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Abstract

This thesis addresses the problem of routing in Software Defined Networks
(SDN). Specifically, the problem of designing a routing protocol based on Ar-
tificial Intelligence (AI) for ensuring Quality of Service (QoS) in multimedia
transmissions. In the first part of the work, SDN is introduced. Its architec-
ture, protocols and advantages are discussed. Then, the state of the art is
presented, where several works regarding QoS, routing, SDN and AI are de-
tailed. In the next chapter, the SDN controller, which plays the central role
in the proposed architecture, is presented. The design of the controller is de-
tailed and its performance compared to another common controller. Later, the
routing proposals are described. First, a modification of a traditional routing
protocol is discussed. This modification intends to adapt a traditional routing
protocol to SDN, focused on multimedia transmissions. Then, the final pro-
posal is described. Its messages, architecture and algorithms are depicted. As
regards AI, chapter 5 details the module of the architecture that implements
it, along with all the intelligent methods used in the routing proposal. Fur-
thermore, the intelligent route decision algorithm is described and the final
proposal is compared to the traditional routing protocol and its adaptation to
SDN, showing an increment of the end quality of the transmission. Finally,
some applications based on the routing proposal are described. The applica-
tions are presented to demonstrate that the proposed solution can work with
heterogeneous networks.
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Resum

La present tesi tracta el problema de l’encaminament en les xarxes definides
per programari (SDN). Específicament, tracta el problema del disseny d’un
protocol d’encaminament basat en intel·ligència artificial (AI) per a garantir
la qualitat de servici (QoS) en les transmissions multimèdia. En la primera
part del treball, s’introdueix les xarxes SDN. Es comenten la seva arquitectura,
els protocols i els avantatges. A continuació, l’estat de l’art és presentat,
on es detellen els diversos treballs al voltant de QoS, encaminament, SDN
i AI. Al següent capítol, el controlador SDN, el qual juga un paper central
a l’arquitectura proposta, és presentat. Es detalla el disseny del controlador
i es compara el seu rendiment amb altre controlador utilitzat comunament.
Més endavant, es descriuen les propostes d’encaminament. Primer, s’aborda
la modificació d’un protocol d’encaminament tradicional. Aquesta modificació
té com a objectiu adaptar el protocol d’encaminament tradicional a les xarxes
SDN, centrat a les transmissions multimèdia. A continuació, la proposta final
és descrita. Els seus missatges, arquitectura i algoritmes són mostrats. Pel
que fa a l’AI, el capítol 5 detalla el mòdul de l’arquitectura que la implementa,
junt amb els mètodes intel·ligents usats en la proposta d’encaminament. A
més a més, l’algoritme intel·ligent de decisió de rutes és descrit i la proposta és
comparada amb el protocol d’encaminament tradicional i amb la seva adaptació
a les xarxes SDN, mostrant un increment de la qualitat final de la transmissió.
Finalment, es mostra i es descriuen algunes aplicacions basades en la proposta.
Les aplicacions són presentades per a demostrar que la solució presentada en
la tesi és dissenyada per a treballar en xarxes heterogènies.
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Resumen

La presente tesis aborda el problema del encaminamiento en las redes definidas
por software (SDN). Específicamente, aborda el problema del diseño de un pro-
tocolo de encaminamiento basado en inteligencia artificial (AI) para garantizar
la calidad de servicio (QoS) en transmisiones multimedia. En la primera parte
del trabajo, el concepto de SDN es introducido. Su arquitectura, protocolos
y ventajas son comentados. A continuación, el estado del arte es presentado,
donde diversos trabajos acerca de QoS, encaminamiento, SDN y AI son detalla-
dos. En el siguiente capítulo, el controlador SDN, el cual juega un papel central
en la arquitectura propuesta, es presentado. Se detalla el diseño del contro-
lador y se compara su rendimiento con otro controlador comúnmente utilizado.
Más tarde, se describe las propuestas de encaminamiento. Primero, se aborda
la modificación de un protocolo de encaminamiento tradicional. Esta modifi-
cación tiene como objetivo adaptar el protocolo de encaminamiento tradicional
a las redes SDN, centrado en las transmisiones multimedia. A continuación,
la propuesta final es descrita. Sus mensajes, arquitectura y algoritmos son
mostrados. Referente a la AI, el capítulo 5 detalla el módulo de la arquitectura
que la implementa, junto con los métodos inteligentes usados en la propuesta
de encaminamiento. Además, el algoritmo inteligente de decisión de rutas
es descrito y la propuesta es comparada con el protocolo de encaminamiento
tradicional y con su adaptación a las redes SDN, mostrando un incremento de
la calidad final de la transmisión. Finalmente, se muestra y se describe algunas
aplicaciones basadas en la propuesta. Las aplicaciones son presentadas para
demostrar que la solución presentada en la tesis está diseñada para trabajar
en redes heterogéneas.
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Chapter 1

Introduction

1.1 Introduction and Architecture

Nowadays, networks are used for different applications. These applications
require network resources of different nature. For example, multimedia appli-
cations do not require the same resources as massive downloads or applications
in Internet of Things (IoT) environments.

In the last years, multimedia traffic has growth significantly. In fact, according
to Cisco’s estimations, the Internet video streaming and downloads present a
positive growth and will grow to more than 80% of all consumer Internet traffic
by 2022 [1]. With the development of devices such as smartphones, tablets,
smart TVs and technologies like IoT or wireless sensor networks (WSNs) the
number of devices in Internet has been increased [1]. Services like YouTube o
Netflix are widely used around the world [2]. This is due to the rapid growth
of internet users [3]. As Fig. 1.1 shows, the continent with the biggest number
of internet users is Asia (2,062 million of users) followed by Europe with 705
million of internet users. On the other hand, platforms as Netflix, HBO and
Amazon Prime video services are becoming as the main medium to consume
multimedia content (see Fig. 1.2).
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Chapter 1. Introduction

Figure 1.1: Internet Users (Millions, data extracted from [1]).

Figure 1.2: Global subscribers among video services (data extracted from [1]).

Moreover, not only video on demand, but also other numerous applications
like video conference, Voice over IP (VoIP) or gaming require the transmission
of multimedia content through the network. Multimedia content has different
network resource requirements than other types of content. Ensuring QoS [4]
and Quality of Experience (QoE) [5] is one of the main concerns of researchers
that look for novel ways to guarantee good quality video transmission. The
quantity of bandwidth used by this kind of traffic, and the necessity of ensuring
the QoS, has caused researchers to propose new types of network technologies.
The delay in the communication and the packet loss must be minimized in
order to obtain the greatest QoE for the end user.
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1.1 Introduction and Architecture

In a network composed by several computers, we can classify the different
elements attending to the role these devices have in the transmission process.
Hence, the network can be divided into three different layers:

• Application layer: it provides the different services running in the net-
work.

• Control layer: it is composed by the logical processes. It determines which
management actions should be performed with the data. The routing and
switching processes are located in this layer.

• Data layer: it forwards the traffic through the different ports of a switch
or a router.

In the traditional networks, the network architecture follows a plane distribu-
tion like the one in The network nodes redirect the data through the different
ports and routes. This is called the data plane. However, every node in the
network takes the decision of which action perform when a packet arrives. This
logical process, composed by a set of rules, which usually follows the policies of
a set of network protocols, is called control plane. The network nodes, routers
and switches for instance, in a traditional network architecture must decide
the best route for the traffic, follow security policies and discard some packets.
Therefore, the nature of the network is fully distributed, because all the logic
of the network is located in each node.

SDN is a new paradigm that changes the architecture of the network, separat-
ing the control plane, which is located now in a central entity, from the data
plane [6, 7].

SDNs introduce this central entity called SDN controller [8]. The controller is
the central element in a virtualized network that manages and controls the net-
work devices, having a centralized view and communicating with the different
layers in order to operate in a more efficient way. The SDN controller manages
all the control procedures of the network. These logical procedures that control
the work of the network are now located in the SDN controller, such as routing
and switching protocols, security policies, network address translation and so
on. Therefore, the entire control logic of the network is placed into this central
entity. This logic is known as control plane. The network nodes become mere
points of the network where the data is forwarded or discarded. In an SDN,
they only perform the data plane function. This new architecture is depicted
in Fig. 1.3b.

3



Chapter 1. Introduction

Figure 1.3: Network planes of a) traditional networks and b) SDN.

Introducing this entity and moving forward a centralized network has some
consequences. Firstly, this controller has to establish a continuous commu-
nication with the network nodes. This communication is needed to inform
about the rules and policies the controller has established. For instance, as
regards routing, the changes in the path that the SDN controller decides must
be implemented in the network nodes. Since the network nodes of an SDN
merely perform operations with the data (like forwarding, performing modi-
fications in the packet and so on), the rules must be communicated from the
SDN controlled. This interaction is performed through the southbound inter-
face or SB API. This interface, which is displayed in Fig. 1.4 , connects the
network nodes with the SDN controller. The communication is based on the
OpenFlow protocol [9]. OpenFlow is a standard communication protocol that
allows the communication between the SDN controller and the network nodes.
In this work, the OpenFlow version used is 1.0. Consequently, when it is not
commented, the version of the standard discussed will be 1.0.
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1.2 SDN Controllers

Figure 1.4: Interaction between the SDN controller and the OpenFlow-enabled switches.

Secondly, moving out the control plane from the network nodes allow defining
this entity as it is needed. The SDN controller is a software entity. This soft-
ware entity can be run in a PC. This allows bringing in new applications into
the network. Furthermore, the flexibility the SDN controller has to manage
the network and adapt to the network problems is much deeply that the tradi-
tional control plane. This characteristic provides the SDN controller interact
with software applications to implement functionalities that have never been
seen in the traditional networks. This interaction is performed through the
northbound API or NB API.

1.2 SDN Controllers

Many SDN Controllers with different characteristics have been developed in
the last years.

A brief description and comparison of the most often used is presented next.
Firstly, the commonly used open-source controllers are described. After that,
the proprietary controllers, the ones made and sell by the manufacturers, are
commented. Finally, the application-oriented controllers are briefly discussed.
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1.2.1 Opensource Controllers

NOX

NOX [10] is the first controller that appeared in SDN. Developed by Niciria
Networks, now owned by VMware [11]. Introduced in 2009, the project was
forked and presented different lines of development. The original version,
known as NOX classic [12], the new NOX [13], and POX. POX is described in
the next subsection. As regards the second version of NOX, it was completely
built in C++, designed and implemented in a more solid base that its prede-
cessor. However, the number of applications is lower than the available for the
first version.

The aim of NOX is to provide a framework to develop new network applica-
tions. Therefore, the developers and researchers can innovate and create novel
software-based solutions for enterprise networks. The core of NOX provides
methods to help developers, such as event handler, threading and network
packet processing. Moreover, it also has OpenFlow APIs to make easier the
interaction between the SDN controller and the switches.

In NOX, all the applications are programmed as components. They inherit
from the component class. Consequently, the applications are built from a
set of components that cooperate to implement a desired functionality. Each
component encapsulates a part of the functionality. NOX is compatible with
some Graphical User Interface (GUI). NOX was the base to show the potential
of SDN. It was the original SDN controller. However, it has been replaced for
more modern SDN controllers, starting from its successor, POX.

POX

POX [14] was born from NOX. It is an open-source development platform ori-
ented to SDN control applications. It is Python-based, unlike NOX, which
allowed C++ applications. The POX controllers present an OpenFlow inter-
face called Pythonic, to communicate with the switches. Like NOX, it is based
on modules, which are called components and can be reused. For instance,
POX present some sample components for topology discovery, path selection
or layer-two switches, among others. It is capable to run in any operating
system. POX can support the same GUI as NOX and it can provide better
performance as compared to NOX written in Phyton. For these reasons, POX
replaced NOX as the base of developing SDN applications.
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Beacon

POX and NOX are not the only projects to develop an open-source SDN con-
troller. Beacon [15], currently deprecated, is a Java-based Openflow controller
presented in Stanford [16]. Their aim was to develop an SDN controller that
was able to run and stop applications at runtime and that had high perfor-
mance.

Beacon presents a multithread SDN controller designed from a shared queue.
Each switch is assigned to a single I/O thread. These I/O threads are the
ones that read and the OpenFlow messages from switches. Moreover, they
also write the outgoing OpenFlow messages that the SDN controller sends
to the switches. With this design, there must be another set of threads, the
consumers, which take OpenFlow messages out from the shared queue.

As regards the northbound API, Beacon uses the Spring library to implement
REST API. Any application that is written for the beacon controller must use
this REST API to implement its functionality in the network. The modular
approach of Beacon controller allows the users and developers to disable the
modules they do not use.

Maestro

It was presented by a research group of the department of computer science at
Rice University [17]. Maestro is a multi-threaded Java-based SDN controller.
It focuses on the OpenFlow specific characteristics to achieve the best impact
in deployed OpenFlow networks.

Maestro manages the OpenFlow messages writing and reading at low level. It
manages the TCP connections and translate the raw OpenFlow messages into
high level data structures.

The applications in Maestro are high level functionalities that are implemented
in modules. Programmers can flexibly modify the behavior of the available
applications. However, they can also add new applications to provide novel
functionality to the network.
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Floodlight

Floodlight [18] uses Beacon as its base. While the use of Beacon has been
reduced to the minimum, Floodlight is one of the most popular open-source
SDN controllers and the most popular Java-based, at least until the irruption
of OpenDayLight.

Floodlight was a contribution of Big Switch Networks [19]. This company
had a commercial SDN controller called Big Network Controller (BNC). The
architecture of Floodlight is based on BNC. It is a modular architecture where
each module implements a specific functionality. The different functionalities
can be classified into four different groups, as follows:

• Controller Modules: The services the northbound API use and the ones
that define the possibilities of the controller. Some of these services are:
the link discovery manager, the provider (which translate OpenFlow mes-
sages into events), the topology service (based on the result of the link
discovery manager) or the packet forwarder.

• Floodlight Services: The services that provides functionality to other
modules or to the REST API. They must implement an IFloodlightSer-
vice. Some of these services are the firewall, the debug event or the access
control list.

• Built-in Module Applications: Some applications are included in the dis-
tribution of Floodlight. Not only Floodlight, but most SDN controllers
include this kind of applications. They are a good starting point for
developers to understand how to create new modules.

• REST-API based applications: The applications developed for the net-
work interact with the controller through a REST-API.

Write a module, however, it is not a simple task. Fortunately, Floodlight is well
documented [20]. The module must define the events, the messages and the
utilities that compose its functionality. The developer must create a listener.
After implementing the module, and setting up the dependencies, it must be
registered.
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OpenDayLight

Released in 2013 by The Linux Foundation [21], OpenDayLight is an open-
sourced SDN platform for controlling and customizing SDN [22]. Based on a
modular design, the network administrators or developers can build the con-
troller adapted to their needs.

The architecture of OpenDayLight is Model-Driven [23]. All the network de-
vices or applications are represented as models, or objects. The Model-Driven
Service Abstraction Layer (MD-SAL) processes the interactions between the
models.

The models are represented by the YANG data model language [24]. This
allows the representation of the capabilities of the network applications, or the
description of the network devices, without the requirement of knowing the
specific implementation.

OpenDayLight works with the consumer-producer architecture. A producer
model implements an API and a consumer uses this API and consumes its
data. The MD-SAL is the framework that allows this architecture and this
interaction between the models. Therefore, a consumer can find a provider
that it is interested in. While the producer creates notifications, the consumer
receives them. The consumers read the data from the storage, which have been
written by a producer.

OpenDayLight became the most widely deployed open-source SDN controller.
It is one of the most widely used in researches and it is the base of other
frameworks such as ONAP [25], OpenStack [26] and OPNFV [27].

Ryu

Ryu [28] is a component-based open-source software defined networking frame-
work. It provides software modules, called components, so that developers can
easily create network control and management applications.

Ryu is based and fully written in Python. The components provide a de-
fined API exposed to the developers to use it in their own applications [29].
One of the characteristics of Ryu is that allows using several protocols for its
southbound API.

The architecture of Ryu is based on a set of libraries for the southbound API,
which allows that compatibility with the several protocol. Ryu has a controller
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module that interacts with the southbound API to manage the network devices.
The Ryu manager is the main executable. It listens to the connections from
the switches. In addition, the core-processes provide event management, state
reading and management, messaging, memory management, among other.

Ryu has an app manager module. This is the module which allows the inter-
action between the core of Ryu and the applications. All applications inherit
from the app manager. The Ryu northbound API it uses REST so that the
applications can access to the API and use the core services.

Trema

Trema [30] is a full-stack, easy-to-use framework for developing OpenFlow
controllers in Ruby and C. It allows the users to build and configure freely
an SDN controller. The support of both programming languages, with such a
huge difference between them, gives the user the freedom to choose depending
on their knowledge and the performance requirements.

Trema architecture includes several core modules for packet filtering or switch
management. Furthermore, it has an OpenFlow protocol interface, a set of
libraries to perform message, events, data and core operations. Finally, Trema
has a monitor module and an emulator for internal development.

1.2.2 Propietary Controllers

Some companies have developed their own SDN controllers. Some of them are
based on open-source controllers. In this subsection, a brief description of two
different proprietary controllers is presented.

CISCO Open SDN Controller

The SDN controller of Cisco is a commercial distribution of OpenDayLight.
Currently, the controller is no longer being sold.

The Cisco Open SDN Controller [31] provided the Cisco clients with a ready-
to-use control software to manage and monitor the SDN. Due to the fact it
was an OpenDayLight derivate product, the controller was updated in base of
the OpenDayLight software updates of the community.

Some main features and capabilities of the controller were its scalability, the
monitoring, metrics collection and log management. Furthermore, it allows
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REST API in the northbound API and a Java API to create functions to
deliver custom capabilities [32]. However, the greatest feature of the CISCO
OPEN SDN controller was the Open Virtual Appliance packaging. It provided
a simplified installation and deployment flexibility.

ARUBA VAN SDN Controller

Aruba VAN SDN controller [33] is the proprietary SDN controller of HP. The
VAN SDN controller provides Aruba clients with a software solution for net-
work management, provisioning and orchestration.

The controller provides open APIs so that developers can create novel net-
work applications. For that purpose, developers can use either RESTful API
or Java programs. As regards southbound API, the controller allows up to
50 OpenFlow-enabled HP switch models. The OpenFlow protocol versions
supported by the VAN SDN Controller are 1.0 and 1.3.

Some features of the controller are: high availability and scalability, security
with HTTPS and TLS, a GUI and the use of REST API or native Java OSGI
bundles to develop applications. Nonetheless, like CISCO OPEN SDN con-
troller, the main advantage is that the controller is ready to use or to install
without great effort. Aruba VAN SDN controller even provides a virtual ma-
chine deployment option to deploy the controller with minimal effort.

1.2.3 Application-oriented Controllers

In this subsection, a brief description of some application-oriented controllers is
provided. These controllers are specifically control software focused on provide
a specific network functionality.

RouteFlow

RouteFlow [34] is a source project whose aim is to provide virtualized IP
routing services in an SDN. It is based on the OpenFlow protocol.

The platform uses an OpenFlow controller application, an independent Route-
Flow server and a virtualized network [35]. In these virtualized networks,
RouteFlow reproduces the connectivity of a traditional physical infrastruc-
ture. RouteFlow uses routing engines to generate the forwarding information.
The forwarding information base is generated according to the selected routing
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protocols and collected by the RouteFlow client. Then, this info is translated
to the OpenFlow-enabled devices in the SDN.

RouteFlow is then a software control framework to implement traditional rout-
ing algorithms into SDN. However, it is not the only application-oriented con-
trol software in SDN.

FlowVisor

FlowVisor [36] is an OpenFlow controller that is used as a transparent proxy
between the SDN controllers and the OpenFlow-enabled devices.

FlowVisor uses OpenFlow to control the network, the underlying physical
OpenFlow-enabled devices. It also isolates a set of devices for a single con-
troller, which is called a slice. Therefore, a controller can observe and manage
its own slice, but it cannot operate with the others. Consequently, FlowVisor
provides an abstraction layer.

FlowVisor takes advantage of some OpenFlow characteristics to provide band-
width isolation and also topology isolation [37].

In conclusion, FlowVisor provides the network administrators with a software
solution to slice the network into isolated portions of OpenFlow messages,
controllers and devices.

Resonance

Resonance [38] is a system for enhance the security in SDN. The network
devices implement dynamics access control polices thanks to the information
that SDN can obtain from the data. Therefore, switches can manipulate traffic
at lower layers and take actions to provide the SDN with security measures.

The architecture of resonance can be divided into three different parts. Firstly,
the policy specification framework, which allows applying a set of functions to
a device based on not only the security class assigned, but also the state.
Secondly, we can find the monitoring part. Unlike the traditional securities
systems, Resonance takes advantage of the SDN architecture to set the task of
monitoring to the network itself. The monitoring is distributed-based. Network
nodes send the network traffic reports to the SDN controller, which performs
the analysis of the data. Finally, the last part of the Resonance architecture is
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the dynamic control of the network. Resonance uses the OpenFlow protocol
to perform the necessary actions in order to achieve network security.

Resonance shows how SDN can provide new mechanisms to improve network
security and not only network efficiency or throughput. It is interesting how
SDN can provide new ways to apply policies or actions, improving the network
management, not only in security, but also in other control mechanisms, like
routing.

OFLOPS

OFLOPS [39] is an open software created to test the capabilities and pos-
sible existent bottlenecks between the switch and the control framework or
SDN controller. It allows simulating specific usage scenarios to measure the
performance of both hardware and software.

OFLOPS is a multithread software. It is written in C and it allows develop-
ers to gather information from data channels. Developers can handle events
through an API to implement and measure controller functionality. OFLOPS
captures data plane traffic and translate the packets to events.

1.3 Applicability and challenges of SDN

SDN improves the interoperability, the ability to manage and program the
network, the performance of the network, and the security. Therefore, SDN
has been used mainly in the data centers [40]. Big companies like Google
have connected their data centers through an SDN [41]. This SDN provides a
high performance and throughput. However, SDN can provide advantages in
more scenarios than only in the data centers. Google also use SDN for WAN,
interconnecting its data centers. Furthermore, they use SDN to implement
BGP and provide a real time updating of the routing tables. Service Providers
like Vodafone [42] offer SDN to their clients. The main reasons are security,
automatization and performance. Vodafone claims that SDN is the answer to
some key areas regarding networking and business such as collection, use and
security of data or virtualizing processes and infrastructure [43].

In addition, the programmability of SDN allows this paradigm to adapt easier
to the problems of the network, regardless its nature. This makes SDN a great
option for Smart Cities [44], WSN [45], IoT [46] or Mobile Networks like 5G
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[47]. Therefore, SDN is a useful paradigm to provide solutions in heterogeneous
networks.

SDNs are presented as a solution to improve the resource allocation manage-
ment and to provide fairness among users of multimedia streaming adaptive
applications [48] [49]. SDNs present several advantages over traditional net-
works that place them as an excellent solution for the challenges of multimedia
video streaming. The programming interface in SDN allows a better control
over the network, providing an improved performance and more configuration
options of the network architecture [50] [51]. Furthermore, SDN allows re-
configuring the network flows according to the needs of the users without the
actual need of independently configuring all devices. As SDNs are logically
centralized, the SDN controller has a global view of the state of the network
supporting the dynamic optimization of data flows and the available resources
[52]. Moreover, QoS can be easiliy assigned according to the flow or appli-
cation selecting a priority according to QoS parameters such as bandwidth,
jitter, delay, and packet loss.

Networks need a new architecture to solve the problems experienced that are
related to their increase in complexity, incoherent policies, impossibility of
escalation and dependence on manufacturers. SDN has a network architecture
that provides, among other capabilities, the dynamism, manageability and
adaptability necessary to solve the problems mentioned above. Moreover, SDN
can provide support for the necessary network services. It can help in obtaining
statistics of the flows that pass through the network nodes.

By using the OpenFlow standard, the SDN controller is able to communicate
and operate with the network nodes, executing actions directed to improve
the performance of the network, regardless the type of network. Since this
type of multimedia service is used regardless the network architecture below,
technologies like SDN can improve some characteristics and performance of
this kind of multimedia transmission. Taking advantage of the network status
and taking advantage of being able to interact and program the network can
improve the QoE of the user of that service. In addition, the programming
interface in SDN enables a tighter control of network resources. This can be
translated into a better performance, but also into new policies or network
algorithms. Since, in SDN, the applications can access to the control layer
through an API, novel solutions and techniques can be applied to control the
network. One of the possibilities SDN brings is to introduce AI techniques
to networking. AI has been used recently in fields like Big Data [53], game
production [54] or image processing [55], among others.
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Despite all the commented previously, AI, thanks to the architecture of SDN,
can help to manage resources and network traffic dynamically. Adapting AI
to SDN could provide new policies, algorithms, protocols and ways to operate
networks. Using AI to study the traffic of the network, and the statistics that
can be obtained from the datapath thanks to OpenFlow, the different types of
flow that are being transmitted can be discovered. Thus, traffic patterns can
be obtained, which can then be applied in SDN decision-making. Combining
AI techniques with SDN, adaptive behaviors are achieved in order to improve
the performance of the network.

Due to the predicted change about Internet traffic previously exposed, mul-
timedia traffic must be managed as efficiently as possible. Therefore, and
knowing the capabilities of techniques such as SDN and AI, a hypothesis can
be stated. This hypothesis is that combining both to operate multimedia data
in heterogeneous networks can improve the performance, in terms of QoS and
QoE.

1.4 Objectives and motivation

The proposal of this work is to provide a novel dynamic routing system focused
on multimedia traffic. Its goal is to improve the QoS and QoE of the multi-
media transmission and to be able to adapt to the problems of heterogeneous
networks.

In order to achieve the goal, two different technologies are used. Firstly, SDN
is the network paradigm chosen. Thanks to SDN and its architecture, the
routing protocol could manage the network as a whole, taking advantage of
the OpenFlow standard and the programmability of the network to make dy-
namical changes. The routing protocol could then take actions to guarantee a
solid QoS or QoE.

On the other hand, the system uses AI to identify problems and solutions in
the traffic transmissions. This, combined with the control of the SDN, would
allow the system to prevent future problems and react quicker than traditional
protocols.

This solution could help service providers to create an auto-managed network
that guarantees QoE to the users of multimedia services. However, it also could
help as a base to show that SDN has a huge potential to bring new applications
and solutions to networking, not only focused on multimedia.
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The main objectives of this doctoral thesis are the following:

• Introducing the use of AI for optimal route selection based on network
status.

• Designing a software module to implement routing in SDN.

• Adapting an existent routing protocol to multimedia transmission using
the advantages of SDN.

• Identifying actions and policies that can be used in an SDN to improve
the QoS and QoE of a multimedia transmission.

• Designing of a routing protocol that uses AI to apply the actions identified
before, taking into account heterogeneous networks.

• Evaluating the performance of the proposal, comparing with traditional
environments and with the adapted protocol.

1.5 Precedents

Due to its novelty, SDN is a field where not many works have been turned into
PhD. thesis. However, some works related to this kind of networks exists.

Laura Martín González presented in 2019 her PhD. thesis Programmable DSP-
Enabled multi-adaptive optical transceivers based on OFDM technology for
software defined networks. She studied the optical transmissions, addressing
distance and data rate problems. She proposed programmed transceivers that
achieve an efficient utilization of the optical spectrum, based on the principles
of SDN. Although the field of application is not the same, by using these
principles, they achieved a better performance in the transmissions due to the
adaptability to the characteristics of the transmitted signals.

Angel Leonardo Valdivieso Caraguay defended his PhD. Thesis Monitoring and
Discovery for Self-Organized Network Management in Virtualized and Software
Defined Networks in 2017. His work was based on the architecture proposed
by the SELFNET project (Self-Organized Network Management in virtualized
and software defined networks). He studied the relation between the differ-
ent concepts of this architecture, such as SDN, NFV, 5G, QoS and network
management. He proposed in his thesis an architecture, which is focused on
monitoring the network. Therefore, the heterogeneous metrics are collected
and modeled into a generic data model.
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Jorge Ricardo Flores Moyano presented his PhD. thesis “Contribución a las ar-
quitecturas de virtualización de funciones de red y redes definidas por software
aplicadas a las redes residenciales con gestión centrada en el usuario” in 2018.
The thesis goal is to improve the performance of the residential networks. In
order to achieve its goal, he presented a new architecture for managing the resi-
dential networks. This architecture was based on SDN and NFV and provided
the users with the possibility of managing the network by using managing
applications.

Adrián Flores de la Cruz defended his PhD. thesis “Contribución al diseño
de redes definidas por software” in 2019. He presented a Key-Based routing,
implemented thanks to SDN, to improve the energetic efficiency of networks.
By using the OpenFlow protocol, he specifies how the SDN should address the
problems of topology discovery, statistic gathering and routing. Furthermore,
the routes are chosen to minimize the energy consumption, choosing paths
with already-active nodes.

As regards multimedia streaming and networking, our research group has been
working for a long time on video streaming and on video streaming in Ad-hoc
networks.

The research group has also been involved in many theses related with the
main topic of this PhD thesis, including QoS, multimedia traffic and AI.

Alejandro Cánovas Solves defended his PhD. thesis “Diseño y Desarrollo de
un Sistema de Gestión Inteligente de QoE para Redes HD y Estereoscópicas
IPTV” (in 29/04/2016). He proposed a management system with artificial
intelligence, based on inductive prediction methods, to provide the end-user
with a minimum level of QoE.

Juan Ramón Díaz Santos presented his PhD. thesis Design and Implementation
of a Communication Protocol to Improve Multimedia QoS and QoE in Wireless
Ad Hoc Network in 2016. It addressed the problem of multimedia delivery over
multi-hop ad hoc wireless networks, especially over wireless sensor networks.

Miran Taha defended his PhD. thesis Smart Client-Server Protocol and Ar-
chitecture for Adaptive Multimedia Streaming in 2018. The aim of his work
was to improve and optimize the QoE. In order to do that, he characterized,
designed, developed and evaluated different multimedia applications.

Furthermore, our research group has been involved in several projects regarding
SDN and multimedia traffic. The last projects were “Distribucion inteligente
de servicios multimedia utilizando redes cognitivas adaptativas definidas por

17



Chapter 1. Introduction

software”, where the goal was to use intelligent methods to improve the quality
of multimedia services in SDN and “Red Cognitiva Definida por Software para
Optimizar y Securizar Tráfico de Internet de las Cosas con Información Crítica”.
This last project is based on SDN to provide the IoT traffic with security
methods that guarantee an optimal transmission in an SDN.

1.6 Thesis Structure

After introducing the main issues that have motivated the present Thesis, as
well as a description of the main objectives that are pursued, the rest of the
Thesis is organized as follows:

In chapter 2, the state of the art of SDN is presented. Related works about
the study of this network paradigm are discussed. Furthermore, works regard-
ing AI, multimedia transmission or other technologies that implies different
network characteristics are also discussed.

In chapter 3, the design of the control software that is the base for the routing
system implementation is presented. The details of the design, functionality
and implementation are discussed.

In chapter 4, the routing protocol is detailed. The main aspects of the routing
proposal such as the architecture, communication procedures and messages are
discussed.

In chapter 5, the AI method used by the routing protocol is described. How
the AI method should be adapted to SDN architecture for its implementation
is also discussed. Finally, the solution is tested against traditional networks
and other solutions.

In chapter 6, some applications in different networks are evaluated. This chap-
ter shows some possible applications in heterogeneous networks.

Finally, chapter 7 draws the conclusion and future research. It also includes
the list of publications derived from the PhD.
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Chapter 2

State of the Art

In this section, the current state of the art is exposed. Some of the recent
works performed by different researchers are explained and summarized. The
section is organized on different subsections. The works are grouped in these
sections based on their research topic.

2.1 Introduction

There are some published works that help understand the reader the concept
of SDN and OpenFlow and provide some network implementations [56]. Hu
et al. compiled the most important topics about SDN implementation and
performed a comparison of different SDN schemes, discussing the future of
this research area. Authors focused their work on how SDN separate data and
control planes, making scalable networks developments based on SDN. Scott-
Hayward et al. [57] highlighted the need of designing security schemes in SDN.
Authors classified the security challenges attempting to which SDN layer are
affected by. In addition, they proposed some solutions to these challenges and
made emphasis on the importance of further work in order to achieve a secure
and robust SDN environment, using the capability of being programmed and
allowing a centralized network.
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Kreutz et al. [58] presented a comprehensive overview of SDN and, despite
its fundaments are not new, how SDN could be the new and revolutionary
paradigm for Internet. Thus, they did a complete analysis of SDN infrastruc-
ture and the main challenges of SDN.

Kaur et al. [59] presented Mininet, an emulator for deploying networks on
a single Virtual Machine as a method to make cheaper tests than tests over
physical devices. Authors said that Mininet offered an easy use, performance
accuracy and scalability for developing networks. Actually, Mininet has be-
come a powerful tool which makes it easier to test complex networks without
the need of having real hardware. In this sense in [60], Paasch et al. evaluated
some scenarios for TCP multipath which could derive in huge costs in material
like OpenFlow switches.

We can also find some previous works about experiments and performance
tests of SDN and Mininet. De Oliveira et al. [61] explained the SDN paradigm,
its elements, its purpose and its structure. They also presented Mininet and
how it can help researchers to avoid the use of real and expensive hardware for
networks. Authors exposed the need of making it easier to implement networks
and how Mininet achieves it, with good performance and great reliability.

Moreover, Keti et al. [62] presented an evaluation of Mininet to study its
limitations. The results showed that the simulation environment can generate
a remarkable effect on the required time for implementing a topology.

In [63], Azizi et al. proposed a new model for measuring the delay in SDN (us-
ing Mininet), on a Multiprotocol Label Switching-Transport Profile (MPLS-
TP) network. Authors proved that Mininet is not a good emulator for a stress
test. However, SDN and Mininet can be used to get other measures as delay
values. For instance, Gupta et al. [64] described the design, implementation
and the use of fs-SDN (a simulation-based tool) to solve the problem of proto-
typing and accurately evaluating, at large scale, new SDN-based applications.
The results enable the easy translation from virtual environment to real con-
troller platforms like POX and NOX. Authors used Mininet in nearly identical
configurations to compare it with fs-SDN.

Panwaree et al. [65] presented an evaluation of the network performance
of video streaming over two kinds of OpenFlow-enabled network testbeds.
They show the measurements obtained of delay and packet loss when video
is streamed over Mininet and OpenvSwitch, emulating a network, installed in
a PC.
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2.2 SDN Controller Studies

There are several works where researchers try to analyze the performance of
SDN controllers. Usually, in order to achieve this goal, they compare different
SDN controllers.

In [66], Shah et al. analyzed the architecture of the most common SDN con-
trollers (from now SDN controller are the only one that uses OpenFlow as a
communication standard). In addition, they also analyzed the network per-
formance with each of these controllers. After measuring and analyzing the
architectures, the authors defined some steps to follow in order to increase the
efficiency of a new controller design. With these criteria, the authors increase
the throughput and enhance the latency and the scalability with the number
of switches using their new designed controller.

Shalimov et al. analyzed in [67] popular open source SDN controllers. They
compared NOX, POX, Beacon, Floodlight, Maestro, MuL and Ryu. The per-
formance of the SDN controllers is tested based on scalability, throughput,
reliability and security. The authors concluded that those controllers had bad
scaling over the cores and were not prepared to meet increasing demands in
data centers.

The performance of Ryu SDN controller is also tested in [29]. Asadollahi
et al. contributed with an evaluation of scalability of Ryu controller. They
introduced the architecture of Ryu and presented a simulation using Mininet
to test the performance of Ryu in 6 different scenarios. They observed that
Ryu is a resource demanding controller in terms of CPU and RAM, which
means that, with an increment of the number of nodes, the performance can
be reduced.

Other SDN controllers are also compared. In [68] and [69], the authors com-
pared Floodlight and POX. Although both papers conclude that Floodlight
outperforms POX, Bholebawa and Dalal present a better analysis in [68]. The
SDN controllers are compared in different topologies: single, linear, tree and
custom. These topologies are built in Mininet, being all, except the custom
one, already defined by the emulator. These differences in the topologies allow
the authors to test the scalability of both SDN controllers. The performance
is measured in terms of Round-trip time (RTT) and throughput. The results
show that Floodlight presents an improvement in RTT from 11.5% in the single
topology up to 19.6% in the tree topology. Floodlight presents an improve-
ment of 14.4% in the custom topology. As regards the throughput, Floodlight
improves from 3.8% up to 8.9%.
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OpenDayLight is one of the most common-used SDN controllers and there are
some works measuring its performance. Khan Khattak et al. present in [70]
a performance evaluation of OpenDayLight SDN controller. They present the
architecture and main features of OpenDayLight. Using Cbench, a specific
testing tool, the performance of the controller is measured in terms of latency
and throughput in three different scenarios with different number of switches
working. The authors compare OpenDayLight with Floodlight to test the
performance of the SDN controller. The results show that OpenDayLight
presents better latency results that Floodlight.

