

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/160415

Badía Contelles, JM.; Belloch Rodríguez, JA.; Cobos Serrano, M.; Igual Peña, FD.;
Quintana-Ortí, ES. (2019). Accelerating the SRP-PHAT algorithm on multi and many-core
platforms using OpenCL. The Journal of Supercomputing. 75(3):1284-1297.
https://doi.org/10.1007/s11227-018-2422-6

https://doi.org/10.1007/s11227-018-2422-6

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Accelerating the SRP-PHAT algorithm on Multi
and Many-core platforms using OpenCL

Jose M. Bad́ıa · Jose A. Belloch ·
Maximo Cobos · Francisco D. Igual ·
Enrique S. Quintana-Ort́ı

Received: date / Accepted: date

Abstract The Steered Response Power with Phase Transform (SRP-PHAT)
algorithm is a well-known method for sound-source localization due to its ro-
bust performance in noisy and reverberant environments. This algorithm is
used in a large number of acoustic applications such as automatic camera
steering systems, human-machine interaction, video gaming and audio surveil-
lance. SPR-PHAT implementations require to handle a high number of signals
coming from a microphone array and a huge search grid that influences the
localization accuracy of the system. In this context, high performance in the
localization process can only be achieved using massively parallel computa-
tional resources. Different types of multi-core machines based either on mul-
tiple CPUs or GPUs are commonly employed in diverse fields of science for
accelerating a number of applications, mainly using OpenMP and CUDA as
programming frameworks, respectively. This implies the development of mul-
tiple source codes which limits the portability and application possibilities.
On the contrary, OpenCL has emerged as an open standard for parallel pro-
gramming that is nowadays supported by a wide range of architectures. In
this work, we evaluate an OpenCL-based implementations of the SRP-PHAT
algorithm in two state-of-the-art CPU and GPU platforms. Results demon-

Jose M. Bad́ıa, Enrique S. Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores, Universitat Jaume I de Castelló, Spain
E-mail: {badia,quintana}@uji.es

Jose A. Belloch
Depto. de Tecnoloǵıa Electrónica, Universidad Carlos III de Madrid, Spain
E-mail: jbelloc@ing.uc3m.es

Maximo Cobos
Computer Science Department, Universitat de València, Spain
E-mail: maximo.cobos@uv.es

Francisco D. Igual
Depto. de Arquitectura de Computadores y Automática, Universidad Complutense de
Madrid, Spain
E-mail: figual@pdi.ucm.es

2 Jose M. Bad́ıa et al.

strate that OpenCL achieves close-to-CUDA performance in GPU (considered
as upper bound), and outperforms in most of the CPU configurations based
on OpenMP.

Keywords SRP-PHAT, OpenCL, multi-core CPUs, GPUs.

1 Introduction

The Steered Response Power with Phase Transform (SRP-PHAT) algorithm
is a well-known method for sound-source localization due to its robust perfor-
mance in noisy and reverberant environments. Applications such as acoustic-
based surveillance, gaming, spatial sound and virtual reality can be greatly
enhanced with a location-aware system [1].

In order to locate a sound source, it is necessary to process the input sig-
nals captured by a set of microphones in real time. The microphones can be
arranged either in a distributed configuration or following a specific geome-
try. The processing is usually based on the computation of the Generalized
Cross-Correlation (GCC) functions [2,3] of all the microphone pairs in the
system. GCCs are usually obtained from the inverse Fourier transform of the
cross-power spectral density of the microphone signals, multiplied by a proper
spectral weighting function.

The SRP-PHAT method [4] exhibits a massive fine-grain parallelism with
the same operations performed over many sets of data. Usually, these data
sets correspond to the audio samples of the different audio channels involved
in the system. Basically, the SRP-PHAT algorithm evaluates a functional over
a fine spatial grid and accepts its maximum value as the most likely source
position.

Source localization applications may involve different needs in terms of
number of microphones and spatial resolution. In this context, distributed
microphone systems may involve a high number of microphones, increasing the
computational requirements required to perform localization tasks. Also, the
computational complexity of the system may be affected by the total number
of candidate locations explored by the algorithm, which may depend on the
size of the localization space or the desired spatial resolution. Thus, a scalable
and computationally efficient system is of high interest.

