.

4.3.1.1 CIE XYZ Residuals

Table 4.1 summarizes the fitted CIE XYZ and LOOCV residuals values achieved after the

characterization process for the two cameras used in the study. Also, the histograms of the

fitted and LOOCV residuals in both images are in Figure 4.3. Although both methodologies

give satisfactory results and fit appropriately to the input RGB data, all summary statistics

and histograms clearly show that GP outperforms the second-order polynomial regression model

in both images. The standard deviation values, which represent the mean error, as well as

the maximum and minimum residuals, are lower using the GP process than the second-order

polynomial model.

Table 4.1: Fitted CIE XYZ (Res) and LOOCV residuals (RL) values after the characterization.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial

CIE X CIE Y CIE Z CIE X CIE Y CIE Z

Res RL Res RL Res RL Res RL Res RL Res RL

Max. 1.88 4.53 1.80 4.38 1.28 3.66 7.02 7.36 6.87 7.18 4.80 5.09

Min. �2.48 �4.59 �3.21 �5.80 �1.50 �4.54 �4.97 �5.46 �4.70 �5.15 �3.59 �3.93

Std. Dev. 0.73 1.39 0.77 1.48 0.49 1.01 1.77 1.92 1.82 1.98 1.29 1.38

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial

CIE X CIE Y CIE Z CIE X CIE Y CIE Z

Res RL Res RL Res RL Res RL Res RL Res RL

Max. 2.20 4.42 1.98 3.71 1.54 3.33 7.08 7.53 6.48 6.90 3.15 3.35

Min. �3.72 �4.25 �2.63 �3.84 �1.35 �1.80 �4.25 �4.69 �3.12 �3.31 �1.96 �2.45

Std. Dev. 0.94 1.46 0.78 1.20 0.45 0.74 1.75 1.92 1.45 1.58 0.49 0.86

Thus, given the results achieved using the GP, a notable improvement can be observed

compared with the common second-order polynomial models, that is, a higher adjustment

correlation coe�cient and a greater predictive capacity were achieved. An improvement in

the predictive capacity (LOOCV residuals) implies a better model generalization, that is, a

better capacity for interpolation and extrapolation. This is a key aspect in the characterization

procedure, as the output digital image is the result of the application of the model established.
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Sigma SD15 image

(a) (b)

(c) (d)

Fujifilm IS PRO image

(e) (f)

(g) (h)

Figure 4.3: CIE XYZ residuals histograms after the adjustment: (a,b,e,f) Gaussian process;

(a,d,g,h); Second-order polynomial; (a,c,e,g); CIE XYZ residuals; (b,d,f,h); LOOCV residuals.



62 4. A Gaussian Process Model for Camera Characterization

4.3.1.2 �E⇤
ab Color Di↵erences

The �E⇤
ab color di↵erences (Eq. 3.3) obtained between the theoretical and predicted values

allowed us to assess the colorimetric quality achieved after the adjustment. The results obtained

for the �E⇤
ab are shown numerically in Table 4.2. Also, they can be observed graphically in Figure

4.4 (for the Sigma SD15) and Figure 4.5 (for the Fujifilm IS PRO), where the red line delimits

the JND tolerance established in 4 CIELAB units.

Table 4.2: �E⇤
ab summary of the statistical results after the characterization.

Sigma SD15 Image Fujifilm IS PRO Image

GP 2nd-Order Polynomial GP 2nd-Order Polynomial

�E⇤
ab LOOCV �E⇤

ab LOOCV �E⇤
ab LOOCV �E⇤

ab LOOCV

Max. 8.251 8.906 15.086 17.814 8.213 8.409 12.634 13.021

Mean 1.755 2.440 2.561 2.751 1.817 2.285 2.753 2.958

Median 1.403 2.180 2.135 2.205 1.486 1.913 2.101 2.281

Std. Dev. 1.479 1.863 1.836 2.022 1.457 1.729 2.186 2.305

Under a strict colorimetric criterion, the average and median values for �E⇤
ab obtained using

both regression models are less than 3 CIELAB units, that is, lower than the JND. However,

the �E⇤
ab color di↵erences obtained confirm that the adjustment based on the GP model o↵ers

better results than the second-order polynomial regression for both cameras. The values achieved

for the mean and median �E⇤
ab in both images are similar using the second-order polynomial

regression model.

It is clearly observed that the main improvement is in the maximum �E⇤
ab values obtained.

Although the average for LOOCV �E⇤
ab is slightly lower using the GP, the maximum values for

LOOCV �E⇤
ab decreases significantly using this model. The maximum values obtained are 17.814

and 13.021 for the Sigma SD15 and the Fujifilm IS PRO image, respectively, using a second-order

polynomial regression model, whereas the maximum values for LOOCV �E⇤
ab using the GP are

8 CIELAB units (Table 4.2).

Moreover, the number of patches with �E⇤
ab greater than 4 units (JND) clearly decrease for

both images after applying the GP (Figures 4.4 and 4.5). Thus, the GP improvement achieved in

the adjustment is noticeable in colorimetric terms, reaching lower magnitude residuals (Table 4.1)

and �E⇤
ab values (Table 4.2), which means better model fits and higher predictive characteristics.
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Sigma SD15 image

(a)

(b)

Figure 4.4: Sigma SD15 �E⇤
ab values for the X-Rite patches: (a) �E⇤

ab; (b) LOOCV �E⇤
ab.

Fujifilm IS PRO

(a)

(b)

Figure 4.5: Fujifilm IS PRO �E⇤
ab values for the X-Rite patches: (a) �E⇤

ab; (b) LOOCV �E⇤
ab.
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4.3.1.3 Analysis of Color Chart Patches

The use of the LOOCV procedure in this study is twofold: it allows an overall model checking as

well as analyzing patches used in the camera characterization at individual level. Values for �E⇤
ab

less than 4 CIELAB units (JND value represented by the red line in the plots in Figures 4.4 and

4.5) are achieved for the majority of the patches. Also, it is clearly observed that the Fujifilm IS

PRO camera gives better results than the Sigma SD15, particularly after applying the GP (cf.

Figure 4.5 b with Figure 4.4 b).

Table 4.3 displays the percentage of patches with a LOOCV �E⇤
ab greater than 4 CIELAB

units for the di↵erent regression models performed. Once again, the GP model gives slightly

better results than the second-order polynomial model, especially for the Fujifilm IS PRO digital

camera.

Table 4.3: Percentage of patches with LOOCV �E⇤
ab > 4 CIELAB units.

Sigma SD15 Fujifilm IS PRO

Patches % Patches %

Model Gaussian process 12 8.57 11 7.86

Second-order 19 13.57 31 22.14

LOOCV Gaussian process 23 16.43 22 15.71

Second-order 20 14.29 31 22.14

Particularly, there are eight patches with the highest �E⇤
ab values in both images regardless of

the model applied (A8, B4, B9, E4, G4, H3, H9, and M3). These patches can be easily identified

on the X-rite ColorChecker (Figure 4.6 a) as well as on the CIE chromaticity diagram (Figure

4.6 b). The worst results are found in patches E4, H9, B4, and G4 (blue, green, purple, and red,

respectively). Note that patches E4 (blue), G4 (red), and H9 (green) are near the vertices of the

triangle that delimits the color gamut, that is the chromatic domain, of the sRGB color space

(white line plotted in Figure 4.6 b).

Thus, nature and colorimetric characteristics of the color patches used as training sample

set have an e↵ect on the overall accuracy of the model used (Chou et al., 2013). The colors

represented with the highest �E⇤
ab values in these patches correspond to saturated colors that

are commonly found in artificial or industrial objects, but not in natural scenes such as those

found in archaeological applications. We have to keep in mind that, usually, color charts used as

colorimetric reference are designed mainly for industrial processes or photographic applications.

Therefore, purple (B4, H3, and M3), blue (E4), green (H9 and B9), and bright red (G4) colors will

not likely be present in archaeological scenes. Consequently, these color patches could be removed

from the training sample during the characterization process without a↵ecting the global accuracy.
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(a) (b)

Figure 4.6: Patches with higher LOOCV �E⇤
ab values: (a) on X-Rite ColorChecker; (b) on CIE

chromaticity diagram.

Previous research shows that a proper selection of the patches, such as the skin tone colors,

provides suitable results for camera characterization procedure applied in rock art paintings

(Shen et al., 2007, Molada-Tebar et al., 2019a). In Spanish Levantine rock art paintings, it is

more frequent to find reddish or black colors (only dark reds in the “Cova dels Cavalls”) in

pigments and skin tone or brown colors in the support. It is clearly observed that these patches

work correctly regardless of the regression model used.

4.3.1.4 Induced Noise Results

The two cameras used in this study have di↵erent built-in sensors. The Sigma SD15 camera

incorporates a Foveon®X3 sensor, whereas the Fujifilm IS PRO carries a Super CCD sensor.

The values of the variation coe�cients were computed and compared between the input RGB

image and the output sRGB characterized image for the two mathematical transformations.

The pixel variability evaluation was conducted in a reduced group of ColorChecker patches with

homogeneous reflectance (C7, D7, C8, and D8).

Table 4.4 shows the variation coe�cients of the RAW RGB digital values from the original

images before the camera characterization (Figure 4.7 a, e). It is informative to contrast these

values with the variation coe�cients obtained for the CIE XYZ (Table 4.5) and sRGB transformed

data (Table 4.6) respectively. For a brief overview, Table 4.7 shows a summary of the variation

coe�cients obtained.

Moreover, as the degree of the polynomial model used can a↵ect the results achieved in terms

of noise, we included the comparison of the variation coe�cients for the linear model as well

(Yamakable et al., 2017). Our outcomes show basically the same results in the second-order and

linear models, which are still slightly worse than the GP result (cf. Tables 4.5 and 4.6). The

trend found in the induced noise results, was that noise depends on the sensor and therefore it is

di↵erent for each camera regardless of the mathematical model.
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The coe�cients obtained for the digital values on the original image indicate that the noise

generated directly by the Foveon®X3 sensor is greater than the noise in the SuperCCD (Table

4.4). Apparently, the SuperCCD sensor seems to respond better in the RAW data collection stage

in terms of noise variability.

Also, the overall results confirm the better performance of the SuperCCD when compared

with the Foveon®X3 sensor (cf. Tables 4.5 and 4.6). Table 4.7 shows that none of the regression

models applied to the Fujifilm IS PRO image increased the original variability coe�cients. In fact,

the coe�cients decrease slightly after applying the GP; with the opposite behavior present in the

Foveon®X3 sensor. Both, the CIE XYZ and sRGB coe�cients obtained increase significantly in

the Foveon®X3 sensor, regardless of the characterization model used.

Table 4.4: Noise variation coe�cients of the original RGB digital numbers.

Sigma SD15 Image Fujifilm IS PRO Image

Patch R G B R G B

C7 0.020488 0.014114 0.009923 0.011586 0.01077 0.01223

C8 0.036863 0.019129 0.017545 0.013394 0.01170 0.00851

D7 0.018434 0.016139 0.016432 0.008498 0.01294 0.01039

D8 0.015118 0.014687 0.015908 0.010909 0.01162 0.00933

Table 4.5: Variation coe�cients of the output CIE XYZ coordinates.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial Linear

Patch X Y Z X Y Z X Y Z

C7 0.03673 0.01413 0.03559 0.02447 0.02620 0.03129 0.01988 0.04851 0.03192

C8 0.01290 0.06014 0.09700 0.01360 0.05988 0.09379 0.01916 0.04617 0.10635

D7 0.05272 0.05006 0.05985 0.07844 0.03741 0.06928 0.03755 0.05664 0.06164

D8 0.01933 0.04773 0.08251 0.01365 0.05254 0.07137 0.01632 0.04362 0.07257

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial Linear

Patch X Y Z X Y Z X Y Z

C7 0.00824 0.01098 0.00967 0.00905 0.01275 0.01009 0.01037 0.01197 0.00969

C8 0.01054 0.01162 0.01730 0.01104 0.01179 0.01782 0.00983 0.01078 0.01831

D7 0.01058 0.01286 0.01040 0.00929 0.01163 0.01066 0.00812 0.01156 0.00994

D8 0.00552 0.01033 0.01639 0.00653 0.01080 0.01632 0.00618 0.00916 0.01390
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Table 4.6: Variation coe�cients of the output sRGB digital numbers.

Sigma SD15 Image

Gaussian Process Second-Order Polynomial Linear

Patch sR sG sB sR sG sB sR sG sB

C7 0.09597 0.02311 0.01805 0.01602 0.02768 0.07291 0.01751 0.03312 0.07113

C8 0.02104 0.06967 0.07489 0.07404 0.06745 0.01955 0.08095 0.05876 0.02398

D7 0.01982 0.03815 0.03506 0.03982 0.03447 0.04274 0.03732 0.03072 0.03744

D8 0.03110 0.05567 0.05300 0.04821 0.05360 0.02538 0.04778 0.04715 0.02661

Fujifilm IS PRO Image

Gaussian Process Second-Order Polynomial Linear

Patch sR sG sB sR sG sB sR sG sB

C7 0.01693 0.00721 0.00478 0.00528 0.00825 0.01490 0.00782 0.00954 0.01624

C8 0.00712 0.00884 0.01200 0.01286 0.00922 0.00737 0.01034 0.00803 0.00671

D7 0.00462 0.00746 0.00585 0.00588 0.00748 0.00531 0.00969 0.00632 0.00577

D8 0.00163 0.00767 0.00927 0.00967 0.00776 0.00257 0.00613 0.00696 0.00324

Table 4.7: Summary of the variation coe�cients obtained.

Sigma Fujifilm

SD15 Image IS PRO Image

Original RGB 0.01790 0.01099

Gaussian process CIE XYZ 0.04739 0.01120

sRGB 0.04463 0.00778

Second-order CIE XYZ 0.04766 0.01148

sRGB 0.04349 0.00810

Linear CIE XYZ 0.04774 0.01082

sRGB 0.04271 0.00807

Additionally, Figure 4.7 displays the comparative noise images as a result of the di↵erent

color space transforms during the camera characterization. Greater noise is produced by the

Foveon®X3 sensor versus the SuperCCD sensor. It is evident that the best results are obtained

for the Fujifilm IS PRO camera in terms of noise (cf. Figure 4.7 b–d, f–h). The architecture,

characteristics and operation of each sensor are di↵erent, and therefore, the image noise e↵ects

di↵er depending on the camera used. From these results, it turns out that the digital camera

selected for photographic work is a crucial aspect to be taken into account in archaeological

applications.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: Noise comparative detail sRGB images after characterization: (a–d) Sigma SD15; (e–h)

FujifilmIS PRO; (a,e) Original RAW images; (b,f) GP; (c,g) Second-order polynomial model; (d,h)

Linear model.