Rowshanrad et al. also compared OpenDayLight with Floodlight in [71]. The
SDN controllers were compared based on their delay and loos performance,
in different topologies and network loads. The authors shown a comparison
of the features and characteristics of both controllers, such as programming
languages, REST API, documentation and so on. The test was performed using
the Mininet emulator and the network topologies tested were single, linear
and tree. Results show that OpenDayLight presents a better performance in
networks with low load. However, Floodlight shows a better performance in
latency and loss for linear and tree networks with heavy traffic. Therefore, the
SDN controller should be chosen depending on the network’s features.

SDN controllers can be also studied from a security-based point of view. In [72],
Arbettu et al. ran a security analysis of some controllers like OpenDayLight
and Ryu. They use the STRIDE [73] framework to create threat and test the
performance of the SDN controllers in terms of security. The threats used and
tested are: spoofing, tampering, repudiation, information disclosure, denial
of serviced and elevation of privileges. The controllers were tested so that
authors can tested if the controller is affected or not by the threat or if it
has mitigation mechanisms. The results show that OpenDayLight is the most
secure SDN controller.

2.3 Improving QoS or QoE

In the last years, due to the increase of network traffic, many works have
been proposed to classify multimedia traffic in order to guarantee QoS and
QoE. In [74], authors proposed a multimedia traffic classification model based
on patterns by using video streaming and network characteristics as input
parameters and video quality evaluation measures as output. They use NQI,
VQM, Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio
(PSNR) metrics to conform traffic patterns. Different learning methods are
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studied to find out which of them provides the best result. These methods are
based on NNs, vector support machines, statistics and the nearest neighbors.
In [75], is presented an experimental comparison of the performance of SNR,
SSIM, NQI and VQM. Depending on several parameters, the best performance
can be obtained from a different method, but in general, the best results are
given by VQM.

In [76], it is developed a novel framework called DeepQoE to predict video
QoE. The end-to-end framework first uses a combination of deep learning (DL)
techniques (e.g., word embedding) to extract generalized features. Next, these
features are combined and fed into a NN for representation learning. Such
representations serve as inputs for classification or regression tasks.

Authors, in [77], try to solve the bandwidth allocation problem in cloud com-
puting data center networks using SDN paradigm. This method makes use of
machine learning techniques to classify the incoming traffic flows in real-time
while ensuring game flows are prioritized over others. In [78], authors use
machine learning techniques to try to demonstrate how QoS metrics can be
exploited to accurately estimate and predict key QoE factors. They show that
context information on network congestion and basic characteristics on video
streams further improves predictions.

Some authors evaluate the QoE for IoT applications, with particular attention
to multimedia traffic, like in [79]. They introduce the concept of Multimedia
IoT (MIoT) and define a layered QoE model aimed at evaluating and combin-
ing the contributions of each influence factor to estimate the overall QoE in
MIoT applications. In [80], authors try to predict video QoE based on infor-
mation directly extracted from the network packets using a DL model. The
QoE detector is based on a binary classifier (good or bad quality) and uses
seven common classes of anomalies. The proposed classifier is based on a com-
bination of a Convolutional Neural Network (CNN), recurrent neural network,
and Gaussian process classifier. A deep subjective study of video quality has
been performed in [81]. It is also evaluated the performance of several state-of-
the-art, publicly available full-reference video quality assessment algorithms.

Authors, in [82], study the adaptive multimedia traffic control mechanism
leveraging Deep Reinforcement Learning (DRL) that combines DL with re-
inforcement learning (RL), which learns from rewards by trial-and-error. This
mechanism is able to control multimedia traffic directly from experience with-
out referring to a mathematical model.
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Authors, in [83], analyze several researches about application of Machine Learn-
ing (ML) techniques to IP traffic classification. They also discuss a number of
key requirements for the employment of ML-based traffic classifiers in opera-
tional IP networks. In [84], authors employ three supervised machine learning
algorithms, Bayesian Networks, Decision Trees and Multilayer Perceptrons for
the flow-based classification of six different types of Internet traffic. Their ex-
periments show that ML algorithms such as Bayesian Networks and Decision
Trees are suitable for Internet traffic flow classification at a high speed.

In [85], authors apply a Naïve Bayes estimator to categorize traffic by applica-
tion, showing its high level of accuracy. In this approach, they use samples of
well-known traffic to allow the categorization. A fully automated Packet Pay-
load Content (PPC) based network traffic classification system is presented in
[86]. The proposed system learns new application signatures in the network
where classification is desired. Furthermore, that system adapts the signatures
as the application traffic changes.

In [87], it is analyzed how different factors contribute to the QoE in the context
of video streaming delivery over cloud networks. The authors describe different
methods that are often used to collect QoE datasets in the form of a Mean
Opinion Score (MOS). Machine Learning methods are then used to classify
a preliminary QoE, and six classifiers are evaluated and determined. Also,
in [88], the authors present a user QoE prediction algorithm which extracts
features based on user traffic pattern parameters such as bitrate, resolution,
frame rate, etc. They use three different feature selection algorithms and six
different classifiers in order to optimize the features set and the corresponding
ML algorithms.

L. Huixian et al. develop a traffic-analysis method using an unsupervised ML
technique, where flows are automatically classified by exploiting the differ-
ent statistics characteristics of flow [89]. Authors, in [90], develop a machine
learning based traffic classification based on statistical properties while option-
ally decoupling flow classification and treatment. This decoupled architecture
allows centralized traffic classifiers to control traffic filtering and shaping by
diversely located, low-performance network devices.

There are authors who study multimedia transmission based on SDN technol-
ogy. In [91], Taha et al. present an algorithm for the management of video
transmission performance based on SDN. Their algorithm provides a stable
video because it distributes bandwidth equally among clients. Besides, they
perform tests and present some results that confirm the validity of their algo-
rithm.
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O. Awobuluyi et al. presented in [92] an SDN controller for scalable video
encoded over H.265. The information on the scalability of the multimedia
streams and network capabilities was known by the controller that made the
decisions to ensure QoS and QoE over 5G networks. The proposed architecture
was comprised of a Video Quality Assurance Manager (VQAM) that gathered
information on the topology and video metrics to decide the routing and video
adaptation. It included an SDN Video Quality Orchestrator (SDN-VQO) as
well as to manage multimedia flows and to ensure fairness. J. Castillo et al.
proposed in [93] a modification of the Entity Title Architecture (ETArch) em-
ploying OpenFlow and the QoS control method from SMART (Support of
Mobile Sessions with High Transport Network Resource Demand). It pro-
vides coordination over dynamic and admission control of super-dimensioned
resources in order to provide QoS and QoE to multimedia flows. Tests were
performed on a real testbed obtaining the admission of all the sessions with a
network saturation up to 170%, reaching a 27% of SSIM improvements over
legacy ETArch and reducing the signaling load of legacy ETArch in a 251%.

An NFV architecture for managing and controlling multimedia applications
over 5G with SDN and considering QoE requirements was introduced by A. A.
Barakabitze et al. in [94]. NVF and SDN are utilized to reach the Key Per-
formance Requirements/Indicators (KPR/I) of 5G. Different Virtual Machines
(VMs) were utilized to address different network requirements of resources of
the multimedia applications. The QoE was assessed utilizing the QoE-sdnFlow
manager and the QoE-sdnFlow Monitor. The type of multimedia applications
was considered to provide the specific resources required by the user.

Lastly, T.-N. Lin et al. presented in [95] a meter-based multicast method to
provide end-to-end QoS for multimedia services called OpenE2EQoS. The de-
signed algorithm utilizes a learning mechanism to allocate the available band-
width for the multimedia flows in order to guarantee QoS. The congestion
problem in links is addressed by forwarding low priority packets among N dif-
ferent routes. Therefore, the problem of forwarding the multimedia flows to
other routes is prevented. Tests were performed in a real SDN environment
where the effectiveness of their proposal is demonstrated.

Optimization has been utilized as well as a tool for increasing QoS and QoE.
A. Kassler et al. presented in [96] an SDN-based QoE-driven centralized multi-
user path optimization for multimedia services. It maximized QoE considering
link capacities, delay, network topology and service utility functions. The user
was able to select video quality over audio quality and vice versa. Therefore,
video quality may be degraded while audio quality is maintained high enough
when the resource availability of the network decreases. OpenFlow was utilized
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to determine the paths according to the results of the optimization. A new
OpenFlow controller called OpenQoS was introduced by H. E. Egilmez et al.
in [97]. OpenQoS was intended for multimedia delivery and QoS support. The
paths of the multimedia flows are optimized so as to ensure QoS. The perfor-
mance of the proposed controller was compared to the exiting HTTP-based
multimedia adaptive streaming. Results showed that OpenQoS outperformed
HTTP-based multimedia adaptive streaming, guaranteeing seamless video de-
livery in UDP and full video quality in TCP.

Finally, E. Grigoriou et al. presented in [98] an SDN-based resource manage-
ment mechanism for multimedia services that optimizes the QoE of end users.
In order to do so, the service was divided into different tasks assigned to the
neighbor nodes taking into consideration the final quality. Authors stressed the
enhancement of QoE management, resource allocation and video quality that
SDN/NFV provided. Tests were performed with the OpenDaylight controller
and the Mininet network emulator. Results showed an improvement in video
quality.

Noghaniet et al. [99] introduced a framework based on SDN that could enable
the network controller to deploy IP multicast between source and subscribers.
The network controller was also able to control the distributed set of sources
where multiple description coded (MDC) video content is available by using
a simple northbound interface. Due to this SDN-based streaming multicast
framework for medium and heavy workload, the PSNR of the received video
is increasing considerably. Authors noticed that the received video, which had
a very poor quality before, was having a significant increase in the quality of
video now.

Nam et al. [100] proposed a mechanism to solve the congestion problem and
improve the video QoE. Authors tried to develop an SDN based application
to improve the quality of video that can monitor conditions of network in real
time streaming, and change routing paths dynamically by multi-protocol label
switching (MPLS).

Egilmezet et al. [101] give a unique design of an Openflow controller for mul-
timedia delivery over SDN with end to end QoS support. The authors tried
to optimize routes of multimedia flows dynamically. After experiments over
real test network, the authors found better results than HTTP based multi-
bitrate adaptive streaming. They ensured that OpenQoS can guarantee the
video delivery with little or no video artifacts experienced by the end-users. In
another publication, Egilmezet et al. [102] gave new distributed control plane
architectures for multimedia delivery over large-scale, multi-operator SDN. The
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extensions included in the design of the architecture were: (a) to acquire net-
work topology and the state information by topology aggregation and link
summarization, (b) to propose an optimized framework for flowing based end
to end over multi-domain networks, and (c) two distributed control plane de-
signs by addressing the messaging between controllers for scalable and secure
routing between two domains. By applying these extensions on layered video
streaming, authors obtained a better quality of received video, reduced cost
and memory overhead. This architecture was effectively scalable for large net-
works.

Kassleret et al. [96] tried to negotiate the service and parameter for network
communication between end users and to assign multimedia delivery paths in
the network according to prefixed service configuration. The idea behind this
system was to centralize multi-user optimization of path assignments, which
provides the better QoE by considering network topology, link capacities, delay
and account service utility. Due to optimization, the system was able to use
Openflow to set up forwarding paths in the network.

Mehrdad Hosseinnejad Yami et al. demonstrate the importance of the game-
state as a criterion for game requirements [103]. They used and designed an
SDN architecture to make easier the communication between game and server.
They also propose a resource allocation algorithm that considers measurements
such as delay, bandwidth and game-state information. Finally, the system is
implemented and evaluated in a simulated environment, simulating the QoE
via extensive subjective tests. Results show the superiority of the proposal
over existing methods “on average 1.26, 1.18, 1.21, and 1.12 increase in QoE,
responsiveness, controllability, and immediate feedback, respectively, in a scale
of 0-5”.

In this sense, E. Liotou et al. [104] presented the concept of an SDN-based
QoE-Service as a manner of ensuring an acceptable QoE level for on-demand
services or premium users of over-the-top (OTT) applications. To achieve this
goal, authors explain that an SDN-based QoE-Service is required to be able
to monitor the network parameters by the SDN controller and the mapping of
these parameters to QoE values inside the QoE Server.

A. Martin et al. [105] presented a network resource allocator system which
enables autonomous network management aware of QoE. As we can see, the
system is able to predict demand to foresee the amount of network resources
to be allocated. In addition, the system dynamically provides the network
topology in a proactive way while maintaining the QoS ranges. The system
works as a collaborative network to process signals from multiple network nodes
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and end-to-end QoS and QoE metrics. According to the results, this kind of
system can be optimal for live and on-demand dynamic adaptive streaming over
HTTP while maintaining the high efficiency video coding services. Authors
concluded that the system is able to scale the network topology and to address
the level of resource efficiency required by this kind of services.

Finally, we should consider that HTTP adaptive streaming (HAS) is being
consolidated as a standard tool for online video distribution. While existing
network infrastructures usually prioritize the fast content forwarding and not
the quality of the delivered content, the future network tends to manage and
adapt the content format to user-level cognitive factors for effectively and intel-
ligently allocating limited network resources. M. Mu [106] proposed a software
defined cognitive networking (SDCN) aimed to incorporate new developments
inhuman cognition, media technology and communication networks to ensure
the user experience, user-level fairness and network efficiency of online adaptive
media. To achieve this goal, the proposal is based on an optimized user-centric
resource model, which oversees paired with tailored SDNs functions to form a
service for QoE-aware in-network monitoring and resource allocation.

Furthermore, Megyesi et al. [107] introduced a novel mechanism for measuring
available bandwidth in SDN networks. They built an application over the Net-
work Operating System (NOS) which was able to track the network topology
and the bandwidth utilization over the network links, and thus the mechanism
was able to calculate the available bandwidth between any two points in the
network. Authors validated their method using Mininet network emulation
environment. We have seen some deployments that use SDN based testbeds
for multimedia streaming.

Noghani et al. [108] proposed an SDN-based IP multicast framework in order to
control a set of video sources and the impact of SDN on QoE. This framework
significantly increased the PNSR of the video, so the user received a good-
quality video from a video almost impossible to see. Another practical case is
shown by Michael Jarschel et al. [109]. They used a video streaming service like
Youtube, in order to evaluate the performance over SDN see how OpenFlow
can help us to improve the QoS in video delivery applications.

SDN networks can also be mixed with IP networks. Salsano et al. [110]
described the design and implementation of an Open Source Hybrid IP/SDN
(OSHI) node. They provided a set of open source tools that allowed facilitating
the design of hybrid IP/SDN experimental networks. Their work shows the
deployment on Mininet and on distributed SDN, and their test bench. In this
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way, it is possible to evaluate the costs related with the SDN integration on
the Internet.

2.4 SDN Applications

There is a lot of previous work dealing with the study of multimedia transmis-
sion, video surveillance, IoT, AI and SDN. Even many of the previous works
interact with different technologies. In this subsection, applications of several
technologies, usually combined with SDN, are presented.

There are works done by other authors that relate SDN with IoT. Huang
et al., in [111], expect that as the SDN networks proliferate, the collection
of information and the updating of the network topology and the control of
QoS will be facilitated in the IoT environment. Quin et al., in [112], extend
the Multinetwork Architecture Information Architecture (MINA), achieving
different levels of quality for different IoT tasks so that an original SDN IoT
controller supports commands to differentiate flows and tasks. They have
applied a prototype to an IoT scenario. The performance results indicate that
IoT networks can be exploited more efficiently. In [113], Omnes et al. present
a new multilayer IoT architecture, which includes SDN and NFV, based on
network and IT resources.

Some authors, such as Bizanis et al. in [114], study the state of the art when
applying SDN and Network Virtualization (NV) to IoT. They describe the
implementation of IoT in both technologies and finally review IoT architectures
enabled by SDN-NV together with implementations in real life. Other authors,
such as [115] and [116], describe SDN presenting their first fields of application,
and analyze the possibility of using it in IoT applications.

There are authors who study different areas of IoT applicability. For example,
Pal, in [117], establishes six areas, called SPACES, which are of interest to
companies and organizations when implementing IoT. The areas he presents
in his study are: scalability, privacy, affordability, context awareness, ease-of-
development, and security. Other authors, such as [118] and [119], propose to
use IoT devices and sensors in the field of e-Health or Ambient Assisted Living
(AAL). Both papers discuss the possibility of obtaining information through
these devices to improve the personalization of medical treatment, facilitate
the practice of medicine, and reduce costs. Tan et al., in [120], present the
structure of IoT; they also propose IoT architecture and design an application
model. Gubbia et al., in [121], present a vision of the implementation of
IoT in the Cloud. They study key technologies and application domains, to
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subsequently implement a solution based on both public and private clouds.
This implementation is done within a framework that allows Cloud scalability,
and that provides capacity for IoT.

Other authors study in the scope of video surveillance. Authors, such as Aji-
boye et al. , in [122], propose a new hierarchical architecture called Fused
Video Surveillance Architecture (FVSA). Privately-owned video surveillance
systems can increase efficiency in public safety. In their proposal, they define
a network adapted to intelligent services of video surveillance, which allows
communicating with other compatible systems in IoT. Lloret et al., in [123],
present the study of the implementation of a video surveillance system in rural
environments. They study codec selection, design and coverage problems, and
finally show the results obtained in a public deployment.

In [124], Yang et al. have proposed a novel time-aware software defined net-
working (TaSDN) architecture for OpenFlow-based data center optical net-
works, by introducing a time-aware service scheduling (TaSS) strategy. The
strategy can arrange and accommodate the applications with required QoS
considering the time factor, and it enhance the responsiveness to quickly pro-
vide for data center demand.

Dramitinoset et al. [125] have discussed different aspects of video delivery over
next generation cellular networks, which includes the SDN and cloud com-
puting. The authors have been focused on next generation cellular networks
which employ SDN in core due to increased demands of video streaming com-
mercially. In our paper we are trying to explore the performance of multimedia
delivery over SDN as compared to real test networks in terms of some impor-
tant parameters.

P. Gallo et al. [126] showed a proposed framework to manage current home
networks composed by network segments with different requirements and fea-
tures. Authors analyzed the problems and flaws of current approaches that
make difficult to provide the interoperability of these technologies. Finally,
authors presented the vision of an SDN multi-technology network architecture
called SDN@home and showed how a future home gateway which would be
the SDN controller can directly and dynamically program network devices. In
addition, authors defined a new type of flexibility enabled by SDN@home since
wireless protocols and features are tending to no being longer tied to a spe-
cific technology although they could be used by general-purpose wireless SDN
devices.
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2.5 Routing in SDN

There are also authors who propose the use of SDN to obtain greater efficiency
in routing, not only using traditional protocols such as OSPF, IS-IS [127] or
BGP [128], but also some hybrid solutions.

The authors Caria et al., in [129], present a hybrid operation mode SDN/OSPF.
In their proposal, they use SDN nodes to divide the OSPF domain into subdo-
mains. Within each subdomain, the routing remains stable. The SDN nodes
are located at the borders of the subdomains, and they are responsible for
adjusting the routing updates. In this way routes between subdomains can be
optimized. According to their simulation results, it is not necessary to deploy
SDN on all nodes of the network. Similarly, Rothenberg et al., in [130], pro-
pose a controller-centric hybrid networking model and present the design of the
Route-Flow Control Platform (RFCP) along the prototype implementation of
an AS-wide abstract BGP routing service.

Also, there are authors who propose the use of SDN in ad hoc vehicular net-
works (VANET). Ming et al., in [131], indicate that in order to efficiently send
information in VANET, a protocol that has a short delivery delay time and
where low routing overhead is required. They propose a routing protocol based
on SDN in which a central controller collects all the information of the rest of
the controllers and calculates the optimal routes, based on all the information
collected in other points of the network.

H. Nam et al. presented in [100] an SDN application to monitor the network
and assign routing paths to video content utilizing MPLS in order to ensure
QoE. In this case, the routing solution was focused on improving QoS and QoE.
The Junos Space SDN platform was utilized to implement the proposal. Tests
were performed in different scenarios employing a simulation tool. Results
showed an improvement of the viewing experience of 55.9% in peak hours.

Abbas, M.T et al. [132] proposed a routing protocol for internet of vehicles.
For that, they introduced an SDN-based network architecture. They claim
that SDN enables the routing protocol to handle highly dynamic networks in
an abstract way by dividing the data plane from the control plane. Then, road-
aware routing strategy is introduced. After that, a novel mathematical model
is estimated whose goal is assists the primary controller to find the shortest
path. The results show the performance of the proposal protocol in terms of
availability with limited routing overhead.
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Á L. Valdivieso et al. proposed in [133] an SDN-based framework to optimize
multimedia routing. The framework utilizes NFV and OpenFlow in order
to test the routing algorithms. The effectiveness of the framework is deter-
mined by the QoS routing algorithm and network performance modules. The
parameters analyzed were PSNR, SSIM and MOS from both best-effort and
optimized routing. Results showed an improvement in terms of QoS of the
proposed framework compared to the best-effort approach.

M. Amiri et al. [134] presented a Linear Programing (LP) optimization-based
method for efficiently assign game servers for gaming sessions. The system is
able to choose the best communication path within a cloud gaming data center.
The proposed optimization model takes into account the sort of requested
games, the available server loads, and the current path delays. The results
showed that the proposed LP model is able to minimize the average delay
of all players within a data center by 9.6%, and it outperforms the existing
server-centric and network-centric models.

2.6 AI Routing

Taking into account the traffic that is generated in the current networks, we
are faced with the need to improve and adjust the classic routing protocols. In
this way, data transmissions must be optimized especially transmissions that
require special treatment to be able to meet specific requirements due to their
nature. This section presents some of the most interesting proposals where
authors have performed different experimental tests with network protocols and
have tried to improve them by modifying the original operation, introducing
AI techniques.

The performance of Interior Gateway Protocols has been evaluated in several
works. In general, all authors recommend the use of the OSPF protocol as
the Interior Gateway Protocol in the networks. Authors such as Sendra et
al., in [135], have studied the most used Interior Gateway Protocols. In their
conclusions, they say that the OSPF protocol must be chosen by network ad-
ministrators when there is restriction in the bandwidth of the network they
manage. Also, other authors such as Rakheja et al., in [136], have conducted
studies comparing the performance of the RIP, OSPF, IGRP and EIGRP pro-
tocols. In their conclusions, they assert that the OSPF protocol is the one
with the best overall performance.

During the last years, there have been multiple works in which their authors
show improvements for the routing protocols based on AI.
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Barbancho et al., in [137], present the SIR (Sensor Intelligence Routing) al-
gorithm. This new routing algorithm is aimed at achieving a better QoS. It
applies to an artificial neural network based on Kohonen’s self-organized fea-
ture map. Moreover, Barbancho et al., in [138], compare the performance of
their SIR routing algorithm with directed diffusion and Energy-Aware Rout-
ing. Finally, they affirm that the inclusion of AI techniques in WSN improves
the network performance.

Many authors have studied the use of Swarm Intelligence (SI) to solve the
problem of adaptive routing in telecommunication networks. Some of these
authors use SI applying intelligence models based on biological swarm (ant
colony optimization, particle swarm optimization, swarm robotics, and other
swarm intelligence algorithms) for solving problems in the real world of sensor
networks.

Arabshahi et al., in [139], study solutions to the problem of routing in wireless
networks using SI as a key. They seek to maintain the desired QoS, checking
bottlenecks and looking for an adaptive network.

Gunes et al., in [140], present a new protocol called Ant-Colony-Based Routing
Algorithm (ARA) that is highly adaptive, efficient and scalable. Their protocol
is based on SI, focused on the ant colony based meta-heuristic. The main goal
in the design of the protocol was to reduce the overhead caused by the routing
protocol.

As actual networks are increasingly large, dynamic and heterogeneous, Ducatelle
et al., in [141], indicate that, for their control and management, they require
algorithms and novel protocols that are completely distributed. Moreover, they
should be at the same time adaptable, robust and scalable. These protocols
also allow the network to behave as an autonomous and self-organizing sys-
tem. In their work, they review several SI applications, considering routing
algorithms in wired and wireless networks, while establishing principles to ap-
ply SI to the design of routing algorithms. They also indicate that research
fields such as gossip/epidemics algorithms are closely related to SI.

Rajagopalan et al., in [142], present a routing protocol called Ad hoc Network-
ing with Swarm Intelligence (ANSI). Their protocol, through self-organized SI
mechanisms, makes better sending decisions than traditional MANET proto-
cols, as they gather more information. In their study, they perform simulations
comparing the ANSI and AODV (Ad hoc On Demand Distance Vector) pro-
tocols [143]. They verified that ANSI provides better performance results and
fewer route errors.
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Authors such as Zungeru et al., in [144], show a comparative study of classic
routing protocols regarding the use of SI in WSN. They also present the results
of a simulation of different protocols in MATLAB to serve as a reference in the
future for other researchers.

One of the preferred techniques to carry out routing in WSN, maintaining
its maximum useful life, is clustering. Karaboga et al., in [145], present a
clustering mechanism based on the artificial bee colony algorithm, to prolong
the life of the network. They compare the proposed algorithm with LEACH-
based protocols. According to the results obtained, Clustering, based on the
artificial bee colony algorithm, can be applied to WSN routing protocols.

An interesting approach, that researchers are currently investigating is the
application of reinforced learning in routing protocols [146]. For example, R.
Desai and B. P. Patil [147] presented a new learning strategy method to select
the best route in ad hoc networks. The proposal is based on the cooperative RL
problem. To develop it, authors have based their proposal in models of social
insect behavior, such as swarm intelligence. They also performed the analysis
and test bench of their proposal by comparing with existing routing protocols.
Results show that performance parameters such as packet delivery ratio as a
function of packet rate or number of nodes in the network are significantly
better when reinforced learning is used.

J. Solanki and A. Chauhan [148] presented some modifications over the AODV
protocol. Authors’ aim was to improve route error tolerance mechanism of this
widely used routing protocol. These modifications were related to parameters
as End-to-End delay, Packet delivery ratio, Traffic overhead and Power Con-
sumptions. The proposed scheme was based on the fact that transmission
started from the closest neighbor node when a link failed in the middle of
the transmission. The simulation results show the proposed scheme presents
very important reductions in delay and it improves the packet delivery ratio
comparing with the traditional routing scheme of AODV. Results also show an
interesting improvement in the routing overhead by reducing the frequency of
route discovery process.

34



2.7 Conclusion

2.7 Conclusion

In this chapter, the state of the art has been presented. It described the works
regarding:

• Studies about the performance of the different SDN controllers.

• Previous works presented about QoS or QoE enhancements technics and
protocols.

• Contributions related to several SDN applications, using their advantages
to provide services.

• Proposals describing how routing could be solved in SDN.

• Researches discussing the introduction of AI methods in routing.

With all these works analyzed and knowing the current state of the SDN related
works, the proposed solution of this dissertation can be discussed.
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Chapter 3

Design and Implementation of a
Custom SDN Controller

In order to design, create, implement and test a network protocol, it is a key
factor how much control over the network is possible to have. Open-source con-
troller like Floodlight, POX or OpenDayLight allows a limited control, which
varies depending on their architecture. A simple SDN controller was devel-
oped from the scratch to fulfill the implementation and testing requirements.
The controller is fully developed in Java. In this chapter, the design and
implementation of the custom SDN controller is presented. However, before
explaining the controller, an SDN background is discussed to fully understand
the concepts managed from this point on.

3.1 SDN Background

In this section, the technical concepts of SDN needed to understand the pro-
posal are detailed. First, the concept of routing in SDN is commented. Then,
the OpenFlow protocol is detailed. Finally, virtualization in SDN is addressed.
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3.1.1 Routing fundamentals

In traditional networks, routing protocols work commonly in a distributed
among the network nodes. Network nodes exchange information to update the
cost of reaching certain nodes.

Depending on what information is exchanged, and how it is exchanged, the
algorithms can be divided into two groups. Distance-vector algorithms use the
Bellman-Ford algorithm to calculate the cost. Each node sends information
about changes in topology and distances to its neighbors. RIP [149] is the
most-commonly-used routing algorithm that is based on distance-vector.

On the other hand, link state algorithms are based on Dijkstra algorithm.
The nodes first gather the information about their neighbors and, after that,
they cast the information through the whole network to create a map of the
topology, with the cost to reach each node of the network.

OSPF [150] is one of the network protocols, of hierarchical interior routing,
more used in the current networks. It uses the status of their links to calculate
the optimal route to the destination, and employs a metric called cost, whose
value is determined by the division of a reference bandwidth between the actual
bandwidth of the interface.

Regardless the algorithm behind the routing protocol, all the protocols used
for routing are based on a metric which allows sorting paths from the best
option to the worst. After that, each node (router) analyses the destination
IP address and all the packets that match that destination IP address will
be forwarded through the same interface or path, which is determined by the
metric.

SDN changes this focus on the IP address and on the packet as a unit of
forwarded data. In SDN, the data is grouped by flows. The OpenFlow switches
store the flow information in flow tables. The flow table contains a set of entries,
known as flow entries, several counters used for statistics and a set of actions
to apply to matching packets.

These flows represent a set of packets with similar characteristics. The char-
acteristics of the flows allow the controller to perform the same action for
every packet that matches these characteristics. Table. 3.1 shows the fields
from packets used to match against flow entries defined by the OpenFlow 1.0
standard [151].
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Table 3.1: Fields used to match flow entries.

Field Description

In port The input port of a packet
DL SRC The MAC source address of a packet
DL DST The MAC destination address of a packet

DL VLAN The input VLAN id of a packet
DL VLAN PCP The input VLAN priority of a packet

DL Type The Ethernet type of a packet
NW TOS The IP Type of Service of a packet
NW Proto The IP protocol of a packet
NW SRC The IP source address of a packet
NW DST The IP destination address of a packet
TP SRC The TCP/UDP source port of a packet
TP DST The TCP/UDP destination port of a packet

All the packets that are processed by a switch in an SDN are compared against
the flow table. There are different levels of priority, so firstly the highest
priority entries are checked and after that the others. If a matching entry is
found, the actions set in the entry are performed on the packet. If no match is
found, the packet is returned to the controller, using an OpenFlow Packet-In
message, through the secure channel.

Unlike the routing in traditional networks, managing flows with characteristics
from different network layers allows the routing protocol to be more flexible.
Consequently, a set of actions can be specified for a concrete flow. That means
a set of packets can be treated differently from the others, regardless the des-
tination network address.

3.1.2 OpenFlow Communication and Messages

The OpenFlow standard is the communication protocol used between the SDN
controller and the nodes of an SDN. These nodes, which use the OpenFlow
standard as their communication protocol, may be called OpenFlow-enabled
in the literature.

The communication protocol is established through a secure channel. This
secure channel is the interface that connects the controller to an OpenFlow
switch. The SDN controller can, through this interface, manage the switch,
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Table 3.2: Structure of the OpenFlow header.

Field Length (bits) Description

Version 8 The version of the OpenFlow standard
used in the message

Type 8 The type of message
Length 16 Length of the message in bytes
XID 32 Identifier

configuring its flow tables, receiving statistics and events from the switch and
also receiving packets from the switch or send packets out the switch.

Although this interface is implementation-specific, all the messages between
the SDN controller and the nodes must follow the OpenFlow standard. The
format of these messages is described in the next subsection.

OpenFlow Messages

The structure of the OpenFlow messages is described in this subsection.

OpenFlow Header

All the OpenFlow messages are introduced by an OpenFlow header. This
header, which is a Type-length-value (TLV) header, helps the controller to
know how it must process the following data. Its first field is the version of
the OpenFlow protocol used in this message. Then, the type of message is
indicated. The third field is the total length of the message. Finally, an id of
the transaction is sent to facilitate pairing. Table. 3.2 shows the fields and the
length of the OpenFlow header.

The next messages are all introduced by an OpenFlow header. The type value
determines which message is sent. Each message has its own value for the type
field of the header. Therefore, when, in this work, it is said that the type field
is set to a value of a message, this value is the one that represents that message
for the type field of the header. Moreover, in the next messages, the OpenFlow
header is not discussed because there is the first field of every message.
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HELLO Message

The hello message starts a communication, and it is used in the handshake
process, which is explained in the next subsection. In OpenFlow, the hello
message is an OpenFlow Header whose type field is set to the Hello value.

Features Request Message

The features request message is another message used in the handshake process.
It allows the controller to ask for the features of a switch in the SDN. Like the
hello message, it does not contain any body. The features request message is
an OpenFlow header with the type field set to the value of features request.

Echo Request Message

The echo request message is used to check the status of an established connec-
tion. It consists of an Openflow header plus an optional timestamp to check
latency.

Echo Reply Message

The echo reply message not only is composed by the Openflow header, but
also it must leave unmodified the data field of the echo request message. That
means, the value of the optional timestamp has to be the same as in the request
message.

Features Reply Message

The features reply message is the one used as a reply of the features request
message. It is sent by the switches to the controller. Table. 3.3 lists all the
fields sent by the datapath. In the message, the datapath identifier is sent,
which the MAC address with an implementer-defined ID appended in the upper
bits. After the identifier, some characteristics of the switch are detailed. The
number of packets the switch can buffer at once, the number of flow tables
supported, a list of “capabilities”, defined in Table. 3.4, and the actions the
controller can set in the flow table. These actions are explained in the flow
mod message subsection. Finally, the switch sends a description of its physical
ports, following the structure described in Table. 3.5. The curr, advertised,
supported and peer fields of this structure are bitmaps. These bitmaps indicate
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Table 3.3: Structure of the OpenFlow features reply message.

Field Length (bits) Description

Datapath ID 64 The identifier of the datapath. It
contains the MAC address

N Buffers 32 The maximum number of packets that
can be buffered at once

N Tables 8 Number of tables supported by the
datapath

Pad 24 Align to 64 bits
Capabilities 32 Capabilities of the datapath
Actions 32 Actions supported by the datapath
Ports 48 each port Description of the physical ports of

the datapath

the bandwidth of the link, whether it is half or full duplex, copper or fiber and
if it allows auto negotiation and pause. Depending on the number of ports,
the size of the message can vary.

Get Configuration Request Message

The SDN controller can ask for the current configuration of a specific datapath
by sending this message. Since it is a simple request, the message is composed
only of the OpenFlow header with the adequate type value set.

Get Configuration Reply Message

When the SDN controller requests the configuration of a switch, a get con-
figuration reply message is returned. The fields of this reply are shown in
Table. 3.6. The first field is a flag that represents how IP fragments should be
handled. The possible values are described in Table. 3.7. The second field is
the maximum number of bytes that the datapath can send to the controller
when a packet does not match any flow entry.
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Table 3.4: Description of the capabilities bitmap.

Field Bit number) Description

Flow Stats 0 Allow statistics per flow
Table Stats 1 Allow statistics per table
Port Stats 2 Allow statistics per port

STP 3 It is compatible with the 802.id
Spanning Tree protocol

Reserved 4 Reserved, must be zero
IP Reassemble 5 The switch can reassemble IP

fragments
Queue Stats 6 Allows statistics per queue

ARP Match IP 7 Match IP addresses in the ARP
packets

Table 3.5: Physical port structure.

Field Length (bits) Description

Port number 16 Number of the port
Hardware Address 48 MAC address of the port

Config 32 Current configuration of the port
State 32 Current state of the port
Curr 32 Current features

Advertised 32 Features being advertised by the port
Supported 32 Features supported by the port

Peer 32 Features advertised by peer
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Table 3.6: Structure of configuration message.

Field Length (bits) Description

Flags 16 Flags about the configuration of the
IP fragments management

Miss Send Len 16 Maximum number of bytes of a packet
sent to the controller

Table 3.7: Possible values of the flag field.

Possible Option Value Description

Normal 0 No special handling for the IP
fragments

Drop 1 Drop IP fragments
Reassemble 2 Reassemble the IP fragments

Mask 3 Bitmask of flags dealing with
fragmentation.

Set Configuration Message

The set configuration message is the message used by the SDN controller to
modify the current configuration of a switch. It is composed of the same fields
that the get configuration reply message. Therefore, the fields of the message
are shown in Table. 3.6.

Flow Modification Message

The flow modification message, also known as flow mod or OFP_FLOW_MOD
is the most important Openflow message in this work. When an SDN controller
sends this message to a datapath, it modifies zero or more flow entries of a ta-
ble. The fields of this message are shown in Table. 3.8. The most important
fields are the command, the timers, the actions and the match, which indicates
which flows are affected by the message when editing a flow entry. However, if
a new flow is added it indicates which packets will match against the flow en-
try. Therefore, defining properly the match field is extremely important. The
fields of the match structure are the ones defined in Table. 3.1. The command
indicates if a flow will be added or removed or modified. The timers indicate
when the flow entry expires. Finally, the action indicates what the datapath
should do when a packet matches the flow entry. The possible actions to be
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Table 3.8: Structure of the flow modification message.