Different types of multi-core machines built either from multiple CPUs or
GPUs are commonly employed in diverse fields of science for accelerating a
number of applications, usually relying on OpenMP and CUDA as program-
ming frameworks, respectively. This implies the development of distinct source
codes which limits the portability and application possibilities.

OpenCL consists of an API (Application Programming Interface) for co-
ordinating parallel computation across different devices on a heterogeneous
platform; and a cross-platform C-like programming language to program each
device. Different vendors provide specific compilers to extract high perfor-
mance from their architectures. This provides a high level of versatility since

Accelerating SRP-PHAT algorithm using OpenCL 3

an OpenCL-based implementation can be ported and run in a large number
of different processors.

Developing an OpenCL-based implementation widens the applications of
an implementation. Moreover, the code will work on GPUs that are embedded
in system-on-chips (SoCs) that are nowadays working as acoustic sensors in
the Internet-of-Things [5]. Finally, besides multi-core CPUs and GPUs, the
OpenCL-based implementation will also work in other kind of accelerators,
such as Field Programmable Gate Array (FPGA) [6].

In conclusion, taking as a reference a common audio application that deals
with the sound-source localization, the objective of this work is to compare
the performance of an OpenCL-based implementation on powerful CPUs and
GPUs with OpenMP-based and CUDA-based implementations, which are con-
sidered to exploit efficiently both architectures, respectively.

The main contributions of this paper are as follows:

– A portable OpenCL implementation of the well-known SRP-PHAT algo-
rithm suited to different types of parallel computing platforms, allowing
real-time performance with a large number of microphone channels and
fine spatial resolution.

– A set of kernel alternatives that optimize parallelism granularity and mem-
ory access costs.

– A practical solution for low power platforms, suitable for IoT-like applica-
tions.

– A comparison of OpenCL, CUDA and OpenMP equivalent implementa-
tions on state-of-the-art CPU and GPU platforms.

Next, we briefly discuss some related work. In Section 2, we describe the
SRP-PHAT algorithm. Section 3 is devoted to implementation issues and sec-
tion 4 to the performance analysis. Finally, Section 5 provides a few conclusion
remarks.

1.1 Related Work

There exist plenty of CUDA-based implementations in the field of audio signal
processing [7–9], even approaching sound-source localization algorithms [10,
11], which are constrained to use NVIDIA platforms.

In [12], the SRP-PHAT algorithm is applied on an specific scenario using
two Kinects to perform sound source localization. It also includes two pre-
liminary parallel versions of the algorithm, a multi-threaded and an OpenCL
implementation.

OpenMP-based implementations were used in [13] for multi-core platforms
audio systems based on Beamforming and Wave Field Synthesis. Our previ-
ous work [14] also employs OpenMP in order to accelerate the SRP-PHAT
algorithm.

While most published approaches are aimed at describing implementations
considering specific localization setups, our work focuses on evaluating source

4 Jose M. Bad́ıa et al.

localization performance from a computational point of view taking into ac-
count two basic parameters: number of microphones and spatial resolution.

2 The SRP-PHAT Algorithm

Consider the output from a microphone l, ml(t), in a system composed of S
microphones. Then, the SRP at the spatial point x = [x, y, z]T for a time
frame n of length T is defined as

Pn(x) ≡
∫ (n+1)T

nT

∣∣∣∣∣
S∑
l=1

wlml (t− τ(x, l))

∣∣∣∣∣
2

dt, (1)

where wl is a weight and τ(x, l) is the direct time of travel from location x to
microphone l. DiBiase [4] showed that the SRP can be computed by summing
up the GCCs for all possible pairs of the set of microphones in the system. In
particular, the GCC for a microphone pair (k, l) is computed as

Rmkml
(τ) =

∫ ∞
−∞

Φkl(ω)Mk(ω)M∗l (ω)ejωτdω, (2)

where τ is the time lag, ∗ denotes complex conjugation, Ml(ω) is the Fourier
transform of the microphone signal ml(t), and Φkl(ω) is a combined weighting
function in the frequency domain. The Phase Transform (PHAT) [2] has been
demonstrated to be a suitable GCC weighting for time delay estimation in
reverberant environments:

Φkl(ω) ≡ 1

|Mk(ω)M∗l (ω)|
. (3)

Taking into account the symmetries involved in the computation of Eq. (1),
and removing some fixed energy terms [4], the part of Pn(x) that changes with
x is isolated as

P ′n(x) =

S∑
k=1

S∑
l=k+1

Rmkml
(τkl(x)) , (4)

where τkl(x) is the Inter-Microphone Time-Delay Function (IMTDF). This
function is very important, since it represents the theoretical direct path delay
for the microphone pair (k, l) resulting from a point source located at x. The
IMTDF is mathematically expressed as [15]

τkl(x) =
‖x− xk‖ − ‖x− xl‖

c
, (5)

where c is the speed of sound, and xk and xl are the microphone location
vectors.

Accelerating SRP-PHAT algorithm using OpenCL 5

-4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

2

Intersecting Half-Hyperboloids for a Point-Source

x [m]

y

[m
]

Mic 1

Mic 2

Mic 3

S = {6-96}

6 m

4 m

3 m

Fig. 1 (a) Intersecting half-hyperboloids for S = 3 microphones. Each half-hyperboloid
corresponds to a TDOA peak in the GCC. (b) Microphone set-up for {6-96} microphones.

All in all, the SRP-PHAT algorithm consists in evaluating the functional
P ′n(x) on a fine grid G with the aim of finding the point-source location xs
that provides the maximum value [16]:

x̂s = arg max
x∈G

P ′n(x). (6)

Figure 1(a) shows schematically the intuition behind SRP-PHAT localiza-
tion. In this figure, an anechoic environment is assumed so that the GCC for
each microphone pair is a delta function located at the real TDOA (Time Dif-
ference of Arrival). Each TDOA defines a half-hyperboloid of potential source
locations. The intersection resulting from all the half-hyperboloids matches
the point of the grid having the largest accumulated value.

2.1 Sequential method

The SRP-PHAT algorithm is usually implemented on a 3D spatial grid with
three different resolutions: rx, ry and rz. Taking a shoe-box-shaped room as a
model room with dimensions lx×ly×lz, the size of the grid is ν = Px×Py×Pz,
where Px = lx

rx
, Py =

ly
ry

, Pz = lz
rz

. The real-time implementation of the SRP-

PHAT algorithm works with sample buffers of size L. The main steps carried
out by the algorithm together with their computational cost are:

1. For each of the S microphones we weight the L samples of all input buffers
by a Hamming window vector. This involves SL multiplications, that is,
SL floating-point operations (flops).

2. For each of the S microphones we perform an L-FFT resulting in S vec-
tors, each containing L frequency bins. The computation of S FFTs, re-
quires 5SL log2 L flops that result from L

2 log2 L complex multiplications
and L log2 L complex additions.

3. The GCC matrix of size Q × L is computed, where Q = S(S − 1)/2
represents the number of microphone pairs. For each pair of microphones
(i, j), the element GCC[i, j] is obtained by combining the ith frequency
bin of both microphones. The complex value of the first bin is conjugated

6 Jose M. Bad́ıa et al.

and multiplied by the value of the second. The matrix stores the complex
phase resulting from those multiplications.
A complex multiplication for L points results in 6L flops (4 real multiplica-
tions and 2 real additions). This is done for Q microphone pairs, yielding in
a cost of 6QL flops. The computation of the phase of the complex element
involves 5L operations. Thus, this requires 5QL additional flops.

4. Q inverse L-FFT are then carried out with the rows of matrix GCC. After
this processing, the matrix GCC stores the temporal values (time delays).
This requires 5QL log2 L operations.