4.3.2 Output sRGB Characterized Images

The original RAW images were successfully transformed into the same device-independent color

space by means of the two regression models applied (Figure 4.8). Both the GP and the

second-order polynomial model gave similar results. Even an experienced observer is unable to

perceive di↵erences between the images generated with the two regression models applied for

both SLR digital cameras (cf. Figure 4.8 c–f). The JND threshold of 4 CIELAB units is suitable

in most practical applications (specifically in this study), and proves that human vision cannot

perceive the improvement obtained with the GP (cf. �E⇤
ab GP and second-order polynomial mean

values in Table 4.2).

4.3.3 �E⇤
ab Mapping Images

To verify the colorimetric quality achieved using both the GP and the polynomial regression

model, we mapped the �E⇤
ab between the two characterized sRGB images obtained (Figure 4.9).

The predominant green color (�E⇤
ab < 2 units) observed in the mapping images shows that the

results obtained are very satisfactory regardless of the model applied. Again, the best results were

obtained for the Fujifilm IS PRO image (Figure 4.9 b). Nevertheless, for common applications,

both regression models can be used since they o↵er successful results.

The detail of the color chart shown in Figure 4.9 displays some patches marked in red, that

is, with �E⇤
ab color di↵erences values greater than 4 CIELAB units (JND). The red color is also

found on the edge of the ColorChecker. Indeed, it was on the color chart background support

where we found most of the red pixels. It is well known that color depends on the incident lighting;

thus, changes in geometry produce local changes of illumination in some parts of the scene. This

means that in certain areas the initial homogeneous lighting hypothesis is not fulfilled, and the

regression model does not fit well to the input data in shaded areas. This circumstance also

reflects the importance of illumination in colorimetry.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Original and output sRGB characterized images: (a,c,e) Sigma SD15; (b,d,f) Fujifilm

IS PRO; (a,b) Original; (c,d) GP; (e,f) Second-order polynomial model.

(a) (b)

Figure 4.9: �E⇤
ab di↵erence mapping images between GP and second-order polynomial

characterization models: (a) Sigma SD15; (b) Fujifilm IS PRO.
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4.3.4 Rock Art Specimen Detail Images

We also compared the results obtained in two di↵erent rock art details present on the scene: the

wounded animal detail (right upper corner); and the hunting scene (lower left corner) (Figure

4.10). For each detail selected from the scene, we show the clip of the original image, the output

(characterized) image after applying the di↵erent regression models, as well as the color di↵erence

mappings between both models. In order to facilitate the identification of the specimens, a mask

has been applied to the latter image (Figures 4.11 and 4.12).

(a) (b)

Figure 4.10: Selected rock art scenes: (a) SigmaSD15; (b) Fujifilm IS PRO. (A) Wounded animal

detail. (B) Hunting scene.

Better results are observed in the images characterized by the Fujifilm IS PRO. The color

di↵erences �E⇤
ab obtained for the pigments were under 2 CIELAB units, hence the predominantly

green color (Figures 4.11 g and 4.12 g). A limited set of pixels marked in red (�E⇤
ab > 4 CIELAB

units) are observed in areas where the homogeneous lighting hypothesis is not fulfilled due to

geometry changes in the support (Figure 4.11 g). On the other hand, the yellow values (�E⇤
ab

2–3 units) present in the Sigma SD15 image can be due to the fact that the GP slightly improves

the camera characterization (Figures 4.11 c and 4.12 c). Therefore, it is important to previously

make a correct selection of the camera to be used in the characterization process for archaeological

research.

It can be seen that the images have been successfully characterized, independently of the

regression model used. All details in the characterized images present the same ranges of colors,

as well as homogeneous lighting for both cameras (cf. Figure 4.11 b, d, f, h; Figure 4.12 b, d, f,

h).



4.3. Results and Discussion 71

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.11: Wounded animal images: (a–d) Sigma SD15; (e–h) Fujifilm IS PRO; (a,e) Original

image; (b,f) GP characterized image; (c,g) �E⇤
ab comparative image; (d,h) Second-order

characterized image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Hunter scene images: (a–d) Sigma SD15; (e–h) Fujifilm IS PRO; (a,e) Original image;

(b,f) GP characterized image; (c,g) �E⇤
ab comparative image; (d,h) Second-order characterized

image.
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4.4 Conclusions

The use of digital images to support cultural heritage documentation techniques has undergone

unprecedented advances in the last decades. However, the original RGB data provided by digital

cameras cannot be used for rigorous color measurement and communication. To face the lack of

colorimetric rigor of the input RGB data recorded by the sensor, it is necessary to conduct a

colorimetric camera characterization; alternatively, color profiles can also be used.

In this study, the experimental assessment of a GP model has been carried out, and compared

with a common second-order polynomial model. Although both regression models yielded good

results, the use of the GP provides an improvement in colorimetric terms and fits better with

the original RAW RGB data. The lowest CIE XYZ residual values achieved for the adjustment

and �E⇤
ab color di↵erences supports the use of a GP as a proper model for characterizing digital

cameras. However, for practical purposes, the final sRGB characterized images derived from both

the GP and the second-order polynomial model can be used with success in cultural heritage

documentation and preservation tasks.

Additionally, the GP regression model has been tested on two SLR digital cameras with

di↵erent built-in sensors to analyze the performance of the model in terms of pixel variability. The

noise errors achieved show that similar results were obtained regardless of the regression model

used. However, the results also reveal that the induced noise highly depends on the camera sensor,

which is clearly significant in the Foveon®X3 but not in the Super CCD. Thus, the correct choice

of the digital camera is a key factor to be taken into consideration in archaeology surveys.

It is observed that the camera characterization procedure allows clear identification of the

di↵erent pigments used in the scene, a proper separation from the support, the achievement

of more accurate digital tracings, and accurate color measurement for monitoring aging e↵ects

on pigments. This methodology proves to be highly applicable not only in cultural heritage

documentation tasks, but in any scientific and industrial discipline where a correct registration

of the color is required.
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5.1 Introduction

As stated in Chapters 1 to 4, the camera characterization procedure has been recognized

as a convenient methodology to correct color recordings in cultural heritage documentation

and preservation tasks. The purpose of camera characterization is to transform the

input device-dependent values captured by the camera, generally in RGB format, into a

physically-based, independent color space, such as those defined by the CIE, usually the CIE XYZ

color space or any of its derivatives (Westland et al., 2012). As a result of camera characterization,

the tristimulus values for the full scene can be predicted on a pixel-by-pixel basis from the original

digital values captured in the image (Molada-Tebar et al., 2018).

Some factors to consider during the characterization procedure are: the camera built-in sensor,

camera parameters during the photographic acquisition phase, size and color properties of training

data (Chou et al., 2013, Zhang et al., 2017), and the regression model used. The sensor has an

e↵ect not only in terms of noise but in the characterized output images (Molada-Tebar et al.,

2019c). Thus, the interpolation method selected must be properly adapted to the data and o↵er

a suitable graphic solution. The number of color patches measured and their distribution also

plays a decisive role (Colantoni et al., 2011).

The manufactured color charts are designed to cover the maximum range of imaged colors on

photographic or industrial applications. However, most applications do not require the entire set

of color patches to build the training set since redundant data seep into the regression model.

In addition, color charts are not developed specifically for archaeological purposes, where only

a few colors are present on natural scenes. Thus, an adequate selection of training samples for

the regression model is crucial for quality estimations (Cheung and Westland, 2006, Chou et al.,

2013, Eckhard et al., 2014).

Our previous studies showed that accurate results can be achieved using a reduced number

of properly selected samples. In Molada-Tebar et al. (2019a) we propose the use of skin-tone

patches from the reference color checker as an alternative to using the whole color chart as

training data. This paper clearly shows that an increase in the number of sample patches does

not intrinsically imply an improvement in the goodness-of-fit of the output sRGB characterized

image. In fact, better results are obtained using sample data near the chromatic range of the

scene (skin-tone data set) with color di↵erences values less than 4 CIELAB units. The results

presented in that study revealed two key aspects in the characterization procedure, specifically

the number of samples and the use of training data near the chromatic range of the scene used

in the characterization procedure itself.

Accordingly and following the lines established in our previous investigations, in this chapter

we propose a novel framework for an optimal color sample selection of training data. The

algorithm is based on a K -means clustering technique. We call this procedure the Patch Adaptive

Selection with K -means or P-ASK. The use of the P-ASK framework allows us to extract the

dominant colors from a digital image and to identify their corresponding chips in the color chart

used as colorimetric reference.
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The aim of the P-ASK dominant color patch selection is to carry out the characterization with

a reduced color sample set, instead of using the common approach based on the whole color chart.

In the P-ASK approach, it is possible to lessen the number of training samples without the loss

of colorimetric quality, using the most representative samples within the chromatic range of the

input scene. However, the main contribution reported in this chapter is not only the framework for

the K -means methodology but the practical assessment of the results, specifically for recording

and documenting the color of the rock art scenes properly.

Several methodologies can be found in the literature about optimal color sample selection,

such as those based on metric formulas (Cheung and Westland, 2006), adaptive training set

(Colantoni et al., 2011, Liu et al., 2017), or minimizing the root-mean-square errors (RMSE)

(Shen et al., 2008). Olejnik-Krugly and Korytkowski (2020) developed a procedure based on ICC

profiles using a standard ColorChecker and a set of custom color targets by means of direct

measurements on the artwork .

Clustering analysis is widely applied for the extraction of representative samples (Mohammadi

et al., 2004, Xu et al., 2017, Liu et al., 2017). Eckhard et al. (2014) proposed a clustering-based

novel adaptive global training set selection and compared di↵erent well established global methods

for colorimetric quality assessment of printed inks. Xu et al. (2017) applied a K -means clustering

algorithm in multispectral images to extract a set of training samples directly from the art

painting for spectral image reconstruction applications. These studies showed that better results

were achieved using optimal color samples.

We tested the P-ASK framework proposed in this chapter on a set of prehistoric rock art

scenes captured with di↵erent digital cameras. The characterization approach with dominant

colors o↵ered numerous advantages: reduction of training measurement and computing time,

better adjustment to the chromatic range of the input scene, and e�cient and high model accuracy

achievement. But most importantly, the numeric and graphic results obtained in the characterized

images were very satisfactory and confirmed the P-ASK technique as a suitable methodology for

model training in characterization procedures.

5.2 Materials and Methods

5.2.1 Data set acquisition

The image set contains the so-called main hunting scene (“Cova dels Cavalls”, Figure 1.1), which

shows a group of hunters shooting arrows with their bows to a herd of deer (Figure 5.1). It is

undoubtedly a vivid and spectacular human-centered scene, filled with movement, where the use

of reddish pigment dominates the scene (Mart́ınez and Villaverde, 2002).

Three di↵erent SLR cameras were used in this study for image acquisition: a Fujifilm IS PRO

with a Super CCD sensor; a Sigma SD15 with a CMOS Foveon®X3 sensor; and a Nikon D40, with

a CCD sensor (Table 1.1). All those cameras allow taking pictures in a RAW format, which gives

better results than processed images after characterization (Westland et al., 2012, Molada-Tebar



5.2. Materials and Methods 77

et al., 2018). In fact, the use of RAW images allows us to disable the activation of the set of

processing operations applied to the original images, such as white balancing, demosaicing or

gamma correction, which implies the modification of the original data acquired by the sensor

(Ramanath et al., 2005, Westland et al., 2012).

(a) (b) (c)

Figure 5.1: Rock art images: (a) Fujifilm IS PRO (b) Sigma SD15 (c) Nikon D40.

The main di↵erence across cameras is their built-in image sensors. While the Super CCD

sensor (Fujifilm IS PRO) and CCD sensor (Nikon D40) are monochrome with color filter array

(CFA) and Bayern pattern for color interpolation, the Foveon®X3 sensor (Sigma SD15) is

trichromatic, that is, it registers the color values for each channel separately without interpolation

(Sigma Corporation, 2012).

As in the previous experiments, the scenes in the digital images should contain a chart for

colorimetric reference. In our study, we chose the X-rite ColorChecker®Digital SD chart, which

is widely used in digital image processing pipelines. Although this color chart has 140 patches,

we used only the 96 chromatic central chips (and 15 grey-scale central chips) without considering

the external patches on the edges. The RAW RGB data for these patches were extracted from

the images using our own software named pyColourimetry (Molada-Tebar et al., 2017).

The spectral reflectance data of the color patches from the ColorChecker were measured

directly using the Konica Minolta CM-600d spectrophotometer (Figure 2.1 c). A total of

96 patches were measured under the CIE recommendations: 2°standard observer, and D65

illuminant. The spectral data collected were easily transformed into CIE XYZ tristimulus values

using well-known CIE formulae (CIE, 2018).

5.2.2 Colorimetric camera characterization procedure

As introduced in Chapter 1 to 3, image-based camera characterization is a well-known procedure

that has been described in numerous references (Hong et al., 2001, Mart́ınez-Verdú et al., 2003,

Bianco et al., 2009, Westland et al., 2012, Molada-Tebar et al., 2018). The main stages of the

image-based camera characterization procedure are (1) Training: sets the training data for model

learning, (2) Regression model fitting and checking, and (3) Image characterization: creates the

output sRGB image (Figure 5.2). In the following subsections, we provide detailed descriptions

of each step.
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Figure 5.2: Colorimetric camera characterization framework.

5.2.2.1 Training data

Image-based characterization procedures rely on the training data set that typically permits

model learning via the computation of the unknown parameters in the selected mathematical

function. The regression model is developed on the basis of the original data available: the camera

responses (RAW RGB) and their colorimetric coordinates (CIE XYZ), both from the reference

color chart.

As for the comparative analysis, we created two subsets of training data from each original

dataset: the whole color patch set (Full ColorChecker or FCC data set), and the selected dominant

patches from the P-ASK framework (K -means dominant patches or KDP data set). Therefore,

we obtained two independent outcomes as outlined in Figure 5.2.