Field Length (bits) Description

Match 320 Fields to match and their
values

Cookie 64 Controller-issued identifier
Command 16 Command of the Flow Mod

message
Idle timeout 16 Idle time before discarding the

flow entry
Hard timeout 16 Maximum time before

discarding the flow entry
Priority 16 Priority level of the flow entry
Buffer ID 32 The flow entry will be applied

to the buffer set. The “-1”
value means no buffer

Out Port 16 When deleting entries, the out
port must be included

Flags 16 Flags to activate extra
behaviors such as force the

switch to send a message after
a flow expires

Actions It depends on the
action

Actions to be performed after
a match

performed are listed in Table. 3.9. This message will be the base of the routing
protocol since it will be used to set the rules for each flow.

Port Modification Message

The port modification message allows the controller to modify the behavior of
a physical port. The fields used in the message are described in Table. 3.10.
The fields used in the message are similar to the ones in the physical port
description structure (Table. 3.5).
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Table 3.9: Possible actions to be performed by a datapath after a match.

Action Description

Output The datapath forwards the matched packets through
a specified port

Set VLAN ID Set the 802.1q VLAN ID to the matched packets
Set VLAN PCP Set the 802.1q priority to the matched packets
Strip VLAN Strip the 802.1q header of a matched packet
Set DL SRC Set the specified MAC source address to the matched

packets
Set DL DST Set the specified MAC destination address to the

matched packets
Set NW SRC Set the specified IP source address to the matched

packets
Set NW DST Set the specified IP destination address to the

matched packets
Set NW TOS Set the specified IP Type of Service value to the

matched packets
Set TP SRC Set the specified TCP/UDP source port to the

matched packets
Set TP DST Set the specified TCP/UDP destination port to the

matched packets
Enqueue The datapath forwards the matched packets through

a specified queue attached to a port
Vendor Used for vendor’s extensions of the protocol

Table 3.10: Port modification message.

Field Length (bits) Description

Port number 16 Number of the port
Hardware Address 48 MAC address of the port

Config 32 Current configuration of the port
Mask 32 Indicates which features of the

configuration must be set
Advertised 32 Features being advertised by the port

Pad 32 Pad to 64 bits
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Table 3.11: Possible values of the type field on a statistic message.

Type Description

Description General description of a datapath
Flow Statistics regarding a concrete flow

Aggregate Statistics about a set of flows
Table Statistics of a flow table of a datapath
Port Statistics of a physical port of a datapath
Queue Statistics regarding a queue of a port
Vendor Vendor-defined

Table 3.12: Structure of the body of the description statistics message reply.

Field Length (bits) Description

MFR DESC 256 Manufacturer description
HW DESC 256 Hardware description
SW DESC 256 Software description
Serial Num 32 Serial number of the datapath
DP DESC 256 General description of the datapath

Statistic Messages

One of the most important functions of the OpenFlow protocol is to get statis-
tics from the datapath. The SDN controller sends a statistic request and the
datapath answer with a statistic reply. Both messages indicate the type of
statistics that are requested or provided and, then, the values of the statistics.
The type of the statistics is defined by a 16 bits field and its possible values
are described in Table. 3.11. Beside the type field, there is also a flags field
that has no use in the 1.0 version of the protocol.

Statistics Description

The description type of a statistics message is used to communicate information
about the datapath manufacturer, hardware and software revision, the serial
number and a general description. Table. 3.12 summarizes and describes these
fields, which are included in the reply messages. The request has no body, it
is only composed by the type and the flags fields.
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Table 3.13: Structure of the body of the flow statistics message reply.

Field Length (bits) Description

Length 16 Length of this entry
Table ID 8 The ID of the table the flow

came from
Pad 8 Pad to align

Match 320 Fields to match and their
values

Duration Sec 32 The time the flow has been
active in seconds

Duration Nsec 32 Amount of nanoseconds that
the flow has been active

beyond the Duration sec time
Priority 16 Priority of the flow

Iddle Timeout 16 Number of seconds idle to
remove the flow entry

Hard Timeout 16 Number of seconds to remove
the flow entry

Pad2 48 Pad to align to 64 bits
Cookie 64 Controller-issued identifier

Packet Count 64 Number of packets in the flow
Byte Count 64 Number of bytes in the flow
Actions It depends on the

action
Actions to be performed with

this flow after a match

Flow Statistics

When the SDN controller wants to gather statistics from a concrete flow, it
must send in the request the fields that defines the flow (Table. 3.1) and the
table ID. In the reply, the datapath answer with the fields shown in Table. 3.13.
As regards statistics, the important fields are the number of packets in the
flow, the bytes of the flow and the time the flow has been active. This allows
calculating the bandwidth a concrete flow consumes easily.
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Table 3.14: Structure of the body of the flow statistics message reply.

Field Length (bits) Description

Packet Count 64 Number of packets in the flow sett
Byte Count 64 Number of bytes in the flow set
Flow Count 32 Number of flows that matched

Pad 32 Align to 64 bits

Table 3.15: Structure of the body of the table statistics message reply.

Field Length (bits) Description

Table ID 8 The ID of the table
Pad 24 Pad to align to 32 bits
Name 32 Name of the table

Wildcards 32 Wildcards to math flows that are
supported by the table

Max Entries 32 Max flow entries supported by the
table

Active Count 32 Number of active flow entries
Lookup Count 32 Number of packets looked up in this

table
Matched Count 32 Number of packets that matched with

a flow in this table

Aggregate Statistics

The request of aggregate statistics is almost the same of the flow statistics
request. The only differences are the type field of the statistics request and
the structure of the reply, which is shown in Table. 3.14. However, now the
match can return several flows, not only one. The reply indicates not only the
packets and bytes of the set of flows but also the quantity of flows that match.
This is quite useful to gather the statistics of a certain set of flows, like the
multimedia flows of a network.

Table Statistics

The SDN controller can also ask for the statistics of all the flow tables of a
datapath. The request has no body, while the body of the reply consists of an
array with the fields represented in Table. 3.15.
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Table 3.16: Structure of the body of the port statistics message reply.

Field Length (bits) Description

Port number 16 Port number
Pad 48 Pad to align to 64 bits

Rx Packets 64 Number of received packets in the port
Tx Packets 64 Number of transmitted packets

through the port
Rx Bytes 64 Number of bytes received in the port
Tx Bytes 64 Number of bytes transmitted through

the port
Rx Dropped 64 Number of packets dropped when

received
Tx Dropped 64 Number of packets dropped at

transmission
Rx Errors 64 Number of received errors
Tx Errors 64 Number of transmit errors

Rx Frame Errors 64 Number of frame alignment errors
Rx Over Errors 64 Number of packets with RX overrun
Rx CRC Errors 64 Number of packets received with a

wrong CRC
Collisions 64 Number of collisions

Port Statistics

Gathering statistics of an individual port of a switch is a useful feature that
can be easily implemented thanks to the port statistic message. The request
message indicates the port number of the desired switch port from which the
statistics are obtained. The fields of the reply are shown in Table. 3.16.. As
regards statistics, the most interesting fields are the related to errors and pack-
ets or bytes dropped. With those statistics, the loss rate can be calculated,
which is an important QoS measurement.
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Table 3.17: Structure of the body of the queue statistics message reply.

Field Length (bits) Description

Port number 16 Port number
Pad 16 Pad to align to 32 bits

Queue ID 32 Identifier of the queue
Tx Bytes 64 Number of transmitted bytes
Tx Packets 64 Number of transmitted packets
Tx Errors 64 Number of packets that are dropped

due to overrun

Table 3.18: Structure of the body of the packet-in message.

Field Length (bits) Description

Buffer ID 32 ID assigned by datapath
Total Length 16 Total length of the packet

In Port 16 Port where the packet was
received

Reason 8 Reason why the packet was
sent to the controller

Pad 8 Pad to align
Data It depends on the

packet
Packet

Queue Statistics

The OpenFlow protocol allows gathering statistics from a concrete queue of
a port. The body of the reply is the same than the one used in the port
statistics request, but it also contains the queue identifier. The body of the
reply is shown in Table. 3.17.

Packet-In Message

When datapath receive a packet and they send it to the controller, they use
the Packet-In message. This usually happens when a packet does not belong
to any flow entry. However, it can be the result of an action set in the flow
entry. The fields of the packet are shown in Table. 3.18.
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Table 3.19: Structure of the body of the packet-out message.

Field Length (bits) Description

Buffer ID 32 ID assigned by datapath
In Port 16 Packet’s input port

Actions Length 16 Length of the actions field
Actions 8 Actions to perform
Data It depends on the

packet
Packet

Table 3.20: Structure of the error message.

Field Length (bits) Description

Type 32 Type of error message
Code 16 Code of the error, depending

on the type of error
Data It may vary

depending on the
packet

Code of the error, depending
on the type of error

Packet-Out Message

The packet-out message is the one used by the SDN controller when it wishes
to send a packet out through the datapath. It is used usually as a response of
a packet-In message too. The structure of the message is shown in Table. 3.19.
The actions field is used to set an action to perform to that packet.

Error Message

When an error happens, the datapath needs to notify it to the controller. They
use the error message to detail the error. The structure of the error message
is detailed in Table. 3.20. There are two important fields in the error message,
the type of error and the code, which gives more detail of the error source.
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Figure 3.1: Handshake communication process.

Handshake Communication Process

In OpenFlow, the communication between a switch and an SDN controller
must begin with the handshake. This process is detailed in this subsection.

The handshake communication is depicted in Fig. 3.1. In this figure, the mes-
sages exchanged between the OpenFlow-enabled switch and the SDN controller
are shown. When an SDN controller is running, it listens connections to the
6533 TCP port. The switch sends to that port, and the IP address of the
controller (set by configuration) a hello Openflow message. Both sides indicate
the minimum version of the OpenFlow protocol they can manage. The version
used will be the lower of the two values.

The hello message is not the only message exchanged in the handshake commu-
nication process. The SDN controller must ask for the features of the switch.
This is done with the features request OpenFlow message. Once the switch
replies with the features reply message, the SDN controller can add the switch
to its list of devices and start working with it.
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3.1.3 Virtualization in SDN

One of the advantages of SDN is that allows abstracting the hardware and
network topology underlying. This make easier to manage the network and
to create network applications and standards. Although is out of the scope of
this work, network function virtualization (NFV) is a paradigm whose aim is
to provide virtualization network elements. Therefore, the hardware turns into
software applications, dunning in virtualized environments. NFV is studied to
be applied in technologies like mobile networks.

As regards SDN, there are some emulators and network software that is usually
used either in the network or in controller frameworks. Some of this software
is explained in this section.

Open vSwitch

Open vSwitch, or OpenvSwitch, is a software which virtualize a switch [152].
The switches emulated are compatible not only with several traditional network
protocols such as 802.1Q, STP, IPv6, GRE and so on, but also with OpenFlow.

The main components of Open vSwitch are ovs-vswitchd, which is the daemon
that implements the switch, ovs-dpctl, which configures the switch kernel,
ovsdb-server, which is a database server that is queried to obtain its configura-
tion, and ovs-appctl, a utility to send commands to the Open vSwitch daemons
that are running.

Moreover, Open vSwitch also provides some additional tools. The most im-
portant one is ovs-ofctl. It allows the user to control OpenFlow switches and
controllers. It can be used to test the performance of a virtualized SDN. More-
over, the ovs-testcontroller is a tool composed by a simple OpenFlow controller
that can be used for testing.

Open vSwitch provides an introduction of virtualization in networking [153].
However, along with SDN, it improves the capabilities of virtualization in data
centers [154].
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Mininet

Mininet [155] is an open-source SDN emulator. Mininet creates a realistic vir-
tual network [156]. It runs switches and applications on a single machine. That
is, a collection of end-hosts, switches, routers, and links on a single Linux ker-
nel. The host works like a real machine and they send packets through their vir-
tual interface. The network topology and configuration are defined by scripts
in Python. Moreover, links can be configured to set a certain bandwidth, de-
lay and loss rate. Therefore, Mininet becomes a useful tool for developers and
researchers to test systems or novel applications in SDN environments.

Mininet does not provide an SDN controller. It uses POX as a default controller
but if the researchers or the developers want to provide custom functionalities,
they have to add an adequate controller. For instance, if a specific switching
or routing is desired to be tested or to be applied to the virtualized SDN, that
module must be added to a controller. Mininet allows the communication with
a custom external SDN controller.

Mininet runs in Linux systems. It uses the default Linux bridge or Open
vSwitch to emulate switches. Moreover, network hosts are emulated as a Linux
machine, being part of the emulation host Linux system. Consequently, net-
work hosts share the file system and process identifier (PID) space. That means
the running daemons that require configuration in /etc are shared among the
hosts. This is a limitation that should be solved by the user connecting several
Mininet instances.

There is also a fork of Mininet that includes Wi-Fi Stations and Access Points.
Its name is Mininet-Wi-Fi [157] and it works exactly as the original Mininet.
It allows researchers or developers to test SDN with wireless host. Therefore,
the tests can be applied to more kind of networks.

Quagga

Quagga [158] is a routing suite for Linux systems. It allows implementing
several routing protocols such as OSPF or RIP to a virtualized network node
[159].

The architecture of Quagga is composed by a main core daemon called Zebra
[160], which abstracts the UNIX layer behind and provides an API. This API
is used by the clients that implements the different routing protocols. These
routing protocols run as daemons. They are configured either using a CLI or
writing a configuration file.
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Figure 3.2: Network architecture and interfaces of an SDN.

3.2 Architecture

The architecture of the SDN controller is explained in this subsection.

Fig. 3.2 shows the details of the general architecture of an SDN. This figure
depicts the different interfaces and the interaction between the SDN Controller
and the other elements of the network. In the figure, can be seen two API
called “Westbound” and “Eastbound” [161]. These are used to interconnect
SDN controller of different domains. The main reason is to provide SDN to
WAN. Nonetheless, these APIs are outbound of the scope of this work.

The general architecture diagram is shown in Fig. 3.3. Since the goal of the
controller is testing, in this chapter, the Northbound API to allow external
application to access to the core services is not addressed. The user can access
to a GUI, which is shown in Section 3.7. However, in chapter 4, where the
routing protocol is described, the possibility of using the Northbound API to
place the AI services and other applications is not denied.

56



3.2 Architecture

Figure 3.3: Custom SDN Controller Architecture.

There are three different modules in the architecture: the communication mod-
ule, the core services and the AI services. The communication with the datap-
ath is implemented with the OpenFlow standard. The communication module
is the module which implements this communication based on the OpenFlow
protocol. The core services present a topology discovery service, which cre-
ates a virtual map of the network topology. The user can also load a defined
topology from a text file to make quicker the tests.

Another important core service is the statistics analyzer. It uses the commu-
nication module to register statistics from the different nodes, flow tables, flow
or even ports. These statistics will be important for the AI services. The last
core service is the routing module. This last service implements the routing
protocol, explained in chapter 5.

57



Chapter 3. Design and Implementation of a Custom SDN Controller

3.3 Use Cases

From this subsection on, the design of the controller is presented. This design
has been done following the Unified Modeling Language (UML) [162]. The
functionality of the SDN controller is focused on providing a test environment.
Therefore, the user cases all test-oriented.

Fig. 3.4 shows the actors and the user cases. There are four different actors.
Firstly, we can find the network nodes. They can add themselves to the net-
work, making the connection to the SDN controller, test the connectivity with
the controller and ask action to perform when a packet arrives and it does not
match any flow entry. The second actor is time, which triggers a stat request
from the SDN controller to the network nodes. The routing module, the third
actor, can perform changes, which can be network changes or behavior changes.
If the change is a network change, the routing module needs to send flow mod
messages to perform the actions. This can be also done by a user, who can
send a single flow mod for testing purposes or can load a set of changes to be
performed. The user can get the stats too or load a topology when a closed
test is being performed.

Table. 3.21 shows the details of the user case “Add Node”. This is the case
when the network node asks the system to be added. That means, the node
starts with the OpenFlow handshake and the system must add it to its list of
nodes.

Table. 3.22 details the user case called “Test Connectivity”. This user case is
performed by a network node each time it wants to check if the SDN controller
is alive. For that purpose, it uses the OpenFlow messages “Echo Request” and
the SDN controller uses “Echo Reply”.

Table. 3.23 details the “Ask Action” user case. The network nodes can ask the
SDN controller which actions they should perform with a packet which does
not match any flow entry.

Table. 3.24 describes the user case “Stats Request”. This is a user case that is
activated when a certain amount of time has passed. The SDN controller uses
then the OpenFlow protocol to gather the statistics from the network nodes.
Then, the controller can update its data.

Table. 3.25 shows the details of the user case “Load Topology”. This user
case allows the user to load a topology. This is oriented to perform closed
tests, which have a predefined topology and the user knows the features and
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Figure 3.4: User case diagram
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Table 3.21: Details of Add node user case.

User Case Add Node

Preconditions None
Postconditions A new switch is now added to the system.
Description The node starts the communication with the controller

and it is added to its control network.

Event Flow

Actors’ actions Response of the
system

The node sends a Hello
Message

The system reads the
message and response
with a features request.

The node sends a
features reply

The system adds the
switch and send the
default configuration.

Table 3.22: Details of Test Connectivity node user case.

User Case Test Connectivity

Preconditions None
Postconditions None
Description The node sends an Echo Request to the node. If the node

does not do that, the controller removes the node from
the network.

Event Flow

Actors’ actions Response of the
system

The node sends an
Echo Request message.

The system replies
with an Echo Reply

message.
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Table 3.23: Details of Ask Action user case.

User Case Ask Action

Preconditions The network node has received a packet which does not
match any flow entry.

Postconditions A new flow entry is added to the flow table of the node.
Description The network node asks for an action to do with a specific

packet. The system responses with the action and add a
new flow entry.

Event Flow

Actors’ actions Response of the
system

The node sends a
Packet In message

The system decides the
action to be performed
and sends a Packet
Out and a Flow Mod

message.
The node performs the
action and modifies

the flow table.
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Table 3.24: Details of Stats Request user case.

User Case Stats Request

Preconditions None
Postconditions The stats are updated.
Description After an established period of time, the system updates

the statistics.

Event Flow

Actors’ actions Response of the
system

Triggers the gather
stats event.

The system asks the
nodes for the statistics

using OpenFlow.
When the system

gathers the new data,
it uses them to update

the statistics.

conditions of each network node. The user can provide a wrong-formatted file,
which ends up in the system returning an error message.

Table. 3.26 shows the details of the user case “Get Stats”. This action is per-
formed by the user to export the current stats gathered by the SDN controller
into text files. The stats are classified into Flow, Port, Node or Table stats.
Therefore, a file is created for each type of stats. The user can use these files
to check the network performance and extract graphs.

Table. 3.27 describes the user case “Load Changes”. The SDN controller can
perform a series of changes provided by the user. This is designed to quickly
prepare the flow tables of the network nodes, both in a test scenario and in
a working one. Since the user provide the changes in a file text, it may be
wrong formatted. If this happens, the system performs no action and returns
an error message.

Table. 3.28 shows the user case “Create Flow Mod”. The user can create a
flow mod message through the user interface of the SDN controller. The user
introduces the value of each field to send the flow mod. This is a slow way
to create changes in the flow table of the network nodes. However, it is quite
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Table 3.25: Details of Load Topology user case.

User Case Load Topology

Preconditions None
Postconditions The topology the user provided is set for the current

network nodes.
Description The user can load a file with the topology for the

network.

Event Flow

Actors’ actions Response of the
system

The user selects the
file he wants to load.

The system reads the
file and load the

topology.

Alternative
Event Flow

Actors’ actions Response of the
system

The user selects the
file he wants to load.

The system detects
errors in the file

format. Therefore, the
system does not load
any change and show a
message to the user.
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Table 3.26: Details of Get Stats user case.

User Case Get Stats

Preconditions None
Postconditions Files are written with the stats.
Description The stats are exported into several files.

Event Flow

Actors’ actions Response of the
system

The user requests the
current updated stats.

The system gets the
current data and

writes them into files,
attending to at which
element the data refers

to.

useful to test the capabilities of the system. If the user introduces wrong values,
the system does not send the message and returns an error.

Table. 3.29 describes the user case “Send Flow Mod”. It describes the process
where the SDN controller sends the OpenFlow “FlowMod” message to a specific
network node. This message can be provided either by the routing module or
by the user.

The last user case, “Perform Action”, is described in Table. 3.30. This user
case is performed by the routing module. When the routing algorithm decides
what action should be taken, this is notified to the SDN controller. After that,
the system performs the action. If it is needed, an Openflow Flow Mod is sent
to modify the flow tables on the nodes. The working of the routing protocol
is explained in the chapter 4.

3.4 Component and Class Diagrams

Once the user cases have been designed, the components and the classes that
implement the functionality defined in these user cases are created. In this
section, the diagrams containing their design are depicted and explained.
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Table 3.27: Details of Load Changes user case.

User Case Load Changes

Preconditions None
Postconditions The flow tables of the nodes contain the flows

provided by the user.
Description The user provides a text file with flows that the SDN

controller add to the tables of the nodes.

Event Flow

Actors’ actions Response of the
system

The user provides a file
with changes in the
network nodes’ flow

tables.
The system reads each
line of the file and
perform the actions

written there.

Alternative
Event Flow

Actors’ actions Response of the
system

The user provides a file
with changes in the
network nodes’ flow
tables, but with a
wrong format.

The system does not
perform the actions
and returns an error

message.
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Table 3.28: Details of Create Flow Mod user case.

User Case Create Flow Mod

Preconditions None
Postconditions A “Flow Mod” message is sent to a network node.
Description The user introduces the values of a “Flow Mod”

message and the SDN controller send the message to
the selected network node.

Event Flow

Actors’ actions Response of the
system

The user selects a
network node.

The system shows a
user interface where

the user can introduce
the values of a new
“Flow Mod” message.

The user introduces
the values of the

messages and click the
“Send” button.

The system sends the
message to the
network node.

Alternative
Event Flow

Actors’ actions Response of the
system

The user introduces
wrong values for the
“Flow Mod” message.

The system does not
send the message and

returns an error
message.
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Table 3.29: Details of Send Flow Mod user case.

User Case Send Flow Mod

Preconditions None
Postconditions A Flow Mod is sent to a network node.
Description The SDN controller sends an Openflow Flow Mode

message that the routing module or the user has provided.

Event Flow

Actors’ actions Response of the
system

The user or the routing
module provides the
system with the flow
mode and with the
destination network

node.
The SDN controller
search the destination

network node.
The system sends the
Openflow Flow Mod to

the selected node.
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Table 3.30: Details of Perform Action user case.

User Case Perform Action

Preconditions None
Postconditions None
Description The system receives an action from the routing module

and performs it.

Event Flow

Actors’ actions Response of the
system

The routing module
indicates the

recommended action to
the controller.

The system reads the
action and executes it.
If it is required, the
system may send

Openflow Flow Mod
messages.

On the one hand, Fig. 3.5 depicts the component diagram. In this diagram,
the different software blocks of the SDN controller are shown. Furthermore,
the classes that compose the components are listed and the relations between
the components are drawn. As can see in the picture, the SDN controller
developed is composed by the following modules:

• Core: it is the main component. It implements the SDN controller server,
the topology management, contains structures to store and manage data
of switches and events, implements the user interfaces described in section
3.6, manage the statistics and provide the interface for the communication
and for the routing.

• Openflow: this is the component that implements the OpenFlow protocol.
All the types of messages and structures needed from the OpenFlow 1.0
standard are located in this package. When the SDN controller needs to
send a message to communicate with the nodes, it creates messages by
using the classes of this component.

• JSON: in order to implement some functionalities, like loading a topology
or a list of events (“load changes” user case), the JSON text format is used
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Figure 3.5: Component Diagram.

(see[163] and [164]). JSON offers an easy way to parse the documents
into Java objects. This parsing procedure has been done with the org.json
library [165].

• Utils: contain utilities, like constants and configuration parameters of the
SDN controller.

This modular design allows replacing any of the components or adding more
easily. For instance, in order to add compatibility with OpenFlow 1.3, the
component OpenFlow would be replaced with a similar module with the classes
needed to implement the 1.3 version of the standard or would be completed
with those classes. It would be the same if in the future the parsing method
would be changed. Only the JSON component would be replaced.

On the other hand, Fig. 3.6 shows the class diagram of the core component.
In this diagram, the classes, some of their most important fields and methods
and their relationships with other classes are depicted.
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Before starting depicting the classes that compose the diagram, some points
must be taking into account:

• The class diagram refers only to the core component. Utils is a single-
class component and JSON is an external library whose design is not
related to this work. The OpenFlow component contains the classes for
the structures and packets described in chapter 1. They also contain
methods to write these messages in a socket and to read them from a
socket.

• The classes only show the most important attributes and methods in order
to save space and guarantee that the picture can be read. All the get and
set methods are not depicted, and the attributes used to the internal
working do not appear. The constructors are also omitted. Some names
of the methods are shorter than in the final implementation in order to
save space.

• Some relationships with other classes do not appear in the diagram to save
space. This is usually related to the packets the classes used, the use of
the Utils class or the use of the JSON library to parse the files. However,
the “StatisticsManager” class has some relationship that are indicated as
attributes. These omissions do not affect the sequence diagrams detailed
in the next section.

• Although the OpenFlow-component class diagram is not represented, all
the packets inherits from “OpenFlowPacket” class. Therefore, this class
can be referenced to indicate that any kind of packet can be used as
attribute or argument. “StatsReply” and “StatsRequest” classes are also
super classes for statistics.

As regards the classes, the most important ones are:

• Main: it is the class that contains the relations with all the other classes,
the first point in the program and it also implements the first frame, the
first user interface.

• SDNServer: implements the server, which interacts with the nodes and
with the other components and applications (implements the interfaces).

• SDNConnection: each connection from the server to a node or a set of
nodes. It is used to perform the communication. It contains the sockets
to send the messages.

70



3.5 Sequence Diagrams and Implementations Fragments

• Frame classes: they are the classes that implements the user interfaces.

• Topology: the class that stores the topology. Contains a list of nodes
and links between those nodes, with information about the performance
of those links and their status.

• Switch: the information about the nodes proportionated during the hand-
shake procedure it is stored there. Furthermore, an id is assigned.

• Event: this class is created to implement changes in the network. The
event contains a time when it will be activated and a list of packets and
nodes (destinations) to perform those changes.

• StatisticsManager: the statistics are requested and processed by the
“StatistcsManager” class. Each certain amount of time, this class send
statistics request to the nodes. The nodes reply with the statistics at that
time. Then, the “StatisticsManager” object stores these data and process
them to extract the statistics used to build the graphs in the experiments.

3.5 Sequence Diagrams and Implementations Fragments

In this subsection, the sequence diagrams are shown and described. These
diagrams show a general description of the implementation of the user cases.
Each diagram corresponds to one user case. In these diagrams, not only the
lifetime of the different classes that interacts in the user case appear, but also,
in some of them, the communication messages are depicted to. These messages
are implemented with sockets.

Fig. 3.7 shows the sequence diagram of the “Add node” user case. In this user
case, a network node asks to be added to the network. In the diagram, the
different messages and methods are depicted. First, the node sends a hello
message to the system. This message is received by a new “SDNConnection”
object that the “SDNServer” instance created when the socket was initialized.
This “SDNConnection“ object creates then a new “OpenFlowHeader” object
to represent the reply, a new hello message. This object is sent to the node as
a reply. After sending the hello message, the “SDNConnection” object sends
a “Features Request” message, which is represented by an OpenFlow header
too. The node responds with a “Features Reply” message, which contains the
capabilities of the node. The “SDNConnection” object stores the data into
a “FeaturesReply” object. After that, it creates a “Switch” object, with an
id and that contains the capabilities described in the “FeaturesReply” object.
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Figure 3.6: Class Diagram.
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Figure 3.7: "Add node" sequence diagram.

Finally, the switch is added to the list and a “SwitchConfig” object is created
to implement the “Switch Config” message, which is sent to the node to set the
default configuration of the node.

Fig. 3.8 shows the sequence diagram of the “Test Connectivity” user case. The
nodes can check whether the SDN controller is available or not. In order to
implement this, the “Echo Request” and “Echo Reply” OpenFlow messages are
used. Once again, an object of the “SDNConnection” class (now an existent
one) is the one which receives the message and answer to the switch with a new
“OpenFlowHeader” object, with the fields set to the values that the standard
specifies for an “Echo Reply” message. This message is sent to the node.

Fig. 3.9 describes the “Ask Action” user case. This user case is presented
when the switch, the network node, receives a packet and this packet does not
match any flow entry. It will depend on the implementation of the routing
protocol. One possible option it would be define a default action to perform.
Another solution would be asking to the routing module which action should
be performed. Regardless the policy of the routing protocol, a new “Action
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Figure 3.8: "Test connectivity" sequence diagram.

Header” object is created and inserted into a “PacketOut” object. This object
is sent to the node as a “Packet Out” message. With this message, the node
will know what action perform with all the packets that match the new flow.

Fig. 3.10 describes the “Load Topology” user case. The sequence diagram
starts with the user invoking the “ParseTopologyFrame” method on the “Topol-
ogyFrame” class. This is done through the frame, through the user interface.
When this method is invoked, the “TopologyFrame” instance starts parsing
the JSON file that contains the description of the topology. An example of
a topology described in JSON is shown in Fig. 3.11. The code that parses
this file into Java objects is shown in Fig. 3.12. This part has been excluded
from the sequence diagram for two reasons. Firstly, because it depends on the
JSON library. Secondly, because including this part would make the sequence
diagram hard to read.

As regards the sequence diagram, in Fig. 3.10 it is depicted than, when the
“TopologyFrame” parses the JSON file, it creates “Switch” instances, one for
each one described in the file. Then, this instance is added to the “Topology”
object. After that, it repeats the process with the links, adding the switches
described in the topology.
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Figure 3.9: "Ask Action" sequence diagram.
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Figure 3.10: "Load Topology" sequence diagram.

Figure 3.11: "Load Topology" JSON.
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Figure 3.12: "Load Topology" parsing code fragment.
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Figure 3.13: "Send Flow" sequence diagram.

Fig. 3.13 shows the sequence diagram of the “Send Flow Mod” user case. This
user case is included in other user case and it represents the functionality of
sending a message, in this case a “Flow Mod” OpenFlow message, to a de-
termined node in the network. When this action is received, by invoking the
“SendFlowMod” method in the “Main” class, the method “SendMessage” of the
“SDNServer” is called. The arguments of the method are the message that the
system want to deliver and the destination. The task of the server is searching
which is the connection of the destination. In this case, it starts checking the
different “SDNConnection” instances and ask them if the destination switch
is one of the nodes of that connection. In that case, it writes the message
in the socket and it stops searching. This stop helps to reduce the computa-
tion complexity of the algorithm. This process is shown in Fig. 3.14, where
the methods “SendMessage” of the “SDNServer” class and “FindSwitch” of the
“SDNConnection” class are shown. The “SendMessage” method is one of the
methods whose name is shortened in the class diagram.
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Figure 3.14: "Flow Mod" implementation fragment.

Fig. 3.15 shows the sequence diagram of the “Perform Action” user case. In
this user case, the routing protocol notifies to the SDN controller that a cer-
tain action must be implemented. However, it depends on the routing protocol
design, this action could need a “Flow Mod” message or not. It may be im-
plemented changing some configuration parameters or modifying the behavior
of some applications through the northbound API. However, if it implies net-
work changes, these are performed sending “Flow Mod” messages, in a process
described by the last sequence diagram.

Fig. 3.16 describes the diagram of the “Create Flow Mod” user case. The user
accesses to a different frame, a different user interface, to insert the data of a
“Flow Mod” OpenFlow message. When the user is done, invokes the “Send-
FlowMod” method. This method gathers all the data from the user and creates
the required structures to send the message. It creates an “OpenFlowHeader”
object, an “OpenFlowMatch” that filters the flow, and the “Flow Mod” object,
which represents the message. Once the data introduced by the user has been
processed, the rest of the sequence matches the one explained in Fig. 3.13.
Fig. 3.17 describes the “Load Events” user case. This user case is similar to
“Load Topology”. The user uses a frame to load a JSON file with a list of
“Flow Mod” messages. Fig. 3.18 shows an example of a JSON file used to load
changes in the network. The SDN controller parses the JSON file and creates
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Figure 3.15: "Perform Action" sequence diagram.

events for each change. These events have a timer (that appear in the JSON
file). Each event is a Java thread that sleep that amount of time. When the
thread awakes, it sends the Flow Mod that was parsed from the JSON file. In
order to do that, the procedure described in Fig. 3.11 is used.

Fig. 3.19 shows the sequence diagram of the “Request Stats” user case. This
user case represents a functionality that is executed each certain amount of
time. In order to do that, the “StatisticsManager” class runs in a sepa-
rate thread and it awakes to send the requests to the nodes. It asks to the
“SDNServer” object for the available connections and for each connection it
gets the nodes. Then, the “StatisticsManager” object request stats for each
node and for each port the node has. Furthermore, the “StatisticsManager”
may contain a set of flows which are monitored constantly (this depends on the
routing protocol). Consequently, if those flows exist, the “StatisticsManager”
object will send “Flow Statistics Request” messages too. When the nodes reply
with the statistics, the “StatisticsManager” stores the data.

Fig. 3.20 depicts the sequence diagram of the “Get Stats” user case. This is the
user case that represents the export procedure of the statistics gathered by the
“StatisticsManager” class. This class is consulted when the user, by the user
interface of the “StatisticsFrame” class, activates the export of the statistics.
Then, all the data that is gathered from the nodes is exporter to several files.
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Figure 3.16: "Create Flow Mod" sequence diagram.
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Figure 3.17: "Load Changes" sequence diagram.
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Figure 3.18: "Load Changes" JSON.

83



Chapter 3. Design and Implementation of a Custom SDN Controller

Figure 3.19: Request Stats sequence diagram.

In order to make easier the analysis of the data, the statistics for the same flow
are exported to the same file, and the statistics obtained from the nodes are
divided, each file contains the data of a single node.

These sequence diagrams represent the functionality in the design phase of the
SDN controller. Some of this functionality needs the interaction of the user.
This interaction, implemented by the frame classes, is produced through user
interfaces. The design and implementation of these user interfaces is discussed
in Section 3.7.
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Figure 3.20: Get Stats sequence diagram.

3.6 Topology Discovery Process

In this section, the mechanism used for the SDN controller to discover the
network topology is described. This is one of the requirements of every SDN
controller and it plays an extremely important role in the routing proposal
described in the next chapter.

In order to discover the topology, the SDN controller uses the Link Layer
Discovery Protocol (LLDP) and the Address Resolution Protocol (ARP). The
LLDP is used by the switches to exchange information between them. This
can be used to discover the neighbors of a specific switch. Therefore, when the
SDN receives a “Features Reply” message, and the handshake is over, it sends
a “Flow Mod” message to force the switch to send every LLDP message to the
controller. Hence, when a LLDP message is sent from a switch to the controller,
the SDN controller add a link between those switches in the topology.

With this mechanism, the SDN controller knows every connection between
two switches. However, in order to discover the hosts, the ARP protocol is
needed. Following a procedure like the one regarding LLDP, the controller
sends a “Flow Mod” message to force the switch to send the ARP requests and
replies to the SDN controller. When the “Packet In” message with the ARP
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is received, the SDN controller add to a custom-made ARP table the mac and
IP of the host, along with the port where the new host is connected.

Both mechanisms can be complemented with a “Packet Out” message sent to
each switch for each protocol. This forces the switches and hosts to send the
LLDP and ARP packets. This is useful when the controller is not ready to
work with already-working networks or the switches are not programmed to
use the LLDP by default.

With this information, the topology is automatically built. This mechanism
can work together with the load topology user case. When the topology is
loaded by the user, the previous topology is overwritten.

3.7 User Interfaces

The user interfaces are added to the SDN controller to make easier the opera-
tion of the user. They were designed taking into account the final goal of the
SDN controller, which is to provide an easy-to-use tool to test SDN networks
and solutions.

Fig. 3.21 shows the main interface of the SDN controller. It is composed by
a log textbox, where the user can see different messages about server status,
messages received and errors during execution. There is a button to clear the
log. Next to the button, it appears a textbox with a list of nodes. This list is
filled during the execution, with the nodes in the network. In Fig. 3.22, some
nodes are shown. The SDN give an ID to the nodes and the MAC also appears
in the textbox. Lastly, there are some buttons. The last one is to close the
SDN controller.

The rest of the buttons open other user interfaces. The first one is used to
send an OpenFlow flow mod message to a specific node. The node is selected,
like in Fig. 3.22, and then, the user clicks the “Send Flow Mod” button. The
other user interfaces do not need a node to be selected.

If the user presses the “Send Flow Mod” button with a node selected, the user
interface of Fig. 3.23 is shown. There, some formularies are presented to the
user so that they can use them to prepare a flow mod message. Due to the
huge quantity of fields that message has, only the most important ones are
shown. Despite the fact that the user then can test the behavior of the nodes,
this interface is mainly used for development issues.
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Figure 3.21: Main interface.
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Figure 3.22: Main interface with a list of nodes.
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Figure 3.23: Send Flow Mod interface.
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Figure 3.24: Load Changes interface.