5. A tridimensional SRP matrix is computed. Its dimensions are given by the
number of points of the grid G(ν). Each element of this matrix stores the
value P ′n(x) of one spatial point x (see Eq. 4). Each element of the matrix
is computed by accumulating Q GCC values, one per row of the matrix.
The selected column in each row depends on the IMTDF (see Eq. 5), i.e,
from point x to the pair of microphones associated to the row.
The values of the inter-microphone time-delays are independent of the
values of the audio samples. Therefore, as we will show in section 3, we have
tested the possibility of reducing the cost of processing the audio frames by
precomputing those values and storing them in a four-dimensional matrix.
Each element IMTDF[i, j, k, l] contains the time-delay from the point
of the grid G with coordinates {i, j, k} to the lth pair of microphones.

6. Finally, the algorithm computes the position of the maximum SRP value,
which represents the estimated sound source location.

Steps 5 and 6 require the evaluation of the following parameters for each
point of the grid:

– S Euclidean distances, ‖xk‖, requiring 3 multiplications, 9 additions and
1 square root.

– Q TDOAs, requiring 2 flops (1 subtraction and 1 division by c) per micro-
phone pair: 2Q operations.

– The SRP requires truncating the TDOA values to the closest sample ac-
cording to the system sampling frequency, multiplying the cross-power
spectrum to obtain the phase transform for each microphone pair and
adding up all the GCC values: 3Q flops.

In total, the cost of the SRP-PHAT is given by:

Cost =

(
S + S2

2

)
5L log2 L+

11S2 − 9S

2
L+ ν

(
13S +

5S(S − 1)

2

)
flops,

(7)
where ν is the total number of functional evaluations. In the conventional full
grid-search procedure, ν equals the total number of points of the grid G.

3 Parallel Implementations

The SRP-PATH algorithm presents many opportunities of massive data par-
allelization. Its main steps described in the previous section must be per-

Accelerating SRP-PHAT algorithm using OpenCL 7

formed sequentially as each of them depends on the results of the previous
one. However each step consists of regular and independent operations over
different elements of vectors and matrices and so they can be computed in
parallel. In [11] we introduced a parallel implementation of the algorithm us-
ing CUDA. Specifically we described the different kernels used to approach
each of the main steps of the method described of section 2.1. In the following
we will briefly outline the OpenCL implementation whose kernels are mainly
based on the CUDA kernels.

1. Kernel kHamming uses a 1D workspace of size L to apply the Hamming
weighting to the samples in parallel. This weighting could be applied in
parallel to each individual sample. However, we obtain better results if we
increase the granularity of the parallelism and each of the L work-items
weights one element of each of the S microphones. The access to the vector
of samples is coalesced improving the performance of the kernel.

2. A parallel method can be applied to perform each of the S FFT of size L.
For example, we can use the multithreaded implementation included in the
FFTW library [17], the CUDA routines included in the cuFFT library [18],
or the OpenCL routines included in clFFT library [19].

3. Kernel kGCC also uses a 1D workspace of size L to compute in parallel
matrix GCC. Every element of that matrix could be computed in parallel.
However, it is more efficient that each of the L work-items computes the Q
elements of one of the columns of GCC. As we store the elements of the
matrix in a row-major order the access to memory is also coalesced.

4. A parallel method can be applied to perform each of the Q inverse-FFT of
size L, using for example the libraries cited in Step 2.

5. Kernel kSRP uses a 3D workspace of size Px×Py×Pz to compute in parallel
every element of matrix SRP, corresponding to one of the points of the
grid. Every work-item has to access Q elements of matrix GCC, one of
every row. However, the access to matrix GCC is not coalesced, as the
column indexes depend on the IMTD to the grid point associated to the
work-item.

6. In order to compute in parallel the maximum SRP value we have used an
iterative tree reduction scheme as described in [20]. The kernel kRedMax
chooses the best work-group size to fully exploit the local memory of the
compute units. The position of the maximum SRP value is obtained in par-
allel using kernel kPosMax. Every of the ν launched work-items deals with
one SRP value. If the work-item owns the maximum SRP value, returns
its position.