5.2.2.2 Regression model and accuracy assessment

As usual, the image-based characterization procedure used in this study is based on an empirical

regression model that defines the relationship between the input and output spaces. Di↵erent

regression models have been used for camera characterization purposes, including polynomial

models (Hong et al., 2001), artificial neural networks (Cheung and Westland, 2002), polyharmonic

splines (Colantoni et al., 2011) or Gaussian processes (Molada-Tebar et al., 2019c) to name a few.

However, in recent years, research has focused on spectral recovery techniques (Liang and Wan,

2017). In this study, we used a classical second-order polynomial regression model, since it is

computationally simple and gives valid results for archaeological applications (Molada-Tebar et

al., 2018, 2019c).

In terms of good practice, the training data used for learning should not be used in model

assessment since it may result in an overly optimistic model error estimation. Instead, it is

preferred to set aside an independent test data set used exclusively for model evaluation.

Alternatively, a cross-validation framework can also be used, where the training data is repeatedly

separated into training and testing sub data sets. In this study, a leave-one-out cross validation

(LOOCV) procedure was performed for model accuracy assessment (Stone, 1974, Cawley and

Talbot, 2003).
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Two di↵erent metrics were used for the quality evaluation: the CIE XYZ residuals for model

checking, and the color di↵erence values in the colorimetric assessment of the characterized

images. Regarding the color di↵erence computation we used the �E⇤
ab formula (Eq. 3.3, (CIE,

2018)) which performs well in rock art measurement conditions (Molada-Tebar et al., 2019c). In

colorimetric accuracy studies, it is usual to establish a threshold value known as JND or tolerance

for �E⇤
ab. In this study we set a JND value of 4 CIELAB units which ensures imperceptible

variations to human vision (Van Dormolen, 2012).

5.2.2.3 Output sRGB characterized image

An additional transformation is required in order to reproduce the output CIE XYZ values on

display or printing devices. We followed the International Electrotechnical Commission (IEC)

specifications to transform the CIE XYZ tristimulus values into the sRGB color space, which is

compatible with most digital devices (IEC, 1998).

5.2.3 K -means clustering technique

K -means is a center-based clustering algorithm widely used in di↵erent applications of data

mining, machine learning and pattern recognition (MacQueen, 1967). K -means aims to minimize

the mean squared distance from each N -data point to its K -nearest cluster center, following four

basic steps to: (1) set initial K cluster centers, (2) group samples in the K clusters, (3) recompute

the new K cluster centers, (4) iterate the process until the algorithm converges (Peña et al., 1999,

Hamerly and Elkan, 2002, Joydeep and Alexander , 2009).

Since the introduction of the K -means algorithm in its current form (MacQueen, 1967),

di↵erent alternatives and improvements to achieve better performance have been published,

including an algorithm less sensitive to initialization settings (Hamerly and Elkan, 2002) or

filtering algorithms (Kanungo et al., 2002).

In this study, we developed a Python script to apply the K -means algorithm to our specific

problem, which we recall, is to select dominant colors in camera characterization. The Python

script leverages the Scikit-learn package (v0.21.3) (Scikit-learn, 2019) which includes an optimized

implementation of the K -means algorithm together with other machine learning algorithms for

supervised and unsupervised classification applications (Pedregosa et al., 2011, Scikit-learn, 2019).

Particularly, we used the KMeans function (see KMeans (2019) for more details).

However, before applying the K -means clustering algorithm, it is required to take into account

some quirks associated with this technique. K -means yields accurate results when the K number

of clusters and its initial centroid points are properly defined. Moreover, as an iterative technique,

the K -means algorithm is potentially sensitive to initial starting conditions (Bradley and Fayyad,

1998). Thus, an inappropriate determination of initial parameters could highly decrease the

accuracy of the results (Limwattanapibool and Arch-int, 2017).

In our study, the inappropriate selection of clusters means that the results will not match

with the real dominant colors present in the image. Therefore, it is necessary to overcome the
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negative e↵ects derived from K -means initial approximations by properly setting the K number

of clusters for optimal implementation of the algorithm and proper determination of the initial

values.

5.2.3.1 Optimal K number of clusters

The first issue to address is how to set the optimal K number of clusters and their corresponding

initial centroids, since the K clusters should be known beforehand and specified by the user.

Several factors such as the level of detail, the internal distribution of the samples values or its

interdependence with other objects can a↵ect the selection of K (Peña et al., 1999, Pham et

al., 2005). To overcome those issues, di↵erent methods can be applied for selecting the number

of clusters, such as those based on automatic process (Limwattanapibool and Arch-int, 2017),

probabilistic clustering approaches or visual verification (Pham et al., 2005).

To determine an appropriate number of clusters for K -means clustering, a trial-and-error

process experiment was conducted. We used the rock art scene images as input data to evaluate

the processing time for di↵erent values of K. In general, K -means clustering is used not only to

determine the natural groups in the data, but also to identify irregularities in their distribution.

However, in rock art scenes the data tends to be uniform, and we expect a set of dominant colors

consisting of a reduced number of instances, which in turn will be highly correlated. In order to

determine the proper value of K, we assessed the processing time for values of K in the range

10-100.

5.2.3.2 Clustering Algorithm

The basic K -means algorithm (MacQueen, 1967) has been updated to improve its e↵ectiveness,

robustness and convergence speed (Hamerly and Elkan, 2002). Some of the most widely known

implementations are: Forgi (Forgi, 1965), expectation-maximization or EM-Style algorithm

(Demster et al., 1977, Bottou et al., 1995), Standard algorithm also known as LLoyd’s algorithm

or Voroni iteration (Lloyd, 1982), and Elkan (Elkan, 2003).

Two of those algorithms are implemented in the Scikit-learn KMeans function: EM-style for

sparse data and Elkan for dense data. Users can specify their choice via the algorithm parameter,

using full or Elkan for the EM-style, or Elkan option respectively (see an example of code in

Section 5.2.4.1 for syntax details). Given that our study is based on moderately large data sets

from the RGB triplets of the digital image, the optimal algorithm to compute K -means is Elkan.

The Elkan algorithm is an optimized version of the standard K -means clustering method based on

the triangle inequality. The aim is to reduce its processing time by avoiding unnecessary distance

calculations (Elkan, 2003).
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5.2.3.3 Initial starting conditions

The K -means algorithm searches for the optimal data partition into the K clusters established

by the user. Thus, K -means provides a set of K point clusters defined by their centroids, and

assigns every data point into its nearest cluster centroid. However, the final group partition is

highly dependent on the initial cluster centers. Since the centroids of the clusters are usually

unknown in advance, the K -means algorithm relies on a random process to set the starting

cluster centroids, which are frequently chosen uniformly on the range of the data (Bradley and

Fayyad, 1998).

The random initialization method takes a set of K arbitrary centers uniformly selected at

random as starting points. The drawback of purely random selection is the high number of

iterations required to converge, and furthermore, di↵erent runs with the same data do not give

exactly the same results. In order to overcome this limitation, the k-means++ initial method

was developed to improve algorithm speed and give more consistent results despite being a

random method (Arthur and Vassilvitskii, 2007). In fact, this is the default option for the KMeans

function.

The lack of consistency of random methods has been the subject of previous research. However,

initialization methods based on randomness are considered as a proper selection procedure that

gives satisfactory results (Peña et al., 1999). In this study, we run a simple experiment to find

out the optimal initial values based on random algorithms. We run the algorithm several times

which has been reported as a suitable method to account for randomness issues (Bradley and

Fayyad, 1998). We used the Scikit-learn k-means++ initial method, since it is an optimized and

fast random process (Arthur and Vassilvitskii, 2007). This analysis will allow us to determine

whether or not the algorithm consistently provides the same dominant color patches despite

being based on a random process.

5.2.4 Color patch adaptive selection with K -means (P-ASK)

The aim of the P-ASK procedure is to establish a methodology for the automatic selection of

color training samples for camera characterization, and keep the process as simple as possible.

The P-ASK framework can be separated into two main stages: the application of the K -means

algorithm for the dominant color extraction of the input image, and the identification of dominant

color patches as training data for the camera characterization. The first stage of this procedure

can be considered as an image segmentation application, which is intended to group the pixels of

an image according to their color similarity.

The main steps in the P-ASK framework (Figure 5.3) are: (1) create a white balanced image

(D65 illuminant), (2) select support and pigment samples, (3) extract K -means dominant colors,

and (4) identify dominant color patches. Further detailed explanations about those steps are

given in the subsections below.
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Figure 5.3: P-ASK framework.

5.2.4.1 K -means dominant color extraction

The first aim of P-ASK is the dominant color extraction from a digital image. Previously to

applying the K -means clustering algorithm two basic operations are required: white balance and

sample selection.

The CIE XYZ data were acquired under the D65 illuminant specification. Thus, in order to

find the patches corresponding to dominant colors, the RGB values should be strictly registered

under the D65 illuminant. Since it is not usually possible to work under controlled illuminant

conditions in open-air cultural heritage sites such as rock art archaeological shelters, we used a

white balanced image under the hypothesis of D65 illuminant as an approximation to natural

daylight. From an original RAW image, it is possible to obtain a white balanced image using the

RawPy Python package (RawPy, 2014).

One problem associated with the application of the K -means clustering algorithm to full

images is the significant increase of the convergence time, given the large size of the data set. A

simple and suitable option in our framework is to reduce the image size to compute only selected

image samples instead of full images. For rock art applications, the main interest is focused

on defining the representative colors, especially of the pigments and the main support colors.

Thus, we selected a set of samples from significant support and pigment areas for the K -means

computation (Figure 5.4).

Finally, the digital data are passed into the algorithm as RGB triplets (nRGBdarray) for

subsequent computing. The Python code line which runs the K -means algorithm is as follows:

clt = KMeans(n_clusters = K, init = "k-means++", n_init = 10, max_iter = 300,

tol = 0.0001, precompute_distances= "auto", verbose=0,

random_state = None, copy_x = True, n_jobs = None,

algorithm = "elkan").fit(nRGBdarray)}

where the main parameters introduced to the algorithm are: the K number of clusters; Elkan

as the algorithm since it works well for dense data; and the k-means++ initialization method.
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The remaining parameters have been assigned to the default values of the Scikit-learn KMeans

function (KMeans, 2019).

(a) (b) (c)

Figure 5.4: Support and pigment samples: (a) Nikon D40 image (b) Sigma SD15 image (c) Fujifilm

IS PRO image.

5.2.4.2 Identification of dominant color patches

The outcome of the K -means algorithm consists of a set of centroids, one for each K cluster.

Those coordinates are a list of K RGB triplets of dominant colors, which represent the main

colors found in the input digital image. The second stage seeks the correct identification of the

color chart patches from the dominant colors from the K -means algorithm.

The dominant colors extracted in the RGB color space can be easily transformed into CIE XYZ

tristimulus values (CIE, 2018) and CIELAB coordinates (CIE, 2007) as required for subsequent

processing. With the CIELAB coordinates, the color di↵erences are computed between each

dominant color and the whole set of color chips. It is then possible to identify the nearest patches

to each dominant color found in the image by looking for the lowest �E⇤
ab.

For the identification of color patches, four di↵erent approaches are tested after varying the

input data and colorimetric criteria: (1) using the n nearest patches found in the whole image

(NN), (2) removing the color chart from the scene and identifying the n nearest patches (RC), (3)

using a set of samples corresponding to pigment and support classes and creating a new, joined

synthetic image (JS), and (4) using the same sample set used in (3), but computing each class

separately (SS). Note that while in the first method we do not specify any colorimetric criteria,

in the remaining cases we search for the nearest patches to each dominant color with �E⇤
ab color

di↵erences less than 10 CIELAB units (upper bound value allowed in cultural heritage guidelines

(Van Dormolen, 2012)).

Although the use of the nearest patches extracted from dominant colors using K -means o↵er

accurate colorimetric results, it does not always imply a proper output characterized image, that

is, an image with true colorimetric sense. Our experience shows that a set of minimum fixed

patches should be included in order to obtain accurate and colorimetrically sound characterized

images (Molada-Tebar et al., 2019a), including the primary additive colors [E4, F4, G4] and the

basic gray-scale chips [E5, F5, G5, H5, I5, J5] (highlighted in Figure 5.3, step number 4).
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5.3 Results

In this section, we describe all processing tasks, together with their output results, that support

some practical considerations to define the P-ASK. Specific tests were run to define the optimal

parameters of the algorithm and to assess its performance in controlled laboratory conditions as

well as in rock art sites with uncontrolled light conditions.

5.3.1 Setting the optimal parameters for the K -means clustering algorithm

As reported in Section 5.2.3, several factors could a↵ect the results of the K -means clustering

method, namely the K number of clusters and centroids to generate, the input size image, the

initialization method and the algorithm applied. We discuss each individual factor in this section.

5.3.1.1 K number of clusters

The first issue to consider is the proper determination of the K number of clusters. That number

can be determined by simple heuristics, for instance by testing several values of K and taking

some convenient value, or with specific data mining tools such as the Elbow (Thorndike, 1953,

Bholowalia et al., 2014) or the Silhouette graphic methods (Rousseeuw, 1987).

A preliminary experiment was conducted under the worst-case scenario; that is, using the

whole image as input data which gives some sort of upper bound in terms of computation time.

The results of the running time required for computing K -means clustering are displayed in

Table 5.1. According to those results, K=24 seems to be an acceptable number of clusters. The

choice of this value, however, is based on the running time experiment only, and thereby it is

somewhat arbitrary. It is timely, then, to confirm our choice by other means, with a consensus

across numerical results, graphical tools and colorimetric criteria.

Table 5.1: Evaluation of K -means running time with di↵erent values of K

K Nikon D40 Sigma SD15 Fujifilm IS PRO Mean

Time (min) Time (min) Time (min) Time (min)

10 8.0 5.2 7.6 6.9
20 17.1 16.7 15.9 16.6
24 19.3 18.4 16.9 18.2
30 27.4 25.5 24.2 25.7
40 31.8 30.8 30.6 31.1
50 45.1 37.9 38.1 40.4
60 49.5 49.2 53.5 50.7
80 67.8 60.2 69.1 65.7
100 87.9 76.0 100.3 88.1

From a color viewpoint, our study aims at characterizing digital cameras properly with a

reduced number of color chips whether it is possible, which is in many ways rather the same
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as performing color quantization of the image. In addition, our application field, the recording

of Levantine rock art archaeological shelters requires a very specific color domain, mostly in

the chromatic range of red, brown, and yellow colors which in turn are little saturated (check

dominant colors extracted in rock art images in Section 5.3.3). Thus, a number of 24 seems a

reasonable choice, provided that output images are rigorous duplicates of the real specimens

(Section 5.3.4 and Section 5.3.5 report on this point).