In order to test an entire network or specific systems or algorithms, the load
changes user interface is introduced. This interface, shown in Fig. 3.24, allows
the user to load a JSON file to perform a set of changes in the network. The
JSON file format is shown in Fig. 3.18. Each change in the network is defined
by an OpenFlow packet, set to a destination in an interval of time. The user
can prepare all the changes they need in advance and test it loading the changes
from the JSON.

When the user clicks the “Load File” button, a new window pops up to allow
the user to load the file. This window is shown in Fig. 3.25. The user selects
the file they want to use. Then, the “Current Changes” textbox is filled with
the changes performed by the controller. If some error with the values is found,
it will be prompted in the textbox. Likewise, if the file contains format errors,
a message is shown in the textbox and no changes are performed. The user,
then, can correct the mistakes and load the file again.

Another user interface, shown in Fig. 3.26, is the Load Topology interface.
The user can open this interface through the “Topology Manager” in the main
interface. The interface provides a textbox called “Current Topology”, that
shows the topology of the network, and a “Load Topology” button. This button
opens a window like the one shown in Fig. 3.25 to allow the user to load a
JSON file with the topology. The format of the JSON file is the one described
in Fig. 3.11. Like what happened in the last interface, if the topology file
contains errors, those will be prompted in the textbox.
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Figure 3.25: Load File window.
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Figure 3.26: Load Topology interface.

Figure 3.27: Statistics Manager interface.

The last interface accessible through the main interface is the Statistic Man-
ager. This user interface, which is shown in Fig. 3.27, can be used to change
the state of the statistic gathering. At the beginning of the execution, the SDN
controller does not collect any data from the nodes, except the one needed to
work. When the user presses the “Start Statistic Manager”, the SDN controller
starts running and it periodically gathers statistics from all the OpenFlow-
enabled nodes in the network. The user can stop the statistic gathering or
even reset it, to erase all the data the SDN controller had collected so far. The
last button is used to export the data in several .csv files to be analyzed by
the user.
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Figure 3.28: Linear Topology.

3.8 Performance Evaluation

In this section, a performance evaluation of the SDN controller is presented.
This evaluation is done based on the resources consumed by the SDN controller,
in terms of RAM memory and CPU.

The SDN controller is tested against Floodlight performance. In order to do
that, several networks have been emulated in Mininet. The emulation is run
in an Asus laptop with a CPU Intel Core i7-55000U 2.40GHz CPU and 8GB
of RAM. The networks emulated correspond to different topologies. In each
topology, the size is increased. For each size, the percentage of CPU and
RAM used by the controlled is obtained through a 1-minute-long execution.
The minimum, average and maximum values are compared in each scenario.
Next, the different topologies and the results obtained in each one of them are
discussed.

3.8.1 Linear Topology

The linear topology is the simplest one. It consists of connecting the elements
of the network one after other. Fig. 3.28 depicts the structure of this topology.
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Figure 3.29: Minimum RAM used in linear topology.

The Mininet emulator allows setting the number of switches in the network.
Let s be the number of chosen switches in the network, the number of hosts
and links are defined by equations (3.1) and (3.2), respectively.

H = S (3.1)

L = 2S − 1 (3.2)

In the experiment, the number of switches increased from 2 to 128. Fig. 3.29
shows the evolution of the minimum percentage of RAM used by both con-
trollers. The results obtained show that Floodlight has a greater minimum
RAM usage than the custom SDN controller. Furthermore, this minimum
RAM is increasing depending on the number of switches in the network, which
also determines the size of the network in terms of hosts and links used. With
a number of switches from 2 to 8, the minimum percentage of RAM used by
the custom SDN controller varies from 1 to 2.4%. Floodlight presents values
from 4.7 to 6%. This difference is increased when the number of switches is
from 32 to 128. In this case, the custom SDN controller presents minimum
values around the 2% and Floodlight from 7.7 to 20%.
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Figure 3.30: Average RAM used in linear topology.

Fig. 3.30 depicts the average percentage of RAM used by both controllers
depending on the number of switches. The graphic shows that Floodlight con-
sumes more RAM than the custom SDN controller. Once again, the difference
is greater with more switches in the network. With a low number of switches
(2-16), the Floodlight controller wastes an average of 5.12-7.13%, while the
custom SDN controller uses an average of 1.05-2.4%. When the number of
switches is higher, from 32 to 128, Floodlight presents an average of 8-23%
and the custom SDN controller around 4%.

As regards the maximum RAM used by the controller, Fig. 3.31 shows that
there are not big differences with the previous results. With a low number of
switches, the custom SDN controller wastes a maximum RAM percentage of
1.1-2.4% while Floodlight from 5.3% up to 7.1%. On the other hand, with the
number of switches from 32 to 128, the maximum RAM used by Floodlight
increases to 8.1-25.4% and the maximum RAM used by custom SDN up to
3.2-5.1%.

Fig. 3.32 shows the evolution of the minimum percentage of CPU used by both
controllers. While Floodlight consumes quite a constant minimum quantity of
CPU (from 2.88-3.48%), the custom SDN controller presents an increment
of minimum CPU consumption when the number of switches increases. The
controller consumes a minimum CPU of 1-3.97% with 2-32 switches. Neverthe-
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Figure 3.31: Maximum RAM used in linear topology.

less, this minimum quantity is increased up to 9.11-16% with 64-128 switches.
These results show a more constant initialization from Floodlight.

In terms of average CPU consumed, Fig. 3.33 depicts the evolution of this con-
sumption presented by the controllers. Both controllers show an increment of
the CPU consumed along with the number of switches. Floodlight consumes an
average of 3% with 2-8 switches and 4.5-17.2% with 16-128 switches. Custom
SDN shows a more irregular increase. With a low number of switches, 2-8, the
controller consumes an average of 3.9-6%. However, with 16-128 switches, the
custom SDN controller consumes an average CPU between 14.1% and 35.32%,
higher numbers than the ones presented by Floodlight.

The maximum CPU used with different number of switches in the linear topol-
ogy is depicted in Fig. 3.34. The maximum CPU consumed by Floodlight
remains in low levels, around 3.5%, from 2 to 8 switches. When the number
of switches is increased up to 16, the maximum CPU values increases too up
to 11.1%. And when it is increased up to 128, the maximum increases up to
33.68%. On the other hand, the custom SDN controller shows an earlier incre-
ment of maximum CPU usage. With 2 and 4 switches, the maximum value is
5.3% and 4%, respectively. However, with 8 switches is 11.32%. With 16-128
switches, the maximum percentage of CPU used is from 36.13% to 39.41%.
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Figure 3.32: Minimum CPU used in linear topology.

Figure 3.33: Average CPU used in linear topology.
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Figure 3.34: Maximum CPU used in linear topology.

3.8.2 Tree Topology

The next tested topology is the tree topology. In this topology, the nodes of
the network are arranged like the branches of a tree. Mininet introduces a
tree topology like the one shown Fig. 3.35. The last switches of the tree are
connected to the hosts.

The Mininet emulator allows setting the depth of the tree. It allows setting
the width too, but in this work, the width will be 2, the minimum, and the
depth will vary. Depending on how deep the network is, the number of nodes
interconnected will increase. Let d be the depth of the tree. The number
of switches, hosts and links are defined by equations (3.3), (3.4) and (3.5),
respectively.

S = 2d − 1 (3.3)

H = 2d (3.4)

L = 2S (3.5)
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Figure 3.35: Tree Topology.

For the experiments, the depth of the tree was varied from 2, the minimum
accepted by Mininet, to 7. Again, the percentages of CPU and RAM used,
minimum, average, and maximum, were gathered. Fig. 3.36 shows the mini-
mum RAM used, in percentage, by the controllers. The custom SDN controller
achieves a good minimum usage of RAM between 1.1% and 2.1%. Floodlight,
on the other hand, presents a significant increment of the minimum RAM used.
With a tree depth of 2-4, Floodlight consumes a minimum RAM percentage
of 4.2-6.2%, while with a tree depth of 5-7, this consumption is increased to
7.3-19.4%.

Fig. 3.37 depicts the average RAM used during the execution by both con-
trollers. This case is quite similar to the last one. The custom SDN controller
has a lower RAM consumption, although, this time, it increases more its con-
sume when the depth of the tree increases too. The values for a depth of 2-4
are around 1.8%, while with 5-7 they go from 3.1% to 5.15%. The increment
of these values is higher with Floodlight, consuming between 4.3% to 6.6% for
depths of 2-4 and 8.5% to 24.07% from 5-7.

The maximum RAM used by the controllers presents a similar tendency to the
average RAM used. This can be appreciated in Fig. 3.38. In the maximum
percentage of RAM, the custom SDN controller starts with a consumption of
1.3-2.3% for depths from 2 to 4. This consumption is raised up to 3.5-7%
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Figure 3.36: Minimum RAM used in tree topology.

Figure 3.37: Average RAM used in tree topology.
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Figure 3.38: Maximum RAM used in tree topology.

for depths from 5 to 7. Floodlight shows again a remarkable increment of
consumption, with percentages of 4.6-6.8% for depths from 2 to 4 and 8.9-
25.5% for depths of 5 to 7.

As regards CPU, Fig. 3.39 shows the minimum CPU percentage used by both
controllers. In this case, both controllers show a similar consumption. The
custom SDN controller shows minimum CPU consumptions of 0.3-2.76% for
depth values of 2-4 and consumptions of 0.3-15.12% when the depth of the tree
is from 5 to 7. The values from Floodlight are 3.08-3.28% when the depth is
from 2 to 4 and 3.01-13.43% for depths of 5-7.

More interesting are the values of the average CPU consumptions, shown in
Fig. 3.40. In this case, although both controllers present an increasing ten-
dency, the values of the custom SDN controller are higher. These values are
19.75-23.86% for depths from 2 to 4 up to 17-33.87% with depths of 5-7. The
values from Floodlight are 3.16-4.47% when the depth is from 2 to 4 and 5.31-
23.6% for depths from 5 to 7.

Finally, in Fig. 3.41, the maximum CPU consumption values are shown. The
graphic shows that the Custom SDN controller presents higher CPU consump-
tion peaks. These are quite constant, between 34.46% and 39.7% during all
the executions. Nonetheless, Floodlight presents lower maximum CPU values
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Figure 3.39: Minimum CPU used in tree topology.

Figure 3.40: Average CPU used in tree topology.
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Figure 3.41: Maximum CPU used in tree topology.

with depths from 2 to 4, from 3.28% to 5.62%. The values for depths from 5
to 7 are between 14.03% and 32.57%.

3.8.3 Torus Topology

The last topology tested is the torus topology. In this topology, the network
nodes are connected forming a mesh. Fig. 3.42 shows an example of this kind
of topology. Each switch is connected to a host. The dotted or scattered lines
represent connections between the edge nodes of a row or a column.

This topology presents a high redundancy, interconnecting the different layers
of the mesh. The Mininet emulator allows setting the size of the mesh. Let m
be the size of the mesh, the number of hosts, switches and links are defined by
equations (3.6), (3.7) and (3.8), respectively.

S = m2 (3.6)

H = m2 (3.7)
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Figure 3.42: Torus Topology.

L = 3m2 (3.8)

In the test, the size of the mesh was increased from 3 to 9. Again, the val-
ues of minimum, average, and maximum CPU and RAM consumptions were
compared. Fig. 3.43 depicts the minimum RAM used during the execution
by both controllers. Custom SDN shows constant minimum values regard-
less the size of the mesh. Its values fluctuate between 2.1 and 2.7%. However,
Floodlight presents a minimum RAM usage between 6.2% and 19.42%, varying
significantly depending on the size of the mesh.

Fig. 3.44 shows the average RAM used. Both controllers present different
average RAM usage with the increment of the size of the network. Nevertheless,
Floodlight increases it when the size of the network increases. It starts with
6.2-18.18% with a mesh of 3-5 layers and increases up to 12.1-19.425% with
a mesh size of 6-9. The custom SDN controller, however, presents its highest
average RAM usage with a size of 3 (10%) and decreases, 2.7-5.76% with a
size of 4-6 and 2.175-5.575% for sizes from 6 to 9.

The behavior of the average RAM consumption is also found in the maximum
values of RAM usage. In Fig. 3.45, those values are depicted. Floodlight
increases again the maximum RAM consumption from 6.2% to 18.1% with
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Figure 3.43: Minimum RAM used in torus topology.

Figure 3.44: Average RAM used in torus topology.
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Figure 3.45: Maximum RAM used in torus topology.

lower sizes, from 3 to 6, up to 13-19.425% for sizes from 6 to 9. The custom
SDN controller presents higher peaks of RAM usage with low sizes too, from
2.9% to 15.6%, for sizes from 3 to 6, up to 2.2-7.3% for higher sizes, from 7 to
9.

In terms of CPU usage, the next figures show the differences between the
controllers. Fig. 3.46 shows the minimum percentage of CPU used by the
controllers. Floodlight presents lower minimum values, especially with small
sizes of mesh, from 3 to 5, when Floodlight consumes 2.74-6.79%. With sizes
from 6 to 9, the CPU minimum consumption increases from 4.59% to 24.54%.
The custom SDN controller presents a minimum CPU consumption of 13.38-
32.35% for sizes from 3 to 5 and 28.95-33.89% for sizes from 6 to 9.

The average CPU used during the execution by each SDN controller is depicted
in Fig. 3.47. Floodlight shows lower average CPU consumption values than
the custom SDN controller. Floodlight also presents an increment, from 7.2-
18.97% with sizes of 3-5 up to 24.64-30.6% for sizes of 7-9. On the other hand,
the custom SDN controller has a more constant CPU usage, regardless the size
of the mess, with consumptions from 32% to 36.85%.

Finally, Fig. 3.48 represents the maximum peaks of CPU usage for both SDN
controllers. The values are similar for both controllers. Floodlight has peaks
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Figure 3.46: Minimum CPU used in torus topology.

Figure 3.47: Average CPU used in torus topology.
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Figure 3.48: Maximum CPU used in torus topology.

of consumption of 24.62-31.2% for sizes from 3 to 5 and peaks of 31.11-36%
for sizes from 6 to 9. The custom SDN controller presents maximum values of
36.8-38.85%.

3.9 Conclusion

In this chapter, the following points have been addressed:

• A SDN Background has been discussed. This helps the reader to under-
stand the technical details of SDN and Openflow. Thanks to that, the
next points of the dissertation can be easily understood.

• The SDN controller has been introduced. First, the general goal of this
SDN controller and its architecture has been discussed. Then, the design
details have been shown: user cases, class diagram, sequence diagrams
and code fragments.

• The topology discovery process has been discussed. Moreover, the GUI
of the SDN Controller have been shown and described.
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• A performance evaluation of the SDN controller has been shown so as to
demonstrate the capabilities of the controller in terms of CPU and RAM
consumption.

The SDN controller developed and described in this chapter is the base from
all the rest of the proposal is built on. Therefore, all the proposals described
in the next chapters uses the SDN controller software detailed in this chapter.
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Chapter 4

Routing Proposal

4.1 Introduction

In this chapter, the routing protocol that implements the solution of this work
is proposed. The chapter consists of two main sections. On the one hand,
a modification of the well-known OSPF routing protocol is discussed. This
modification takes advantages of the capabilities of SDN to improve the mul-
timedia transmission. On the other hand, a completely novel routing protocol
is proposed as the final solution. This protocol is designed from scratch taking
into account the possibilities of SDN technology.

However, first we need to introduce the architecture of the SDN network. Since
the architecture used is SDN-based, the routers are SDN nodes, i.e. OpenFlow-
enabled devices. Besides, there is a central controller, whose aim is to manage
the entire network, obtaining the current state of the network and making
orders to the nodes. To this usual SDN architecture, an AI module is added.
It is in constant communication process with the controller and it is used in
order to get the cost of the different possible paths in routing decisions. This
architecture is shown in Fig. 4.1. On the left side, the difference between
the controller and switches is shown, and their interaction using OpenFlow is
displayed. On the right side, the network architecture shows the connection
between the different actors in the SDN architecture.
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Figure 4.1: Elements and network of the proposed architecture.

4.2 Dynamic OSPF Adaptation

In this section, the proposal of adapting OSPF to SDN multimedia transmis-
sion is detailed. First, the proposed routing protocol is described. Later, the
messages are shown. Finally, the algorithm and messages exchanging process
are discussed. Finally, an evaluation of the proposal is provided.

4.2.1 Routing Proposal

Routing algorithms can be depicted in several blocks attending to the different
functions. Those blocks are shown in Fig. 4.2. The first module, painted
in purple, is the one that builds the routing tables. OSPF is based on link
state algorithm. The second one is the group of messages and communication
process that provides the possibility to the protocol to work. The messages are
exchanged between the routers. The green one contains the metric calculation.
Depending on the protocol, the metric calculation can slightly vary. However,
there is always a determined formula to calculate the cost of the links. Finally,
the protocol has other determined process and functions to bring some new
working ways. For instance, OSPF can manage administrative areas.
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Our proposal modifies two of those four modules, changing and expanding
their function. The new structure is detailed in Fig. 4.3. The figure is quite
similar to the one explaining the structure of OSPF. The same four modules
(Routing Table, Messages and Communication, Metrics Calculation and Other
Protocol Functions) are defined. However, as can be observed, some of these
modules have been modified. The routing table creation algorithm has been
split into two different modules that offer the same function. The link state
algorithm has not been modified, but a new module called “Link State Dynamic
Checking” has been added to the route table creation. This module has been
introduced thanks to the possibilities given by the SDN. The nodes are able
to gather the statistics of the flows sent through the different paths and send
them to the controller. So it allows the SDN routing protocols to make use of
actualized link state data. It increases the possibility of adapting the routing
protocol to the current state of the network and the changes produced in the
network.

Figure 4.2: Routing protocol structure.

This possibility is quite important to choose the best path for all different
kinds of traffic, but especially for multimedia traffic, due to the possibility to
not only to avoid links down or links state changes. In addition, it can be used
to get the evolution of the links utilization and be able to apply decisions to
ensure minimum QoS (and QoE) levels. These levels show the quality of the
multimedia communications.
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Figure 4.3: New routing protocol structure.

The other important change introduced by the proposal is the modification of
the metric calculation. OSPF uses the formula shown in (4.1) to calculate the
cost of each link.

Cost =
108

Bandwidth(bps)
(4.1)

OSPF uses the bandwidth of the links to calculate the cost. However, when
the protocol is especially designed for multimedia traffic, there are some other
variables that must be considered. Those variables are the QoS factors, which
are closely related with the quality that the user perceives. In (4.2), the EIGRP
metric formula is shown [143].

Cost = [K1 ∗BW +
K2 ∗BW
256− load

+ (K3 ∗ delay)] ∗ K5

reliability +K4
(4.2)

It uses several QoS factors like bandwidth, calculated as in (4.3), delay and
loss rate. The coefficients K1-K5 are used to take into account the factors or
not.
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BW =
108

Bandwidth(bps)
(4.3)

Usually, the EIGRP metric is calculated as in (4.4), taking 1 as the value of
the coefficients K1 and K3 and 0 for the others. Therefore, K1-K5 coefficients
act as weights for each QoS factors. EIGRP uses only bandwidth and delay as
QoS factors.

Cost = BW + delay (4.4)

Our proposal also considers different QoS factors, calculating the cost as in
(4.5).

Cost =
K1 ∗ 108

C.Bandwidth(bps)
+K2 ∗Delay +K3 ∗ losses (4.5)

This equation has been designed to take into account the main QoS factors,
due to the main role played by the multimedia traffic in the proposal.

The equation is composed of two main elements: a set of QoS factors (band-
width in bps, delay in seconds and loss rate in percentage) and another one of
constant values (K1, K2 and K3). The calculation of these two factors are quite
different and it is indicated in Fig. 4.3, separated in two different modules.

On the one hand, we have the QoS factors. In the OSPF equation, the band-
width is a constant, it is the maximum quantity of data that can be sent per
second through a specific link when the route table is established. This value
does not change unless a topology change happens. In the proposal, there are
two changes from the OSPF metric calculation. First, the bandwidth, just
as the other QoS factors, it is time-depending. Its values change along the
time. They are based on the statistics provided by the nodes and the con-
troller. These values are dynamically changing, an important fact to maintain
QoS and QoE levels in multimedia communications. The other difference is
the meaning of the factors. Bandwidth, for being calculated in a dynamical
way, is based on the current bandwidth, not the capability of the link. This
allows applying techniques like load balancing to avoid a QoE falling, making
a better management of the network resources. This is possible because of the
use of SDN and the statistics gathering of the nodes in every flow that goes
through each link.
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On the other hand, regarding the coefficients, they are used to increase the
weight of some factors depending on the main traffic in the network. Ob-
serving the formula, it seems that bandwidth can be the most important QoS
factor because it affects in the greatest way to the cost. But it depends on
the coefficient’s values. For example, if the network is being used for video
streaming under demand, the importance of the available bandwidth is really
greater than the delay. So, K1 should be greater than K2. Otherwise, if the
main traffic in the network is multimedia streaming, the weight of the different
factors should be similar. Finally, the network could be used for VoIP, where
the delay is a crucial factor. In that case, K2 should be greater than K1. The
fact of varying the method used to calculate the path cost can improve the
performance of the network. This variation is produced by the AI module, in
the controller. The AI module will set different values to the coefficients in
order to get the best performance in terms of QoS. The SDN controller will
manage the different kind of traffic associating them to some categories. This
will allow the controller to label the flows and be aware of the main traffic in
the network. There are two ways of working with these categories. On the one
hand, the category related to the greatest quantity of flows can determine the
values of the metric factors. On the other hand, for each flow the system can
use the metric values related to the category it has been labeled to.

In conclusion, SDN brings us the possibility to modify the routing algorithm to
get dynamically the cost of each path, being able to change the metric formula
depending on the state of the network. To achieve this, it is important to be
able to use some structure like the flow table that associates the different flows
in the network with the kind of traffic that is composed by. Moreover, it is
necessary to be able to have in memory the factors of the different categories for
avoiding re-sending messages when the category used in the network changes.

4.2.2 Metric Analysis

Once the formula of the metric proposed has been discussed, an analysis of
this metric is described in this subsection. First, the aim of the system is that
the coefficients are determined by the AI module, during a learning process.
However, the design of the equation is a result from a specifically chosen balance
between its factors that is described in this subsection.

In the first place, the available bandwidth must be placed as a denominator
and the delay and loss rate as nominators. The use of the Dijkstra algorithm
and the cost as a metric to be measured, implies that the greater the cost,
the worse the path is. So, the bandwidth must reduce the cost of the path.
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Regarding the delay and the loss, the decision is that they affect to the cost
in a similar way to the bandwidth in the initial point. Then, the AI module
will change the coefficient values and will adapt the metrics to the different
categories. Thus, an analytical method has been performed to determine an
acceptable set of coefficient values. The values chosen for the coefficients are
K1=1, K2=0.5 and K3=5. Fig. 4.4, Fig. 4.5 and Fig. 4.6 show the possible
values of the cost for different bandwidth, loss rate and delay.

Fig. 4.4 shows the values of the metric when the links of the topology have a
bandwidth of 10 Mbps. The different loss rate tested form different lines in
the graph. From the blue line, with 1% of loss rate, to the yellow one, with
10%, the cost obtained with the formula is displayed for different delay values.
The delay values increase from 10ms to 3000ms. With the minimum delay, the
costs obtained are 15.5, 25.5, 35.5 and 60.5 for 1%, 3%, 5% and 10% loss rate
respectively. With 1s of delay, the cost values are 65, 75, 85, and 110. Finally,
with 3s of delay the values are 165, 175, 185 and 210.

Figure 4.4: Cost per delay and loss rate with a bandwidth of 10Mbps.

Fig. 4.5 shows the values obtained for a topology with 100 Mbps of available
bandwidth. The increments of delay and loss rate are the same than in the
previous graph. With the minimum delay, we have 15.5 of cost when there is
1% of loss rate. With 3% of loss rate, the cost is 16.5, 10 points more than
with 1% of loss rate. Finally, with 5% and 10% of loss rate the cost values are
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26.5 and 51.5 respectively. The increment of the bandwidth from 10 Mbps to
100 Mbps is balanced with a 2% increment of loss rate. With 1s of delay, cost
values are 56, 66, 76 and 101. Finally, with 3s of delay, cost values are 156,
166, 176 and 201. And with 210ms, the cost with 1% of loss rate increases from
6.5 to 16.5. So, the increment of 200ms of delay is equivalent to the increment
of 2% of loss rate.

Figure 4.5: Cost per delay and loss rate with a bandwidth of 100Mbps.

Fig. 4.6 displays the cost with 1000 Mbps. The minimum cost is reduced
to 5.6 when there is 1% of loss rate. This is a reduction of only 0.9 points.
This is caused when there are different paths to choose with high bandwidth.
The differences between these bandwidths are not relevant, and the other QoS
factor reduction must be taken into account. These QoS factors, delay and
loss rate must be the differential factor in these cases. The other cost values
with minimum delay are 15.6, 25.6 and 50.6 with 3%, 5% and 10% respectively.
With the minimum delay, the costs are 15.5, 25.5, 35.5 and 60.5 for 1%, 3%,
5% and 10% loss rate respectively. With 1s of delay, the cost values are 55.1,
65.1, 75.1 and 100.1. Finally, with 3s of delay the cost values are 155.1, 165.1,
175.1 and 200.1.

These graphs demonstrate that, initially, the coefficient factors are balanced.
Therefore, the network can work properly and the AI module will adjust the
coefficients depending on the use of the network and changing between the
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Figure 4.6: Cost per delay and loss rate with a bandwidth of 1000Mbps.

different categories. That is possible thanks to the messages described in the
next subsection.

4.2.3 Messages

In Fig. 4.7, the structure of the messages exchanged between the SDN controller
and the nodes is described.

The messages are detailed below:

• Categories_init: initialize the algorithm, indicating the number of traffic
categories that is going to be used.

• Categories_use: notifies the category that is going to be used as a refer-
ence to calculate the cost of the path.

• Categories_factors: the factors used in a specific category. It is mainly
used to actualize the values of the factors in a category. The category
and the values of the three factors are indicated.

• Flow_label: used to assign a specific category to a flow. Useful to treat
some flow in a specific way, which is optional and allows each kind of
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traffic flow to be treated with a different metric, not with the category
associated to the majority of the traffic. Due to this optional ability, the
first byte of the Flow_ID field is zero if the flow will not be treated with
its own category metric, which is the normal behavior. Otherwise, the
first byte is set to ones to indicate that the flow must use the metric of
its category, even the category used is another one.

Figure 4.7: Messages structure.

4.2.4 Algorithm and Process

In this subsection, we describe the algorithm and the messages flow in order to
manage the factors and the categories. Algorithm 4.1 describes the category
management process used by the controller.

First, the algorithm initializes the structures needed to manage and identify the
main kind of traffic in the network. Then, a Categories_init message is sent to
communicate the number of categories that is going to be used. For each cat-
egory, a Categories_factors message is sent. This message includes the initial
factors values that will be used when that category is being treated. More-
over, if the initial category is not the first one in being sent, a Categories_use
message is sent from the controller. Later, the AI module is prepared. It will
start to change all the factors of the initial category to find the most accurate
balance between them. This change is done every specific period of time and
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Algorithm 4.1

Given: Categories, Cat_initial

Initialize_Categories()
Send Cat_Init()
Foreach Category in Categories do

Send Categories_factors()
End For
If Cat_initial != DEFAULT do

Send Categories_use()
End If
AI_Initialize(Cat_initial)
Cat_Prev = Cat_initial
Foreach new iteration

If Cat_Current != Cat_Prev do
AI_Change_Category(Cat_Current)

End If
AI_Get_Factors()
Send Categories_factors()
Cat_Prev = Cat_Current

End Foreach

attending to the performance statistics gathered by the controller using the
OpenFlow messages.

The process is similar to the one presented in [135]. It is important that the
controller informs the AI module which category is being used in the network.
Thereby, the factor values calculation is a process associated which each cat-
egory. In addition, the statistics are also passed to the AI module. The AI
module returns the values that will be used to calculate the metrics for the
routing protocol when the current category is used. Those values are indicated
by a Categories_factors message.

The message exchange process is detailed in the following lines and shown in
Fig. 4.8. First, the messages, which are sent when the algorithm is initialized,
are described. A Categories_init message is always sent in the beginning.
Then, for each category, the categories factors must be set by sending a Cat-
egory_factors message. Those initial values have not been calculated in a
learning process yet. They are only initial standard values of the factors. The
last step in the process is optional. Usually, the first category is the category
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used when the traffic of the network is mixed, and the factors have similar
values. In order to set another category from the beginning, a Categories_use
can be sent.

Figure 4.8: Initial message exchange.

The processes related to new flow and factors actualization scenarios are sim-
pler than the initial process. When a new packet that is not classified is sent
to a routing node, this node sends it to the controller by using the standard
OpenFlow Packet_in message. Then, the controller analyzes the packet and
classifies it into a specific category. It returns the packet and notifies that it has
to be treated according to the routing protocol with the standard Packet_out
message. The controller sends a Flow_label message to inform the node that
the flow has to be classified as a specific category flow. This is useful if the
optional way of working using different metrics simultaneously is desired. At
that moment, the node can calculate the metric and send the packet from the
adequate path. The controller can also send a Categories_use message if the
majority of the traffic is now the one associated with a different category. This
will depend on the current state of the network and the traffic that is flowing
in that moment through the network.

Finally, the controller must communicate the values updated from the AI mod-
ule to the nodes in order to allow them to work with the most updated version
of the metric. For that, when there is an update of the values, the controller
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sends a Categories_factors message to the nodes. In that message, as it is
explained in the previous section, the values used for one specific category are
indicated. The controller will send one of those messages for each update. The
controller could send a Flow_label message to change the behavior of some
flow. This can be done to collect statistics and let the AI module learn.

Both processes described before are shown in Fig. 4.9 and Fig. 4.10 respectively.
The messages exchanged between the controller and the routing nodes are
shown. Moreover, the optional messages are also marked as “Opt”.

Figure 4.9: Message exchange when a new packet arrives

Furthermore, Fig. 4.11 shows a diagram as a graphical resume. In this diagram,
the different processes and decisions are displayed. Each process described
before can be identified in the diagram. The start of the algorithm is identified
with the initialization of the categories, and the loop to inform the nodes about
the new categories and the optional use of Categories_use message. Then, the
main loop is reached. The factor update process and the new packet process
that are shown in Fig. 4.9 and Fig. 4.10 can be identified as different branches
of the main loop. The update provokes a new Categories_factors message to
be sent and, optionally, a Flow_label message in order to continue learning.
The new packet process consists of a Flow_label message and, if the main
traffic of the network changes due to this new flow, a Categories_use packet
is also sent to the routing nodes.
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Figure 4.10: Message exchange when the AI module updates the different factors used in
the metric.

4.2.5 Methodology and Results

In this subsection, the experiments done are described. First, the topology
and the scenarios tested are shown. Then, the results are displayed.

Topology, Simulation Environment and Scenarios

The topology used in the experiments is shown in Fig. 4.12. Different scenarios
provoke changes in the characteristics of the links, but all the scenarios can be
implemented in the same topology. The links will change their characteristics
according to the scenario, but the structure of the available paths will always
be like the one depicted in Fig. 4.12.

In our topology, we have 6 switches, forming different subnetworks. Each sub-
network can be composed by several computers. However, in the simulation,
each network is replaced by one single PC. The simulation has been done
through Mininet. Mininet emulates both, the PCs and the switches, as Linux
hosts. All the elements in the network are labeled and will be referenced in this
text as they are in Fig. 4.12. Regarding the scenarios, five different situations
have been chosen to test the proposal. In the first one, the network is used
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Figure 4.11: Algorithm diagram message exchange.

for multimedia streaming with enough resources to handle the transmissions.
Then, the second scenario consists in handing several multimedia streaming
flows that can consume too much network resources.

In the third scenario, the traffic in the network is not only composed by multi-
media streaming flows, but also by VoIP traffic, being its main kind of traffic.
The link with the greater bandwidth has also a great delay that can reduce
the QoS of the VoIP traffic.

Scenarios 4 and 5 are designed to take into account the loss rate. In scenario
4, a TCP traffic of a file-downloading flow is sent in a network where the
multimedia streaming flow is the main traffic. The link with the greatest
bandwidth has enough loss rate to reduce the QoE of the multimedia traffic.
The fifth scenario differs to the fourth in using the optional feature, along with
the Flow-label message to manage in different ways the TCP traffic from the
UDP multimedia streaming flows. Table. 4.1 summarizes the features of the
different scenarios.
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Figure 4.12: Topology used in the experiments.

In each scenario, the performance of the multimedia flow is measured in terms
of QoS by using Wireshark at the destination side. In both cases, OSPF and
the proposal, the performances are tested and compared.

The results of each scenario are discussed in the next subsection.

Results

In this subsection, the results obtained from each scenario are shown. Fig. 4.13
shows the bandwidth in bits per second obtained in scenario 1, where the mul-
timedia flows do not exceed the maximum bandwidth. Both flows consume
similar bandwidth, with maximums of 3.419 Mbps and 3.266 Mbps and mini-
mums of 6.2 kbps and 6.4 kbps for the OSPF test and for the proposal respec-
tively. The average of the OSPF transmission is 1.070 Mbps and the average
of the proposal is 1.015 Mbps.

In Fig. 4.14, the delay of each packet in ms with OSPF and the one produced
with the proposal are shown. Both delays are quite similar, having maximums
of 19.74ms and 19.85ms respectively and minimums of 0.04ms and 0.03ms.
The average is also similar, 6.521ms in the OSPF transmission and 6.541ms
by using the proposal.
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Table 4.1: Scenarios used for testing.

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Flow
sent

Multi-
media

Multimedia Multimedia,
VoIP

TCP,
multimedia

TCP,
multimedia

Network
resources

Enough Not enough Enough
bandwidth
but high
delay

Enough
bandwidth
but with
losses

Enough
bandwidth
but with
losses

Flow-
label

optional
feature

No No No No Yes

In terms of jitter, Fig. 4.15 shows that they are very similar too. The jitter of
OSPF reaches 1.2ms and the jitter of the proposal reaches the 0.86ms. Their
minimums are 0.01ms for both transmissions. The average jitter is 0.065ms
for the OSPF transmission and 0.66ms for the proposal.

Regarding scenario 2, where the multimedia flows exceed the capabilities of the
link, Fig. 4.16 displays the delay and Fig. 4.17 the jitter. We have observed that
the delay is similar. The paths, where the traffic is sent through, present simi-
lar latencies. In both transmissions, the maximum delay is 19.75ms. However,
the minimum delay obtained is different. The OSPF transmission presents a
minimum delay of 1.8ms and the proposal obtains 0.02ms of minimum delay.
The average delay with OSPF is greater than the one obtained in the trans-
mission using the proposal. OSPF transmission shows a 6.984ms of average
delay, while the proposal achieves 6.5ms.

As it is shown in Fig. 4.17, the jitter produced during the transmission is
higher in the OSPF case, presenting fluctuations and increasing up to 9.48ms
of maximum, while the proposal presents a maximum of 1.63ms, reducing the
maximum jitter in 83%. The minimum jitter is 0.01ms in both transmissions,
but the greatest difference is presented in the average jitter. The average
jitter of the OSPF transmission is 1.396ms while the average of the proposal
is 0.082ms. There is a jitter reduction of 93%.

Finally, Fig. 4.18 shows the bandwidth consumed in each case. With the
path selected by OSPF, the bandwidth is not able to be grater that 1.961
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Figure 4.13: Bandwidth in bits per second registered in scenario 1.

Mbps, which is the available bandwidth during the transmission. However, by
selecting the path according to the available bandwidth, the proposal reaches
3.244 Mbps, avoiding QoE problems and increasing the throughput in 40%.
The minimum throughput in the OSPF transmission is 6.4 kbps and with the
proposal is 6 kbps. Moreover, the average bandwidth is 1.181 Mbps for OSPF
and 1.2 Mbps for the proposal.

In scenario 3, there is a difference in terms of delay between the path of the
highest bandwidth and the one chosen by the proposal for VoIP transmission.
Fig. 4.19 presents its results as regards delay. OSPF transmission average
delay is 558.33ms, while the proposal transmission suffers an average delay of
58.29ms. The maximum delay of the OSPF transmission is 612.55ms and the
maximum for our proposal is 108.52ms. The minimum delays are 500ms for
OSPF and 0.09ms for the proposal.

The jitter results are presented in Fig. 4.20. They do not differ too much. Both
transmissions have a minimum jitter of 0.01ms. The average jitter is also sim-
ilar with 0.0412ms for the OSPF transmission and 0.0427ms for the proposal.
Maximum values are 1.13ms for the OSPF and 0.55ms for the proposal.

In scenario 4, the path with the greatest bandwidth also presents a high loss
rate. Fig. 4.21 shows the delay obtained from both transmissions. OSPF
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Figure 4.14: Delay in ms registered in scenario 1.

transmission presents a greater average delay of 8.05ms, while the proposal
presents a reduction, obtaining 7.08ms of average delay. The maximum delay
is also increased to 59.58ms with OSPF, having a maximum of 52.5ms with
the proposal. Nevertheless, the minimum delay is 1.25ms in the OSPF case
and 1.83ms with the proposal routing solution.