The OpenMP parallel implementation of the method is quite straightfor-
ward, because the main steps of the sequential algorithm are based on loops
that perform similar operations on different elements of the matrices and vec-
tors involved. We have implemented each step of the sequential method so
that we can parallelize it by using the omp parallel for pragma on its out-
ermost loop. On step 1 we have parallelized the loop that iterates over the S
microphones and on step 3 the loop that iterates over the L samples. We have

8 Jose M. Bad́ıa et al.

combined the codes that perform steps 5 and 6, so that we compute the SRP
values and its maximum at the same time without having to store the matrix.
In this case we have parallelized the loop that iterates over the ν points of
the grid. Every OpenMP thread computes a local maximum and its position
by means of a reduction clause. Afterwards, the master thread computes the
global maximum and its position. Finally, to carry out the FFTs of steps 2
and 4 of the method we have used the multithreaded routines included on
the FFTW library. We have tested different scheduling strategies of the loops.
The best results are obtained using the auto scheduling option and are quite
similar to the ones obtained by using the guided option.

4 Experimental analysis

In order to carry out the tests, we select two high performance parallel archi-
tectures: a multicore CPU platform (named as seb) and a many-core GPU
(named as p100):

– seb is a server with two Intel Xeon E5-2695 v4 CPUs at 2.10GHz. Each
processor contains 18 cores. Therefore, the node features a total of 36 phys-
ical cores (72 logical cores if we activate hyper-threading). The platform
also includes 132 GB of main memory. Up to 8,192 OpenCL work-items
can be launched in parallel on this platform on each of its 72 compute
units.

– p100 is a NVIDIA GPU Tesla P100 accelerator implementing the Pascal
micro-architecture. It includes 16 GB of global memory and 3,584 CUDA
cores that can provide up to 9.3 TeraFLOPS using single-precision floating
point arithmetics. Up to 1,024 OpenCL work-items can be launched in
parallel on this platform on each of its 56 compute units.

We have performed all our experiments using microphone setups as in
Figure 1 (b) containing from 6 to 96 microphones and using synthetic audio
samples. The algorithms have been tested with sample buffers of size L = 4096
for each microphone. For a sample frequency fs = 44.1 KHz, if we want to
locate the source in real time, the processing time of the algorithm must be
less than tp = 92.88 ms.

4.1 Results on a multicore platform

We will first show some of the results obtained with the sequential version of
the algorithm in one of the cores of seb. As we increase the grid resolution
most of the time of the algorithm is devoted to compute the SRP matrix.
Therefore, we have implemented several versions of this step:

– pairs. For each element of the matrix, corresponding to one point of the
grid, this version computes the distance to each microphone of each pair.

Accelerating SRP-PHAT algorithm using OpenCL 9

– priv. For each element of the matrix, we compute and store its distance
to each microphone. Then we can reuse those distances to compute the
inter-microphone time delays to each pair of microphones.

– imtd. This version precomputes the distances from each point to each pair
of microphones and stores these values in a four-dimensional matrix. The
algorithm can then reuse these values on each iteration.

– mtd. In order to reduce the spatial cost of previous version, we only pre-
compute and store the distance from each point to each microphone in a
three-dimensional matrix.

Our experiments show that the best version of the algorithm depends on the
platform and on the programming technology. In some cases it even depends on
the number of microphones and grid resolution. Figure 2 shows that the best
sequential version for all grid resolutions is the one that precomputes matrix
IMTD. The priv and mtd versions obtain similar results and recomputing
all pairs of distances produces worse results as we increase the resolution.
The behavior is similar with more than 24 microphones, but as we increase
the number of microphones we cannot store matrix IMTD and then, we use
matrix MTD.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.5 0.1 0.05 0.01 0.005

T
im

e
 r

a
ti
o
 w

rt
 f
a
s
te

s
t
v
e
rs

io
n

Grid resolution

imtd
mtd
priv

pairs

Fig. 2 Time ratio of the different sequential versions of the sequential algorithm with respect
to the best version precomputing IMTD matrix. Results are shown for 24 microphones and
using different grid resolutions.

Table 1 shows that the computational time of the best version of the se-
quential algorithm quickly increases with the number of microphones and grid
resolution. This version of the algorithm can only perform the localization
in real time with few microphones and small resolutions (marked in bold in
Table 1).

For the OpenMP version, the best results are obtained exploiting the hyper-
threading capability of the architecture and launching up to 72 threads in

10 Jose M. Bad́ıa et al.

Table 1 Computational time (in milliseconds) of the best sequential version.