In addition to colorimetric criteria, we tested the Elbow and Silhouette methods which

provide graphic aid to determine the right K number in clustering problems. The Elbow method

(Thorndike, 1953, Bholowalia et al., 2014) consists of running the K -means algorithm on the

dataset for a range of values of K, and calculate the distortion and inertia values for each K. The

distortion value is the average of the Euclidean distance between all the cluster centroids for each

K ; the inertia is calculated as the sum of the Euclidean distances to their nearest cluster centroids.

Those parameters are useful to describe how close the di↵erent K clusters are with respect to

each other. Clusters that are too close may be an indication of incorrect data partitioning, so

that they could be integrated into the same cluster.

Figure 5.5 shows the plot of the Elbow analysis using the inertia criterion, which exhibits

a sharp change in slope around K=24 (cf. vertical red line on Figure 5.5) and linear behavior

beyond this K value. This result is compatible with the previous running time test (Table 5.1).

Figure 5.5: Elbow method using inertia

The silhouette analysis is another useful tool to analyze the separation distance among cluster

centroids, which ultimately reports on the quality of the data partition. In this method, each K

cluster is represented by its so-called silhouette, which is calculated as a result of the comparison

between its tightness and separation (Rousseeuw, 1987). The mean silhouette width, also known

as the silhouette coe�cient or silhouette score, provides an evaluation of clustering validity, with a

value within the range [-1,1]. Negative values indicate wrong cluster assignment, whereas positive

values (the closer to 1, the better) indicate well-separated neighboring clusters.
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We run the Silhouette analysis using the Scikit-learn module which implements the method

in two functions called metrics.silhouette score and metrics.silhouette samples. Both functions

require the output of the KMeans function as input parameter (Silhouette, 2019). Figure 5.6

displays the graphic results given by the Silhouette method for the Fujifilm IS PRO image with

K=24. All silhouette coe�cients are similar (around 0.6) with narrow fluctuations, which is

an indicator of good clustering for the chosen number of clusters K (Burney and Tariq, 2014).

Furthermore, all coe�cients are above the average silhouette score (vertical red dashed line in

Figure 5.6 a) which confirms the value 24 as a proper choice for clustering. The silhouette method

also provides a graph for visualizing the clustered data (Figure 5.6 b), which shows a very dense,

but well separated, data set as expected in our case study.

(a) (b)

Figure 5.6: Silhouette analysis for the Fujifilm IS PRO

5.3.1.2 K -means initialization

Once the K number of clusters is determined, the next step is the proper selection of the algorithm

and the initialization method to run K -means. The KMeans function in the Scikit-learn Python

package provides two algorithms: EM-style and Elkan. Since we usually work with large, dense

data sets collected from digital images, we chose the Elkan algorithm which is known to perform

well in such circumstances (Elkan, 2003, KMeans, 2019).

The second parameter to be determined is the initialization method of the algorithm. As usual

in all implementations, the KMeans function relies on a pseudo-random parameter to start the

process. Theoretically, the best option in the KMeans function is the k-means++ method, which

is an optimized and fast, but still random approach (KMeans, 2019). Random initialization is

a convenient approach to create self-starting methods and reduce user intervention. However, it

has the potential drawback of returning di↵erent or inconsistent results in di↵erent runs (Pham

et al., 2005, Limwattanapibool and Arch-int, 2017). This characteristic is clearly against common

scientific and engineering conventions such as repeatability or reproducibility, and its e↵ects on

the results must be verified.
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In our study, the K -means algorithm was run multiple times (100 realizations) to find out

whether or not the K -means reported the same set of dominant colors consistently. We then

grouped the results by dominant color and created a list of RGB triplets for each dominant color

found. Every list was processed to compute basic statistics: mean, minimum, maximum, standard

deviation, coe�cient of variation, and so on. Those results confirmed that the K -means algorithm

reports dominant colors very consistently. The RGB di↵erences within every dominant color were

all negligible which also applies when we computed the �E⇤
ab di↵erences of the data (Figure 5.7).

All color di↵erence values were less than 1 CIELAB unit (�E⇤
ab < 1, red line on Figure 5.7 a),

clearly under the JND threshold value, and the standard deviation error was less than 3 digital

level units (Figure 5.7 b). Furthermore, and most importantly, the set of colors is consistently in

the same range, which confirms the suitability of the K -means algorithm to determine dominant

color in rock art scenes for camera characterization purposes.

(a) (b)

Figure 5.7: Randomness assessment: (a) �E⇤
ab color di↵erences (b) Standard deviation error

5.3.1.3 Identification of dominant color patches

The input image size, that is the data set size, has a direct e↵ect on the processing time required

for the K -means algorithm (Section 5.3.1.1). A simple solution to reduce the processing time is

to use small sample images instead of the complete picture. However, our study seeks an e�cient

methodology not only in terms of computation speed, but mostly regarding its performance in

identifying color patches. In this line, four di↵erent methods were tested prior to setting the

optimal path for identifying color patches. Table 5.2 shows the results of each method. Those

four methods are briefly described as follows:

• Nearest n-patches (NN). The complete image is processed.

• Remove ColorChart (RC). The color chart is removed from the original image.

• Joined samples (JS). Pigment and support samples are merged in a new synthetic data set

and processed together.

• Split samples (SS). Pigment and support samples are processed using two di↵erent data

sets.
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Table 5.2: Comparison of four methods to identify dominant color patches

Camera NN RC JS SS

Nikon D40 18 5 13 17
Sigma SD15 21 12 13 16
Fujifilm IS PRO 15 12 13 15
Average 18 10 13 16

The NN method detected the highest number of patches using the four nearest patches (n=4).

It should be noted, though, that there are no colorimetric restrictions in this approach, which

means that some patches can be out of the range of dominant colors extracted from the images

or, in other words, some patches may not fit the real rock art scene. This point came out when

observing some visual inconsistencies between the patches detected by the algorithm and the

scenes under study. The other methods detected fewer patches but returned better colorimetric

results. This was the expected result since colorimetric constraints somehow guarantee a better

fit of the selected patches to the scene. The RC method systematically gave the smallest number

of patches and should be rejected since the other three methods provide similar results regardless

of the camera sensor in use. The method that o↵ered the best results was the SS, therefore,

splitting samples for the pigment and the support areas seems to be the most reasonable choice.

We also conducted a detailed analysis of the SS method with a focus on performance as a

function of the number of clusters K (Table 5.3 and Figure 5.8). According to these results, the

number of color patches detected stabilizes, whereas the processing time grows linearly without

improving the collection of color patches. Therefore, based on these results the best option seems

to be the SS method with K=24.

Table 5.3: Assessment of the SS method for the identification of dominant patches

Nikon D40 Sigma SD15 Fujifilm IS PRO

K Patches Time Patches Time Patches Time

10 14 3.6 15 1.7 15 2.0

20 15 8.0 16 3.3 15 4.3

24 17 9.7 16 4.0 15 4.9

30 17 9.3 16 5.0 15 5.8

40 18 12.8 17 6.0 16 6.5

50 19 14.9 17 7.2 17 9.0

60 20 16.8 17 8.7 17 10.5

80 21 23.1 17 11.6 17 13.4

100 21 26.3 17 13.2 17 16.0



5.3. Results 89

(a) (b)

Figure 5.8: Graphic results for the SS method: (a) Patches identified; (b) Processing time.

5.3.2 Test on the DigiEye imaging system

Before applying the P-ASK framework on rock art images, several tests were run in a laboratory

environment under highly controlled light conditions. We used the DigiEye imaging system

(Verivide, 2019) which allows taking pictures in an optimal environment to conduct colorimetry

experiments. The images were captured with the SLR Nikon D40 camera and the color reference

was the X-rite Passport color chart under the D65 illuminant (Figure 5.9).

(a) (b)

Figure 5.9: DigiEye imaging system: (a) DigiEye system (without camera integrated) (b) Nikon
D40 test image (D65 illuminant).

The test presented in this Section is a reduced version of the whole P-ASK method. In the

test we obtained images of the color checker, without rock art specimens, which provide some

sort of “benchmark environment” to assess the quality of P-ASK (Figure 5.10).

The input image was a clipped picture of the X-rite color checker and the working parameters

were: K=25 (24 colored patches and one color for the background), Elkan algorithm, k-means++

initialization, and the SS method for the identification of the dominant patches. Figure 5.10 shows

the performance in the identification of colors on the chart. Our method can perfectly identify

all colors present in the chart without any missing patches. This result is certainly compelling

and shows the potential of P-ASK to adapt to the whole chromatic domain of the scene, which

makes the method a suitable choice to be applied in documenting rock art images.
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Figure 5.10: P-ASK framework adapted to the DigiEye D65 image acquired with the Nikon D40.

5.3.3 Assessment of the P-ASK framework on rock art images

Since the P-ASK framework provides good results in laboratory conditions, the next step is the

assessment using images collected in rock art shelters. In order to simplify this chapter, we present

the results for the Fujifilm IS PRO image only. We should note that all steps described in Figure

5.3 were carefully computed, using the parameters established in previous sections: K=24, Elkan

algorithm, k-means++ initialization, and SS method. We emphasize once again that the aim of

the P-ASK framework is to (a) extract the dominant colors present on the rock art scene, (b)

identify its corresponding patches in the color chart, and (c) carry out the characterization using

those patches as training data.

From the Fujifilm IS PRO white-balanced image, a set of twelve samples were collected for

the extraction of dominant colors, five samples for the support (S1, S2, S3, S4 and S5), and seven

for the pigment (P1, P2, P3, P4, P5, P6 and P7). Figure 5.4 c shows the sampling areas that were

clipped to get the samples for subsequent processing. Figure 5.11 contains a detailed description

of pigment sample P1 consisting of the detail clipped image, the color palette of the dominant

colors, and its frequency histogram. P-ASK provides this information for each sample separately.

The last step prior to camera characterization is to select a list of patches from the color

chart that matches with the dominant colors obtained from the samples. The results provided

by P-ASK consist of 9 patches for the support and 14 for the pigment (see a summary in Table

5.4 and Figure 5.12). This is the expected result considering that the support rock material is

highly uniform and requires fewer colors to be characterized. Note also that duplicates appear

across samples of the same class (either pigment or support) as well as across samples of di↵erent

classes. This characteristic is also expected since the sampling areas for pigment characterization

also contain some amount of support.

A total of 15 color patches are identified from the chromatic image information with P-ASK

(Table 5.4 and Figure 5.12 c). We have to note that none of the previous methods integrate

“color insight” in their rationales. It is the user’s responsibility to add such insight, as we did

when extending the set of color chips with three primaries and six grays. Thus, the KDP training

dataset for the Fujifilm IS PRO camera consists of a total of 24 color patches (cf. Figure 5.12 d).
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(a) (b)

(c) (d)

Figure 5.11: Graphic description of the pigment sample (P1): (a) clipped detail image, (b)

K -means centroids, (c) Dominant color palette, (d) Dominant color frequency histogram.

Table 5.4: Color Patches detected from the Fujifilm IS PRO samples

Sample Dim Patches id

S1 995⇥515 4 F7, J8, J9, K2

S2 620⇥950 4 F7, H7, J9, K2

S3 453⇥691 6 F7, G7, I7, J8, J9, K2

S4 725⇥321 2 F7, J9

S5 185⇥1406 9 E7, F7, G7, H7, H8, I8, J8, J9, K2

Support 9 E7, F7, G7, H7, H8, I8, J8, J9, K2

P1 222⇥204 12 D8, F2, F7, F8, G7, G8, H7, H8, I7, I8, J8, K2

P2 252⇥126 11 D8, E7, F2, F7, F8, G8, H7, H8, J7, J8, K2

P3 177⇥88 10 D8, F2, F7, F8, G7, G8, H7, H8, I8, K2

P4 192⇥108 12 D8, F2, F7, F8, G7, G8, H7, H8, I7, J7, J8, K2

P5 105⇥92 12 D8, F2, F7, F8, G7, G8, H7, H8, I7, J7, J8, K2

P6 161⇥63 12 D8, F2, F7, F8, G7, G8, H7, H8, I7, I8, J8, K2

P7 84⇥51 12 D8, E7, F2, F7, F8, G7, G8, H7, H8, J7, J8, K2

Pigment 14 D8, E7, F2, F7, F8, G7, G8, H7, H8, I7, I8, J7, J8, K2

Support & Pigment 15 D8, E7, F2, F7, F8, G7, G8, H7, H8, I7, I8, J7, J8, J9, K2
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(a) (b) (c) (d)

Figure 5.12: Color patches detected: (a) Support samples; (b) Pigment samples; (c)

Support-pigment; (d) KDP training samples.

5.3.4 Model accuracy assessment of the image-based characterization

Two di↵erent sets of training data were used to build the regression model used in the camera

characterization procedure: the FCC set (96 samples) and the KDP (24 selected reported by

P-ASK). We conducted a comparison between the results achieved for both training data sets.

Table 5.5 shows the basic statistics of the LOOCV residuals of the CIE XYZ predicted values

after model adjustment. For the sake of completeness, we also include the residuals of the FCC

model applied to the dominant patches in the KDP model, which helps in comparing all data

sets. The histograms of the LOOCV CIE XYZ residuals are also displayed in Figure 5.13.

By comparing the residuals of the FCC (with 24 patches) and the KDP model, we find slightly

better results in the KDP model, especially in the minimum and the standard deviation statistics

(Table 5.5, Figure 5.13 a and b).