Fig. 4.22 shows the jitter. There is a minimum of 0.01ms in both cases. The
differences are presented in maximum and average jitter. OSPF presents an
average of 1.51ms, while the proposal achieves 1.4ms. The maximum jitter
presented in the transmission using OSPF as a routing protocol is 10.92ms,
more than 1ms greater than the maximum with the proposal, which presents
9.67ms.

Finally, Fig. 4.23 displays the loss rate of each transmission. The character-
istics of the links and the routing decision of OSPF through the maximum
bandwidth path cause an increment of loss rate in OSPF transmission. 15% of
the multimedia packets are lost during the transmission. With the proposal,
the packets are sent through a path with less loss rate, achieving 3% of loss
rate.

Scenario 5 shows the capability of making different decisions depending on
which kind of traffic is being sent. As it is explained in Subsection 4.2.4, this
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Figure 4.15: Jitter in ms for each packet in scenario 1.

functionality is not the central point of the proposal, but it can be applied.
This fifth scenario tests the load balancing done when the metric is changed in
every kind of flow. Fig. 4.24 shows that this difference in the metric calculation
allows the streaming to exceed the 2 Mbps, having a maximum of 3.27 Mbps
of throughput. Without taking individual decisions, the maximum throughput
is 1.95 Mbps. Minimum throughput is also increased. Without this character-
istic, the minimum throughput is 0.44 kbps and when it is used, it raises to
6.58 kbps. Average bandwidth also increases from 1.17 Mbps to 1.22 Mbps.

In addition, Fig. 4.25 shows a jitter reduction due to the possibility of sending
at the maximum bitrate, without limitations. The average jitter is reduced
from 1.4ms to 0.1ms, more than 90% of reduction. The maximum jitter is also
reduced from 9.67ms to 1.31ms, presenting a reduction of 86%. The minimum
jitter is 0.01 in both scenarios.

Table. 4.2 summarizes the results obtained in the tests. For each scenario,
the different values of jitter, bandwidth, delay and loss rate are detailed. The
first value is for OSPF and the second one for our proposal in all the scenarios
except in the last one. In that scenario, the first value is the one obtained
without using the optional feature and the second one is the gathered when
that feature is activated.
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Table 4.2: Results of each scenario using OSPF and our proposal.

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Mini-
mum
Jitter

0.01 /
0.01ms

0.01 /
0.01ms

0.01 /
0.01ms

0.01 /
0.01ms

0.01 /
0.01ms

Average
Jitter

0.065 /
0.066ms

1.396 /
0.082ms

0.0412 /
0.0427ms

1.51 /
1.4ms

1.4 /
0.10ms

Maxi-
mum
Jitter

1.2 /
0.86ms

9.48 /
1.63ms

1.13 /
0.55ms

10.92 /
9.67ms

9.67 /
1.31ms

Mini-
mum
band-
width

6.2/6.4kbps 6.4/6kbps - - 0.44 /
6.58kbps

Average
band-
width

1.070 /
1.015Mbps

1.181 /
1.2Mbps

- - 1.17 /
1.22Mbps

Maxi-
mum
band-
width

3.419 /
3.266Mbps

1.961 /
3.244Mbps

- - 1.95 /
3.27Mbps

Mini-
mum
delay

0.04/0.03ms 1.8/0.02ms 500/0.09ms 1.25/1.83ms -

Average
delay

6.521 /
6.541ms

6.984/6.5ms 558.33 /
58.92ms

8.05/7.08ms -

Maxi-
mum
delay

19.74 /
19.85ms

19.75/19.75ms 612.55 /
108.52ms

59.58/52.5ms -

Loss
rate

- - - 15/3(%) -

131



Chapter 4. Routing Proposal

Figure 4.16: Delay in ms obtained in scenario 2 for each packet

4.2.6 Comparison with other OSPF variations

In this subsection, the proposal is compared with other OSPF variations. This
comparison is displayed in Table. 4.3. On the one hand, in [166], Ye et al.
proposed a metric based on some queueing models focused on packet loss.
They improved the packet loss rate in 30-60% depending on the topology.
Their proposal reduces the loss rate and tries to get the best value of the
metric factor within a limited time frame, but they cannot take into account
several factors and adapt their weights depending on the use of the network.
We can do the same but achieving a completely adaptive routing solution.

On the other hand, O’Halloran and Chambers use the network load in order
to provide an adaptation of OSPF interface metrics in [167]. They try to
dynamically modify the OSPF interface cost of the routers. However, technical
problems impede them to achieve the expected performance. With the use of
SDN, we can solve their problems, being aware of the number of flows and the
destination of each flow.
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Table 4.3: Comparison of OSPF modifications.

Perfor-
mance

Improve-
ment

Adaptative
Metric

AI Metric
Definition

Technology
Used

Multiple
Factor
Metric

Ye
[166]

No Data External
Updates

No External
program
with

technical
problems

No

Cham-
bers
[167]

30-60%
loss rates

Yes No Theoretical
queuing
model

No

Our
Pro-
posal

80% loss
rate

Up to 90%
Jitter

Reduction
Increment
of 40% of
Through-

put

Yes Yes SDN Yes
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Figure 4.17: Jitter in ms for each packet in scenario 2.

4.2.7 Conclusion

Routing decisions has been traditionally taken depending on factors related
to capabilities of the paths or the distance between source and destination.
However, these solutions did not take into account the actual use of the net-
work. Each kind of network in each interval of time can need some different
resources. Moreover, the importance of these resources also changes through
the use of the network. SDN adds adaptability to the network and can be used
to propose new kinds of applications and routing solutions. In this paper, we
have proposed a dynamical metric solution in order to provide the network the
ability to choose the path depending on the main use of the network.

Results show that, when the use of the network does not need more resources in
terms of available bandwidth, OSPF and the proposal achieves similar results
(Fig. 4.13 and Fig. 4.14 and Fig. 4.15). However, being able to adapt the
metric factors values depending on the use of the network can make use of
higher bandwidth when several multimedia streaming flows are present in the
network. In the experiments, OSPF chooses a path when the transmission can
only use up to 2 Mbps. Nevertheless, our proposal uses load balancing that
allows the multimedia streaming to use all the required bandwidth, with an
increment of 40% of the throughput. In addition, there is also a jitter reduction
of 93%. The third scenario demonstrates that changing the importance of
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Figure 4.18: Bandwidth in bits per second in scenario 2.

every factor according to the main kind of traffic can improve the quality of
the transmission. The proposal changes its metric to prioritize delay reduction.
Fig. 4.19 shows a reduction of more than 400ms. Finally, loss rate can be also
taken into account. Moreover, in TCP and multimedia streaming flows, using
a different metric for each kind of traffic has achieved a 90% reduction of the
average Jitter in scenario 5. In addition, it also allows the possibility of using
more than 3Mb/s of bandwidth in the multimedia streaming, using a path
with an 80% less of loss rate.

The comparison with the other related works shows that our proposal is the
only one that introduces AI and SDN to modify OSPF protocol. With these
modifications, we achieve real time improvements and adaptive routing, which
is currently needed to provide real-time services (see [168] and [169]).
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Figure 4.19: Delay in ms obtained in scenario 3 for each packet.

4.3 Intelligent SDN Routing Protocol

The proposal of modifying the OSPF routing protocol has introduced some
advantages that improves the QoS of multimedia services. However, a spe-
cific metric based on the well-known multimedia QoS parameters might not
achieve an optimal transmission in some scenarios. The limitations of OSPF,
especially the variety of actions it may take to overcome the problems during
transmission, may affect the quality of the transmission.

In this section, a new routing proposal that takes advantage of all the capabil-
ities of SDN is described. First, a brief description of the aim of the routing
protocol is provided. Then, the definition of the different data structures that
the protocol must manage is described. Next, the diagram state and the main
algorithm are detailed. After that, the messages needed to implement the
protocol are listed. Finally, the section is concluded with a brief conclusion.
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Figure 4.20: Jitter in ms for each packet in scenario 3.

4.3.1 Aim and scope

The main goal of the routing protocol proposed in this section is to provide
the best QoS of the multimedia SDN flows in the most various number of
scenarios. In order to achieve that, the capabilities of the SDN controller to
perform actions and changes in the network are a key factor. The base of the
routing protocol will be SDN. The architecture underlying the protocol is the
one explained in the introduction and depicted in Fig. 4.1.

The routing module can be either an internal module of the SDN controller,
or a northbound application. In this chapter, both possibilities are addressed.
The messages used by the routing module and its interaction with the SDN
controller may vary depending on whether it is a core module or an external
application. Nonetheless, in this chapter both interactions and messages will
be detailed.

The routing module is strongly based on the AI module shown in Fig. 4.1.
However, its implementation will be discussed separately in chapter 5. This
allows the routing module to be independent of the intelligent method used
by the AI module. If new methods or more detailed studies are performed
or discovered, they can replace the one chosen in this work, and the routing
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Figure 4.21: Delay in ms obtained in scenario 4 for each packet.

module can still work. Due to that, the performance test of the proposal will
be located at the end of chapter 5.

4.3.2 Data Structures

In this subsection, the data structures strictly used by the routing algorithm
are discussed. The ones used by the intelligent system proposed are described
in chapter 5.

The first structure needed by the routing algorithm is the topology. This
means, the routing algorithm must be aware of the network and the nodes and
links that are part of it. For that reason, the routing module has to manage
an array of flows. These flows are references of the flows managed by the SDN
controller. Therefore, the content of the array is an integer that identifies the
flow. If the routing module is a core module, this identifier is directly obtained
from the objects of the controller. If it is an external application, the SDN
controller must provide the identifiers of the flows of a specific node, or all the
flows of the whole network, through a request.

In addition to the flows, another array of multimedia flows is needed. This
one is used to take into account the flows that are really important to the
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Figure 4.22: Jitter in ms for each packet in scenario 4.

algorithm, those flows that determines the QoS. Hence, the routing algorithm
must improve the transmission of those flows.

Additionally, the routing algorithm needs a way to manage routes in the net-
work. An array of possible routes is added to the routing algorithm. This is
built from the topology and it contains an array of links, a cost in terms of
initial metric and the state of the route, important to know if any multimedia
flow can be set to the specified route or not. This state is not limited to up and
down states, but also to congestion states when it may be beneficious to select
one of the flows in the route and select a new route. For that, the routing
algorithm also needs a list of flows that goes through each route.

Table. 4.4 summarizes the main data structures needed by the routing module.
There, a name, the type and a brief description are provided.
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Figure 4.23: Loss rate presented with OSPF and the proposal in scenario 4.

4.3.3 States and algorithm

In this subsection, the main algorithm of the routing protocol, along with the
states diagram, will be explained. For that, first, the task and the behavior of
the different modules must be discussed.

First, it is important to highlight that the routing protocol is designed to solve
problems with the multimedia transmissions. However, at the beginning of
the execution, the routes from a source to a destination must be set. Any
algorithm, like Dijkstra can be used for that goal. Nevertheless, the proposal
takes advantage of the SDN architecture for the very beginning to get the better
performance of the multimedia flows. Using the global point of view of the SDN
controller allows the routing module to avoid the exchange of specific control
messages as the ones in OSPF or other traditional routing protocols. When
the system starts, the SDN controller builds the topology and the necessary
flow entries to provide the communications between the nodes. Then, when
a new multimedia flow is detected, a route is assigned based on the classical
QoS parameters, i.e., bandwidth, delay and jitter. The cost of the routes is
calculated using (4.5).

Until this point, the working of the routing algorithm seems quite similar
to the OSPF modification described in the previous section. Nonetheless,
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Figure 4.24: Bandwidth consumed for each transmission, by using the same metrics for
each flow and by using different metric for the different flows.

the dynamic of the route selection is quite different. Once the multimedia
transmissions suffer a problem that may reduce their QoS, and, hence, their
QoE, the routing algorithm modifies the behavior of the network to solve it,
even if the links still work. This is achieved thanks to the AI module. Unlike
the OSPF modification, where the AI module only set appropriate values of
the coefficients of the route cost calculation, in this proposal it plays the main
role. The AI module is the application that chooses how to act given a specific
problem in the network. To sum up this first explanation, the tasks of each
module are depicted in in Fig. 4.26. It can be seen as the routing module is the
one that manages the route information, or the topology information, and the
statistics. Furthermore, it is the routing module which performs the changes
in the network or in the multimedia transmissions. On the other hand, the AI
module is the module that is in charge of taking decisions based on data and
intelligent algorithms.

Fig. 4.27 depicts the different parts of the routing protocol, as in Fig. 4.2 and
Fig. 4.3. The first task is the routing table creation. Since the routing protocol
works over an SDN, this means that the flow table is filled with flow entries
decided by the Routing Module. It will be detailed when the states are defined
later, but, as it was said before, in the beginning, that means to fill the flow
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Figure 4.25: Jitter obtained in scenario 5.

tables with entries that allow sending data from the source to the destination
with the maximum QoS. Moreover, in order to do that, the routing module
uses a global view of the network topology. It is important to differentiate here
between the routing module as a core service and as an external application.
The topology management is one of the key features of an SDN controller.
Consequently, if the routing module is a core service of the SDN controller, it
can access to the topology information. On the other hand, it is an external
application, the API of the SDN controller must provide the application with
the possibility of getting the topology data (e.g., with a GET call in a REST
API).

The next functionality implemented by the routing module is the statistic
collection. This is utterly important to provide the AI module with an accurate
current state of the network. As it was described in chapter 3, the statistics
gathering is placed in the SDN controller. Therefore, if the routing module
is a core service, it can easily access to the statistics gathered by the SDN
controller. If it is a northbound application, the API must provide at least
three different methods to get the needed data to manage the state of the
network. In a REST API they would be three GET URIs, one for the flow
statistics, one for the statistics of a link and one for the statistics of a specific
node. For all these functions, the routing module needs to provide the SDN
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Table 4.4: Data structures used by the routing module.

Name Type Description

Topology Array Switch Array
Links

An object that represents the
topology of the network

Flows Array FlowMod An array with all the flows of
the network

Multimedia
Flows

Array FlowMod An array with all the
multimedia flows of the

network
Routes Array Links Integer

Flow Integer State
Array of routes (array of links)
associated with the flows that

go through it
Possible
Routes

Array Links Switch
Source Switch
Destination

QoSMetrics metrics
Integer State

Array of possible routes that a
flow can take from a source to
a destination the current state
and the performance of that

route

controller with an identifier of the object which he wants to get the stats.
Additionally, the SDN controller can implement another function to send the
stats of every object in the network.

Another important functionality of the routing module is the metric calcula-
tion. The QoS values of the flows must be calculated to assign the first route
in the beginning of the execution. However, they are also important to the AI
module, which may need them to evaluate if the multimedia transmissions suf-
fer from QoS degradation and they need some actions to be performed. Hence,
the routing module sends this QoS metrics to the AI module. As a result, the
AI module returns a set of actions that will be implemented by the routing
module, or that will be sent to the SDN controller if it is an external applica-
tion. This represents the last functionality depicted in Fig. 4.27. The routing
module defines the set of actions that will be available for the AI module to
choose. These actions may be available or not depending on the topology.
That is another reason why the routing module needs to have access to the
topology. For instance, if the routing module does not know that it exists two
different routes from the source node to the destination, changing to an alter-
native route could not be set as a possible action to be performed. Moreover,
it must translate the actions to a set of flow modifications. Therefore, the
data sent to the SDN controller, in case the routing module is a northbound
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Figure 4.26: Module tasks.

application, are a set of OpenFlow messages. They are, specifically, flow mod
messages. For example, if the action chosen is to change to an alternative
route, the routing module selects, from the possible routes array, the next
route with best metrics. Then, it modifies the flow entries to forward the flow
packets through the new route. All the messages used by the routing protocol
to perform the actions or to communicate with the AI module are explained
in the next subsection. However, Fig. 4.28 shows the communication exchange
between both modules, which summarizes the explanation given so far.

At this point, the way of working of the routing algorithm can be depicted in
a state diagram (Fig. 4.29). In the beginning, the routing module has no data
about the topology and it must build up or it must receive it from the SDN
controller (“No Info” state). In order to do that, the routing module creates
flow entries to get information about the topology. When the topology data
is ready, the routing algorithm calculates the first routes and uses the SDN
controller to fill the flow tables on the nodes and initializes the AI module.
Now, in this state, no multimedia flows are being transmitted in the network.
While this condition is true, the route previously calculated will be used and
the new flows are sent to the AI module. When the first multimedia flow is
detected, the statistics will start being transmitted to the AI module.
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Figure 4.27: Routing Module submodules.

Once there are multimedia flows in the network, the AI module may notify
the routing module with a warning of QoS degradation, which will indicate
the set of actions to perform. The routing module will perform those actions
and will notify the AI module that the actions have been performed. Then, it
will enter into the state “Checking Upgrade”. This state lasts for a determined
delta period of time and, during this time, the routing module will provide
the AI with periodic QoS metrics. These measurements may be used by the
AI module to improve the decision of which action should be performed in the
future. This will depend on the intelligent method used by the AI module. In
the method proposed, the AI module learns from the past decisions.

Algorithm 4.2 describes in pseudocode the working of the routing module.
Since both possibilities, the module being a core service and being a north-
bound application, are being taken into account, in the algorithm, some lines
are specific for one of the options and it is explained. As regards the functions
used in the code, some explanations can help the reader to understand how
are implemented:

• The send and notification functions simply listen or uses sockets to the AI
application or the controller. If the module is a core service, just writes
or read a shared variable of the specific class.

145



Chapter 4. Routing Proposal

Figure 4.28: Data exchange between modules.

• Start_QoS_Measurements() creates a new thread that, periodically, get
statistics from the nodes and calculates the QoS parameters.

• Set_Route adds the flow entries needed to direct the flow through the
desired route based on the QoS parameters and (4.5). It also adds the
flow to the routes array.

• Perform_Action sends the OpenFlow messages (or request that sending
to the controller if the module is an external application) needed to per-
form the action notified by the AI module. The actions are listed in
chapter 5, where the AI module is described.

4.3.4 Messages

In this subsection, the messages needed to implement the behavior described
in the previous subsection are described. It is important to take into mind
that some of the messages will be only be useful if the modules are external
applications. Since in this chapter that possibility is being studied, those
messages are also described in this subsection.

The first messages that are going to be explained in this subsection are the
ones needed if the routing module is an external application and, therefore,
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Algorithm 4.2 Routing Module Algorithm

Given: Topology, PossibleRoutes // If it is a core service
Request_Topology(); // If it is an application
Set_Initial_Routes() ;
Send_Possible_Actions_AI();
deltaTime = 0;
While true

If deltaTime > 0
deltaTime -= DELTAINCREMENT;
If deltaTime <= 0

Send_QoS_AI();
End If

End If
If Get_New_Flow_Notification()

Add_Flow();
Multimedia = Send_Flow_To_AI();
If Multimedia is true

Add_Multimedia_Flow();
If MultimediaFlows.size == 1

Start_QoS_Measurements();
End If

End If
Set_Route();

End If
If Get_AI_Notification() == QOS_DEGRADATION

Perform_Action(Notification.Action)
deltaTime = DELTA;

End If
If Get_Expired_Flow_Notification()

RemoveFlows();
If MultimediaFlows.size == 0

Stop_QoS_Measurements();
End If

End If
If Get_Topology_Notification()

Update_Topology(); // If it is a core service
Update_PossibleRoutes(); // If it is a core service
Request_Topology(); // If it is an application
Calculate_PossibleRoutes();
Send_Possible_Actions_AI();

End If
End While
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Figure 4.29: States Diagram.

it cannot directly access to the SDN controller data. Furthermore, it is going
to be supposed that the API is a REST API. Consequently, the messages are
HTTP messages and the objects are described in JSON.

• Request Topology: This message is a GET message from the routing
module to the SDN controller. It is used to request the whole topology
of the network. It does not need further content. The routing topology
uses this message to get the topology from the SDN controller at the
beginning of the execution.

• Send Topology: As a response of a Request Topology, the SDN controller
sends to the routing module the whole topology of the network. This is
a POST message, which body contains all the nodes and the links data
in a JSON. The routing module builds the topology with this data and
calculates the possible routes from a source to a destination with the
Dijkstra algorithm.

• Request Flow Notifications: The routing module sends this message as a
request to the SDN controller to get notifications about new and expired
flows in the network. This is a GET request that the routing module uses
to get subscribed to the SDN controller flow notifications.
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Table 4.5: Values for type and len of each message.

Messages Type Len

RTG_SET_ACTIONS 0 6
RTG_QOS_PARAMETERS 1 18

RTG_FLOW 2 6 plus the length of the
Flow Mod structure

RTG_PERFORM_ACTION 3 2
RTG_MULTIMEDIA 4 6

RESERVERD 5 -
RTG_NEW_ACTION 6 2

• Notify New Flow: This message is a notification about new flows in the
network. The SDN controller sends a POST message to the routing mod-
ule with a JSON, which contains the data of the new flow. The routing
module adds the flow to the flows array and send it to the AI module to
determine whether it is a multimedia flow.

• Notify Flow Expiration: This message is quite similar to the previous
one. It is a flow notification from the SDN controller, and it is a POST
message that contains the flow id as a body. However, this message is
used by the routing module to remove the flow from the array and, if
it is the last multimedia flow in the network, to stop the QoS statistics
gathering.

• Send FlowMod: The last message of this list is a POST message sent
from the routing module to the SDN controller. It is used by the routing
module to provide the SDN controller with a set of OpenFlow messages,
flow mod messages, to send to the different nodes in the network. The
body of the POST message is a JSON where the OpenFlow message and
the destination of that node are specified. This structure is similar to the
one shown in Fig. 3.18.

All the remaining messages are composed by the type of message, the length of
the message and, then, the different fields needed to understand the message.
The type field is a byte whose value determines which message is being sent.
In this work, only six different messages are used. However, the type field can
use higher values for future extensions of the protocol. The values for each
messages are indicated in Table. 4.5.
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Fig. 4.30 shows the first message of this type. It is the possible actions message
or “RTG_SET_ACTIONS”. Its type value is 0. The set of possible actions
is represented as a flag-based field of 32 bits length. Each bit represents an
action, and its value signifies if the action can be performed in the current
network or not. As it is indicated in the previous section, this message can be
sent when the topology changes and one or several actions, then then, can be
performed or cannot.

Figure 4.30: RTG_SET_ACTIONS message.

However, this message only works if the AI module manages the same actions
that the routing module. In this work that is the case. Nevertheless, if the
AI module it is replaced, this may not happen. For that reason, an optional
message is included to allow specifying an action that the AI module has to
manage. Fig. 4.31 depicts this message, called “RTG_NEW_ACTION”. Each
action must define a set of arguments that are sent back to the routing module.
For instance, the action of changing to a new route must provide the arguments
of which flows must be changed.

The next message, shown in Fig. 4.32, is the “RTG_QOS_PARAMETERS”.
This message is used by the routing module to send the measurements of the
QoS metrics to the AI controller. The QoS metrics sent to the AI controller
are the ones used in (4.5), i.e., bandwidth, jitter, delay and losses. Moreover,
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Figure 4.31: RTG_NEW_ACTION message.

the type and the ID of the object with those metrics are also provided. That
means, if the metrics belong to a node, to a route or to a flow and which one.

Fig. 4.33 shows the message used to provide the flows to the AI module. This
is the “RTG_FLOW” message, which contains the ID of the flow, the ID of
the node where it is allocated and the OF_FLOW_MOD that represents the
flow.

The AI module notifies the routing module when a flow is detected as a mul-
timedia. In that case, a “RTG_MULTIMEDIA” message is used. This simple
message, depicted inFig. 4.34, contains the flow ID of the multimedia flow.

Finally, the structure of the message used by the AI module to indicate which
action must be performed is described in Fig. 4.35. This message, called
“RTG_PERFORM_ACTION” has the same structure than the optional
“RTG_NEW_ACTION”.

These are all the messages needed for the implementation of the routing mod-
ule. However, some other communications could be implemented depending
on the set of actions that are defined by the system. For instance, as it is
described in chapter 5, for video transmission, it could be interesting to define
an action that implements to change streaming parameters. In order to per-
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Figure 4.32: RTG_SET_ACTIONS message.

form that action, the system has to use the API of a video service northbound
application.

4.4 Conclusion

In this chapter, two different approaches to implement SDN-based routing have
been proposed. The first one is an adaptation of the traditional routing algo-
rithm OSPF, achieving an increment of performance. However, that solution
is limited to the previous routing implementation.

In order to take full advantage of the SDN architecture, a new protocol was
proposed. This protocol defines the states, the data structures, the algorithm
and the messages needed to work. It uses the SDN controller capabilities to
implement routing in the network. Furthermore, an AI module is defined in
the architecture. The routing module uses this AI module to take decisions
based on intelligent algorithms. Both the AI module and the routing module
can be used as external applications based on the SDN architecture, through
the Northbound API.

In chapter 5, the AI module is described. All its functions and the intelligent
methods it is based on are explained. An intelligent method to choose the

152



4.4 Conclusion

Figure 4.33: RTG_FLOW message.

most adequate action will be discussed. Furthermore, the whole proposal is
tested.
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Figure 4.34: RTG_MULTIMEDIA message.

Figure 4.35: RTG_PERFORM_ACTION” message.
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Chapter 5

Artificial Intelligent Module

5.1 Introduction and architecture

In this chapter, the artificial intelligence module that was introduced in chap-
ter 4 is described. In the architecture, the SDN controller uses two different
modules, the AI module and the routing module, which cooperate to provide
routing to the network.

In chapter 4, the routing module and its tasks were described. The routing
module was in charge of analyzing the topology, notifying the flows of the
network, providing the QoS parameters of the nodes, flows and routes in the
network.

With all these functions implemented by the routing module, the functionalities
that the AI module has to implement are the following ones:

• Multimedia flows identification

• QoS/QoE degradation estimation

• Choice of the most adequate action

• Evaluation of the impact the action had in the network
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The first task is not in the scope of this work. The multimedia flows identi-
fication will be based on the multimedia protocols and the TCP/UDP ports
the flows use. In this chapter, the second and third tasks are explained. First,
two different studies about the parameters that are related with the QoS and
QoE are detailed. The first one is a video transmission study. The second one
will be the model used to detect QoE degradation in the system. Once the
QoE degradation estimator is explained, the artificial system in charge of the
decisions in the routing protocol is discussed. After the system is explained,
the evaluation of the impact that the action has in the network will be dis-
cussed. Finally, the chapter ends with a comparison test between different
routing proposals for multimedia transmission routing in SDN.

5.2 Video Transmission Study

In this section, the study performed to design the AI system is presented.
Mininet emulator has been used to perform the simulations and gather the
data to design the system. The network emulated is based on the architecture
shown in Fig. 5.1. With this testbed, the goal is to obtain the most complete
set of data. We need to check which characteristics have influence over the
QoS obtained, and consequently over the QoE. Therefore, we have analyzed
how the video resolution and the frame rate affect some network parameters.
These network parameters are jitter, delay and loss rate. Moreover, we have
also checked how the network status affects the video quality perceived by the
end user.

In order to perform the study, we have used several compression formats and
different networks. The video formats used have been MJPEG, MPEG4 and
H264, with different video resolutions. The video resolutions have been cho-
sen based on the fact that IP surveillance video cameras use sensors from
0.4MP (Megapixels) to 8MP. Some of them reach higher video resolutions like
704x576 or UHD. Therefore, we have used three types of resolution for testing:
a medium resolution, a high resolution and a very high resolution. These res-
olutions are 928x576, 2592x1920 and 3840x2160, respectively. The number of
frames per second is also taken into account. Rates between 15fps and 30fps
are usual in these kinds of cameras. The networks used in the test have been
both wired and wireless.

Once the different scenarios and video characteristics have been set, the sim-
ulations are executed, and the data are gathered. On each simulation, the
network parameters (jitter, delay, loss rate and bandwidth) of the links of each
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node are captured. In the end, the data is collected, and the dataset is built.
This dataset brings us the possibility of testing our system once it is developed.
So, the performance of the AI system can be measured.

Figure 5.1: Elements and network of the proposed architecture.

5.2.1 Development and Analysis of QoS Results in Video
Transmission

In this subsection, the results obtained from the testbed to build our dataset
are shown and analyzed. In order to analyze the maximum possible number
of scenarios for video transmission under the system proposed, we executed
several tests that can be classified into:

• Congested networks

• Networks with high loss rate

• Networks with jitter

Each one of these cases is analyzed.

First, we have analyzed how different frame rates (30-60 fps) and resolutions
(800x600, 1280x720 and 1920x180) affect to jitter, delay and loss rate. This
test has been performed on a wired network with loss rates from 0% to 1%.

Figs. 5.2-5.7 show the results of this test. It shows how loss rate affects the
QoS parameters when the video resolution changes. Delay (Fig. 5.2), lost
packets, average lost packets and jitter are measured. The number of lost
packets is shown in Fig. 5.3. As displayed in Fig. 5.4, the losses obtained
are higher when the video resolution is low, reaching more than 20 packets
as maximum, as can be observed in Fig. 5.3. This pattern is also presented
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with jitter and delay, shown in Figs. 5.2-5.5. In addition, QoS is degraded at
the beginning of the transmission because of the increment of jitter, delay and
loss rates. This increment is the highest increment of the transmission. The
increments occur at 8s, at 41s and also at 45s, when there are changes on the
video scene. The delay increases up to 1.7ms of maximum and, during the rest
of the transmission, it varies from 0.2ms to 0.3ms. Then, at the end of the
transmission and, as shown in Fig. 5.2, it increases again up to 1.4ms. The
number of lost packets presents a maximum of 23 packets at the beginning
of the transmission and then decreases to 4-5 packets. At the end of the
streaming, it raises to 24 packets for an 800x600 video resolution and a 0.5%
loss rate (Fig. 5.3). Regarding jitter, it reaches 3ms at the beginning and 1.8
at the end (Fig. 5.5). In Fig. 5.6, the manner in which the loss rate affects
the delay when a 1920x1080 30fps video is being streamed can be observed.
The highest changes on delay happen when the video scene changes. Delay
increases to 0.5ms at the beginning and to 0.65ms at the end of the streaming.
The loss rate presented in this test is not very significant because the different
measures with 0% and 1% of loss rate are similar. In order to show how frame
rate affects transmission, Fig. 5.7 is presented. The highest the frame rate gives
the highest delay. The maximum delay is 4ms at the end of the transmission
with 0.2% loss rate. The peaks of delay happen on different timestamps due
to the different video framerate.

Secondly, we have analyzed how different values of jitter, from 10ms and 60ms,
affect the QoS parameters under streaming with different rates (30-60fps) and
resolutions (800x600, 1280x720 and 1920x180). The results are displayed in
Figs.5.8 -5.11.

In Fig. 5.8, we can observe how the increment of jitter affects the delay on
transmission with different resolutions. Again, when the video changes the
scene, the increment of delay is higher. It is incrementally increased to 0.6ms
at the beginning and 0.9ms at the end of the 800x600 video transmission. The
higher the resolution, the lesser the delay is. With the same video resolution,
the increment of jitter does not affect the delay. However, in Fig. 5.9, we
can observe that, with higher resolutions, we obtain more lost packets. With
1920x1080 video resolution, the maximum number of lost packets is 9 at the
beginning of the transmission. Nevertheless, with an 800x600 video resolution,
we obtain 16 lost packets of maximums at the end. The peaks of loss are placed
in the last two changes of video scenes, on 41s and 45s. In Fig. 5.10, we have
the same results in terms of average lost packets. We observe the same pattern,
with increments at the end of the streaming. In Fig. 5.11 we observe that jitter
is affected in the same way as delay. We obtain lower values, with maximums
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Figure 5.2: Delay with loss rate from 0% to 1% and different resolutions with 30fps.

of 0.3ms at the beginning of the 800x600 transmission and 0.8-0.9ms at the
end of it.

Finally, we have analyzed how QoS parameters vary when there are differ-
ent videos with different rates and resolutions. These videos are sent through
networks with different bandwidth from 10Mb/s to 100Mb/s and causing con-
gestions. In Fig. 5.12 and Fig. 5.13, the delay obtained for different trans-
missions through a path with 10Mb/s and 100Mb/s of available bandwidth
is depicted. In order to congest the network, an 800x600 30fps “disturbing”
video is streamed as displayed in Fig. 5.12, and a 1600x1200 30fps video is
streamed in as displayed in Fig. 5.13. They started at different moments. This
process is repeated after 30 and 40 seconds of transmission. As we can observe
in Fig. 5.12, the delay obtained is higher for videos with lower resolutions.
For instance, with 800x600 streaming, the delay reaches 1.7ms of maximum at
the beginning of the transmission, but with 1024x768, it is lower than 1.6ms.
Moreover, as it can be observed in Fig. 5.13, the delay increases up to 1.1ms at
the end. We have repeated the process, increasing the available bandwidth to
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Figure 5.3: Number of lost packets with different resolutions with 30fps.

100Mb/s. In Fig. 5.14, we observe that this increment of available bandwidth
reduces the impact on delay, being 1.3ms during the beginning of the 1024x768
transmission. In Fig. 5.15, it is shown how changes in the number of lost pack-
ets occur when the 10Mb/s network gets congested. The video transmitted has
an 800x600 resolution and 30fps. The video is transmitted at 10s(s1), 20s(s2)
and 40s(s3). When the 1920x1080 video is being streamed, there are losses of
50 packets. In Fig. 5.15, we can observe a frame of the video when the peak
of lost packets happens. That frame would decrease the QoE obtained. This
error happens at 48s.

Fig. 5.16 shows that there is not a relationship between loss rate and the
size of the video, but there is a relationship with the video resolution. The
transmission, in terms of packet loss, is more affected with less video resolution.
This can be observed in the red, green and orange lines in the graph. These
lines are the ones related to 800x600 video streaming. However, the errors
produced when a high-resolution video is being streamed affects the QoE more,
as we can observe in the 1920x1080 (s2) case. If the network is congested with
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Figure 5.4: Average of lost packets with different resolutions with 30fps.

a 1024x768 video, we obtain the results that are presented in Fig. 5.17. With
these results, when the resolution is low, the transmission is more sensitive to
loss rate. This can be observed in the pink, orange and blue lines for 1024x768,
and these results are compared with the lines related to 1920x1080. However,
this does not affect the MOS, as we have observed when analyzing the received
videos.

5.2.2 Development and Analysis of QoE Results in Video
Transmission

We have performed 495 experiments. On each one, we have saved the video
received on the destination. Thereby, we have both, the original video and
the video with transmission errors. So, we can perform an objective study
of the image quality received. As a result of this study, we have obtained
PSNR, NQI, VQM, SSIM and MSE measurements. The goal was to obtain
an approximation of the level of quality perceived by the user. Attending to
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Figure 5.5: Jitter in ms with different resolutions with 30fps.

the literature, we have chosen those measurements that have more correlation
with the subjective quality, in terms of MOS, perceived by the user.

The Peak Signal to Noise Ratio (PSNR) parameter is an engineering term
for the ratio between the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its representation. Normally,
higher PSNR indicates that the reconstruction is of higher quality [170], [171].
According to the mathematical equations for calculating MSE and PSNR, it
can be inferred that they represent similar error values (i.e., the calculated
error is of the same degree). Because of this, PSNR can be considered as
an unofficial representative of all the above-mentioned video quality metrics
and still the most widely used metric for video quality estimation in many
video processing systems [172]. The Human Visual System (HVS) is highly
adapted to extract the structural information from the area of viewing. SSIM
metric uses this characteristic of the HVS in the estimation of the quality
of the processed digital video. Structural information of an image can be
defined by those characteristics that represent the structure of the objects
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Figure 5.6: Delay with loss rate from 0% to 1% and a 1920x1080 30fps video streaming.

in the scene – independently of the mean brightness and contrast [172-173].
These measurements are based on three components: luminance comparison,
contrast comparison and structure comparison [75]. NQI works in a similar
manner as the SSIM index. NQI defines picture distortion as a combination
of three factors: difference in mutual characteristics, difference in luminance,
and difference in contrast. Human eye sensitivity to spatial-temporal patterns
decreases with high spatial and temporal frequency. Based on this difference
in sensitivity, high spatial or temporal information can be represented with
less data and less precision, while human eyes are more or less insensitive to
the loss of this information. This characteristic of HVS is exploited by DCT
quantization, which is the base for VQM [170]. The values of VQM start from
0 and, in real situations, they can reach around 12. The VQM value of 0
represents minimum distortion and maximum quality [75]. In conclusion, the
SSIM metric has a quite better performance compared to PSNR and, in most
cases, performs very similarly to the Human Visual System. But imperfections
are also present. SSIM is almost insensitive to changes in brightness, contrast
and hue such that, when these changes are bigger, SSIM values can become
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Figure 5.7: Delay in the same conditions as the previous case but also with 60fps videos.

largely inverted. VQM mostly considers the changes that are more noticeable
to the human eye.