Res.
Microphones

6 12 24 36 48 60 72 84 96

0.5 3.4 6.6 25.9 56.8 99.1 164.8 240.9 333.0 439.5

0.1 3.3 8.9 35.7 77.0 138.1 235.6 383.5 568.3 757.2

0.05 3.5 15.2 65.5 144.3 262.7 461.4 782.5 1,139.0 1,604.6

0.01 46.0 202.5 1,008.5 2,406.8 4,239.3 6,890.0 10,692.7 15,698.24 21,362.4

0.005 182.1 763.4 4,009.5 9,475.3 16,862.7 26,692.7 40,610.6 57,217.8 76,770.7

parallel. In this case the fastest results are obtained precomputing the mtd
matrix. Figure 3 shows that, for 24 microphones, the algorithm only scales
with more than 12 threads if we use high resolutions and provide enough com-
putation to every thread. We can also see the effect of using hyper-threading
with more than 36 threads.

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72

S
p
e
e
d
u
p

Number of OpenMP threads

0.5
0.1

0.05
0.01

0.005

Fig. 3 Speedup of the OpenMP version of the algorithm using 24 microphones.

Figure 4 shows the number of microphones that can be used in real time
to locate the source with different grid resolutions both in OpenCL and in
OpenMP. The OpenCL version can use more than 20 microphones in real
time even with very large resolutions, r = 0.005. Both parallel algorithms can
handle more than 96 microphones in real time with small resolutions, r > 0.1.
The OpenMP implementation is only better in the configurations composed
by low resolutions and low and high number of microphones (from 6 to 12 and
from 60 to 96).

Figure 5 allows us to compare the speedups of both parallel versions of the
algorithm. These acceleration factors are computed with respect to the sequen-
tial version executed in one core. The OpenCL version clearly overcomes the
OpenMP version. This behaviour is due to the fact that the OpenCL version
leverages better the vector units of the cores than the sequential and OpenMP

Accelerating SRP-PHAT algorithm using OpenCL 11

 0

 20

 40

 60

 80

 100

 6 12 24 36 48 60 72 84 96

T
im

e
 (

m
s
)

Number of microphones

Real Time
0.5
0.1

0.05
0.01

0.005

 0

 20

 40

 60

 80

 100

 6 12 24 36 48 60 72 84 96

T
im

e
 (

m
s
)

Number of microphones

Real Time
0.5
0.1

0.05
0.01

0.005

Fig. 4 Time in milliseconds of the OpenMP (left) and OpenCL (right) parallel versions of
the algorithm with respect to the Real Time localization (horizontal line)

versions, specially during the most costly step of the algorithm, computing the
SRP matrix. This allows the OpenCL version more than double the speedup
of the OpenMP version rendering speedups higher than 72 when we increase
the grid resolution. We can also see that with high resolutions the speedups of
both versions reach a maximum with 48 microphones and they worsen when
we increase the number of microphones. This behaviour is mainly due to the
non-coalesced access to matrix GCC during the computation of matrix SRP.
The size of matrix GCC increases quadratically with the number of micro-
phones and the irregular access to its elements in every thread saturates the
cache levels quickly increasing the number of L3 cache misses.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 6 12 24 36 48 60 72 84 96

S
p

e
e

d
u

p

Number of microphones

0.5
0.1

0.05
0.01

0.005

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 6 12 24 36 48 60 72 84 96

S
p

e
e

d
u

p

Number of microphones

0.5
0.1

0.05
0.01

0.005

Fig. 5 Speedups of the OpenMP (left) and OpenCL (right) parallel algorithm.

4.2 Results on a many-core GPU

Regarding the Tesla P100 GPU platform, we have used CUDA and OpenCL to
implement two parallel versions of the SRP-PHAT algorithm. We will compare
the experimental results of both implementations using the pairs version of

12 Jose M. Bad́ıa et al.

the kernels that compute the SRP matrix, as it is the only solution that allows
us to deal with up to 96 microphones and very large grid resolutions, r = 0.005.
Besides, precomputing the delays reduces only slightly the execution time.