Table 5.5: CIE XYZ Residuals of the FCC and KDP models

FCC model KDP model

(96) (24) (24)

Stats CIE X CIE Y CIE Z CIE X CIE Y CIE Z CIE X CIE Y CIE Z

Max 3.501 2.505 1.184 1.922 1.605 1.183 2.670 2.434 1.347

Min -4.985 -3.852 -1.612 -4.985 -3.852 -1.587 -3.523 -2.591 -1.090

Mean 0.017 0.010 0.006 -0.428 -0.359 -0.156 0.013 0.008 0.003

Std 1.387 1.050 0.654 1.640 1.245 0.704 1.252 0.954 0.553

Although the assessment of residuals is very useful to evaluate the predictive capability of

the regression model, the computation of the �E⇤
ab color di↵erences is required in colorimetry

experiments to rigorously analyze the accuracy achieved after camera characterization. Table 5.6

shows basic color di↵erence statistics computed for the FCC and KDP models. Once again, the

�E⇤
ab values obtained by the KDP model show an improvement in terms of colorimetric accuracy

when compared with the FCC model. The better results given by the KDP model can be seen

graphically in the one-to-one color patches plot displayed in Figure 5.14. All �E⇤
abin the KDP

samples were lower than in the FCC samples, and always under the JND threshold value fixed

in 4 CIELAB units (cf. Figure 5.14 b and a).
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(a) (b)

Figure 5.13: LOOCV CIE XYZ Residuals histogram: (a) FCC (24 patches) (b) KDP (24 patches).

Table 5.6: �E⇤
ab color di↵erences in the FCC and KDP characterization experiments

FCC model KDP model

�E⇤
ab (96) (24) (24)

Max 9.413 4.192 3.755

Min 0.322 0.497 0.179

Mean 2.107 1.868 1.518

Std 1.472 1.055 0.954

(a) (b)

Figure 5.14: �E⇤
ab color di↵erences: (a) FCC (24 patches); (b) KDP (24 patches).

5.3.5 Output sRGB characterized images

Ideally, the final outcome obtained through the characterization process is an image with

“colorimetric characteristics.” A common approach to preserve such characteristics in digital

pictures is the use of the sRGB space, where the RGB data are defined in a physically-based,

device-independent color space via transformation functions of CIE XYZ tristimulus values (IEC,

1998). The output sRGB characterized images are shown in Figure 5.15. By observing those sRGB

images, it is evident that the results are very satisfying in visual terms, regardless of the training

data used for the regression model.
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(a) (b)

Figure 5.15: Output sRGB characterized images: (a) FCC training data (96 patches) (b) KDP

training data (24 patches).

Although the comparison between the two models confirms that the KDP model performs

better in numerical terms, the images provided by the two di↵erent training datasets show that

both characterization approaches transform successfully RGB data to the CIE XYZ independent

color space. It is challenging, even for experienced observers, to perceive any visual di↵erences

between the two output images (cf. Figure 5.15 a and 5.15 b).

In addition to the numerical computations, we created a �E⇤
ab mapping image with the color

di↵erences between the characterized images obtained with the FCC and the KDP training data

sets (Figure 5.16).

Figure 5.16: �E⇤
ab mapping image (96-24 patches).

The predominant green color present on the di↵erence mapping image indicates that the

values of color di↵erence values are less than 2 CIELAB units (see map key in Figure 5.16),

which is a very good result in colorimetric terms. Actually, we found higher di↵erences in two

cases corresponding to (a) cracks in the rock, where hard shadows are produced (yellow pixels
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with di↵erences between 2 and 3 units), and (b) some patches of the color chart out of the color

domain of the scene (di↵erences greater than 2 units coded with yellow, orange and red pixels).

Since the focus of the study is on accurate colorimetric analysis of the pigmented areas of the

rock art scenes, we can confirm that the P-ASK framework proposed in this study provides very

satisfactory results for the camera characterization.

5.4 Discussion

The generic aim of clustering applications is the natural grouping of specimens that share similar

properties within a data set. In this study, we established the P-ASK framework which leverages

the K -means technique for automatic training in the selection of a simplified set of color patches,

and properly capture the dominant color characteristics of rock art scenes.

Since the K -means algorithm is sensitive to the initial approximations given by the user

(Bradley and Fayyad, 1998, Limwattanapibool and Arch-int, 2017), a set of preliminary

experiments were conducted to set proper values for the number of clusters, the working algorithm

and the initialization method. According to our results, the suggested parameters to run K -means

were appropriate, and the algorithm implemented in the KMeans function of the Scikit-learn

module proved to be a valid option for clustering operations as well.

However, the K -means algorithm is slow for large data sets, particularly those based on digital

images. In our study, we suggest an alternative approach to extract the dominant colors which

consists of using a reduced number of image samples clipped from the full image. By using image

sampling, the running time was considerably reduced. For instance, run time decreased from 18.2

minutes to 4.9 minutes when using the Fujifilm IS PRO image for K=24 clusters (cf. Table 5.3

with Table 5.1 in Section 5.3).

The experiment conducted to identify the e↵ect of randomness on the K -means clustering

technique showed that the dominant color set returned from multiple runs was highly consistent

(MacQueen, 1967). In this regard, Figure 5.7 shows �E⇤
ab color di↵erences less than 1 CIELAB

unit for the dominant colors obtained in 100 realizations, with similar negligible results in units

of pixel RGB digital values.

Moreover, the capability of P-ASK to identify the dominant colors into the ColorChecker

gives very good results (see Table 5.4 and Figure 5.12), and allowed extracting a set of color chips

from the chart to create a reduced training data set for camera characterization in a simple and

fast way. By using this framework, we proved that the characterization approach based on the

KDP training data gives accurate results which parallel those obtained in common practice, that

is, using the whole set of color chips for model learning.

Although previous studies recommend the use of large training data sets for camera

characterization (Hong et al., 2001, Bianco et al., 2007, Chou et al., 2013, Poljicak et al., 2016),

the results obtained with the P-ASK framework show that it is possible to use a reduced number

of training samples without loss of accuracy in colorimetric terms. It is worth noting that the

CIE XYZ residuals (Table 5.5) and the �E⇤
ab color di↵erences (Table 5.6) obtained using the
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KPD data set are in fact slightly better. In view of the outcome images, it is evident that sRGB

characterized images were satisfactorily obtained (Figure 5.15), which is confirmed by the color

di↵erence map image where di↵erences under 2 CIELAB units prevail over the whole image,

particularly in the area of interest for archaeological applications (Figure 5.16).

As an aside, we would like to note that the specific imaging hardware, i.e. the digital camera

used for graphical documentation, is a key point that must be considered prior to characterization.

We know from previous research that built-in imaging sensors have a considerable impact on the

final outcome. In this sense, we presented the results of the Fujifilm IS PRO camera which is

known to work very well, not only in the characterization procedure (Molada-Tebar et al., 2019c),

but also in terms of image noise (Marqués-Mateu et al., 2013).

5.5 Conclusions

In this chapter, we propose a new P-ASK framework for consistent and accurate archaeological

color documentation. The graphic and numeric results obtained after the characterization of

rock art images are highly encouraging and confirm that P-ASK is a suitable technique to use in

the context of the image-based camera characterization procedure. Our characterization approach

based on a reduced set of dominant colors o↵ers several advantages. On the one hand, it implies the

reduction of the training set size, and thereby, the computing time required for model training is

less than in the regular approach with all color chips. On the other hand, there is an improvement

derived from the use of a reduced number of specific color patches, which adjust better to the

chromatic range of the scene, and yields better results in the output characterized images. We

consider this point as a major contribution to this study.

The tests conducted in our study confirmed that P-ASK is robust to random issues in the

K -means stage and works very well with a sampling scheme specifically adapted to the elements

of interest in the rock art scene. This point leads us to envision future research lines focused

on developing specific color charts for archaeological applications, and even for specific cultural

heritage objects, monuments and sites. In summary, the results achieved in this study show that

P-ASK is a suitable tool for the proper and rigorous use of color camera characterization in

archaeological documentation, and can be integrated into the regular documentation workflow

with minimum e↵ort and resources.



6

Discussion

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 D65 Illuminant hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 RAW vs processed image files . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Negative CIE XYZ predicted values . . . . . . . . . . . . . . . . . . . . 107

6.6 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.7 Spectral recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

97



98 6. Discussion

6.1 Introduction

Color description from characterized images is a suitable technique in cultural heritage

documentation applications due to characteristics such as its low cost, non-destructive data

acquisition, ease and speed of collection. The purpose of the colorimetric camera characterization

is to transform the input device-dependent data registered by the sensor, generally in RGB format,

into a physically-based, independent color space, such as those defined by the CIE, usually the

CIE XYZ or any of its derivatives. Although this methodology is not as accurate as an alternative,

high precision spot-based approaches using colorimeters, the results obtained in our experiments

are accurate enough to be used in rock art documentation as well as in other scientific or industrial

applications. A conventional digital camera can be used for rigorous color determination once the

camera is properly characterized.

On the other hand, the pyColourimetry software reported in Chapter 2 has proven to be

a fundamental piece for the processing of colorimetric and spectral data, and was developed

and tested according to the recommendations published by the CIE. It also allows users to

achieve full control of the characterization methodological framework established. Thus, through

pyColourimetry software users can collect accurate color information, regardless of the camera

used in data acquisition, only from digital images captured in a suitable working setup and

well-defined colorimetric data for the transformation equations computation. As an aside of the

characterization framework proposed, users have the potential to obtain complete output images

in the sRGB independent color space (computed from the CIE XYZ predicted values). Considering

the outcomes achieved, the results are very satisfactory and promising for the accurate description,

recording, rendering, and communication of color in cultural heritage applications among other

research fields.

In the following sections, we present further additional comments and discussion regarding

the important aspects involved in the camera characterization procedure.

6.2 D65 Illuminant hypothesis

The camera characterization procedure must be carried out under specific illuminant conditions.

Although it is possible to take direct measurements of the chips from the color checker under D65

illuminant, it is very di�cult to work under a controlled light environment in open rock art sites

when compared to conducting experiments in lab conditions. So we worked under the hypothesis

of D65 illuminant; that is, we extracted the RAW RGB data of the color chips from the image

considering D65 conditions during the shot, and we computed the transformation equations using

those data.

However, a problem associated with the use of digital images is that the RGB data captured

by the sensor are device-dependent, that is, changes during the photographic shot imply changes

in the original digital values stored, and consequently in the characterization results. Thus, the

factors involved during the photographic shot must be considered, including the camera built-in
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sensor, exposure control, lens, ISO or aperture. Above all, it is required to evaluate the robustness

of the characterization process taking into account the lighting variations, that is, the working

D65 hypothesis must be confirmed.

To simulate environment illuminant changes in real-work scenarios, we carried out a practical

and simple experiment that consisted of characterizing a set of digital images of the same scene

taken under di↵erent light exposure conditions and analyze the di↵erences. The images correspond

to a rock art scene taken in the “Cova Civil” (Figure 1.1). The camera chosen in this case study

was the SLR Sigma SD15 camera (Table 1.1). Also, all rock art images were taken including an

X-rite ColorChecker® Digital SD chart for colorimetric reference (Figure 1.3 a).

All the digital images were taken in a very short time-lapse, in RAW format (X3F files for

Sigma), under the same lighting conditions (considering the hypothesis of D65 illumination), ISO

(100), aperture and focal (f/22, 20 mm). To simulate environmental light changes in the scene,

we varied the camera exposure parameter: 1/5 s for a normal exposure; 0.6 s for overexposed;

and finally 1/25 s for the underexposed picture (Figure 6.1).

(a) (b) (c)

Figure 6.1: Original RAW images (displayed as JPEG): (a) normal exposure; (b) overexposed;

(c) underexposed.

Three images were used to simulate di↵erent light conditions, which led to di↵erent and specific

corrections for each individual image. For model training, we used the RAW RGB data extracted

from the color patches, and their theoretical CIE XYZ tristimulus coordinates (D65). We used the

whole chip collection (140) from the color checker. The characterization parameters were obtained

using a second-order polynomial, which is the most widely used model in characterization. The

characterization workflow was carried out using our pyColourimetry software which provides both

the CIE XYZ residuals (RMSE) for model assessment and the �E⇤
ab color di↵erences (between

theoretical and predicted data) for the colorimetric quality evaluation.

Table 6.1 shows the assessment of the CIE XYZ residual and color di↵erence values achieved

after the model fit. Both, the RMSE metrics for the CIE XYZ residuals, and the �E⇤
ab values,

confirm that the second-order polynomial used as a regression model for the characterization is

adequate (Table 6.1). The best results were obtained for the normal and underexposed image,

which gives residuals less than one unit and a�E⇤
ab less than 2.5. Those�E⇤

ab are very satisfactory,

since those color di↵erence values are imperceptible by the human eye (Mahy and Van Eycken,

1994).
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Table 6.1: Model fit assessment

Image Exposure (s) CIE XYZ Residuals �E⇤
ab

Normal exposure 1/5 0.7040 0.6368 0.8551 2.1968

Overexposed 0.6 1.0470 1.5624 0.9257 4.9267

Underexposed 1/25 0.7545 0.5896 0.7104 2.4333

As a final outcome, Figure 6.2 displays the set of sRGB output images obtained as a result of

the camera characterization. The output sRGB characterized images o↵er similar results for the

three input images. It is not possible to perceive the di↵erence between both in terms of color

di↵erences even for experimented observers (cf. Figure 6.2 a with Figure 6.2 c).

(a) (b) (c)

Figure 6.2: sRGB output images: (a) normal exposure; (b) overexposed; (c) underexposed.

Only for the overexposed image we found �E⇤
ab greater than the JND, around 5 CIELAB

units (Table 6.1). However, this is an expected outcome since color perception depends on light.

Extreme lighting conditions do modify fundamental colorimetric factors such as the lightness

component, but also the chroma component and thereby the color appearance of the object

(Figure 6.1 b). In fact, it can be clearly observed that the chromatic appearance of the chips

from the color chart is far from its normal appearance in the image. Consequently, if the input

values extracted from the image lack chromatic quality, the results of the characterization will be

substandard as well. Thus, generally, an overexposed image would be discarded in the workflow.

In this case, the overexposed image was used only to analyze the behavior of the characterization

using a study case in extreme light conditions. However, the sRGB output image obtained from

the overexposed image shows similar chromatic range values to those of the outcome from the

normal and underexposed images, although the color di↵erence between them can clearly be

observed.

In the end, a set of homogeneous images were obtained from the original images taken under

di↵erent light conditions, which shows the adaptive nature of the image-based characterization.