With all the previous discussion, we have chosen VQM, SSIM and PSNR to set
the output parameters of the dataset. We have chosen these metrics because
every one of them can provide us some kind of characteristic to correlate that
metric with the QoE. VQM is similar to the subjective quality perceived by
the user. Therefore, this metric has more weight in the settings. The equation
used to calculate the subjective values from objective measurements of each
frame is:

QoE≈si = δi,V QMRi,V QM + δi,SSIMRi,SSIM + δi,PSNRRi,PSNR (5.1)

Where the subjective approximate QoE value for each frame i, QoE≈si , is
the combination of three factors. The result of each metric M for the frame
i (Ri,M) adjusted with a specific weight δi,M . These values correspond with
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Figure 5.8: Delay depending on jitter, from 10ms to 60ms, and video resolution with 30fps
streaming.

δi,V QM = 0.5, δi,SSIM = 0.35 and δi,PSNR = 0.15, which are determined based
on the literature.

5.2.3 Data Preprocessing

In order to set the data used in the traffic classifying model, we first performed
data preprocessing. Thereby, we grouped the data in GOPs of 2 seconds. That
means that if the obtained data was frame-based, we would preprocess them
each 60 frames when the frame rate is 30fps, or each 120 frames when it is
60fps. Results are presented in Figs. 5.18 – 5.21.

As we can observe in Fig. 5.18, we converted the approximated 3000frames
for 60fps videos and 1500 frames for 30fps videos into 25 samples as shown in
Fig. 5.19. Each sample was formed by calculating the average of the values
within the 2-second interval. The same process has been executed for the data
packets. In that case, they are presented depending on the time instant, not
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Figure 5.9: Number of lost packets depending on jitter, from 10ms to 60ms, and video
resolution with 30fps streaming.

frames. As it can be observed in Fig. 5.20 and Fig. 5.21, the average data
was taken every 2 seconds in order to obtain 25 samples from 50 seconds of
transmission. Each sample corresponded to 2 seconds of video. In those 2 sec-
onds, we obtained the average of different QoS parameters like jitter and delay
(Fig. 5.20) or number of lost packets (Fig. 5.21). Regarding lost packets, there
was a peak with more than 1.6 packets at the beginning of the transmission
and another with 0.6 at the end. However, during the transmission, the aver-
age was below 0.2 packets. As in the previous study, these peaks happen when
the video changes the scene. In terms of delay, at 8s, it reached 0.06ms and, at
42s, it reached 0.02ms. The average during the transmission was below 0.01ms.
The jitter suffered an increment of 0.01ms at 8s, but it was insignificant during
the rest of the transmission.

Once the preprocessing was done, we obtained 25 samples for each experiment.
Jitter, delay, lost packets, bandwidth, resolution and fps were measured. The
average value of the different objective metrics for each sample and time inter-

166



5.3 QoS Degradation Estimator

Figure 5.10: Average of lost packets depending on jitter, from 10ms to 60ms, and video
resolution with 30fps streaming.

val was used for labeling. Consequently, we obtained 6 QoS-or-video charac-
teristics for each 2 seconds as an input for our system. As output, we obtained
the label that corresponded to the average of the objective QoE metrics. The
last step in the preprocessing process was to divide the spectrum of the possi-
ble objective QoE values into 5 ranks. Thereby, the labels used were discrete
values, not continuous. Managing only 5 possible labels is much easier. We
associate the kind of traffic to those labels as we describe in Section 5.3.

5.3 QoS Degradation Estimator

In this section, how the development of the multimedia traffic classification
model was carried out is explained. This classificatory determines the esti-
mation of the QoS degradation of the multimedia transmission. First, a QoE
classification model is developed. Then, according to the results, we have
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Figure 5.11: Jitter depending on jitter, from 10ms to 60ms, and video resolution with
30fps streaming.

analyzed and evaluated which model works better for the multimedia traffic
classification.

5.3.1 Database Pre-processing

The database used in this subsection to develop the intelligent multimedia
traffic classification system comes from the work done in [74]. It is composed
by 2741 samples with 14 features per sample. Each sample is labeled according
to the patterns obtained. Moreover, their values are obtained from objective
QoE measurements, which have a high correlation with the subjective QoE,
like ISSM, VQM and NQI. PSNR is also used due to its importance for the
study. In order to extract every single sample, several video transmissions
with different network and video conditions were sent. Each video transmit-
ted were divided into GOPs (group of pictures) equivalents to a 2s video clip.
The average values of some characteristics were extracted from each video clip.
Some of these features are: frame count, stream size, proportion stream, footer
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Figure 5.12: Delay obtained in a 10Mb/s network with 800x600 30fps disturbing traffic.

size, bitrate, width, height, frame rate and minimum frame rate. Furthermore,
some network parameters like delay, jitter, packet loss, jitter variation and
bandwidth for each time interval were extracted. For each video clip, several
objective measurements were extracted by comparing the source and the des-
tination videos so that the class labels could be generated. Depending on the
correlation with the subjective QoE, a weight was assigned to each one of them
and an average was calculated.

5.3.2 QoE Estimation Model

An important aspect of this study is to obtain an accurate QoE estimation
model with which a high-reliable multimedia traffic management system could
be developed. In [74] only a classification model of the type of traffic was
obtained. This classification model is addressed in Subsection 5.3.3. In this
subsection, a wide study about QoE estimation is firstly performed to improve
the results of the traffic classification model. For this study, several classifi-
cation and regression algorithms have been evaluated. The problem can be
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Figure 5.13: Delay obtained in a 100Mb/s network with 1920x1080 30fps disturbing traffic.

addressed from two different points of view. It could be either a classification
problem where discrete (1:1:5) MOS values are obtained as results or a regres-
sion problem where the result is a set of continuous values (1, 5). In this work,
the problem has been turned into a classification problem by transforming con-
tinuous MOS values into discrete values. This means, the output continuous
values of the regression model have been rounded to discrete values. There-
fore, the regression problem changes into a classification problem. This allows
using regression models and check how good they suit the problem. In order to
obtain the models, the following algorithms, classification models, have been
used:

• Support vector machines (CSVM)

• Neural networks (CNN)

• Naïve Bayes (CNB)
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Figure 5.14: Delay obtained in a 100Mb/s network with 1920x1080 30fps disturbing.

• Decision trees (CDT)

• Discriminant analysis (CDA)

• K- Nearest neighbors (CKNN)

• Regression models based on:

• Gaussian process (RGP)

• Non-linear (RNL)

• Decision trees (RDT)

• Neural networks (RNN)

In order to carry out this study, MATLAB and the available machine learning
libraries have been used. The array of features of each sample has been used
as entry parameters in the supervised learning models, and the MOS is used

171



Chapter 5. Artificial Intelligent Module

Figure 5.15: Number of packets lost in a 10Mb/s network with 800x600 30fps disturbing
traffic.

as the class label. From the whole simple set, 2441 samples have been used
for training and 300 for testing. Cross-validation has been used to avoid the
overfitting and, thus, generalize and validate the models. Concretely, 10-fold
cross-validation have been used.

The procedure of model obtaining has been as follows. Firstly, the different
models have been evaluated using the default parameters. Then, the mod-
els with the best classification results have been polished to find a local or
global minimum that improves the classification results. Several scripts have
been created to analyze and evaluate several learning parameters like kernel
function, optimization coefficients, stopping criteria, etc. In order to evaluate
the classification results of each proposed automatic supervised learning algo-
rithm, the confusion matrix has been calculated. With the obtained values,
the precision, recall, accuracy, F Score (F1) and proximity values have been
calculated. These values are displayed in Fig. 5.22 and Fig. 5.23. Proximity
has been included to obtain a less strict and rigorous accuracy measurement.
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Figure 5.16: Average of lost packets obtained in a 10Mb/s network with 800x600 30fps
disturbing traffic.

Precision indicates how good the system can be to detect the class that is being
analyzed. This means, with regard to the samples of that class, how many has
been labeled correctly. Proximity allows considering whether the system not
only detects that class, but also if it is close to do it. This measurement gives
an idea of how quasi-accurate the model is. It can be a big help to select the
management system.

As it is depicted in Fig. 5.22, the first measurement is precision, which indicates
the positive cases detected correctly. RNN and CSVM models are the ones
with the best precision results. They have obtained similar results, with an
84%. Moreover, CKNN, CDT and RGP present good results with an 81% for
CKNN and a 77% for CDT and RGP. Worse results are obtained from the
models based on CNB and CDA with 44% and 65% respectively. These poor
results for CNB and CDA are also obtained in the other measurements, except
proximity, being unable to be greater than 46%. Since CNB presents good
results with non-parametric data, it can be concluded that this is consequent
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Figure 5.17: Average of lost packets obtained in a 10Mb/s network with 1920x1080 30fps
disturbing traffic.

with the current problem and it is not an issue at all. As regards regression
(Fig. 5.23), RDT and RGQ present the worst results, except for proximity, like
in the previous case. This high value in proximity indicates that the model fails
but it is close to be valid. On the other hand, regarding recall, i.e. the capacity
of detecting properly the positive cases, RNN presents the best results with a
79%. CSVM and CKNN present similar results with 69% and 66% respectively.
The next parameter, accuracy, shows how good the system is regarding the
total correct estimations. CSVM presents the best results regarding accuracy
(82%) followed by RNN (78%) and CKNN (72%). In this case, unlike the
other measurements, CSVM presents a better result than RNN because all the
right choices, from the whole set of possibilities (TP, TN, FP and FN), have
been taken into account. This difference in the results only happen in those
two scores. F1 has been another parameter tested. This parameter combines
precision and recall in the same measurement to indicate the quality of the
method. This score emphasizes the difference between the algorithms that
presents good results and those which not. CSVM and RNN are the models
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Figure 5.18: Dataset related to the subjective measurements after analyzing both, a 30fps
and a 60fps video streaming.

with best results as regards this score. Finally, as regards proximity, RNN
stands out with a 97%. However, the other regression methods achieve high
results with 96%, 95% and 91% for RGP, RDT and RGQ respectively. This
can be observed in Fig. 5.23. CSVM, CKNN and CDT present similar values,
93%, 92% and 91% respectively. This score is quite important for this work
because it shows that if the model fails with the MOS prediction, it will be
close. Therefore, it will not return a MOS of 5 when the actual MOS is 2, for
instance. This aspect is really important to improve or polish the system.

As a conclusion of the results obtained from the confusion matrix, the most
adequate models with regard to the problem are the ones based on CSVM
and RNN. In Fig. 5.24, the behavior of both models in the test can be ana-
lyzed deeply. RNN has obtained less prediction errors than CSVM, facing the
problem slightly better. When MOS = 5, both systems predict a right result,
RNN with 93% and CSVM with 97% of right estimations. In the cases when
RNN has failed, it has predicted MOS = 4 except in one of them, where it has
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Figure 5.19: Preprocessing based on sampling for each frame.

predicted MOS = 3. CSVM has predicted MOS = 4 once and MOS = 2 in
the other mistakes. When MOS = 4, CSVM predicts correctly in the 75% of
cases, with MOS = 3 with 75% too and with MOS = 1 with 62%. It should be
highlighted that, with MOS = 1, the number of errors increases significantly
up to 14, a 38% of the total cases with MOS = 1. RNN predicts correctly
when MOS = 4 with 70%, 77% when MOS = 3, with 78.5% when MOS = 2
and with 70% when MOS = 1. As it can be observed, the highest difference is
located when MOS = 1, where RNN predicts better. It is a remarkable prob-
lem that CSVM predicts MOS = 4 and MOS = 5 with a 50% of probability
in that case, when MOS presents an actual value of 1. These facts correspond
to samples 3, 6, 8, 10, 14, 27 and 37. RNN predicts only in an 18% of times
MOS = 5 (samples 27 and 37), while in the other times it predicts MOS = 1.
With a MOS = 2, RNN only fails returning a predicted MOS greater than 3
twice (14.2%, samples 38 and 40). However, CSVM returns a predicted MOS
greater than 3 in 9 of the 12 mistakes, a 75% of the total, in samples 2, 4, 5,
6, 40, 44, 45, 46 and 58. This result is really bad for CSVM because in all of
these cases, the classification model described in the next subsection would not
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Figure 5.20: Preprocessing based on sampling the lost packets each time instant.

detect a critical traffic. When MOS = 3, RNN predicts a MOS greater than
3 in 6 of the 11 samples (4, 9, 26, 31, 42 and 43). CSVM predicts this in 14
of 21 (66.6%). Finally, when MOS = 4, the results obtained are quite similar
for both models. With RNN 6 of the 16 samples (37.5%) were estimated with
a MOS lower than 4 and with CSVM 3 of 13 (23%). Only the sample 32 was
estimated with a MOS lower than 3 with RNN, while SVM estimated none
with a MOS lower than 3.

In conclusion, the estimation levels of both models are quite similar. However,
RNN presents better results because the wrong estimated values are not as
far from the right ones as the presented by CSVM. This supports the results
obtained from the proximity measurement. This fact is really important for
the traffic classification, as it is explained in the next subsection.
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Figure 5.21: Preprocessing based on sampling jitter and delay each time instant.

5.3.3 Classification Model of the Type of Traffic

The classification model presented in this subsection is based on the proposal
shown in [74]. This model classifies the type of traffic into critical or not
critical. The traffic is considered critical when the MOS is less than or equal
to 3.

This consideration was taken due to the subjective QoE, by watching a set of
videos and checking when the perception of the quality started to be low. Since
the videos were labeled according to the objective QoE, it could be checked
that this subjective value matched a MOS of 3 in the model presented in [74].
In order to evaluate the different learning models presented in last subsection,
the following criteria are used:

• TP (True-Positive): The model classifies the traffic as critical and it
matches.

• TN (True-Negative): The model classifies the traffic as non-critical and
it matches.

• FP (False-Positive): The model classifies the traffic as critical, but it does
not match.
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Figure 5.22: Learning results for QoE estimation in the different classification models
according to the confusion matrix.

• FN (False-Negative): The model classifies the traffic as non-critical, but
it is critical

After calculating the values of TP, TN, FP and FN, the precision, recall, ac-
curacy, and F1 measurements of every model were obtained. Obtained results
are depicted in Fig. 5.25 and Fig. 5.26.

In [74], CSVM and CKNN were the best methods with an 83% and a 73%
of system accuracy respectively. In this work, these values have improved
to a 93% and 83% respectively, as it can be seen in Fig. 5.25). It is also
remarkable the result obtained from RNN with a 91% of accuracy (Fig. 5.26).
In both, [74] and this work, the recall score presents the lowest results of all
the measurements, except the 97% obtained in the statistic method in [74] and
the 82% from the CNB (Fig. 5.25). Nevertheless, in [74] the statistic model did
not work properly because it tended to extract a single value that matched a
low MOS and matched the test samples. Therefore, that result was excluded.
In this study, the same error happened. CNB tends to classify the traffic as
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Figure 5.23: Learning results for QoE estimation in the different regression models accord-
ing to the confusion matrix.

critical so that the 22% of the cases in which the traffic is actually critical
it would classify it that way the 51% of the times. Thereby, and due to it
low accuracy, the value of CNB is excluded. Then, the best value obtained
is 86% from RNN. CNN also presents a good result of 80.6%. This measure
is quite important for the system. Recall depends on FN, which means, the
times the model classify the traffic as no critical when actually it is. Therefore,
the number of learning samples should be increased to improve the test results
in that way. This feature was already considered as future work in [74]. The
fact that the result presented by CSVM, a 70%, is even lower than CKNN,
with a 72%, is an important result. It can be expected, then, that CSVM
will not be as efficient as RNN for the system. As regards accuracy, the best
result obtained in [74] was 81% from CKNN. Although the result obtained from
CKNN in this study is high (90%, the same result as RGP), it is lower than the
ones presented by CSVM (92%) and RNN (95%). For the other models, the
results are higher than 80% except for CNB (63%). The last analyzed score
is F1, which indicates how good the models and the observations match. The
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Figure 5.24: Test results of the QoE estimation for CSVM and RNN models.

best result obtained is an 88% from RNN, while the best one in [74] was the
kernel-based function.

After the quantitative analysis of the different models, CSVM and RNN are
the learning algorithms that present the best results, and they are the ones
analyzed in the test. The result of the test is shown in Fig. 5.27, which shows
that RNN presents a 5.6% of mistakes. A 41% of these mistakes have been
made when the model has predicted the traffic as critical when it is not and
59% the other way round. Concretely, the model predicts that the traffic is
critical and it is not in 7 samples (76, 122, 137, 138, 139, 140 and 192) and
ten times the other way round (44, 67, 162, 193, 196, 217, 273, 288, 289 and
298). The classification errors increased for the CSVM model up to 11.3%.
Unlike the other model, the majority of the errors in CSVM are produced
when the algorithm classifies the traffic as no critical when it actually is. This
happens in the 91.17% of times. This kind of error is more problematic due to
the fact that the system would not handle several moments where the traffic
transmitted is critical. Some of the samples of this case are: 17, 19, 22, 23, 97
and 225. On the other hand, the model has predicted only in 3 samples that
the traffic is critical when it is not (137, 216 and 287).
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Figure 5.25: Training results for multimedia traffic classification obtained from the different
classification models according to the confusion matrix.

5.3.4 Network Architecture of the Type of Traffic Classification
Model

After the study, analysis and evaluation of the different automatic and super-
vised learning models proposed for type of multimedia traffic classification,
RNN has been chosen as the most adequate. The optimization process of
this neural evolutionary network modeled by a Bayesian regulation for critical
multimedia traffic prediction is described as follows:

1. Gathering network data and video characteristics within different network
environments and transmission characteristics to build the dataset.

2. Optimizing the NN architecture to find the most adequate number of the
neurons in the hidden layer.

3. Peer data training application to optimize the NN architecture by using
the Levenberg-Marquardt algorithm with the Bayesian regulation method
until the network converges.

4. Introducing the test data into the well-trained and generalized NN to
validate the predictive performance.
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Figure 5.26: Training results for multimedia traffic classification obtained from the different
regression models according to the confusion matrix.

The design of the network architecture result of these steps is presented in
Fig. 5.28.

Where J is the number of neurons in the input layer, which corresponds to the
set of features composed by network parameters and video characteristics. H
is the number of neurons in the hidden layer and M the number of those in the
output layer. This network is defined as:

Given n par of arrays

(xl, yl) = (xl1, xl2, ..., xli ∗ yl), l = 1, 2...n (5.2)

Where n is the number of samples and i the number of features of each sample.
yl uses discrete values in the interval (1:1:5). In order to calculate the values
of yl the following model has been used:

ŷl = φ0

(
α0 +

H∑
h=1

ωh0φh

(
αh +

J∑
j=1

ωjhxli

))
(5.3)
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Figure 5.27: Test results of the multimedia traffic classification of CSVM and RNN models.

Where φh is the activation function of the hidden layer, ωjh is the weight from
the input layer to the hidden layer for the neurons between j and h, αh is the
bias value in the hidden layer. ωh0 and α0 are the weights and bias from the
hidden layer to the output layer and φ0 is the transfer function from the hidden
layer to the output layer.

The Bayesian regulation minimizes a lineal combination of squared errors and
weights. Moreover, it modifies the lineal combination so that the network has
good generalization qualities at the end of the training [174]. This regulation
has been performed with the Levenberg-Marquardt algorithm. The different
weights are calculated and adjusted within the learning process to minimize
the error function ED as follows:

ED =
J∑
j=1

(yj − tj)2 =
J∑
j=1

e2j (5.4)

Where J is the number of inputs of the data set D, and t is the label value.

In order to optimize ED, the optimum values of the weights and biases have to
been determined. One of the algorithms that solve this problem is Levenberg-
Marquardt. This algorithm is faster than the backpropagation algorithm. It
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Figure 5.28: General architecture of the neuronal network used in this work.

has been designed to have a training speed close to second order algorithms.
However, it has not to calculate the Hesse matrix directly, but it operates as
it is explained next [175].

Hessian matrix (H) can be calculated approximately as:

H = JTJ (5.5)

The gradient g could be calculated as:

g = JT e (5.6)
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Where J is the Jacobian matrix that contains the first derivations of the net-
work errors with regard to the weights and biases and e is an array of network
errors. With backpropagation the Jacobian JT is calculated and every vari-
able is adjusted according to the Levenberg-Marquardt algorithm [176]. The
Levenberg-Marquardt algorithm uses the Hessian matrix approximation with
the following Newton algorithm variation:

ωj+1 = ωj − (JTj Jj + µjI)
−1JTj ej (5.7)

Where e is the error array, and I is the identity matrix. The adaptive value of
µ is being incremented until the performance of the network starts reducing.

• The training stops when one of these conditions is true:

• The maximum number of repetitions is reached.

• The maximum time limit is exceeded.

• The performance is reduced up to the desired value.

• The gradient of the performance becomes lower than the minimum gra-
dient.

• µ surpasses the maximum µ.

The optimization of the network architecture often takes a long time. The
Levenberg-Marquardt algorithm is faster than any variation of the backprop-
agation algorithm [177, 178]. Levenberg-Marquardt is used to minimize the
addition of the squared error and to overtake some of the limitations of the
standard backpropagation algorithm like the overfitting problem [179]. An-
other different problem may happen if too few nodes are added to the hidden
layer. If this happens the network will have problems in the learning process
and the predicted results will be poor. In order to solve this problem, the
BRNN algorithm incorporates the Bayes theorem in the regulation scheme.
BRNN is, basically, a backpropagation network which combines the conven-
tional addition of the minimal square error function with an additional term
called “regulation”. Therefore, from (5.4), the next equation is obtained:

S(ω) = βED + αEW ; EW =
m∑
j=1

ω2
j (5.8)
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Where β and α are the regulation parameters and EW is the penalty term,
which penalizes big values for the weights, being m the number of weights
of the system. In this context, the weights of the network are considered to
be random variables. Then statistical techniques can be applied to calculate
distribution parameters such as, for instance, variations. According to the
Bayes’ law, the distribution of probability can be written as [180]:

P (ω|α, β,D) =
P (D|ω, β)P (ω|α)

P (D|α, β)
(5.9)

Where P (ω|α) is the prior probability of the weights, which represents how
reliable the weights are before gathering the data; P (D|ω, β) is the likelihood
function, which represents the error probability; and P (D|α, β) is the normal-
ization factor, named evidence in this model [181].

The optimal weights for the model can be obtained in the training phase by
maximizing the posterior probability. It has the same results as minimizing
the regulated objective function (5.8) [182]. If the weight and the distribution
of the probability of the data are Gaussian, the prior probability of the weights
can be written as follows [183]:

P (ω|α) = 1

ZW (α)
exp(−αEW ) (5.10)

Likewise, the error probability can be expressed as:

P (ω|β) = 1

ZD(β)
exp(−βED) (5.11)

Finally, the distribution of posterior probability can be calculated as:

P (ω|α, β,D) =
1

ZS(α, β)
exp(−S(ω)) (5.12)

By using the Bayes’ law, the optimal values of the α and β regulation param-
eters can be inferred from the data.

P (α, β|D) =
P (D|α, β)P (α, β)

P (D)
(5.13)
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Where P (α, β) is the prior probability for the α and β regulation parame-
ters, P (D|α, β) is the likelihood term, called the evidence for α and β [181].
Thereby, the minimization of S(ω) has the same results as the maximization of
P (ω|α, β,D), which depends on the α and β parameters. The optimal values
of α and β are obtained from the next equation [183]:

α =
γ

2EW
(5.14)

β =
(n− γ)
2ED

(5.15)

γ is obtained from the next equation:

γ =
m∑
j=1

m− αtrace−1(H) (5.16)

Where γ is the number of effective parameters, i.e. how some of the NN
parameters are effectively used to reduce the error function, m is the number
of parameters and H is the Hessian matrix of the objective function S(ω).

In the Bayesian context, the iterative process to find the optimization of the
weights (S(ω)) and the optimal values of α and β in (5.16) (γ) has to be,
according to [182]:

1. Initialize the weights and the values of α and β .

2. Move a step forward in the LM algorithm to find the weights that mini-
mize the objective function S(ω)(5.8).

3. Calculate the effective number of parameters γ and new values for α and
β .

4. Repeat steps number 2 and 3 until it converges.

With these parameters, the number of neurons in the hidden layer and the
number of hidden layers, the model has been adjusted and the multimedia
traffic classification results have been improved, as Table. 5.1 shows. All the
scores have been improved by adjusting the model, except for accuracy. The
recall of the model has been improved up to near a 4%. This is an important
fact for the problem of this work.
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Table 5.1: Optimization of the RNN classification model.

PRECISION RECALL ACCURACY F1 PROXIM-
ITY

RNN 91.289 86.645 95.038 88.907 97.847
RNNα,β,HN 94.032 90.067 91.511 90.465 97.117

In conclusion, the BRNNs are more robust than the standard networks with
backpropagation, and they can reduce or even eliminate the necessity of an
extended cross-validation. The Bayesian regulation is a mathematic process
that converts a non-linear regression into a statistical problem. The advantage
of BRNN networks is that they provide solution to a series of problems such
as: the model choice, the robustness of the model, the choice of the valida-
tion set, the size of the validation effort and the optimization of the network
architecture. Moreover, it is hard to overtrain them, because the evidence pro-
cedures present an objective Bayesian criteria to stop the training. It is hard
to overfit them too, because RNN calculates and trains in with a set of effective
parameters or weights in the network, disabling those that are not relevant.

5.3.5 Classification and Modelling of Network and Video for QoE
Regulation

Once the type of traffic classification model, which indicates when the traffic
is critical, has been defined, some subpatterns that represent different network
conditions and video characteristics are needed. In order to do that, the sam-
ples are classified according to the MOS, which is defined by the class label.
Then, each subgroup is divided into clusters that are represented by a centroid
or subpattern.

Extraction of the Network and Video Subpatterns

The multimedia traffic subpatterns help to recognize network conditions and
possible solutions for critical traffic situations by the variation of the charac-
teristics of the video sent. The first step to extract these multimedia traffic
subpatterns was to study the correlation between the video characteristics dur-
ing the transmission and the video quality perceived for the end user. This
is analyzed from the results presented in Figs. 5.29-5.32. They show several
network and video characteristics and their relationship with MOS. They are:
frame rate, minimum frame rate, width, height, bitrate and stream size and
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bandwidth. Their values have been obtained from the dataset used in this
work. Each value corresponds to the mean and the standard deviation of ev-
ery characteristic with the same MOS value defined by the class label. As
Fig. 5.29 shows, there is some connection between the characteristics of the
video sent and the MOS. In Fig. 5.29 this relation can be observed with regard
to the minimum frame rate. It can be observed that, with the current dataset,
the bigger the MOS, the bigger the minimum frame rate. However, this trend
does not occur with the frame rate, which increases with MOS until a MOS =
3 but then there are no more considerable variations. This is also presented in
[74] where MOS has a high correlation with the minimum frame rate (0.4732),
unlike with the frame rate (0.1528). The correlation value of Pearson exists
in the interval [-1, 1]. A value close to 0 indicates a low correlation but a
value close to 1 or -1 indicates a high correlation. Fig. 5.30 depicts a similar
relation but declining, the biggest the MOS, the lowest the video resolution.
This trend is clear and, as it is shown in [74], it coincides with a high cor-
relation between those values (Height = -0.2902 and Width = -0.3108). As
regards bitrate and stream size, this tendency is not as clear, although it is
considerable (Fig. 5.31). This fact demonstrates the correlation between both
measurements, and it will help to the development of the management sys-
tem. The last measurement, the bandwidth, Fig. 5.32, represents a network
parameter with a really low correlation of 0.1552. Therefore, this parameter
will not be considered by the system as a decisive measurement for improving
the critical status of the network.

After discussing the existent correlation between video and network character-
istics with regard MOS, a system for extracting subpatterns will be developed.
The main idea is to create clusters which can make relations between both, dif-
ferent network conditions and video characteristics, and the quality perceived
by the end user. Therefore, for each MOS value, a set of subpatters that rep-
resent that value will be obtained. The number of subpatterns or clusters for
each MOS value is unknown. In order to extract them, validation techniques
will be used to select the adequate number.

The algorithm used to carry out the clustering has been K-means. The metric
distance used for the calculation of the centroids is the Euclidean distance. The
whole dataset X has been divided into subset XM ∈ X, where M=1,2,3,4,5.
This defines subset with regard the MOS values. Then, given an array of
measurements xm = xm1

, xm2
, . . . , xmn

∈ XM , the k sets are calculated using
the K-means algorithm, minimizing the sum of squares for each set of centroids
CM = CM1, CM2, . . . , CMk, so that:
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Figure 5.29: Mean and standard deviation of frame rate and minimum frame rate with
regard to MOS.

Figure 5.30: Mean and standard deviation of width and height with regard to MOS.
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Figure 5.31: Mean and standard deviation of bitrate and stream size with regard to MOS.

Figure 5.32: Mean and standard deviation of bandwidth with regard to MOS.
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argmin(CM)
k∑
i=1

∑
xm∈CMi

‖xj − µj‖2 (5.17)

Where µi is the mean of points in CMi and n=14, being n the number of
characteristics per sample. The result is CMk centroids for XM data sets.

Once the algorithm used for the clustering has been defined, the optimal num-
ber of clusters will be calculated. The validation method used to define the
number of clusters is Silhouette. The statistic of Silhoutte works with dis-
tances. This method traces the silhouettes using the function of distance be-
tween points specified in the distance metric, which in this case is the Euclidian
distance. In Fig. 5.33 and Fig. 5.34, the results obtained for the subsets defined
for MOS = 4 and MOS = 5 after applying the Silhoutte method are depicted.
The optimal number of clusters is 4 for the subset of data defined by MOS
= 4 and 5 for the one defined by MOS = 5. To begin with, negative values
represent errors in the selection of a cluster. However, there are no negative
values in Fig. 5.33 nor in Fig. 5.34. That means there are no values assigned
to a cluster where they actually do not belong. Another relevant fact, which
determines the validation of the clustering, is that the values obtained must
be higher than 0.8. In both graphs, the majority of values are higher than 0.8.
That means that most of the area under the value of maximum probability
equal to 1 is covered. Once defined the number of clusters and once the cen-
troids have been extracted, the working of the system is defined in the next
subsection.

Subpattern-based QoE Regulation Model

Once the subpatterns are defined, the system has to be able to, given a set
of network parameters, obtain video characteristics, or vice versa, to solve the
situations where the traffic is critical. In order to achieve this, the next process
is performed.

Firstly, the minimum Euclidean distance between the network parameters of
the input and every subpatterns or centroids is calculated. The network Eu-
clidean distance between the input sample x = x1, x2, . . . , xn and the centroid
c = c1, c2, . . . , cn is:
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Figure 5.33: Subpatterrns for MOS = 4.

Figure 5.34: Subpatterrns for MOS = 5.
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d((x1, x2, . . . , xr), (c1, c2, . . . , cr)) =

= d((c1, c2, . . . , cr), (x1, x2, . . . , xr))

=
√
(c1 − x1)2 + (c2 − x2)2 + ...+ (cr − xr)2

=

√√√√ r∑
i=1

(ci − xi)2

(5.18)

Where r is the number of network parameters for each sample and whose value
is 5. The set of centroids that define a non-critical traffic, i.e. with MOS = 5
and MOS = 4, is defined as:

C = (ct,1, ct,2, . . . , ct,n)|C = C4 ∪ C5 ∧ t = K4 + K5 ,where KM is the total
number of centroids of CM .

Therefore, the minimum network distance to each subpattern is defined as:

argmin(cj,i)

√√√√ r∑
i=1

(cj,i − xi)2, j ∈ [1, t] (5.19)

(5.18) returns the subpattern or centroid j whose network conditions are similar
to the input sample. From this result, the video characteristics of that subpat-
tern are extracted. Then, the video characteristics will change until the critical
network situation will be solved. The Pearson’s lineal correlation coefficient
between the objective QoE and each characteristic determines the probability
that the system chooses one characteristic or other. The higher the probability
of a characteristic is, the higher priority of changing that characteristic has.
The probability function of cj,i is defined as:

f(cj,i) = f(xi) =

∑W
s=1(xs,i − x)(ys − y)√∑W

s=1(xs, i− x)2
√∑W

s=1 (ys − y)2
(5.20)

Where W is the total number of samples of the dataset X, Y is the set of class
label for each sample and i the characteristic index.
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The probability of selecting the characteristic i of the centroid j from the cen-
troids set C is defined by P (cj,i). The order of the index depends on the
maximum probability value that maximizes the value of the function that is
defined as:

i = argmax(i ∈ I)f(xi, i) (5.21)

Where I = i5, i6, ..., i4 is the set of indices to be estimated, which correspond
to the video characteristic indices. If the estimated index did not solve the
network critical state problem, the next index with the maximum probability
would be searched.

5.4 Robust Multimedia Traffic Management System

After configuring the multimedia traffic classification model and the QoE reg-
ulation model, a robust multimedia traffic management has been developed.
The system analyzes and classifies the multimedia traffic, detects if it is crit-
ical and, if so, finds the video parameter that, by being changed, can solve
the problem. The system is considered as robust because it learns from the
cases that are not solved by applying the method discussed in last subsection,
creating new subpatterns. If the problem is not solved, the network conditions
and the video characteristics are saved to feedback the system. In this section,
the architecture of the network is presented and the interaction between the
modules defined is discussed. Then, the algorithm and its implementation are
detailed. Finally, the test bench is discussed.

5.4.1 Network Architecture

The classification model, as a system, can be applied in every kind of network
because the performance of the system does not depend on the kind of network,
but only on the network parameters (jitter, delay, packet loss and bandwidth)
monitored on the nodes.” However, in this work, we use SDN as a tool to pro-
vide the system with data. Consequently, we extract statistics directly from
the network nodes. Despite the independency of the system towards the net-
work architecture, our proposed network presents the architecture displayed
on Fig. 5.35, as an example. The blue lines are the corresponding ones to the
datapath, which is used to communicate the data through the network nodes.
However, the connections painted in green belong to the SDN Control to Data-
Plane Interface (CDPI), which physically implements the interaction between
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network nodes and the SDN controller. The final nodes are IoT nodes, which
are the producers of video traffic. However, the core of the network, starting
from the gateway, is made of nodes of an SDN network. Therefore, there is an
SDN controller which manages the network. SDN controller receives the statis-
tics gathered by the network nodes. These statistics are network parameters:
delay, jitter, loss rate and bandwidth. From these parameters, the manage-
ment system determines if a great QoE degradation can happen. As in the rest
of the dissertation, OpenFlow protocol is used to implement the communica-
tion between the nodes and the SDN controller. Furthermore, these statistics
are needed by the system to perform several tasks. For instance, classifying
the critical traffic is one of the tasks that needs the data from the network in
real time. In order to explain this system, it is supposed that the AI mod-
ule is implemented through the northbound API. Consequently, we define the
global logical architecture of the network as is depicted in Fig. 5.36. It depicts
how the communication between modules is implemented. Firstly, the com-
munication between the SDN controller and the network nodes is performed
through the southbound API. The northbound API is the channel between the
SDN controller and the AI module. In this interaction, not only the network
statistics and data are sent to the AI module. The AI module sends back the
necessary actions to be performed in the network to ensure the QoS. The video
streaming application receives orders from the SDN controller. This allows the
SDN controller to execute the orders of the AI module. Depending on the
results of the system, the SDN controller will change the video characteristics.
This is performed by using the interface of the video streaming application.
The software features are presented in Subsection 5.4.4.

5.4.2 Simple Management Algorithm

Fig. 5.37 shows the algorithm that describes in detail how the management
system works. Every 2s, which corresponds to a GOP, the system gets as input
the QoS and video parameters. According to those parameters, the classifying
model estimates if the traffic is critical or if it is not. If it is not critical, the
previous process will be repeated. However, if the traffic is critical, the process
to solve this critical situation will start. The analyzed traffic subpatterns are
those which can recover a MOS higher than 3. That means, they are te ones
that can exit from the critical situation. Those subpatterns are obtained from
the clustering, explained in Subsection 5.3.5, applied to the multimedia traffic
patterns.

When the subpatterns have been obtained, the system calculates which pa-
rameters of the transmitted video can be modified to improve the QoE. The
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Figure 5.35: Network architecture example.