Figure 6 shows that we can locate the source in real time using both parallel
algorithms with a large number of microphones and very high grid resolutions.
The CUDA implementation overcomes the OpenCL implementation (as is ex-
pected), but the gap between both versions is rather short, specially with high
resolution grids, where the CUDA implementation is at most 35% faster than
the OpenCL implementation.

 0

 50

 100

 150

 200

6 12 24 36 48 60 72 84 96

T
im

e
 (

m
s
)

Number of microphones

Real Time
0.5
0.1

0.05
0.01

0.005

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

6 12 24 36 48 60 72 84 96

T
im

e
 (

m
s
)

Number of microphones

Real Time
0.5
0.1

0.05
0.01

0.005

Fig. 6 Time in milliseconds of the CUDA (left) and OpenCL (right) versions of the algo-
rithm with respect to the Real time localization (horizontal line).

4.3 Comparison of platforms and programming technologies

Figure 7 compares the results obtained on both platforms using different APIs
varying the number of microphones and the grid resolution. It is selected 24
microphones and a grid resolution of 0.05 because these configurations achieve
real time on almost most of the cases. We can first note that the P100 GPU is
always faster than the CPU and the performance gap between both platforms
grows as we increase the cost of the algorithm by using more microphones or
larger resolutions. These results confirm that a state-of-the-art GPU platform
is especially appropriate to deal with massive data parallel problems, even
when compared with a high performance multicore CPU. We can dismiss the
influence of the API as OpenCL allows us to implement the algorithm in both
platforms and we can observe that the comparative behavior of both platforms
is the same using this technology.

5 Conclusions

In this paper we show that current multi-core CPUs and many-core GPUs are
ideal platforms to deal with problems that involve regular computations with

Accelerating SRP-PHAT algorithm using OpenCL 13

 0

 20

 40

 60

 80

 100

6 12 24 36 48 60 72 84 96

T
im

e
 (

m
s
)

Number of microphones

Real Time
p100-ocl

seb-ocl
p100-cuda

seb-omp

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.50 0.10 0.05 0.01 0.005

T
im

e
 (

m
s
)

Grid resolution

Real Time
p100-ocl

seb-ocl
p100-cuda

seb-omp

Fig. 7 Comparison of the parallel versions of the algorithm using both platforms and
different programming technologies. Left hand side figure uses a grid resolution r=0.05
varying the number of microphones. Right hand side figure uses 24 microphones varying the
grid resolution.

huge data matrices and vectors. A good example of this kind of application is
the sound source localization using the SRP-PHAT algorithm. Using massive
data parallelism on this kind of applications greatly improve their performance
as the number of microphones and grid-search size increase.

We have compared the results of using some of the most extended parallel
programming technologies for this kind of platforms, namely OpenMP, CUDA
and OpenCL, on two state-of-the-art platforms: a 36 core CPU server and a
Tesla P100 GPU. Our experimental results show that we can use in real-
time a large number of microphones (S > 70) to perform the sound source
localizations on high resolution grids (r = 0.005).

In this paper, we propose OpenCL as an efficient alternative for carrying
out applications of this kind so that we can develop an implementation that
can be portable and adaptable to different types of hardware. Results show
that our implementation overcomes OpenMP in most of the CPU configura-
tions as it better leverages its multiple cores. OpenMP only improves OpenCL
in configurations that use low resolution grid-search sizes, which are not signif-
icant since they produce poor accuracy in the localization of the sound. On the
other hand, the use of OpenCL instead of CUDA does not produce high dif-
ferences in performance when both run applications of this kind on many-core
GPUs. Both implementations obtain similar performances, especially when
high spatial resolution parameters are considered.

The fact that OpenCL approaches and occasionally improves ad-hoc de-
signed frameworks indicates that OpenCL is a serious candidate to carry out
implementations that require portability and adaptability to different types of
parallel architectures.

Acknowledgements This work has been supported by the postdoctoral fellowship from
Generalitat Valenciana APOSTD/2016/069, the Spanish Government through TIN2014-
53495-R, TIN2015-65277-R and BIA2016-76957-C3-1-R, and the Universidad Jaume I project
UJI-B2016-20.