The regression model seems to embed the lighting conditions during the characterization

procedure, providing consistent results regardless of the environmental conditions during the

shot. Therefore, the color registration in the rock art scenes can be considered correct, and so

is the comparison of sets of pictures acquired under di↵erent lighting conditions by means of a

physically-based sRGB color space.
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6.3 RAW vs processed image files

The image-based characterization procedure requires a data set consisting of the RGB digital

values acquired by the camera sensor; and their corresponding CIE XYZ tristimulus values of the

color chips used as a colorimetric reference. From our experience, we prefer working with RAW

format images instead of processed ones, because they avoid a set of complex operations which

modify the original RGB data acquired by the camera sensor. Before producing a final color image

the RAW data array acquired by the sensor needs to be pre-processed, which includes corrections

such as noise reduction, pixel repairing, linearization, white balancing, demosaicing, dark current

compensation, and color transform. On the contrary, the RAW output of the camera allows us

to work with digital data that resembles the most the physical magnitudes that interact with the

sensor. It seems clear that, in order to get more consistent color information, it is recommended

to use RAW image files rather than processed or compressed image files (Figure 3.5).

On the other hand, since processed images imply the modification of the original RGB values

registered by the camera, it is possible to obtain varying results for the same image depending

on the input images. For the same case study, the results can be discarded using processed

images, while satisfactory results can be obtained using RAW data. Chapter 3 contains further

details about the results achieved using processed data (TIFF format) versus RAW images. The

metrics used for the model assessment, that is, the residuals CIE XYZ and the �E⇤
ab color

di↵erence values are significantly better. It is clearly observed that relying on RAW data for

camera characterization represents a significant improvement results in practical terms (cf. Section

3.4.1 and Section 3.4.2).

We want to note that the case study reported in Chapter 3 was our first practical experiment

in camera characterization. It was very helpful in laying out the groundwork for the rest of our

research work during the thesis. It made it possible to establish and test a rigorous procedure for

the colorimetric camera characterization; analyze the main factors involved, such as the training

data, light conditions and the regression model selected; test the pyColourimetry software; and

assess the results achieved in the application of the camera characterization procedure to rock

art color documentation. From this first experiment, we never used processed images again.

Thereafter, we only rely on RAW data, since the results obtained are far superior to those

achieved using processed images.

We recommend the use of RAW images since they o↵er several advantages. The use of RAW

data avoids the camera white self-balancing, which is an essential aspect since the color definition

is directly related to light conditions. Also, it is not required to apply the non-linearity correction,

since RAW data tends to be linear (Section 3.3.3). On the other hand, RAW data are stored using

a higher dynamic range of bits, which provides a more wide RGB range to define the colors present

on the scene, and consequently a better and precise training dataset specification, which leads to

achieving better results after the characterization as well.

However, it is not entirely correct to a�rm that RAW data is not subject to any pre-processing

operation prior to use. The RAW data captured and stored depends on the sensor manufacturer
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specifications, usually in a binary and complex format. To facilitate the handling of RAW data

to users it is required to convert the original RAW data into an easily processable format

with minimum pre-processing, in the form of numerical arrays. pyColoutimetry software uses

the open-source DCRAW decoder (Co�n, 2020) to get the original data from RAW files as a

multidimensional array, which can be read and processed by di↵erent Python packages (such as

NumPy and SciPy, Table 2.3).

We introduce below an additional real-world example that demonstrates in a very simple and

fast visual way that the use of RAW images o↵ers improved, more stable and accurate results

instead of the use of processed ones. Figure 6.3 displays a set of rock art painting characterized

images using a sample picture in RAW (X3F file) and processed (JPEG format) as inputs. The

rock art image was taken using a Sigma SD15 SLR digital camera (Table 1.1) in “Cova dels

Cavalls” (Figure 1.2). We used three di↵erent polynomial degrees: linear, second and third-order

as a regression model. Moreover, Figure 6.4 shows the di↵erent �E⇤
ab mapping images computed

between the di↵erent output sRGB images obtained as a result of the characterization.

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Characterized images: (a,b,c) From JPEG input images; (d,e,f) From RAW input

images; (a,d) Linear; (b,e) 2nd; (3,f) 3rd. order

The characterized images from the JPEG images provide the less homogeneous results

compared with the outcome from the RAW input data. It is clearly observed that the linear

regression model for the processed image gives the worst results in colorimetric terms (cf. Figure

6.3 a with b and c). Even inexperienced observers immediately notice the di↵erent appearance of

the output linear image compared to the higher-order models. These results were expected, since

processed RGB data are not linear. Therefore, in this case, the application of the non-linearity

correction is required (Section 3.3.3). On the contrary, it can be observed that the results derived

from RAW images hardly show any di↵erence (cf. Figure 6.3 d, e and f). The linear model o↵ers

satisfying results for RAW data, due to the fact that RAW RGB data tends to be linear.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 6.4: �E⇤
ab mapping images: (a) JPEG 2nd – JPEG 1st; (b) JPEG 2nd – JPEG 3rd; (c)

X3F 1st – JPEG 1st; (d) X3F 2nd – JPEG 2nd; (c) X3F 3rd – JPEG 3rd; (f) X3F 2nd – X3F

1st; (g) X3F 2nd – X3F 3rd.

In this regard, the computed�E⇤
ab mapping images are very useful, as they allow us to confirm

our conclusion about that the RAW images provided the most stable and homogeneous results.

First of all, the results achieved from RAW images are very similar regardless of the order of

the polynomial model used for the characterization. The green pixels are predominant in the

mapping images computed, which indicate color di↵erence less than 2 CIELAB units (that is,

unnoticeable for human vision). Only color di↵erences greater than the JND (4 CIELAB units)

are obtained for some patches on the color checker (Figure 6.4 f and g).

On the contrary, the �E⇤
ab mapping images computed for the processed characterized images

confirm once again that they give the worst results. Red pixels predominate, which indicates

�E⇤
ab values great that the JND. The results obtained show that the characterized images vary

depending on the polynomial degree used providing more unequal outcomes (cf. Figure 6.4 a

and b), whereas the RAW data have the contrary behavior. Also, computing the �E⇤
ab mapping

images between the second-order polynomial model from the RAW image and the processed

characterized images, shows a clear evidence of the disparity of the results depending on whether

the input image is RAW or a processed one (Figure 6.4 c, d and e). Thus, the use of RAW images

is highly recommended instead of processed images regardless of their format.
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6.4 Regression model

The accuracy of the results achieved through the camera characterization procedure depends

on factors such as the proper selection of the working color spaces (input/output data), the

model adjustment capacity, the training data size and the colorimetric properties of the color

samples used. The best characterization performance is achieved in the transformation between

the device-dependent RGB color space provided by the camera sensor and the independent CIE

XYZ color space (Westland et al., 2012).

As a regression model, we used a second-order polynomial, which is widely used for

characterization to define the transformation equations between the input and output color

spaces. Indeed, the comparison between a common second-order polynomial model and a Gaussian

process reported in Chapter 4 confirms that the use of polynomial models o↵ers accurate

colorimetric results and keeps the process simple (Molada-Tebar et al., 2019c). Thus, although

the GP o↵ers slightly better results, we recommend the use of the second-order polynomial as a

regression model for characterization purposes.

However, it should be noted that the residual errors after the regression decrease as the degree

of the polynomial model used is increased (Hong et al., 2001). Thus, the question that arises

now is why limit the regression model to second-order polynomials, and not use a higher-order

polynomial model. This is an important aspect to keep in mind in color science and color

adjustments, since the results achieved can become unacceptable in a practical way after the

characterization if we use polynomial models with a high number of terms.

In our practical experiments, we used two di↵erent metrics in order to evaluate the results

obtained after the camera characterization: the CIE XYZ residual values, and the �E⇤
ab color

di↵erence. The residuals are a reliable indicator of the goodness of the adjustment. On the other

hand, the �E⇤
ab values provide information about the colorimetric quality reached. However, the

output sRGB image obtained from the characterization procedure should always be checked.

The model assessment metrics can indicate satisfying results, although they are not necessarily

evidence of proper results. It is possible to obtain low residual values, showing that the model

fits well with the input training data, and even lower average color di↵erences than JND can be

obtained. Nevertheless, even when the results indicate high accuracy, it is possible to find output

sRGB image that does not make colorimetric sense, that is, the appearance of the sRGB image

does not correspond to the reality that we perceive.

In order to evaluate the e↵ect of the polynomial degree in the characterization procedure, we

conducted an experiment consisting of characterizing a digital image by varying the degree of

the polynomial regression model from linear to seventh order. The image corresponds to a rock

art scenario taken in the “Cova dels Cavalls” (Figure 1.2). In this case, the digital camera chosen

was a Sigma SD15, which allows registering pictures in RAW format (Table 1.1).

Figure 6.5 shows the histograms of the CIE XYZ residual values achieved for the first six

polynomial models applied. It is observed that all of those polynomial models fit well to the data,

have a suitable behavior for characterization purposes and provide satisfying results.
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: CIE XYZ residuals: (a) Linear; (b) 2nd; (c) 3rd; (d) 4th; (e) 5th; (f) 6th.

On the other hand, Table 6.2 shows the �E⇤
ab color di↵erences values computed. As we

expected, the �E⇤
ab values decrease as the degree of the polynomial increases, but only for the

first five models. Regression models based on polynomials higher than five degrees do not o↵er

satisfactory results in colorimetric terms, although they provide lower residuals. Consequently,

according to the values calculated for color di↵erences, the best result is provided by the fifth-order

polynomial regression model applied. However, would we reach the same conclusion by analyzing

the sRGB output images obtained as a result of the characterization?

Table 6.2: �E⇤
ab values for the di↵erent polynomial models

1st 2nd 3rd 4th 5th 6th

Max 20.365 13.477 10.126 6.380 7.595 109.153
Mean 3.170 2.733 2.407 2.177 2.012 4.580
Min 0.294 0.167 0.449 0.260 0.197 0.350

Figure 6.6 displays the original image and the output sRGB characterized images obtained

from the di↵erent polynomial degree used during the process. At first view, the images obtained

as a result of the first four polynomial models provide outcomes with a similar appearance. Also,

the use of polynomials above degree six should not be employed (Figure 6.6 g and h). Although

the residual and the �E⇤
ab values obtained are acceptable, observing the characterized image it

seems clear that must be discarded (cf. Figure 6.6 f with Figure 6.6 b, c, d and e).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: Rock art images: (a) Original RAW (displayed as TIFF); (b,c,d,e,f,g,h) Output

characterized images; (b) Linear; (c) 2nd; (d) 3rd; (e) 4th. ; (f) 5th.; (g) 6th.; (h) 7th.

Those a�rmations are confirmed by the �E⇤
ab mapping images computed between the

second-order (which a priori was considered as the best performance) and the rest of the

polynomial regression models applied (Figure 6.7). The best performance was achieved for the

linear and second-order polynomial model, since the color di↵erence values are for the majority

of the pixels in the image less than 2 CIELAB units, imperceptible to human vision. Also, it

is clearly observed that as the degree of the polynomial increases the results are worse from a

colorimetric point of view, especially for the higher-order.

(a) (b) (c)

(d) (e) (f)

Figure 6.7: �E⇤
ab mapping images: (a) X3F 2nd – X3F 1st; (b) X3F 2nd – X3F 3rd; (c) X3F 2nd

– X3F 4th; (d) X3F 2nd – X3F 5th; (e) X3F 2nd – X3F 6th; (f) X3F 2nd – X3F 7th.

Undeniably, the regression model used in the camera characterization procedure is an essential

aspect, since it has a direct impact on the sRGB output images obtained. We highly recommend

the use of second-order polynomial models, owing to the fact that they provide satisfactory results
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in real-work scenarios, such as rock art paintings. Thus, it is essential to compute the assessment

not only of the capability of the model fit, but the color di↵erence values, and especially the

outcome characterized images in order to determine the best performance in practical terms for

any specific application.

6.5 Negative CIE XYZ predicted values

The broadly regression model used for the camera characterization procedure is based on

polynomial models. However, in our experiments, we regularly found that regression models

can provide some negative CIE XYZ predicted values after the fit. Thus, although the CIE XYZ

color space was developed in order to have non-negative values (Fairman et al., 1997, Wright,

2007, CIE, 2018), we can occasionally get negative values in some complex colorimetric operations

(Mart́ınez et al., 2003, Li et al., 2012).

As a final result of the characterization procedure, we obtain an sRGB output image, since

most digital devices do not support images in the CIE XYZ color space. Thus, the CIE XYZ

values predicted after the regression are encoded as sRGB values in order to be displayed on

compatible devices (IEC, 1998). All colors are scaled or clipped so that they do not exceed the

gamut boundary defined by the sRGB color space. Thus, negative CIE XYZ values can a↵ect

the final output of sRGB values. In fact, for practical purposes, these negative tristimulus values

lead to a loss of sharpness in the sRGB output image, as we report below.

From our experience, the number of negative tristimulus values vary depending on the camera

built-in sensor, but especially if shadow areas are present in the image. To deal with negative

CIE XYZ values, we proposed a simple but e↵ective variable change in order to avoid negative

tristimulus values after the model fit. The idea involves entering the square root of both the RGB

data and the theoretical CIE XYZ coordinates of the color patches for the regression model. Once

the adjustment is computed, we undo the variable change introduced, squaring the predicted CIE

XYZ values obtained. Figure 6.8 displays the scheme for the variable change proposed, which can

be understood as a non-negativity constraint imposed on the regression model. Thus, only positive

tristimulus values are computed as a result of camera characterization.

We tested the variable change proposed on an image with a rock art specimen taken in “Cova

dels Cavalls” (Figure 1.2). The camera used for this experiment was an SLR Canon EOS-1D

(Table 1.1), which allows taking images in RAW format (Figure 6.9 a). The regression model

chosen in this case for the characterization was a second-order polynomial model, using the 140

color patches from the X-rite ColorChecker® Digital SD chart as training data.

Detailed analysis allows determining the areas that produce negative CIE XYZ values after

applying the model regression in the image, as well as the possible causes for this behavior. Figure

6.10 shows the scatter plot for the coordinates of the color chips used as training data, and the

negative tristimulus values obtained as a result of the camera characterization. In addition, Figure

6.11 displays the pixels on the image corresponding to negative values. Comparing both figures,

it is clearly observed that these areas correspond with abrupt changes in the relief of the cave

wall, and especially in shadow black areas generated by high moisture conditions.
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Figure 6.8: Non-negativity constraint scheme for camera characterization procedure.