Figure 5.36: SDN Architecture used in this system explanation.
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Figure 5.37: Management system algorithm.

system uses as input parameters the QoS parameters and the different traffic
subpatterns extracted from the clustering. Then, the shortest distance to ev-
ery subpattern according to the network parameters is calculated. Thereby,
the system looks for the subpattern, or centroid, that represents the closest
or most similar network conditions to the current ones. Once the subpattern
has been obtained, the video characteristics of that subpattern are used as the
new video transmission parameters. The selection of the video characteristic
is performed regarding to the model explained in the last subsection. Specifi-
cally, we will use (5.21). If the critical traffic situation is not solved, the next
characteristic, according to the model, is chosen. If applying this process the
traffic critical situation is not solved, then we would apply the robust method
of management. In this way, instead of changing only one different character-
istic, each of them will be added or combined to the transmitted video. If this
procedure does not work, we would keep this sample in order to improve the
system with new intelligent methods that we will study in future works. This
process is repeated until the problem is solved or there are no more character-
istics to choose. As the subpatterns are defined by both, network parameters
and video characteristics, any of them could be the input parameter or the
parameter to be adjusted. This feature of the system will be discussed further
in future works.
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5.4.3 Robust Management System Implementation

In this subsection, the implementation of the robust management system is de-
scribed. Algorithm 5.1 details the main process, while Algorithm 5.1.1 details
the steps performed after the main loop. For each input cycle (GOP of 2s), the
program reads the average network and video parameters, and an array of in-
dices is initialized. A loop starts until the array is not empty. In this loop, the
system checks the multimedia traffic using the BRNN, trained and validated
in the learning process. If the traffic is not critical, the array is cleared and the
program restarts. Nevertheless, if the traffic is critical, firstly, the index of the
subpattern with the lowest Euclidean distance, by using (5.19), between the
network parameters of the subpatterns matrix (SUBPATTERNS) and the net-
work parameters of the input sample (X). Then, the new video characteristics
(NEWVIDEOparam) are obtained from the subpatterns matrix of that index.
After that, the index of the characteristic with the highest correlation from
NEWVIDEOparam is calculated, by using equation (5.21), and, then, it is re-
moved from the array of indices. Finally, this characteristic is changed in the
video that is being transmitted. If, after changing the characteristic, the traffic
becomes non-critical, the program will leave the while loop, clearing the array
of indices I and it will restart. If the critical situation is not solved, the next
characteristic with the highest correlation will be selected. This is repeated
until the program finds a characteristic that solves the critical situation or until
the array of indices gets empty. If the problem is not solved, a robust solution
is taken. This solution consists of combining different characteristics attending
to (5.21) until a solution is found. This process is performed if there has not
been any other similar case performed with this robust method. The robust
solution is determined by the Euclidean distance, using (5.19). If there is no
other similar case and the system finds a solution, it calculates the distance
to the centroids of the clusters and a new subpattern, along with its solution,
it is saved (ROBSUBPATTERNS). If the system does not find a solution, the
case is saved as a sample to study to improve the system (UNKNOWN). The
intelligent system to improve it with this feedback is not studied in this work,
but it can be discussed in future works. In this last scenario, the program saves
the sample so that the network can learn from it (UNKNOWN).
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Algorithm 5.1 Robust Management System Algorithm

1: X1 = QoSparam
2: X2 = VIDEOparam
3: I = ALL_INDEX
4: indexsubpat = min_dist(SUBPATTERNS(4:5), X1)
5: NEWVIDEOparam = SUBPATTERNS(indexsubpa , 6:14)
6: While size(I) not NULL and SOLVED = false
7: TRAFFIC = net(X1 , X2)
8: If TRAFFIC = CRITIC
9: If NOT ROBUSTMETHOD
10: indexcarac = maxcorr(NEWVIDEOparam, I)
11: X2(indexcarac) = NEWVIDEOparam(indexcarac)
12: Else
13 ROB_INDEXScarac =

robust_maxcorr (NEWVIDEOparam, I)
14: X2(ROB_INDEXScarac) =

NEWVIDEOparam(ROB_INDEXScarac)
15: End If
16: I = delatecarac(I, indexcarac)
17: If size(I) is NULL
18: TRAFFIC = net(X1 , X2)
19: If TRAFFIC not CRITIC
20: Go to 6
21: End If
22: End If
23: Else
24: SOLVED = true
25: If ROBMETHOD
26: ROBSUBPATTERNS(f++)=NEW ROBSUBPATTERN
27: End If
28: End If
29: End While
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Algorithm 5.1.1 Robust Management System Algorithm (Cont)

30: If SOLVED = false
31: If NOT ROBMETHOD
32: indexsubpat_robust =

min_dist(ROBSUBPATTERNS(:,1:5), X1)
33: If indexsubpat_robust = NULL
34: ROBMETHOD = true; I = ALL_INDEX;
35: X2 = VIDEOparam
36: Go to 6
37: Else
38: NEWVIDEOparam =

ROBSUBPATTERNS (indexsubpa , 6:14)
39: X2 = NEWVIDEOparam
40: End If
41: Else If SOLVED = false and ROBMETHOD
42: UNKNOWN(fk++) = [X1 X2]
43: End If
44: End If

5.4.4 Test Bench

In this subsection, both the hardware and the software used are specified. In
Fig. 5.38, the hardware of the SDN nodes is shown.

Regarding the software, the SDN controller used in these tests is the one pre-
sented in chapter 3. It has been created from scratch (programming by us,
not using one of the available SDN controllers like OpenDayLight) so that we
could perform customized researches such as [184]. This allows a better control
over the operation and guarantees the inter-operability between the software
modules described by the network architecture. As video server software, VLC
has been chosen due to its capability to modify the video streaming dynami-
cally. Therefore, the SDN controller can modify the video characteristics. The
version used is VLC 3.0.7.1 for both, the video server and the client computers.

In the next subsection, the results of the test are discussed.
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Figure 5.38: Hardware used in the test bench.

Working Test

The last study performed in this section is a working test of the developed
system. The test samples are provided to the system and the system check
for each sample if the traffic is critical or it is not. If the traffic is critical, the
system tries to solve this situation by changing the video parameters as it has
been described in this section. Two different experiments have been performed,
in the first one all the centroids or subpatterns are used and in the other one
some of them were removed to analyze the consequences. In order to improve
the robustness of the system, the network and video parameters are saved to
feedback the system, only if the problem has not been solved.

1) First Test

In the first experiment, the performance of the system when all the multimedia
subpatterns are used is evaluated. If the system detects a multimedia traffic
critical situation, the network status at that moment will be the input param-
eters. Then, with those parameters, the system will search for the subpattern
that matches the conditions given. The Euclidean distance is the method
which is used to make this comparison. The lowest distance determines the
subpattern to be selected. Once the subpattern has been selected, the video
characteristics will be modified to solve the critical situation of the network.
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In this first experiment, every video characteristic was checked to observe if
the critical situation changed. Fig. 5.39 shows the results of the test. If the
system is allowed to select any centroid, it has a 100% success rate.

As it is shown in the figure, the characteristics that more critical traffic situa-
tions solve are: Frame count and height, with about 60%. Then, with about
50% stream size, width and min. frame rate. The characteristic with the worst
results to solve critical traffic situations is the frame rate, with only a 15% of
all the cases.

A statistical study has been performed from the obtained results. The data
presented in Fig. 5.40 shows that the system uses bitrate as characteristic to
be changed when the delay is high (over 0.03s), frame rate and stream size
with delays values over 0.0073s and frame count, proportion stream, footer
size, width and minimum frame rate when the delay is low (0.003-0.0012s).
The results as regards jitter are similar. However, the differences between low
and very low jitter values are not as big as with regard to delay. These values
are 0.004s for a low jitter and 0.002s for a very low jitter.

The loss rate can be divided into three categories: high loss rate (4%), medium
loss rate (0.5%-0.2%) and low loss rate (0.08%). In order to solve a critical
situation with a high loss rate, the characteristics used are the stream size,
the bitrate and the frame rate. These characteristics are related to the video
bandwidth consumption. In scenarios with network conditions with loss rate
of 0.2%-0.5%, the video characteristics changed are: frame count, footer size
and height. Finally, when the loss rate is lower than 0.008% these parameters
are: proportion stream, width and min. frame rate.

2) Second Test Like in the last scenario, a statistical study has been per-
formed from the obtained results. Nevertheless, if the system can only select
a specific number of centroids and the others are discarded, the problem is
not always solved. This happened in two cases. In order to solve those two
cases, the robust method of modifying two different characteristics together,
depending on the subpattern, was used in this study. Fig. 5.41 shows the test
result for every video characteristic checked to observe if the critical situation
changed. As the figure shows, and unlike the last case (Fig. 5.39), the charac-
teristic that solves more critical traffic situations is the footer size with about
55% of cases. The next characteristic is the minimum frame rate, with about
a 50%. Stream size, bitrate and height are able to solve about a 40% of critical
traffic situations. The characteristic with the worst results, like in the last
case (Fig. 5.39), is the frame rate with less than the 15% of the cases. It can
be observed that the frame count in the last case and the footer size in this
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Figure 5.39: Video characteristic selection performed by the system according to the NN
model (based on QoE estimation) to solve the critical situation with all the subpatterns.

Figure 5.40: Results of the statistical study relationship jitter and delay with every video
characteristic selection.
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Figure 5.41: Video characteristic selection performed by the system according to the
original model (subjective QoE) to solve the critical situation without all the subpatterns.

one, solve an important quantity of cases, despite being characteristics with
low correlation. This will be an interesting aspect to be addressed in future
works regarding the improvement of the characteristics selection by using the
management system. As it is depicted in Fig. 5.42 when there is a high delay,
the parameters changed are the bitrate and the frame rate of the video. When
there is a low delay, the other parameters are used. The delay is considered
high when it is higher than 0.03s and low when it is lower than 0.007s. When
the delay is around 0.07s, the parameter changed is the stream size. The frame
count, footer size and height are variated when the delay is over 0.002s. Finally,
when the delay is 0.0012s, the parameters used are proportion stream, width
and minimum frame rate. The behavior regarding jitter is similar, although,
for the stream size parameter, the value is decreased to 0.004s from the 0.007s
with regard to delay. The loss rates can be classified into high loss rate (4%),
significant loss rate (1%) and low loss rate (0.2%-0.8%). In order to solve a
critical situation with loss rates greater than 4%, the parameters changed are
bitrate and frame rate. The stream size is used with losses of 1% and the other
parameters for losses of 0.08-0.2%.
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Figure 5.42: Results of the statistical study relationship jitter and delay on the second test
with every video characteristic selection.

5.4.5 Conclusion

In this subsection we have developed a multimedia traffic management system
to classify the type of traffic and, in case of critical situation. This tool is
able to reverse the situation by changing the parameters of the video that is
being transmitted. For the development of this system, first we have analyzed
different classification and regression models for the QoE estimation. The
models that better fit the proposed estimation problem are the classification
CSVM and the regression RNN. We have performed a test to analyze them
in more detail and we have concluded that, although both of them have very
similar precision values, RNN adjusts better to the problem. The expected
result is very close to the one we get with this method. In the following study
we have analyzed and evaluated the same models from the previous study
case to check how well they fit the problem of multimedia traffic classification.
Again, CSVM and RNN were the models providing the best results. RGP,
CDT and CKNN are also good models. They provided fair results in both
studies but not so good as CSVM and RNN. Based on the results obtained, we
decided that the model based on RNN fits the problem better. Next step was
to define the model and the architecture based on BRNN. We also made some
adjustments in order to get better statistical classification results, improving
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the results in the measure of Recall by 4%. Thus, after a deep study and
development of a QoE estimation system, we have been able to improve the
results of multimedia traffic classification obtained in the study presented in
[74].

The system consists of a traffic classification module and a module to reverse
critical situations of the network. Once detected a critical state of the net-
work, this module looks for network conditions that are similar to different
conditions classified in subpatterns. When the subpattern is found, it will give
us a series of video features that will be applied to the video that is being
transmitted, in order to reverse the critical traffic situation. The selection of
these characteristics is based on the maximum correlation with respect to the
objective QoE.

Once we have selected the multimedia traffic classification model and the QoE
regulation model based on subpatterns, we implement the management system.
The system works in the following way: first it captures samples every 2s (based
on GOPs), then it establishes if it corresponds to a network critical situation. If
a critical situation occurs, the system checks which subpattern has more similar
network conditions. This subpattern will give us the characteristics that we
should apply to the video that is being transmitted until the critical situation
of the network reverts. A system implementation, the network architecture,
using the SDN technology, and the proposed algorithm were discussed. After
the tests we made with the system, we have verified that minimum frame rate,
resolution and stream size are highly efficient when the system is reverting a
critical situation. We also have verified that with all subpatterns, all critical
network situations have been solved. If we eliminate subpatterns, this fact
would not occur.

5.5 A Proposed Machine Learning System to Solve
Multimedia Transmission Problems

In this section, the system that choose the best action to perform, which is the
last task of the AI module and the routing protocol. First, a brief reminder
of the architecture is introduced. Then, some network considerations are ad-
dressed. After that, the machine learning algorithm is discussed in detail.
After that, a comparison with other similar approaches is provided. Finally,
the results of the test performed to the system are presented and the reward
updated evaluation problem is addressed.
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5.5.1 Architecture

The scenario used in this proposal is the same as the one used in chapter 4. The
SDN network is entirely managed by a single controller. This controller must
not only decide the path each packet has to follow but also has to take actions
to prevent transmission problems. In order to achieve this, the controller is
composed by several modules. These modules are shown in Fig. 5.43. The
modules viewed in chapter 4have been expanded. Now, the AI module is split
into the statistic analyzer (the QoS degradation estimator explained in the last
section) and the action chooser (the system described in the current section).
Likely, the SDN controller is composed by two different modules: the routing
module and the communication module.

As Fig. 5.43 shows, the communication module provides the message exchang-
ing between the controller and the network nodes, i.e., the switches. The
communication is entirely based on the Openflow standard. Therefore, the
network nodes must be Openflow-enabled devices. By using Openflow mes-
sages, the controller gathers data about the capabilities of the Openflow-based
network nodes. Then, this communication with Openflow messages allows the
controller to generate orders with the actions the nodes should perform. The
routing module is in charge of detecting the network topology and creating
paths. Moreover, it analyzes the nodes characteristics. All the details of this
module have been already explained in Section 4.3.

The third module on the SDN controller is the Statistic Analyzer which an-
alyzes the statistics sent by the network nodes to the SDN controller. These
statistics are provided by the communication module. The analysis is per-
formed in order to detect the different problems during the multimedia trans-
mission. Furthermore, it is the module that notifies changes in the transmission
status. These states are defined in Subsection 5.5.3.

The last module is the Action Chooser which uses reinforcement learning to
determine the action the SDN controller should take in order to solve the cur-
rent problem that the Statistic Analyzer has detected. It receives the route
characteristic from the routing module in order to know which actions can be
performed in which paths. In addition, the Statistic Analyzer notifies changes
in the state of the transmission and its QoS degradation. With this data,
the Action Chooser calculates the reward of the last action and choose an-
other action if required. Subsection 5.5.3 describes the reinforcement learning
algorithm and the concepts whose definition is adapted to the problem.
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Figure 5.43: SDN Controller Modules.

5.5.2 Network Considerations

This subsection explains several concepts that the AI module handles. These
concepts are needed to correctly evaluate the state of the system. Fig. 5.44
shows an example of the network we use to test our proposal.

As we can see, the scenario is composed by a multimedia server and several
multimedia clients that will perform the multimedia communication. Although
there are proposals that allow multicast flows on SDN [185], in this work, the
multicast transmission will be treated as N unicast flows, to make easier to
explain multimedia management. This assumption can be done because the
system is independent to the unicast or multicast property of the multimedia
transmission. In addition, to reach a destination, the flow will go through
several nodes from the source to the destination. This route will be composed
by two different links. On the one hand, outside links are the links between
the clients and the first network node. On the other hand, inner links are the
ones that interconnect two or more network nodes. This differentiation will be
useful for the AI module in order to determine which action should be taken.
The actions may vary depending on the characteristics of the link. If the link
is an inner link, some actions like changing the route would be able to improve
the transmission quality. However, if it is an outside link, some other actions
like reducing the throughput of the other host could fit better. In addition,
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Figure 5.44: Network Example.

some links are backup lines that are not used unless they are required to ensure
the QoS requirements of the multimedia transmission.

Nevertheless, the differentiation between links is not the only one done in the
system. Depending on the network topology, nodes can also be used as backup
nodes or as load balancing nodes. Both of them are nodes that get to the
same intermediate node between the source and the destination. The differ-
ence between them is that backup nodes are only used when they are needed.
However, the load balancing nodes are nodes that allow the controller to send
the packets to an alternative route. The identification of the alternatives routes
or backup lines/nodes is the task of the Routing Module and it is transmitted
to the AI module, as it is explained in chapter 4.

5.5.3 Reinforcement Learning Algorithm

This subsection describes the reinforcement learning algorithm which is defined
in two steps. First, the environment of the system is defined, and the states
discussed. The system needs some data structures to operate correctly. These
data structures are explained then. After that, the concepts about rewards,
policy and objective are defined. Later, the actions are described, and it is
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explained how they are performed with the Openflow standard. Finally, the
algorithm is depicted.

Environment and States

In this subsection, every single element that the algorithm uses is explained.

Firstly, we have to understand that the network is composed by elements with
different roles. The most important one is the element that acts as an agent.
The agent of our algorithm is the SDN controller. It is the element which will
perform the actions and that will analyze the current state of the system. The
network nodes are not agents and they will only modify their OpenFlow tables
in order to execute the commands of the SDN controller. So, they play a less
important role.

The environment of the algorithm is composed by the network and the current
state of the network based on the statistics. So, the agent, i.e., the SDN con-
troller, modifies the environment through its actions, although it will actually
modify the state of the network. That means that the statistics they gather
from the nodes will measure the effects of the performed actions. These actions
will change the transmission performance in terms of QoS parameters.

The state of the network is related to the problems suffered by the multimedia
transmission. Some of the typical problems are the lack of available bandwidth,
a high loss rate, too high delay, too high jitter, etc. The SDN controller receives
an alert from the Statistic Analyzer and determines the best action to perform
depending on the current state. The current state can be represented as a
state-machine (see Fig. 5.45). The default state for every multimedia flow is
the “No Problem” state. Along the transmission of the multimedia stream,
several problems may occur, and the network will be in charge of adapting
its functioning to the new situations. The problems and states defined in this
paper are mainly related to QoS parameters. The bandwidth, delay, jitter
and loss rate are the parameters the Statistic Analyzer monitors. Besides
providing the Action Choose with the measures of the problems, it evaluates
these parameters on the multimedia flows in order to notify the state changes.
When a problem is detected, this leads the system to a new state related to that
problem and the system will remain in that state until the problem is solved.
Consequently, the system will return to the “No Problem” state. However,
some of these problems could be combined and the current state could even
change to a worse state. This can happen when the selected action did not
generate the required effect, or it was performed too late. Fig. 5.45 shows all
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these states and changes between them. All those states allow coming back to
a better state when the problem is solved (or its QoS parameter is improved).

It is expected that the actions performed change the states permitting the
system remains on states with good performance. The best scenario would
be remaining in the “No Problem” state. However, in an actual scenario the
problems happen and so, it will better to be in states with one problem than
being in states with combined problems. In order to achieve this, the following
actions can be chosen by the SDN controller:

• Wait

• Switch to a backup line

• Switch to a backup node/path

• Load balancing

• Use QoS-Guaranteed Queues

• Tag packets with VLAN PCP

• Limit the available bandwidth for a flow

This set of actions is only a proposal. More actions can be added to the
set. The requirement is that the routing module must be able to perform
the actions. Some other recommended actions (based on the QoE studies
previously presented) are:

• Change Framerate of the video

• Change Bitrate of the video

These actions cause changes in the network performance, and, depending on
the next values obtained from the Statistic Analyzer, the reward value of the
action taken will be updated.

The way the rewards are assigned and calculated and how the actions are
performed are described in the next subsections. However, we need to firstly
know the data structures and concepts.
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Figure 5.45: Diagram of the states of a multimedia flow in the system.
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Figure 5.46: Example of Array H.

Data Structures

In this subsection, the data structures that the algorithm needs are described.

The algorithm needs two different data structures in order to work. First, a
two-dimensional array it is required to store the rewards of each action-state
pair. This array, called H, contains the reward obtained for each combination
of action and state. The structure of H is shown in Fig. 5.46. This structure
is independent of the number of multimedia flows. The values shown in the
table are examples. Usually, the algorithm should begin with the same value
for every entry. However, specific initial values could fit to some scenarios.

Nevertheless, the system should independently manage each multimedia flow.
That means the actions are caused by changes in the state of a single multime-
dia flow. Keeping the state of each multimedia flow, and its route characteris-
tics, it is important to get the highest performance. Therefore, the Multimedia
Management array (M) is defined. The array M (shown in Fig. 5.47) is a two-
dimensional array that contains the status of each multimedia flow. Moreover,
it is also composed by a set of boolean flags which indicate if the related actions
can be performed for that flow or not. Furthermore, the current timestamp
is also stored in this array. In Fig. 5.46, the fields are shown in bits in order
to easily see the size needed to store this data All the data related to the
capabilities of the route are provided by the routing module.
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Figure 5.47: Example of Array M.

Rewards, Policy and Objective Function

The reward obtained due to taking one action or another depends on the prob-
lem itself and on the metrics that show how good or bad the performance of
our system is. Typically, reinforcement learning is applied to games, especially
video games. In those games, the reward obtained depends on the score ob-
tained in that game. Actions like earning a coin or defeating an enemy produce
a big reward, because they increase the score. In our system, the goal is to
avoid the multimedia transmission problems. Therefore, the metrics used are
the QoS measurements. Consequently, the rewards are assigned depending
whether the problems are being reduced or not.

First, it is important to highlight that in order to adapt reinforcement learning
to the multimedia transmission in SDN, the rewards must be given attending
to the effects that previous actions have produced. That means, that the effects
are not suddenly perceived, so the reward from an action must be calculated in
several timestamps or iterations. So, the greater effect will not be perceived in
the first timestamps. This way of operating, with several intervals, introduces
two new definitions, i.e., the time between iterations (τit) and the number of
iterations (nit) before calculating the new reward. Then the time (τrew) the
system needs to take an action and to calculate the reward is defined in (5.22).

τrew = nit ∗ τit (5.22)
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Consequently, the reward is an array of (nit) elements, one for each timestamp
measured. As an example, taking nit = 3 the reward will be defined as (5.23).

r = [r(1), r(2), r(3)] (5.23)

Each element r(t) of the array is calculated as a difference in terms of the
multimedia transmission problems of the two last timestamps, p(t-1) and p(t)
(5.24).

r(t) = ρ(t− 1)− ρ(t) (5.24)

, where ρ(t) is the measurement of multimedia transmission problems at times-
tamp t.

This calculation is done taking into account QoS parameters like delay, jitter
and loss rate. In addition, the result is 0 if the difference between both terms
is negative. This measurement is calculated and returned by the Statistic
Analyzer module.

In order to take the total reward R of an action, the individual rewards for
each timestamp r(t) must be multiplied by a weight (t/2t−1). Due to the fact
that for our system is more important the effect in medium and long term that
the immediate response, the total reward can be expressed by (5.25).

R =
nit∑
t=0

r(t) ∗ t

2t−1
(5.25)

The weight applied to the individual reward value is identified by γ (5.26).

γ =
2t−1

t
(5.26)

Fig. 5.48 shows the evolution of the value of γ as a function of the timestamps.
As we can see, these values start to increase after the second timestamp. That
means the action will be more rewarded if there is a medium-term improvement
rather than only a short-term improvement. This γ factor has been chosen to
manage the first 4 timestamps. If a modification of the system is required or
wanted, the γ should be adjusted to the timestamp frame. For example, in
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Figure 5.48: γ factor value on each timestamp t.

order to calculate the reward of actions taken in a long-tern data transmission,
(5.26) should be a linear function.

Regarding the policy the system follows, it consists in choosing the action will
offer the maximum reward. The AI module manages a two-dimensional array
like the one shown in Fig. 5.47. When an action has to be taken, the algorithm
checks which action, in the current state, has the maximum value, i.e., the
reward with the highest value in the row of the current state. This will be the
action to carry out. When the reward of this action is obtained, its value is
replaced in the array. Thereby, the algorithm is always observing the effects
of the actions and learning the best solution to the given problem. The policy
function can be described by using (5.27).

π(s) = ai|H(s, ai) ≥ H(s, aj) ∀j ∈ [1...M ] (5.27)

, where M is the number of actions defined in the system. Finally, to understand
the goal of the system, we should know the two possible points of view: (1)
From the point of view of the states, the goal is to remain the maximum time
in a non-transmission-problem state. (2) From a reward-based point of view,
the main goal of the system is to obtain the maximum reward possible in each
timestamp. Therefore, the policy of the system is to choose the action with
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highest expected maximum value. If we define the Q-value function under
policy π, we obtain (5.28):

Qπ(s, a) =
∞∑
t=0

MaxR(H, s, t) (5.28)

Next subsection defines how the different actions can be performed by using
the Openflow protocol.

Actions

This subsection defines the actions described in the Subsection 5.5.3 subsection,
and the message exchange using the Openflow protocol. It is assumed that the
actions that involve modification in flows will be only performed on those flows
belonging to the multimedia transmission.

All the proposed actions can be executed by using the OFPT_FLOW_MOD
message. This message allows modifying or deleting the existing flows in a
flow table. Moreover, it allows adding new flows. Its structure, explained
in chapter 3, is also shown in Fig. 5.49. The more relevant fields for the
functioning of our proposal are the command and instructions fields. The
command field indicates which action must be done in the table. Adding a
new flow, deleting, or modifying an existing one are actions performed by the
same OFPT_FLOW_MOD message. The instructions are the actions that
must be performed when a flow of packets match with the commands. Those
instructions enable us to modify the state of the environment. Depending on
the required action, the value of the ‘command’ field and the instructions vary.
For each action defined, the instructions needed and the value of the command
field are commented.

The first/second action is to switch to a backup line. The backup line is a dedi-
cated link between nodes that is only used when required. The controller must
send an OFPT_FLOW_MOD message to the node that connects with this
backup line. In this message the “command” field gets the OFPFC_MODIFY
value, and the instruction is OFPAT_OUTPUT. The instruction consists in
forwarding packet through the port of the backup line. Therefore, the multime-
dia transmission will be sent through this backup line without the interfering
of other traffic. This, combined with an adequate network configuration, will
ensure an acceptable bandwidth or delay in that section of the network.
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Figure 5.49: OFP_FLOW_MOD message structure.

The next action is to switch to a backup node. This means that there are one
or more network nodes that are going to be bypassed. In order to perform
this action, the flow entry related to this flow must be modified. The output
port will be changed to the corresponding port that connects with the backup
node. In order to perform the action, an OFPT_FLOW_MOD message is
sent to the node connected to the backup node. This message is similar to
the one sent in the last action, but the output port is the corresponding port
to get to the backup node. An OFPT_FLOW_MOD with the command set
to OFPFC_ADD and the instruction OFPAT_OUTPUT must be sent to the
backup node. Therefore, the backup node will be able to forward the packets
to the next node. The output port corresponds to the one that links with the
next node. The next node is the same that performing the action before.

Load balancing is a typical technique that takes advantage of the network
redundancy in order to ensure a good level of quality in the multimedia trans-
mission. The load balancing can be performed in different ways. The flow
that consumes more bandwidth could be forwarded through the redundant
secondary way alone. Another solution would be separate the flows attending
to their transport layer protocol. Moreover, the multimedia transmission could
be forwarded to both paths, changing the route periodically. In this proposal,
the multimedia flow is forwarded to an alternative/backup path. Consequently,
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an OFPT_FLOW_MOD with the command set to OFPFC_MODIFY and
the instruction to OFPAT_OUTPUT is sent to the last node in the original
path. The output port is the one that connects to the first node in the alter-
native path. In addition, an OFPT_FLOW_MOD with the command set to
OFPFC_ADD and the instruction to OFPAT_OUTPUT for each node in the
backup path is sent. Thereby, the flow is able to follow the path and get the
destination.

Another possible action is to use QoS-Guaranteed Queues. These queues are
high-priority queues that the network nodes can use to forward packets mini-
mizing the delay and jitter of the multimedia transmission. The action is per-
formed again with the OFPT_FLOW_MOD message, but, in this case, the
instruction needed is OFPAT_SET_QUEUE. This Openflow action provides
queue selection. The OFPT_FLOW_MOD message is sent to the required
nodes where the multimedia problem is located, and the queue is set to ensure
the QoS required.

The QoS can be handled by using the IEEE 802.1p standard managing the
VLAN to differentiate different kind of traffics. Therefore, traffic flows can be
managing attending to their requirements. In order to perform this task in our
system, the OFPT_FLOW_MOD message uses the OFPAT_PUSH_VLAN
instruction. This instruction allows the controller to push a new VLAN tag
to the flow. In this tag, the PCP field is indicated. Depending on the value
of the PCP field, and the VLAN configuration, the flow can be guaranteed to
have a minimum level of QoS.

The last action defined in the system is to limit the available bandwidth of
a flow. The Openflow 1.5.1 standard defines meters. Per-flow meters en-
able OpenFlow to implement rate-limiting. It is a simple QoS operation
that constrains a set of flows to a chosen bandwidth. In this case, an OF-
PAT_METER instruction must be set in the OFPT_FLOW_MOD message.
The meter can be configured to constraint either the kbps or the packet/s. In
terms of messages, this action can be executed in several ways. On the one
hand, the flows that do not contain multimedia content can be modified. An
OFPT_FLOW_MOD message will be sent with the OFPAT_METER action
as an instruction. On the other hand, the OFPT_FLOW_METER instruc-
tion can be added as the default instruction. That means that the default flow
will contain the meter instruction. The default flow is the one that will match
any flow that does not match with the previous entries in the flow table. How
this action is implemented is not critical. However, it is important to know
the effect of taking this action and it is well-performed.
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As regards the suggestion done before (changing video parameters), the imple-
mentation is application specific. The multimedia video server has to provide
some API so that the SDN controller can change the video source parameters.

Algorithm

Fig. 5.50 shows the operation algorithm of the Action Chooser which can be
divided into four parts, although Fig. 5.50 only shows three of them. Firstly,
the algorithm starts initializing the connection with the other modules (Rout-
ing, Communication and the Statistic Analyzer) and the data structures (H
and M). Then, it listens to changes from both, the Routing Module and the
Statistic Analyzer. The secondly, the Action chooser should manage the multi-
media flow. To do that, the routing module can notify that a new multimedia
flow, called m, has been created. Then, the row for that flow m in the M array
is initialized. Attending to the data the routing module has provided, the flags
are set. The state and the timestamp are set to zero. If the routing module
notifies the end of the multimedia transmission, called m, the data from the M
array for that flow is deleted. This is done to maintain the memory efficiency.
The third part is the action execution. When the Statistic Analyzer notifies
that a multimedia flow m presents a problem in the states, the action should be
executed. The state of that flow is updated in the M array and the timestamp
and the reward are initialized. The timestamp is set to T, being T the number
of iterations for calculating the reward. Then, an action is executed following
the policy described in the previous subsection.

The fourth task of the algorithm is the reward calculation in each timestamp.
This is performed in an independent thread. Fig. 5.51 shows the operation
algorithm of the fourth task. This process is performed for each multimedia
flow m with timestamp different to zero. For each timestamp the reward is
calculated using the measurements obtained from the Statistic Analyzer. The
reward is added to the total reward and the timestamp of the flow is discounted
by one. When the timestamp reaches zero, the reward in the H array is updated
and the reward is set again to zero. Both arrays are critical sections in the
code and the concurrency has to be properly managed in order to ensure the
system reliability.
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Figure 5.50: General AI algorithm.

Comparison with other proposals

To sum up, Table. 5.2 shows a comparison of our proposal with some of the
proposals discussed in chapter 2. Every proposal uses the statistics gathered
from the links to choose the best action or route. Although our proposal does
not use the characteristics of the multimedia traffic to perform the actions, the
routing module could use them to choose the initial path. Only Kassler [96]
uses several characteristics. Awobuluyi [92] uses codec layers and Nam [100]
the resolution of the video. The actions their proposals perform are oriented
to load balancing, changing the route dynamically. However, our proposal
defines a set of actions and it decides, based on previous rewards, which action
perform. These actions are not restricted except for the limitations of the
southbound interface.

Regarding the scenarios on each proposal can be used, our proposal is the
only one that fits any scenario. Furthermore, it is the only one that uses AI
techniques to learn. This means that it is the most adaptable proposal, and it
can be used on every kind of network and conditions. The AI algorithm allows
the system to learn the best actions to perform and they may vary according
to the scenario. Moreover, the reinforcement learning avoids any supervised
learning to be performed.
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Figure 5.51: Reward calculation algorithm.
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Table 5.2: Comparison of the proposals.

Awobuluyi
[92]

Nam
[100]

Kassler
[96]

Our
Pro-
posal

Link stats
used

Yes Yes Yes Yes

Video stats
used

Video Layers Resolution Yes No

Actions
taken

Route changes Route
changes

Route
changes

Any
Open-
flow
action

It can be
used on. . .

Networks with
multiple paths

Networks
with
video
servers

Session
oriented
traffic

Any
Net-
work

Applied
to. . .

Multimedia
traffic

Video
stream-
ing

Any kind
of traffic

Any
kind of
traffic

AI? No No No Yes
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Figure 5.52: Network tested.

5.5.4 Results

This section analyzes the model proposed. To do it, several scenarios are
proposed, and the evolution of the measurements done by the AI module is
studied. Moreover, the QoS parameters of the multimedia transmissions are
also measured.

Scenarios and Equipment

In this subsection, the scenarios and the network tested are presented. Fur-
thermore, the equipment used to perform the tests is detailed.

The network tested is the one presented in Fig. 5.52. The hosts are labeled
as PC1 to PC7 and the network nodes are tagged as S1 to S8. This network
presents some characteristics that can be used to test the proposal. First, there
are multiple paths to reach the destination. For example, a packet sent from
PC2 to PC6 can go through S3 or S6. Moreover, there is a backup line between
S4 and S8. All the links are set to 100 Mbps. However, the route chosen by
the routing protocol to reach PC7 from S1 is through S3. This is because the
link between S6 and S7 presents a higher jitter. All the hosts can work as a
multimedia client or as a server.
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Figure 5.53: Equipment characteristics.

This network is emulated on Mininet SDN emulator. The characteristics of
the equipment used to run the emulations are shown in Fig. 5.53.

With this environment, the following tests are performed. First, the reward val-
ues are measured depending on the value of τrew defined in (5.22)(5.22). Then,
a comparative of the performance of a multimedia transmission between using
the algorithm or not is presented. This comparison is done in two different
situations. The multimedia transmission of the tests is a video transmission.
The video characteristics are also detailed in Fig. 5.53. For all tests, a QoE
evaluation performed by 12 different users is performed. They give a score
from 1 to 10 depending on the video quality they perceived to finally calculate
the average value. This value is named MOS. The age of the users goes from
8 years old to 86 years old. Moreover, their experience with videos is differ-
ent from one to each other. Two users have little experience with videos, two
users work with video and two are studying university degrees related to new
technologies. The rest have experience as video consumers.

Results of the first test

In the first scenario, the video is transmitted from PC1 to PC6. In this case, the
node S2 is collapsed and that makes hard to ensure the QoS of the multimedia
transmission. In this scenario, the time between iterations and the number of
iterations to calculate the reward are changed to evaluate its impact. Seven
different transmissions are evaluated. The value of τrew is changed from 10s
to 80s. A value of 70s for of τrew is not evaluated because the maximum
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Figure 5.54: H array used in the test.

number of iterations is set to 6. The array H is initialized with the values
shown in Fig. 5.54 so that the algorithm has to recalculate the rewards in
several iterations. Regarding presentation, not all states and actions have
been included in the figure, only the relevant ones in this test.

The action that could solve the transmission problem is to change to an al-
ternative path because S2 is collapsed, regardless the higher jitter presented
in the alternative route. However, the initial values will cause the system to
choose a useless action in this case. Thereby, the effect that the timestamp
parameters have in the QoS during the learning is studied in the first scenario.
The video is transmitted for 120s. Fig. 5.55 and Fig. 5.56 show the bandwidth
evolution obtained in each transmission. The transmissions have been spit-
ted into two figures attending to the value of τrew. The transmissions with
a value of τrew from 10 seconds to 40 are presented in Fig. 5.55. Fig. 5.56,
the transmissions with a τrew of 50, 60 and 80 seconds are depicted. The
problems in the node limit the bandwidth of the transmission. When the al-
gorithm recalculates the reward and chooses the correct action, the bandwidth
consumed by the video transmission increases. The results are summarized
in Table. 5.3. The minimum bandwidth is 0.97 kbps in all the transmissions.
The maximum bandwidth is quite similar in the first five transmissions, over
the 22Mbps. However, the last two transmissions have a maximum bandwidth
of 11.95 Mbps for 60s and only 5.70 Mbps for the 80 s of τrew. The average
bandwidth in the first transmissions is also greater than in the last ones. For
the 10s and the 20s, an average bandwidth of 9.60 Mbps and 13.30 Mbps have
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Figure 5.55: Bandwidth evolution in the first test (τrew from 10 to 40).

Table 5.3: Bandwidth statistics for each scenario.

τrew Min Max Average

10s 0.97 26686.08 9601.61
20s 0.97 22531.30 13203.28
30s 0.97 26686.08 8399.98
40s 0.97 24733.44 7835.62
50s 0.97 25926.72 7477.58
60s 0.97 11954.50 4873.49
80s 0.97 5706.04 1614.07

been obtained respectively. Nonetheless, for 60s and 80s, an average of 4.87
Mbps and 1.61 Mbps have been gathered.