14 Jose M. Bad́ıa et al.

References

1. M. Brandstein and D. Ward, Microphone arrays, B. Verlag, Ed. Springer, 2001.
2. C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of

time delay,” Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-24,
pp. 320–327, 1976.

3. M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, and B. Lee, “A survey of sound
source localization methods in wireless acoustic sensor networks,” Wireless Communi-
cations and Mobile Computing, vol. 2017, 2017, article ID 3956282.

4. J. H. DiBiase, “A high accuracy, low-latency technique for talker localization in rever-
berant environments using microphone arrays,” Ph.D. dissertation, Brown University,
Providence, RI, May 2000.

5. C. H. Lee, “Location-aware speakers for the virtual reality environments,” IEEE Access,
vol. 5, pp. 2636–2640, 2017.

6. “Implementing FPGA design with the OpenCL standard,”
https://www.altera.com/en US/pdfs/literature/wp/wp-01173-opencl.pdf, (accessed
2017 August 04).

7. L. Savioja, V. Välimäki, and J. O. Smith, “Audio signal processing using graphics
processing units,” J. Audio Eng. Soc, vol. 59, no. 1-2, pp. 3–19, 2011.

8. J. A. Belloch, A. Gonzalez, F. J. Mart́ınez-Zald́ıvar, and A. M. Vidal, “Real-time massive
convolution for audio applications on GPU,” Journal of Supercomputing, vol. 58, no. 3,
pp. 449–457, December 2011.

9. J. A. Belloch, A. Gonzalez, E. S. Quintana-Ort́ı, M. Ferrer, and V. Välimäki, “GPU-
based dynamic wave field synthesis using fractional delay filters and room compensa-
tion,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 25, no. 2, pp. 435–447, Feb
2017.

10. V. Peruffo Minotto, C. Rosito Jung, L. Gonzaga da Silveira, and B. Lee, “GPU-based
approaches for real-time sound source localization using the SRP-PHAT algorithm,”
International Journal of High Performance Computing Applications, 2012.

11. J. A. Belloch, A. Gonzalez, A. M. Vidal, and M. Cobos, “On the performance of multi-
gpu-based expert systems for acoustic localization involving massive microphone ar-
rays,” Expert Syst. Appl., vol. 42, no. 13, pp. 5607–5620, 2015.

12. L. C. Seewald, L. Gonzaga, M. R. Veronez, V. P. Minotto, and C. R. Jung, “Combining
srp-phat and two kinects for 3d sound source localization,” Expert Syst. Appl., vol. 41,
no. 16, pp. 0957–4174, 2014.

13. D. Theodoropoulos, G. Kuzmanov, and G. Gaydadjiev, “Multi-core platforms for beam-
forming and Wave Field Synthesis,” IEEE Transactions on Multimedia, vol. 3, no. 2,
pp. 235–245, April 2011.

14. J. A. Belloch, M. J. Badia, F. D. Igual, E. Quintana-Ort́ı, and M. Cobos, “Evaluating
sound source localization on multi and many-core platforms,” in Proceedings of the 17th
International Conference on Computational and Mathematical Methods in Science and
Engineering, vol. 1, Rota, Spain, July 2017, pp. 279–286.

15. M. Cobos, A. Marti, and J. J. Lopez, “A modified SRP-PHAT functional for robust real-
time sound source localization with scalable spatial sampling,” IEEE Signal Processing
Letters, vol. 18, no. 1, pp. 71–74, January 2011.

16. A. Marti, M. Cobos, and J. J. Lopez, “A steered response power iterative method for
high-accuracy acoustic source location,” Journal of the Acoustical Society of America,
vol. 134, no. 4, 2013.

17. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005, special issue on “Program Generation,
Optimization, and Platform Adaptation”.

18. “NVIDIA Library CUFFT,” online at: http://developer.download.nvidia.com/compute/
DevZone/docs/html/CUDALibraries/doc/CUFFT Library.pdf.

19. “OpenCL Fast Fourier Transforms,” http://clmathlibraries.github.io/clFFT, (accessed
2017 July).

20. M. Scarpino, OpenCL in Action: How to Accelerate Graphics and Computation. Man-
ning, 2012.