As a result of the characterization, two sRGB images were obtained (Figure 6.9). The results

show an improvement in the characterized image considering the non-negativity constraint. The

output image gives lower saturation and higher sharpness, providing as a result a higher quality

image (cf. Figure 6.9 c and Figure 6.9 b). Although in some cases in order to yield positive CIE

XYZ predicted values a loss of accuracy in terms of color di↵erence can be achieved, the results

show the e↵ectiveness of the variable change proposed.

Figure 6.9: Rock art scene images: (a) Original RAW image (displayed as TIFF) ; (b) Output

sRGB image; (c) Output sRGB image with the non-negativity constraint.
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Figure 6.10: RGB negative predicted values scatter plot.

Figure 6.11: CIE XYZ negative predicted values.

In addition, Figure 6.12 displays the �E⇤
ab color di↵erence mapping image between the two

sRGB images obtained. It can be observed that the variable change applied does not a↵ect

the accurate data achieved in both images, especially on the areas corresponding to colored

pigment (cf. detail picture in Figure 6.12). Thus, according to the results obtained we can conclude

that this new approach o↵ers accurate results in colorimetric terms, and can be added into

characterization procedure in order to avoid negative tristimulus values after the regression.

However, we recommend collecting detailed images rather than full scenes, in order to apply the

characterization in specific areas where the rock art pigments take up most of the image. Also,

we recommend avoiding shadow black areas in pictures.
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Figure 6.12: �E⇤
ab mapping image.

6.6 Sample selection

The camera characterization procedure applied in our practical studies is based on regression

models in order to compute the transformation equations between the input/output color spaces

considered in the process. An essential aspect for the model accuracy assessment is to relay on

a well-established training dataset. Thus, a question to consider is the size of the dataset used

for the model training. In our first experiments, we used the whole number of color chips as

the training dataset, usually the 140 patches from the X-rite ColorChecker® Digital SD chart.

However, satisfying results were found using a selected set of color chips instead of the full color

checker.

The e↵ect of the use of di↵erent sizes for training datasets was analyzed in previous research

(Chang-Rak and Maeng-Sub, 1999, Cheung and Westland, 2002, Cheung et al., 2005, Poljicak

et al., 2016). These studies show that accurate results are obtained using around 60-100 color

samples. Nevertheless, the accuracy of the model fit did not improve significantly using a set

greater than 60 samples (Chang-Rak and Maeng-Sub, 1999, Hong et al., 2001). It is accepted

that training datasets composed by 40-60 colored samples o↵er satisfactory results, thus being a

proper number for training samples (Hong et al., 2001). Moreover, Cheung and Westland (2006)

present two di↵erent algorithms for optimal color sample selection in model training. This study

clearly shows how the selection of patches for the training data is another key aspect, since the

colorimetric characteristics of the patches used as training samples a↵ect the results achieved in

the characterization procedure.

Given the advances produced in recent years by improved built-in sensors, better lens and

hardware in digital cameras, it is required to make a review of the e↵ect of the size of the

training data on the regression model, not only numerically but also (and especially) graphically

in the outcome image provided by the characterization. Thus, the interest is focused on how many

samples are required to carry out the characterization with satisfactory and accurate colorimetric

results.
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We carried out the analysis on a set of random second-order polynomial regression models, in

which we progressively increased the size of the training data. The images correspond to a rock

art scene taken in “Cova Civil” (Figure 1.2), from two di↵erent SLR cameras: a Fujifilm IS PRO,

and a Sigma SD15 (Table 1.1).

For a second-order polynomial model (10 terms), the minimum size for the training data is

three samples (n = 3). A total of 3450 random models were carried out, 50 models for each n

number of samples within the interval [3,139, steps = 2]. The aim is to determine the n number of

samples so that the results provided by the regression model are stabilized, by analyzing the mean

�E⇤
ab color di↵erence computed for each model. Figure 6.13 displays the mean �E⇤

ab achieved for

the random models (a), and the best performance obtained for each set of models (b).

(a)

(b)

Figure 6.13: �E⇤
ab: (a) Mean random model; (b) Best random model.

The graphic results achieved show that each camera has a di↵erent behavior. Thus, the built-in

sensor has a direct influence on the performance of the digital camera during the characterization

procedure. In addition, those results confirm that for training data sizes greater than 60 color

samples, the results remain stable regardless of the camera used. In fact, it is possible to achieve

accurate colorimetric results using 30-40 random color patches. Moreover, the training sample

size can be further reduced, since, for a certain combination of a smaller n number of patches,

successful results are achieved. Using 13 color samples for the Fujifilm IS PRO camera is enough

to achieve �E⇤
ab values less than the JND tolerance, while 29 patches are required for the Sigma

(Figure 6.13 b).
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The results achieved show that it is not required to use the full number of color chips from the

chart for camera characterization, since they introduce redundancy into the regression model. It

is possible to use a reduced training data without loss of accuracy, but most importantly, the best

performance of the model can be achieved when a well-selected number of samples is introduced

into the regression model.

As a first approach we propose the use of skin-tone patches from the reference color checker

as an alternative to using the whole color chart, since those are usually the predominant range

of colors in rock art scenarios. The characterization performance with skin-tone colors allows the

reduction of the training sample size and improves the adjustment to the chromatic range of the

scene. In addition, the computing time required for model training is lower than in the regular

approach with all color patches.

We tested the characterization of an image from a prehistoric rock art painting scene from the

“Cova Civil” shelter (Figure 1.2). The image was taken in RAW format using a Sigma SD15 SLR

digital camera (Table 1.1). The regression model used was based on a second-order polynomial

model. We applied the characterization using the 140 patches of the X-rite ColorChecker® Digital

SD color chart (ColorChecker dataset), and compared the ColorChecker results with other three

additional characterizations based on three subsets of the whole color chart. We name those three

subsets ‘skin-tone’ datasets which are defined with 17 (primary colors [IDs = E4, F4, G4] and

skin-tone [IDs = D7, E7, F7, G7, H7, I7, J7, D8, E8, F8, G8, H8, I8, J8]), 28 (skin-tone and grey

[IDs = D7, E7, F7, G7, H7, I7, J7, D8, E8, F8, G8, H8, I8, J8]) and 31 patches (primary color,

skin-tone and grey).

Graphic and numeric results obtained for the characterized images allow us to confirm that

this approach is a suitable alternative for carrying out the characterization of digital cameras.

The best results for the image-based characterization were found for the 31 skin-tone dataset.

Table 6.3 shows the residuals in CIE XYZ and �E⇤
ab color di↵erences after the second-order

polynomial fit using the ColorChecker and skin-tone datasets respectively.

Table 6.3: CIE XYZ residuals and �E⇤
ab after camera characterization.

ColorChecker dataset Skin-tone dataset

[140 patches] [31 patches]

Max. Mean Min. Max. Mean Min.

residual X 6.499 0.033 -12.328 2.311 0.017 -3.427

residual Y 7.255 0.042 -12.218 1.878 0.012 -2.519

residual Z 4.923 0.046 -14.814 1.436 0.011 -1.283

�E⇤
ab 11.728 2.985 0.518 4.173 1.761 0.348

The results achieved in this test notably improve when we include the primary color patches

from the color checker into the training data. The skin-tone colors used for this experiment are
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located in a very specific region on the chromaticity diagram, compared with the whole sRGB

gamut, which covers a larger region as shown in Figure 6.14. Therefore, as the primary color

patches are located near the sRGB gamut boundary, the predictive capability of the regression

model used in the characterization procedure is much greater, fitting better to the input image

data and providing more accurate results.

Figure 6.14: ‘Skin-tone’ dataset patches on CIE chromaticity diagram.

Figure 6.15 shows the output sRGB images obtained using the whole ColorChecker and the

31 skin-tone dataset. Also, a quick way to validate the methodology proposed here is by means of

the �E⇤
ab mapping images between the di↵erent datasets used for the model training. We set the

ColorChecker dataset (140 patches) sRGB image as a color reference, and computed the �E⇤
ab

between the 17-, 28- and 31-patch images respectively (Figure 6.16).

(a) (b) (c)

Figure 6.15: Rock art images: (a) Original Sigma SD15 RAW (viewed as TIFF); (b) ColorChecker

[140 patches] characterized image; (c) ‘Skin-tone’ dataset [31 patches] characterized image.
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We obtained satisfactory results regardless of the data used in the characterization (whole

ColorChecker or skin-tone datasets). The mean �E⇤
ab color di↵erences values were less than 4

units for both training datasets, that is, less than the JND (Table 6.3). It is hard for the observer

to perceive visual di↵erences between the output sRGB images from both models (cf. Figure 6.15

b and c). Nevertheless, better results were found for the skin-tone dataset, with lower residuals

and �E⇤
ab values (Table 6.3).

(a) (b) (c)

Figure 6.16: �E⇤
ab mapping images: (a) ColorChecker [140 patches] vs ‘Skin-tone’ [17 patches];

(b) ColorChecker vs ‘Skin-tone’ [28 patches]; (c) ColorChecker vs ‘Skin-tone’ [31 patches].

It is worth noting the di↵erences in the �E⇤
ab mapping images displayed in Figure 6.16. We

can conclude that using a subset of 17 patches (primary and skin-tone samples) we can obtain

good and acceptable results. Furthermore, the result is improved using the skin-tone dataset,

which increases the number of patches from 17 to 31. Figure 6.16 c shows the predominant green

color (�E⇤
ab less than 2 units), however, Figure 6.16 b shows quite a di↵erent behavior with higher

�E⇤
ab values and red colors.

These results clearly show that an increase in the number of sample patches does not

intrinsically imply an improvement in the fitness of the output sRGB characterized image.

Moreover, even though the two datasets yield good colorimetric results, an improvement

is observed when using the skin-tone samples. The results reveal two key aspects in the

characterization procedure, specifically the number of samples, and the use of training data near

the chromatic range of the scene used in the characterization procedure itself.

This useful practical case study shows the relevance of considering not only the sample size,

but also the training samples used for mathematical modeling during the process. In fact, better

results are obtained using sample data near the chromatic range of the scene. Instead of a visual

selection of the patches by users, in Chapter 5 we propose the novel P-ASK framework to extract

a subset of dominant colors from a digital image and automatically identify their corresponding

chips in the color chart used as characterizing colorimetric reference. The results reported confirm

that the characterization approach based on the P-ASK framework allows not only the reduction

of the training sample size but most important a better color adjustment to the chromatic range

of the input scene. Thus, an automatic patch selection for camera characterization purposes

in archaeological documentation is possible, which can probably be extended to other scientific

research fields.
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6.7 Spectral recovery

Compared with the CIE XYZ tristimulus values, spectrum data contains much more chromatic

information of an object for the correct communication, reproduction and specification of color.

Thus, in recent years research has focused on spectral recovery methodologies as an alternative

for camera characterization (Amiri et al., 2017, Zhang et al., 2017). Both methodologies have the

same objective, that is, the use of consumer-grade cameras for accurate colorimetric measurements

since they are a cheaper option instead of using spectrometers. By using digital cameras, instant

measurements can be collected for million points (pixels) from an image, capturing colorimetric

information for complete scenes in a low-cost and non-invasive way.

However, the problem is that camera manufacturers do not provide sensor sensitivities, which

should be measured or estimate by users. The accurate way to measuring the channel sensor

sensitivities is by using a monochromator under strict laboratory conditions (Farrell et al., 2017).

Although this approach provides the highest accuracy, the drawback is its elevated cost, since it

must be carried out in specialist calibration laboratories with high-level equipment. Unfortunately,

this option is not available to all users. However, an alternative approach is to estimate the sensor

sensitivities given the RGB responses registered by the camera to known spectral stimuli. Thus,

the aim of the spectral recovery techniques is to provide the channel spectral sensitivities for a

camera sensor.

Di↵erent algorithms proposed are reported in the bibliography for spectral reconstruction

(Hubelet al., 1994, Dupont, 2002, Heikkinen et al., 2008, Amiri, 2018). In short, the spectral

recovery methods are based mainly on two approaches: as a regular regression problem, or as

a statistical inversion problem. The main techniques can be summarized as Weiner estimation

(Hubelet al., 1994), pseudo-inverse or direct mapping (Valero et al., 2007, Babaei et al., 2011),

basis functions (Garćıa-Beltrán et al., 1998), single value decomposition (SVD) (Shimano et al.,

2007), R-matrix (Zhao and Berns, 2007), and PCA (Fairman and Brill, 2004, Cao et al., 2018).

Also, more recently, research is focused on optimized methods to improve the results (Liang and

Wan, 2017, Cao et al., 2017, Heikkinen, 2018, Chou et al., 2019, Liang et al., 2019).

Mathematically, the jth pixel response Pij registered by the camera for the ith sensor channels

(usually, in RGB format) can be expressed as follows (Eq. 6.1):

Pij =

Z

�

E(�) · S(�) ·Q(�) · d� =

Z

�

C(�) ·Q(�) · d� (6.1)

where E(�) is the spectral power distribution (SPD), S(�) is the object spectral reflectance and

Q(�) the spectral sensitivity. The matrix product of the SPD and the spectral reflectance is

known as the C(�) color signal spectral or color stimulus matrix.

The equation 6.1 can be written in matrix form as:

P = C · q (6.2)
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Thus, the q spectral sensitivity for the camera can be computed from the RGB data (P ) and

the color signal measured (C) under laboratory conditions for the following matrix operation

(Eq. 6.3):

q = C�1 · P = C+ · P (6.3)

Equation 6.3 assumes that the C matrix is invertible (C�1). However, if there are fewer

equations than unknowns, the operation can be solved as a pseudo-inverse (C+) problem.

We conducted our first experiment about the spectral recovery method in the same case study

reported in Chapter 4. The rock art images were taken in “Cova dels Cavalls” (Figure 1.2). We

used two di↵erent SLR digital cameras: a Sigma SD15 and a Fujifilm IS PRO (Table 1.1), both

in RAW format. The original images are shown in Figure 4.8 a and b. In this case, the spectral

reconstruction was computed using the spectral data and the camera responses for the color chips

from the X-rite ColorChecker® Digital SD chart (140 patches) under the D65 illuminant.

Figure 6.17 shows the channel sensitivities estimates obtained for both SLR digital cameras

used in the experiment. It is clearly observed the di↵erent behavior of the built-in sensors for

each camera. The Fujifilm CCD sensor has the expected performance for the common sensitivities

functions. On the contrary, the channel sensitivities functions for the CMOS Foveon® X3 sensor

show its peculiarities as a trichromatic sensor, which records the RGB response independently

without any interpolation.

(a) (b)

Figure 6.17: Channel spectral sensitivities: (a) Sigma SD15; (b) Fujifilm IS PRO

Figure 6.18 displays the images created from the spectral recovery method, which can be

compared with the outcome provided by the regression models applied for the characterization

procedure reported in Chapter 4, that is, a second-order polynomial and the GP model as well.

The output sRGB images achieved from the spectral reconstruction method applied are very

satisfying, with a mean �E⇤
ab values lower than the JND (4 CIELAB units) for both cameras.

The similar final appearance achieved for all the images shows the good performance of the

di↵erent methods.
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(a) (b) (c)

(d) (e) (f)

Figure 6.18: sRGB output images: (a,b,c) Sigma SD15; (d,e,f) Fujifilm IS PRO; (a,d) Second-order

polynomial model; (b,e) GP; (c,d) Spectral recovery.

Moreover, it is interesting to analyze the performance of the spectral recovery technique and

compare this technique with the outcome provided by the regression models used in camera

characterization. Figure 6.19 shows the �E⇤
ab color di↵erence mapping images between the

di↵erent methodologies applied. The mapping images show the excellent results achieved from

the spectral recovery, which provides very similar behavior to that of the second-order polynomial

model for the characterization of both cameras (Figure 6.19 a, b). Although all the methodologies

provide good results, the GP model can be considered as the less recommended option given the

results, especially for the Sigma camera (cf. Figure 6.19 b with a, and 6.19 d with c).

(a) (b)

(c) (d)

Figure 6.19: �E⇤
ab color di↵erence mapping images: (a,b) Sigma SD15; (c,d) Fujifilm IS PRO;

(a,c) Spectral recovery – Second-order polynomial model; (b,d) Spectral recovery – GP model.
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7.1 Initial objectives set and questions raised

Archaeological rock art documentation and preservation tasks are an intricate and challenging

process, where the proper color measurement is an essential aspect that requires the utmost rigor.

A correct color specification allows us not only to describe a historical object in its current state

but provides useful information about the origin and aging of the pigments used. Complete,

exhaustive, reliable and accurate information is required, so that international and national

organizations, the heads of cultural heritage conservation agencies and researchers can take

specific and adequate actions for the study, description, preservation and occasional restoration

of our historical assets.

The problem raised is that classical color recording methods applied in rock art painting have

been based on visual observations, supported by color charts as chromatic reference. However,

since those methods depend on subjective interpretation procedures and the observer experience,

the results obtained can be contradictorily subjected to lack of accuracy. It is evident that verbal

expressions are insu�cient and cannot be used to communicate color information, unless they

are supported by additional accurate techniques for the color specification.

On the contrary, the physical description of color avoids subjective definitions provided by

vague color names, as color can be described into independent color spaces, such as those defined

by the CIE. In this regard, the colorimetric camera characterization framework reported in this

thesis has proved to be a suitable approach for the correct color measurements from digital

images.

We tested the methodology on a set of prehistoric rock art painting images captured with a

number of digital cameras with di↵erent built-in sensors. The outcomes obtained are satisfactory

and very promising for proper color specification in cultural heritage studies. Final sRGB images

were obtained, in a well-known, independent and physically-based color space, regardless of the

digital camera used. Therefore, the main aim of this thesis has been satisfactorily achieved, and

the initial questions raised have been answered as well (Chapter 1, Section 1.3). The image-based

camera characterization framework proposed, which was integrated into the pyColourimetry

software, is rigorous, low-cost and non-invasive, characteristics that make it a suitable technique

for cultural heritage applications.

A concise response to the initial questions posed is provided in the following subsections.

7.1.1 Question: Is the camera characterization a suitable procedure for

cultural heritage documentation and preservation tasks?

Absolutely. The results achieved show that the image-based camera characterization o↵ers

accurate colorimetric results, and proves to be a suitable methodology for the accurate registration

of color (Chapter 3). The characterization workflow proposed is based on objective methods that

are independent of the observer experience. It combines the direct method, based on colorimetric

measurements, and the indirect method, using digital RAW images with color information.
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Moreover, the process has been successfully implemented into the pyColourimetry software,

which covers all the fundamental colorimetric aspects published by the CIE (Chapter 2). The

camera characterization is a suitable technique for cultural heritage documentation in general and

rock art in particular because it is low-cost, non-invasive and avoids the subjectivity interpretation

of the observer.

Thus, from the camera characterization procedure users can obtain accurate colorimetric

information of complete scenes in a physically-based color space, independent of the device,

allowing to compare images acquired from di↵erent devices since they are referred to the same

color space (either CIE XYZ, or sRGB).

7.1.2 Question: Could the GP model provide better results as a regression

model for camera characterization?

Di↵erent mathematical models to characterize digital devices are reported in the literature, but

the most widely used are those based on polynomial transformations. Our practical experiments

confirmed this point by applying a second-order polynomial model which is enough to achieve

accurate results in colorimetric terms (Chapter 2).

We proposed a novel approach based on a Gaussian process in order to improve the

characterization results, since the GP are powerful and flexible non-parametric models for

multivariate nonlinear functions. The outcome images achieved demonstrated that although both

models provide accurate results, the colorimetric characterization based on the GP provides better

results, with lower values for the CIE XYZ residuals and �E⇤
ab color di↵erences (Chapter 4).

However, in practice, we recommend the use of a second-order polynomial model, because it

is a simpler model for computing and provide very satisfying results.

7.1.3 Question: Is the full set of chips from the color checker needed for model

learning in the characterization procedure?

No, the use of the whole set of patches from the color chart is not required, since they introduce

redundancy into the regression model. In fact, accurate results can be obtained using a reduced

and well-selected sample set as training data for the characterization model. We discuss this

topic in Chapter 5, and the additional comments provided in Section 6.6. Furthermore, the

results achieved confirmed that not only is possible to reduce the training data size without loss

of accuracy, but also the intrinsic colorimetric characteristics of the color samples used as training

during the characterization procedure have an e↵ect on the accuracy achieved.

Thus, each image should be analyzed separately, so that the color chips to be used as training

data adjust better to the chromatic range of the scene. In this sense, the proposed P-ASK

framework based on clustering techniques is a suitable alternative for an automatic selection

of patches for the characterization process.
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7.2 Key findings and research contribution

Given the relevance of accurate color measurement in rock art painting, the approach by means

of the colorimetric camera characterization framework reported in this research confirms that it

is a suitable technique for the correct color recording, which allows users to register the color as

close to reality as possible to understand the true cultural heritage site conditions.

The results achieved confirm that the assumed starting hypotheses were correct, and the

actions undertaken have been adequate to achieve the objectives. The process of documentation

through the colorimetric characterized image sensors allows rigorous cataloging of heritage,

together with the possibility of making a reliable reproduction of the color. Thus, it is possible

to rely on characterized digital images that allow right color rendering, and provides very useful

information for color description and communication, aspects which are essential in cultural

heritage labors.

Quite a few advantages make the camera characterization procedure a highly applicable

and rigorous technique suitable for archaeological documentation tasks, particularly in rock art

in particular. The use of consumer-grade cameras for accurate colorimetric measurements is a

cheaper option compared with the use of spectrometers; it is non-invasive; reduces subjectivity

in the study and interpretation of rock art specimens; allows the acquisition of RGB data from

complete scenes (millions of pixels) and increases the accuracy in graphic and color definition of

objects.

Archaeological documentation greatly benefits from this colorimetric framework. However, the

applicability of the camera characterization procedure can be extended to other scientific fields,

where the color measurement plays a decisive role. With the image-based camera characterization

approach proposed, users can collect rigorous color information regardless of the device used

in the data acquisition, with the only requirement of a number of digital images including

a color chart and colorimetric measurements. Furthermore, this process is not restrictive and

can be used in combination with other common surveying techniques used for the study and

conservation of archaeological sites such as laser scanning or photogrammetric techniques.

Thus, the combined use of those technologies will allow an improvement in the automation

of identification and representation of pigments with maximum reliability in field surveys, 3D

models and reconstructions.

In addition, we have observed that it is frequent to use enhanced images in rock art related

web sites, usually intended to inform users or just for an on-line catalog. However, those images

without any rigorous color treatment are far from its real appearance, and therefore do not

transport the user as if they were in situ observing the archaeological site. Therefore, we are

confident that the outcome images provided by the camera characterization will be very useful to

include in cultural heritage geoportals, or web pages for public or private organizations related

to cultural heritage documentation or preservation.
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In short, the main conclusions reached in this thesis can be itemized as follows:

• Methodology: The camera characterization procedure proves to be a suitable methodology

for accurate color specification in cultural heritage applications.

• Software: The pyColourimetry software is rigorous; takes into account the most important

CIE technical colorimetric aspects; and covers each one of the phases for the methodology

proposed.

• Regression model: GP models can be used to improve the results achieved in

characterization. However, regression models based on second-order polynomial gives

accurate and satisfying results.

• Training data: It is possible to achieve better results when the training data are

well-selected, i.e., when they are nearest to the scene chromatic range. In this regard, the

P-ASK framework based on the K -means algorithm is a suitable method for the automatic

patch selection for camera characterization.

• Additional key factors: Some essential factors to be considered during the

characterization are: the working color spaces; the camera sensor; the data training size

and characteristics; and the regression model used.

Thus, according to the results achieved in this research, we make the following further

recommendations:

• Best results for the transformation equations are obtained when the input RGB color space

and the CIE XYZ output tristimulus values are used in the regression model.

• The camera built-in sensor has a direct e↵ect on the results provided by the characterization

(in terms of noise and colorimetric results). Our experiments show that better results are

obtained with the Fujifilm IS PRO camera. Since the proper selection of the camera is a

key aspect, we highly recommend conducting a previous analysis of the sensor behavior in

order to select the best camera to use for data acquisition.

• The regular color images produced by digital cameras are end products of a set of complex

operations, which alter the original color response registered by the sensor. Better results

are obtained from RAW images rather than processed ones. In addition, the environmental

factors involved in the photographic capture, such as exposure control, lens, ISO or aperture,

must be taken into account, since they directly influence the determination of color.

• The image-based characterization based on a second-order polynomial as a regression model

provides accurate results, keeps the process simple (in terms of programming), and requires

less time for computing as compared with other advanced methods.

• It is not possible to draw the right conclusions only based on residual values provided by

the regression model, since the final outcome of camera characterization is a digital image.

In addition, the �E⇤
ab color di↵erence values should be analyzed, and even the output

characterized image for each practical case.
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7.3 Remaining research challenges

This thesis research has focused on establishing a rigorous methodology for the colorimetric

camera characterization procedure, and its application on cultural heritage, especially in

prehistoric rock art paintings. The characterization through the pyColourimetry software

facilitates the data acquisition and measurement tasks as well as the processing of colorimetric

samples, getting the polynomial parameters, and applying them to finally obtain the output

sRGB image. After the characterization, we can obtain accurate color information, regardless of

the camera or sensor used in the data acquisition. The outcome characterized images are very

satisfying, promising and highly useful for the proper and accurate specification, registration,

dissemination and communication of color in cultural heritage applications.

However, we consider that the framework proposed can be extended to other countless

scientific areas where color plays a leading role such as medicine, industry, textile or quality

assessment to name a few. In addition, although many of the basic and some of the advanced

colorimetry concepts have been applied to reach the main objectives set in this thesis,

there are still many aspects and unanswered questions to be studied in further detail. Can

the characterization process be further optimized and automated? In some calculations, the

e↵ectiveness of Python is limited, as it requires a lot of processing time. Can Python scripts

be made more e�cient? Thus, it seems highly recommendable for future research to analyze

some additional aspects related to programming, the process of methodology, or the development

of specific instruments and tools for color measurement.

The following are some of the recommended future research lines related to the camera

characterization:

• Python code optimization: OOP modules; migrate the most computationally demanding

process to a high performance language such as C to improve the coding e�ciency; integrate

full automated process (such as the color check detection, and data extraction).

• LED illumination.

• Problem with the sRGB reduced gamut. Test alternative output color spaces (such as

eciRGB).

• Behavior of CATs in the characterization procedure.

• Assessment of the characterization of mobile devices (smartphones).

• Spectral recovery advanced techniques.

• Development of a specific color chart for specific cultural heritage applications, such as

archaeological, rock art painting, objects, monuments and sites.

• Design of a portable and low-cost instrument for color measurement, which integrates a

colorimeter, digital camera sensor and illumination.
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documentation and image enhancement integration into schematic rock art analysis and preservation:
The Castrocontrigo Neolithic rock art (NW Spain). J. Cult. Herit. 2017, 26, 160–166. [CrossRef]

Files, M.; Griggs, K. Technical Guidelines for Digitizing Cultural Heritage Materials: Creation of Raster
Image; Image Rochester: NY, USA, 2016.

Finlayson, G.; Mackiewicz, M.; Hurlbert, A. Color Correction Using Root-Polynomial Regression. IEEE
Trans. Image Process. 2015, 24, 1460–1470. [CrossRef]

Forgi, E. Cluster analysis of multivariate data: e�ciency vs. interpretability of classifications. Biometrics
1965, 21, 768–769.

Gaiani, M.; Fabrizio,I.A.; Ballabeni, A.; Remondino, F. Securing Color Fidelity in 3D Architectural
Heritage Scenarios. Sensors 2017, 17, 2437–2461. [CrossRef]
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Molada-Tebar, A.; Lerma, J.L; Marqués-Mateu, Á. Software development for colorimetric and spectral data
processing: PyColourimetry. In Proceedings of the 1st Congress in Geomatics Engineering, Valencia,
Spain, 5–6 July 2017; Volume 1, 48–53. [CrossRef]

Molada-Tebar, A.; Lerma, J.L.; Marqués-Mateu, Á. Camera characterization for improving color
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Molada-Tebar, A.; Marqués-Mateu, Á.; Lerma, J.L. Camera Characterisation Based on Skin-Tone Colours
for Rock Art Recording. Proceedings 2019, 19, 12. [CrossRef]
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