Fig. 5.57 and Fig. 5.58 show the evolution of the delay obtained in each trans-
mission. Fig. 5.57 shows the transmissions for a value of τrew from 10 to 40
seconds. On the other hand, Fig. 5.58 shows the same parameter for the trans-
missions with a τrew value from 50 to 80 seconds. The minimum delay obtained
in all the cases is almost 0. The maximum delay for the last transmission is
20.03ms. For the 30s transmission, it is 30.08ms and for the rest, it slightly
varies from 22 to 25ms. The results of delay are summarized in Table. 5.4.
Regarding the average delay, it gets higher when τrew gets higher. The av-
erage delay for the first transmissions is 2.71ms and 3.09ms for 10s and 20s
respectively. However, with 80s, it is increased to 6.96ms.
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Figure 5.56: Bandwidth evolution in the first test (τrew from 50 to 80).

Figure 5.57: Delay evolution in the first test (τrew from 10 to 40).
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Figure 5.58: Delay evolution in the first test (τrew from 50 to 80).

Table 5.4: Delay statistics for each scenario.

τrew Min Max Average

10s 3.33 ∗ 10−17 22.71 2.71
20s 3.78 ∗ 10−17 24.56 3.09
30s 3.35 ∗ 10−17 30.08 4.14
40s 3.03 ∗ 10−17 24.81 4.26
50s 9.69 ∗ 10−19 25.31 4.13
60s 2.79 ∗ 10−17 24.86 4.75
80s 3.63 ∗ 10−17 20.03 6.96
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Figure 5.59: Jitter evolution in the first test (τrew from 10 to 40).

Fig. 5.59 and Fig. 5.60 show the values of the jitter obtained during the trans-
mission. Like Fig. 5.57, Fig. 5.59 shows the transmissions for a value of τrew
from 10 to 40 seconds, while Fig. 5.60 shows the same parameter for the trans-
missions with a τrew value from 50 to 80 seconds. The minimum jitter obtained
barely varies from the different transmissions. Except from the 20s and 40s
transmissions, it stays in values close to 0ms. For these transmissions, the mini-
mum jitter values are 0.55 and 0.14 respectively. The 60s and 80s transmission
have the lowest minimum jitter values. However, regarding maximum jitter
they have the highest values after the 40s transmission. It has a maximum
jitter of 77.89ms, while 60s and 80s transmissions have 69.97ms and 72.84ms
respectively. The average jitter varies from 10.73 for the 10s transmission to
14.08 for the 20s transmission. The transmissions with 60s and 80s of τrew
have an average jitter of 11.43 and 12.94ms respectively. The results of jitter
are summarized in Table. 5.5.

Regarding the loss rate, the results for each transmission are shown in Fig. 5.61.
With 10 seconds, the loss rate is 0.3% and with 20 seconds 0.6%. From 30
seconds to 60 seconds, the loss rate increases from 7.1% to 8.1% respectively.
The loss rate of the 40 seconds scenario is 7.9% and 5% from the 50 seconds
scenario. Finally, the highest loss rate is obtained when the recalculation takes
80 seconds to be done. This loss rate is 14%. This is caused by the collapse
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Figure 5.60: Jitter evolution in the first test (τrew from 50 to 80).

Table 5.5: Jitter statistics for each scenario.

τrew Min Max Average

10s 0.01 57.43 10.73
20s 0.55 50.69 14.08
30s 0.01 68.73 13.75
40s 0.14 77.98 13.15
50s 0.02 66.20 11.96
60s 7.63 ∗ 10−16 69.97 11.435
80s 1.00 ∗ 10−15 72.84 12.94
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Figure 5.61: Loss rate for each scenario.

in the node. The node S2 is not able to forward all the data packets and drop
many of them. Changing to the backup line earlier reduces the packets drop
by S2.

Finally, the QoE is measured by gathering the MOS of the users. Fig. 5.62
shows the value of MOS obtained from the opinion of the users. For the
transmission with 10 s of τrew, the score obtained is 7.66 of 10. The 20s
scenario has received a 6.85 and the 30s a 6. A score of 5.12 and 4.89 has been
given to the scenarios with 40 and 50 seconds of τrew. With 60 seconds of τrew,
a MOS of 4 has been obtained. Finally, the last scenario has received a 2.75
score. The QoE experienced by the users is lower when τrew gets higher. This
is related to the high loss rate, which causes problems in the transmission such
as frozen frames, tiling, noise, ghosting, soft focus, and flickering.
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Figure 5.62: MOS obtained in each scenario.

Results of the second test

In the second test, the video is transmitted again from PC1 to PC6 in similar
conditions to the previous scenario. However, in this test, the difference in
terms of QoS and QoE between using the proposal and not taking any action
is measured. The transmission with the algorithm has a τrew of 40s. This value
has been chosen to be neither too low nor high. Therefore, it is not an optical
parameter value, but it provides some improvement to the transmission.

Fig. 5.63 shows the consumed bandwidth during the video transmission. As we
can see, when the algorithm is not used, the minimum bandwidth registered
is 0.97 kbps while the maximum value is 987.16 kbps. The average bandwidth
during this transmission is 412.42 kbps. On the other hand, when the proposed
algorithm is used, the maximum value of bandwidth is 24.73 Mbps while the
average bandwidth is around 7.83 Mbps.

The delay registered during the video transmission is shown in Fig. 5.64. The
transmission without the algorithm presents a maximum delay of 13.32ms and
an average of 8.94ms. However, using the algorithm, the maximum is 24.81ms
and the average is 4.26ms. Without the algorithm, the delay relays more stable,
although higher. Nevertheless, using the algorithm, the transmission suffers
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Figure 5.63: Bandwidth evolution in the second test.

some delay peaks. This is translated into some little video errors like ghosting
and black pixels during the transmission.

Regarding the jitter, Fig. 5.65 shows the difference between the two transmis-
sions for both cases, i.e., when the algorithm is used and when it is not used.
Without algorithm, the maximum jitter is 78.76ms and the average is 12.34ms.
With the algorithm, the maximum jitter is 77.98ms and the average 13.15ms.
Both transmissions have a stable jitter, with some peaks Therefore, both jitter
graphs are quite similar, with only an increment of 6% of the average jitter.
Furthermore, the jitter peaks produced when the algorithm is used are due to
the lower performance of the alternative route.

The loss rate is also compared for both cases. Fig. 5.66 shows this comparison.
In blue, the transmission when the algorithm is not used presents a 20.5% of
loss rate. Nevertheless, when using the algorithm, the loss rate is reduced up
to 7.9%.

Regarding to the QoE results (see Fig. 5.67), the average value of all the 12
requested users shows that when the algorithm is not used, the MOS has a value
of 1.66 points over 10 while using the algorithm improves in great measurement
the results with a value of 5.12 over 10 points. This shows the increment of
performance that the action taken by the algorithm provides. Despite the
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Figure 5.64: Delay evolution in the second test.

Figure 5.65: Jitter evolution in the second test.
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Figure 5.66: Loss rate obtained in the second test.

lower performance of the alternative route, the quality is increased when the
problem is handled by the algorithm.

5.5.5 Conclusion and Future Work

Multimedia transmissions require an important availability of resources to en-
sure an acceptable quality. So, the way the networks manage their resources
have a critical impact on this quality. SDN allows managing the resources in a
more efficient way. Using AI, networks can be aware of the problems and learn
how to solve them in order to provide the best QoS and QoE in multimedia
transmissions. Machine learning is a technique that fits the network resource
management problem. So, taking into account the aforementioned issues, in
this subsection, we have presented an adaptation of this technique to SDN.
The results obtained show that the introduction of the proposed algorithm
improves the quality of the multimedia transmission. In terms of QoE, users
perceive an increase in the image quality three times better, while the loss rate
is reduced more than half the value of losses recorded when the algorithm is
not applied. Regarding bandwidth, the maximum throughput increases from
987.16 kbps to 24.73 Mbps while the average bandwidth improves from 412.42
kbps to 7.83 Mbps.
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Figure 5.67: MOS gathered for the second test.

Although these results show interesting improvements in multimedia transmis-
sion, some considerations should be taken into account. Firstly, the proposed
system is a preliminary solution to these problems. The parameters defined
are used in the system, but their values may change to adapt the system to
the problem. Depending on the problem or the evolution of the Openflow
protocol, the states and actions the system manages may vary. Furthermore,
the parameters that control the total amount of time needed to recalculate the
rewards can have different values. This affects the quality of the multimedia
transmission as the results of the first scenario show. The MOS of the trans-
mission with quicker reactions to the problem are higher, i.e., from 7.66 with
the quickest reaction to 2.75 with the slowest one. Furthermore, the average
bandwidth of the transmission is high. With 10 or 20 seconds of τrew, the aver-
age bandwidth consumed is between 9 and 13 Mbps. However, increasing τrew,
the system reduces the bandwidth up to 1.6 Mbps. Loss rate also increases
from 0.3% and 0.6% to 14%.
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5.5.6 Reward Update System

In this subsection, the problem of evaluating the impact of the action chosen
by the system will be briefly addressed. As it was described in chapter 4, the
routing algorithm enters into an evaluation state when an action is performed.
This state is kept during a period of time, delta. Once this time expires, the
system must compare the current situation of the network with the one before
performing the action.

The comparison can be performed differently, depending on the method use
in the AI module. Since the solution proposed in this work is a reinforcement
learning method, the evaluation of the output updates the reward in the algo-
rithm. Hence, the evaluation must be accurate. The goal of this evaluation is
to know if the increase or decrease of the QoS of the multimedia transmissions
are a consequence of the action taken.

This work proposes a static method of validation. Table. 5.6 shows a represen-
tation of the data structure used in this method. Depending on the problem
the action had to solve, the evaluated metrics will vary. The data structured is
built according to the work done by our research group, since it has a vast tra-
jectory in multimedia and networking. Laura G. et al. summarize in [186] the
dependencies between multimedia transmission problems and metrics. Miran
Taha et al. found a relation between network parameters and metrics problems
in video transmission [187]. Along with [188], these works were taken into ac-
count to build the static data structure that specifies which metrics should be
taken into account to determine if the action performed by the routing module
is not the right one. In that case, the reward of that action will be penalized.
Otherwise, if the problem has been solved, the reward is increased. Conse-
quently, Table. 5.6 shows which metrics should be taken into account based on
the actions performed in the network.

In order to increase the accuracy of the reward update system, the data struc-
ture could be create not based on previous investigations, but on a heuristic
method, assigning a weight to each metric in each situation. However, this is
out the scope of this dissertation.
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Table 5.6: Relevant metrics for action evaluation.

Delay Jitter Throughput Packet
Losses

Change to a
backup switch

Yes No No No

Route change Yes Yes Yes Yes
Load balancing No Yes Yes Yes
Queuing/VLAN
management

Yes No No No

Link aggregation
(backup line)

No Yes Yes Yes

Limit flow
throughput

No Yes Yes Yes

5.6 Routing Alternative Evaluation

In this section, the performance results of the routing proposal are evaluated.
Therefore, a comparison between the traditional OSPF routing algorithm, the
modification for SDN presented in chapter 4 and the protocol with the rein-
forcement learning algorithm is performed in this section. First, the network
and the equipment used are described. Then, the different scenarios tested
and the characteristics of the multimedia traffic sent are detailed. Finally, the
results are discussed.

The network topology used is shown in Fig. 5.68. In this network, the core
is built over SDN switches that form a ring with a sort of shortcut through
the middle of the network. This switch in the middle acts as a backup switch.
Each of the switches is connected to a heterogeneous network, where different
kinds of clients may be found. All the networks are /24-mask-sized. These
networks, depicted in Fig. 5.69, send different kind of traffic through the SDN
core network. Consequently, the SDN controller manages the traffic, always
prioritizing the multimedia traffic when facing transmission problems. The
networks that interconnect the switches, needed for OSPF-based solutions,
are shown in Table. 5.7. In Fig. 5.68, when a double link interconnects two
switches, it means that there is a backup line that can be used if needed.

In Table. 5.8, the equipment used for the multimedia server and clients, the
SDN controller and the SDN switches is specified. That is the hardware used
for the test performed in this section. The test is divided into two different
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Figure 5.68: Proposed topology.

Figure 5.69: Loss rate obtained in the second test.
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Table 5.7: Networks between switches.

Network Source Destination Double Link

192.168.2.0 S1 S2 Yes
192.168.3.0 S1 S3 No
192.168.4.0 S2 S6 No
192.168.6.0 S3 S4 No
192.168.8.0 S4 S5 Yes
192.168.9.0 S5 S6 Yes
192.168.11.0 S4 S7 Yes
192.168.12.0 S6 S8 Yes
192.168.13.0 S7 S8 No

Table 5.8: Equipment specifications.

CPU RAM OS

Network
Hosts

Intel Core 2
Quad CPU
Q800 @ 2.33

GHz

4 GB Windows 10
Education

SDN
Controller

Intel Core
i7-55000U @
2.40GHz

8 GB Ubuntu 16.04

SDN
Switches

Aruba 2930F 24GB 4SFP [189]

scenarios. Each scenario shows a different multimedia transmission as a focus
of the test. For every multimedia transmission, some problems appeared during
the streaming. For both scenarios, the video transmitted and the software to
transmit and to measure the streaming is the shown in Table. 5.9.

The two different scenarios are discussed in the following subsections, where
both the description of the scenario and the results obtained are depicted.
In both scenarios, the traditional OSPF routing protocol is compared to the
OSPF adaptation to SDN (OSPFMod) and to the reinforcement learning AI
method in the routing protocol proposed in this dissertation (RL).
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Table 5.9: Software and video used.

Video Big Buck Bunny, Sunflower MP4
version. 1920x1080, 750MB.[190]

Sreaming Software VLC media player v. 3.0.11. [191]
Capture Software Wireshark 3.2.7 [192]

Figure 5.70: Actions selected by the RL algorithm in scenario 1.

5.6.1 Scenario 1

The first scenario evaluates a multimedia transmission from the end network
directly connected to S3 (192.168.5.0) to a multimedia host in the network
connected to S2 (192.168.1.0). In this scenario, all the protocols initially decide
to send the streaming through S1. In this scenario, the transmission has a
duration of 90 seconds. However, approximately after 15 seconds, the link
between S3 and S1 stop working. Since the route through S5 is a backup
switch, all the protocols decide to send the data through S4 and S7. In that
route, there is a TCP connection sending huge files and consuming bandwidth.
Fig. 5.70 depicts the actions selected by the RL algorithm to be performed
in the network. From second 10, the protocol selects an alternative route. In
second 30, the RL algorithm decided to limit the TCP flow.
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Figure 5.71: Bandwidth consumed in scenario 1.

Fig. 5.71 shows the bandwidth consumed by the multimedia transmission. All
the protocols have a minimum bandwidth of 0 Mbps. This fact is due to
that, in some point of the communication, all of them lose connectivity. As
average bandwidth, OSPF presents 3.859 Mbps. The modification of OSPF
has an average of 4.488 Mbps and the proposal 10.783 Mbps. The maximum
bandwidth consumed is 10.859 Mbps by OSPF, 11.069 Mbps by OSPFMod
and 12.056 Mbps by the proposal.

Fig. 5.72 depicts the delay presented by the multimedia transmission for each
protocol. Again, the minimum delay for all protocols is 0ms. However, maxi-
mum and average delays vary depending on the protocol. OSPF presents an
average delay of 23.32ms and a maximum of 104.21ms. The average delay of
OSPFMod is 22.14ms and the maximum 80.48ms. Finally, the proposal has
an average delay of 10.10ms and a maximum of 198.89ms.

In Fig. 5.73, the jitter suffered by the multimedia transmission is presented.
The minimum values are 0.01 ms for OSPF and OSPFMod and 0.08 ms for the
proposal. The average jitter presented by OSPF is 3.22ms and the maximum
23.08ms. On the other hand, the modification of OSPF has an average jitter of
2.79ms and a maximum of 11.13ms. Finally, the average jitter of the proposal
is 1.98ms and the maximum is 24.65ms.
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Figure 5.72: Delay presented in scenario 1.

Figure 5.73: Jitter presented in scenario 1.
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Figure 5.74: Actions selected by the RL algorithm in scenario 2.

5.6.2 Scenario 2

The second scenario evaluates a multimedia transmission from the end network
directly connected to S4 (192.168.7.0) to a multimedia host in the network
connected to S6 (192.168.10.0). After approximately 15 seconds, the first of
the links between S4 and S7 stop working. This produces different behaviors
in the protocols. However, once the new path is established, the increment
of the traffic in that path makes congestion to happen after some seconds.
Then, the different approaches between the protocols play again a role in the
performance.

Fig. 5.74 displays a graphical representation of the actions chosen by the RL
algorithm. In this scenario, the algorithm decided firstly to change the route.
After the congestion, the video characteristics were modified, downgrading the
quality of the source to avoid transmission problems. Finally, after the last
connectivity problem, the algorithm decided to use the backup switch, S5, to
avoid congestion.

Fig. 5.75 shows the bandwidth consumed by the multimedia transmission.
Again, due to a lack of connectivity during the streaming, all the protocols
have a minimum bandwidth of 0 Mbps. As average bandwidth, OSPF presents
7.497 Mbps. The modification of OSPF has an average of 8.775 Mbps and the
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Figure 5.75: Bandwidth consumed in scenario 2.

proposal 8.772 Mbps. The maximum bandwidth consumed is 10.874 Mbps by
OSPF, 11.508 Mbps by OSPFMod and 12.275 Mbps by the proposal.

Fig. 5.76 depicts the delay presented by the multimedia transmission for each
protocol. Again, the minimum delay is 0ms for all protocols. Nevertheless,
maximum and average delays vary depending on the protocol. OSPF presents
an average delay of 4.66ms and a maximum of 23.74ms. The average delay of
OSPFMod is 4.66ms and the maximum 23.74ms. Finally, the proposal has an
average delay of 8.84ms and a maximum of 246.68ms.

In Fig. 5.77, the jitter shows the bandwidth consumed by the multimedia trans-
mission. The minimum values are 0.07ms for OSPF, 0.29ms for OSPFMod and
0.03ms for the proposal. The average jitter presented by OSPF is 3.66ms and
the maximum 11.42ms. On the other hand, the modification of OSPF has an
average jitter of 0.84ms and a maximum of 23.43ms. Finally, the average jitter
of the proposal is 1.80ms and the maximum is 27.55ms.
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Figure 5.76: Delay presented in scenario 2.

Figure 5.77: Jitter presented in scenario 2.
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Figure 5.78: Packet losses.

5.6.3 QoE Results

In this subsection, the QoE results are discussed. First, the packet loss of each
transmission in each scenario is presented. Then, the QoE measurement is
explained and the results are depicted. As regards the packet losses, Fig. 5.78
shows the comparison between the different protocols in both scenarios. In
both scenarios, the proposal is the protocol with less packet losses (16.85%
and 41.09% respectively). The modification of OSPF is the second protocol
with less losses (65.25% and 82.25%). Finally, OSPF presents losses of 70.63%
and 90.85%).

The QoE experiments consist in playing the received video of each scenario and
protocol to a set of users. Then, the users must score the quality perceived of
the video in a scale from 0 to 10. Then, the average is calculated. Therefore, the
MOS is obtained. Table 5.10 shows the description of the users that analyzed
the video quality.

Fig. Fig. 5.79 shows the results of the QoE measures. For both scenarios, the
order of the transmissions depending on the QoE perceived is the same. OSPF
has the worst results with, approximately, 6 and 4 respectively. In the second
position, we find OSPFMod with 6.25 and 5. The proposal provided better
quality with scores of 7 and 6, approximately.
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Table 5.10: Users data.

Sample Size 15
< 30 years old 10

> 30 and < 60 years old 4
> 60 years old 1

Not familiar with
technology

2

Low familiarity with
technology

9

High familiarity with
technology

4

Figure 5.79: QoE results.
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5.7 Conclusion

In this chapter, the AI methods used for the proposal have been detailed. All
the AI processes included in the AI module located in the architecture has
been named and discussed. Finally, a comparison between the routing alterna-
tives has been provided. This comparison shows that, due to the new actions
introduced by the proposal, the QoS, in terms of throughput, delay, jitter and
packet loses, presents better performance than traditional routing protocols,
although they are adapted to SDN. Furthermore, regarding QoE, the results
show that the users perceived better quality from the multimedia transmis-
sion over the proposal rather than the other alternatives, even although all the
transmission suffered problems during the streaming.
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Applications

6.1 Introduction

In the last chapters, the SDN controller, the routing algorithm and the AI
module have been discussed. In this chapter, some of the applications proposed
that are built from the system, and the architecture previously depicted, are
described. These applications have been published in journals, book chapters
or conferences (see chapter 7).

6.2 SDN Applied to Smart Irrigation

The proposed system has been designed to enhance the efficiency in the water
usage in the smart cities. This efficiency is achieved by two different ways.

The first one, is to adjust the irrigation needs in order to avoid waste of water.
It will be done by controlling the exact amount of water need. Commonly, the
irrigation process is done according to pre-set values based on the grass type
and the season of the year. However, the climatic conditions, the topology, the
soil type or the shadow conditions are not considered. Those conditions cause
that, in different parts of the same garden, the water demand is different. Thus,
the requirements of irrigation change from one part of the garden to another

253



Chapter 6. Applications

one. For this reason, it is necessary to consider the humidity in the soil before
to distribute the water in the gardens. This methodology is widely used for
agricultural purposes and it is part of the precision agriculture. Nevertheless,
these techniques are not used as often in gardening. We can find some examples
in the literature where authors employ sensors to adjust the irrigation in crops
[193] or [194].

The second one, is to define a series of rules to ensure that the irrigation is
done in the best moment. The most important rule is to water the gardens
only during the night periods. This will reduce the fast evaporation of the
water, which cause many problems. Moreover, the system considers the water
consumption of houses and business in order to decide the best moment to
irrigate. The objective is to use water for irrigation purposes in the moment
when the houses and business are not using water. Thus, the pressure over
the water supplies fonts will be reduced. It is better to have similar water
consumptions along the 24 hours of the day, when there are different demand
peaks.

For that purpose, our system must be able to read data on the state of the
gardens state and on the water consumptions done by houses and business.
In addition to read a high amount of information, its integration and pattern
identification and prediction is crucial. Therefore, a smart system able to take
decisions based on a set of given rules is needed. Moreover, the proposed
system needs to ensure the security of the data sent from houses and business
and it must be easily scalable due to the continued growth of the cities.

6.2.1 Urban Scenarios

In this section, we are going to identify and describe the urban scenarios where
our proposal can be developed. First, the different areas in the cities are
defined. Then, the employed sensors in each area are shown.

For our proposal, we are going to differentiate two areas inside the urban en-
vironment. Residential areas, where homes and business are located, usually
consume high amounts of water during the day and the first hours of night.
Water is mainly consumed for domestic purposes, cleaning, cooking and hy-
giene among others. In small percentage, some houses have their own gardens
and use water for irrigation purposes or to fill swimming pools. Water is used
in business for almost the same purposes that at home. Depending on the
business they can use more or less water and their maximum consumption can
occur at different hours.
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In green areas, water is mainly consumed for irrigation purposes, but it also
can be used in drinking water fountains and decorative fountains. The biggest
water consumption occurs during the night when the gardens are irrigated.
According to the climatic conditions, grass requirements and soil type, the
irrigation needs may change. For irrigation purposes, we can distinguish be-
tween walkable green areas and non-walkable green areas. On the one hand,
walkable green areas are considered all the green areas where the presence of
people is common, like parks, gardens, sport areas or recreational areas. On
the other hand, non-walkable green areas are all the green areas where presence
of people is not expected like the roundabouts and similar areas. Non-walkable
green areas can be watered anytime in the night. In walkable green areas we
can distinguish two categories. The first one, areas with opening and closing
hours like sport areas can be watered in the night during the closing period.
The last one, green areas without opening and closing time, must be watered
during the night but ensuring that nobody is there.

As a result, we can have 4 different types of areas in the city, (i) residential
areas, (ii) non-walkable green areas, (iii) walkable green areas with no schedule,
and (iv) walkable green areas with schedule.

6.2.2 Employed Sensors

In residential areas, sensors to measure the water consumption will be deployed.
Those sensors are integrated in the water supply system and they are called
smart meters. Smart meters are digital electronic devices that can collect data
on supplies use and send it to the utility [195]. The supplies can include water,
electricity or gas. In this case the smart meters will monitor the water use.

In green areas, sensors to measure the garden conditions and actuators that
activate/stop the irrigation system will be deployed. The sensors that control
the garden status include rain (Fig. 6.1), soil moisture (Fig. 6.2), temperature
(Fig. 6.3), wind [196] and solar radiation (Fig. 6.4) sensors. Those sensors are
located in atmospheric stations placed in the gardens, water flow sensors in
the water pipes, and presence sensors (Fig. 6.5). Soil moisture sensors define
the amount of water needed by a portion of garden. Temperature, rain, wind
and solar radiation sensors are used to define the best moment to irrigate. The
current sensors in pipes are employed to ensure that there is no pipe broken.
Presence sensors, which are placed along the gardens without special schedule,
define, in conjunction with climate sensors, the best moment to irrigate.
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Figure 6.1: Rain sensor.

In Table. 6.1, we show the information related to the data gathered and sent
by each sensor. In this table, we include the maximum and minimum possible
values. The sensors may gather values higher than the maximum and lower
than the minimum, but those values are not expected in the deployed areas.
Moreover, we include in the table the sensitivity required from the sensor. The
sensors could have higher sensitivity but for our application we require less
sensitivity. The objective is to minimize the bits used to send data from each
sensed parameter.

6.2.3 Architecture

The architecture proposed is a combination of nodes that measure data and a
network infrastructure. This infrastructure not only has to be able to trans-
mit the data, but also to provide a way to act intelligently and efficiently.
Therefore, the network architecture chosen is Software Defined Network. That
network builds the core of the system in terms of communication. It also can
be connected to the Internet to use external services.

For improving the simplicity of the figures, the actuators that can appear
together with the sensors in their networks are omitted. When a sensor appears
in the figure, it can be both a sensor and an actuator. Fig. 6.6 shows the
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Figure 6.2: Soil moisture sensor.

picture of all the different actors in the architecture and their connections. On
the one hand, the data gathering actors are connected to the core network.
These actors can be either Smart Meters or sensor nodes. Furthermore, the
sensor nodes can be meteo nodes (Weather stations) or irrigation nodes. The
core network is an SDN composed by OpenFlow-enabled switches and access
points (AP). On the other hand, the SDN can be also connected to the Internet.
That is the data path of the system. However, an SDN controller is needed
to manage the SDN and it is connected to every node in the SDN. The SDN
controller is the one explained in chapter 3. In the figure, the connections used
for managing the SDN are painted in brown.

This architecture is deployed in the Smart City, making several data source
networks. These networks can be composed either by a Smart Meter or by
a Wireless Sensor Network (WSN). WSN are made up of sensors gathering
different data such as humidity and temperature. In addition, there are some
actuators like garden hose for irrigation. Depending on the kind of source net-
work, the gateway that interconnects the SDN with that source network varies.
If the source network is a Smart Meter, the gateway will be an OpenFlow
switch. Otherwise, the WSN need an access point because they are wireless.
The access point is the cluster head(CH) of the WSN as well. These two dif-
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Figure 6.3: Temperature sensor.

ferent source networks are displayed in Fig. 6.7, when an example of multiple
networks connected in the Smart City using the architecture is presented.

Finally, the layer architecture is showed in Fig. 6.8. The nodes in the architec-
ture are classified into different categories or layers depending to their function.
The first layer contains the nodes whose goal is to gather the data. The data
is propagated through the network nodes, which belongs to the network layer.
The data gathered by the smart meters and the sensors are sent to the SDN
controller with the network statistics gathered by the network nodes. The con-
troller provides management functions for the data and for the network, being
able to command new measurements or data sending if the data is not well
received. Furthermore, the controller is able to change network paths or pro-
cesses if the network conditions change drastically. Nevertheless, the decisions
needed to be taken are decided by the intelligence layer. The AI module, a
software module that resides on the SDN controller, executes rules to decide
what to do attending to the data gathered. The decisions are transformed
into commands that are propagated down-way in the layer architecture. The
actuators will execute the decided action like save water or irrigate. The sen-
sors and the smart meters can act too, changing the measurement frequency
or executing other functions.
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Figure 6.4: Solar radiation sensor.

Figure 6.5: Presence sensor.
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Table 6.1: Possible values gathered by each sensor.

Parameter Min. Max. Interval Sensi-
tivity

Possible
values

Bits

Presence
(yes/no)

0 1 2 1 1 1

Moisture (%) 1 100 100 3.5 28.6 32
Water (yes/no) 0 1 2 1 1 1
Temperature

(ºC)
-19 40 60 2 30 32

Rain (yes/no) 0 1 2 1 1 1
Wind (km/h) 0 31 32 2 16 16
Light (lux) 0 99,999 100.000 2000 50 64

6.2.4 Messages

Once the architecture and the aim of the system have been detailed, the next
step is to define the messages used to provide the functionality to the system.
The OpenFlow standard is used by the controller for gathering data from the
network nodes. For example, when a sensor sends data to the CH, an OpenFlow
message is used to forward the packet to the controller through the secure
channel that connects the controller to the network nodes. However, some
custom messages are needed to implement all the functionality of the system.
Moreover, besides the messages used to communicate the data gathered by
the sensors, other messages are needed to implement functions. The custom
messages defined to be used by the system are the followings:

• ACK message: used to inform that the procedure carried out has been
properly executed.

• Data: used to communicate the data collected from the sensors to the
CH. This message is sent from any sensor or smart meter to the CH.

• Data Request: used by the SDN controller to request data to the sensors
in a specific time instant. The sensors will perform a new measurement
and will respond with a data message.

• Sleep: used to put a specific sensor or actuator to sleep during a specific
period of time. It is sent from the SDN controller to any sensor or smart
meter.
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Figure 6.6: Architecture of the proposed system.

• Activation message: used to wake a sleeping sensor or actuator immedi-
ately. The SDN sends this message to a sleeping sensor or actuator.

• Act Time message: used to specify the waking time of a sleeping sensor or
actuator. Like the activation message, it is sent from the SDN controller
to a sleeping sensor or actuator.

• Stop irrigation message: used by the sensors to make the irrigation stop.
This message is sent from the sensor to the actuators.

• Error message: used to inform that some error has appeared during the
procedure.

All these messages are sent encapsulated in UDP datagrams. They include a
header where the type of message and the length of the payload are detailed.
Then, the data is presented. This structure is displayed in Fig. 6.9 where the
messages are presented. Not all the eight messages appear in the figure due
to some of them are empty messages. They are only composed by the type
and length header and the length header value is zero. Those messages are:
ACK message, activation message, stop irrigation message and error message.
All of them are direct commands or info messages. The other messages need
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Figure 6.7: Example of multiple networks connected in the Smart City.

some fields in the value header to communicate data. Their fields are detailed
in Fig. 6.9 among the type, length and value headers.

Accordingly, the system is constantly using OpenFlow standard messages to
collect statistics from the SDN nodes and to forward messages to the controller
but also the previously defined messages to execute actions and communicate
the data from the sensors and smart meters.

As it is previously commented, the messages are sent through a UDP datagram.
Therefore, the total size of the packets, either sent from or received by the
sensors or actuators, is 79 bytes from the datagram, 3 bits from the type
header, 1 byte from the length header and the length of the value header (6.1).

Size = SizeUDP + SizeHeaders (6.1)

Where

SizeUDP = 79 Bytes
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Figure 6.8: Layer Architecture.

SizeHeaders = SizeType + SizeLength + SizeV alue (6.2)

SizeType = 4 bits

SizeLength = 1 byte

SizeV alue = Length

The length of the packet sent depends on the type of packet. The ones that
do not appear in Fig. 6.9 will have a size of 643 bits. However, data request
message, sleep message and act time message will have a size of 651 bits. The
size of the Data message will depend on the type of node. We manage four
different kind of nodes, described in Table. 6.2, where the data sent by each
kind of node is detailed. Each node sends a different amount of data and
they are specified in the system just as in Table. 6.2. Therefore, the system
is able to identify which kind of data is receiving and how many bits should
read depending on the length header. This allows us not to use a “Node type”
or “Data Type” field in the Data message, reducing the size of the message
and the energy consumption. The Data message size will depend on the node,
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Figure 6.9: Messages with non-empty value field and their structure and length.

being 757 bits for a weather station node, 677 bits for an irrigation station
node and 647 bits for a smart meter. In Table. 6.3 each kind of data type
gathered by a different sensor is defined and its length is detailed.

With the messages presented, not only the communication process has been
discussed, but also the size of the messages. The next point to discuss is the
algorithm of the system.

Table 6.2: Data quantity and type sent by each kind of node.

Node Type Data Sent by the
Node

Data Length

Weather station
node

Temperature, Rainfall,
Wind, Light

114 bits

Irrigation station
node

Humidity, Water Flow 34 bits

Smart meter Consumption 4 bits
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Table 6.3: Data length of each data type.

Data Type Length

Temperature 32 bits
Rainfall 2 bits
Wind 16 bits
Light 64 bits

Humidity 32 bits
Water Flow 2 bits
Presence 2 bits

Consumption 4 bits

6.2.5 Algorithm

The irrigation process consists of a periodic evaluation of the scenario. Usually,
every hour, the sensors and smart meters send the data to the SDN controller.
The algorithm evaluates then the conditions for irrigating. The following fac-
tors need to be taken account before irrigating:

• If it is raining, the irrigation cannot start. The system should wait until
the rain stops in future iterations.

• If the forecasting service indicates that will rain at the irrigation time,
the irrigation is postponed.

• If there are people in the irrigation area (in those where people can walk
on the grass), the irrigation does not start.

• If there are gust of wind greater than 20km/h, the irrigation is canceled.

• If the forecasting service indicates that there will be freeze, the irrigation
is canceled.

• If the forecasting service indicates that there will be gust of wind, the
irrigation is immediately started.

• If none of these conditions are true, the irrigation will start only if it is
the irrigation time. This time is a period between the consumption peaks
of the households at night and in the morning. The irrigation must start
after the night peak and before the morning peak. Furthermore, if the
area has an opening and closing time, the irrigation will be performed
only after the closing time and before the opening time.
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The flowchart of that irrigation process is showed in Fig. 6.10. First, all the
data needed to be read is obtained. The sensor data, either obtained each
hour from the sensor or consulted by the controller, the forecasting consulted
in the web service and the consumption data gathered from the smart meters.
Then, with all these data, the conditions are evaluated, and the decision is
taken. This process is repeated every day several times until the irrigation is
performed.

Some details of the process must be discussed. On the one hand, the irrigation
will stop when the humidity sensor measures a humidity value greater than a
defined threshold. This is performed by using the “Stop irrigation message”
defined previously in the messages section.

On the other hand, the data of the consumption are processed by the AI mod-
ule. Using a statistic model, the future peaks of consumption are predicted.
Moreover, the changes of this consumption habit are also predicted. For ex-
ample, if the consumption peak is delayed from 9PM to 10PM in summer, the
system will adapt to that change. Therefore, the irrigation period will change
dynamically depending on the users and water consumption problems during
the irrigation process will be avoided.

However, prediction of consumption periods is not the only thing that the AI
module can provide to the system. Some issues and problems like leaks or
frauds can be also detected by analyzing the consumption histogram.

6.2.6 Requirements for the implantation of the proposal

In this section, we are going to present the network requirements if we try to
implant the aforementioned proposal in urban environments. We are going to
show the use of the proposal in different types of cities. First, we are going to
describe 5 different scenarios.

• The first scenario is a small village with 100 houses, 3 business and few
green areas >1000m2. Its green areas are mainly composed of round-
abouts and small plots with grass and trees.

• The second scenario corresponds to a middle size town with 5,000 houses,
100 businesses and 20,000m2 of green areas. The green areas are com-
posed by roundabouts, municipal gardens and a sport area.

• The third scenario is another middle size town with 5,000 houses, 100
business as the previous case bit with bigger green areas. A total of
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Figure 6.10: Algorithm of the irrigation process.

700,000m2 of green area are spread around the town. In addition to the
aforementioned green areas in this town there is a golf park.

• The fourth scenario is a city with 200,000 houses, 25,000 business and
500,000m2 of green areas.

• The fifth example is a big city with 1,500,000 houses, 400,000 business
and 62,000,000m2 of green areas. The green areas include different sport
areas, roundabouts and big gardens and recreational areas.

Now, we are going to show the requirements if we want to deploy the proposed
system in those scenarios. Thus, we are going to do some assumptions. The
first one is to assume that in all the houses and business there is a smart meter
installed. Next, the meteorological stations, where the temperature, rain, wind
and solar radiation sensors are located, are placed in the green areas each
10.000m2. In the green areas, the humidity and the current sensors are placed
at each sprinkler. This is called irrigation control station. We can assume
that each sprinkler covers an area of 37m2 approximately. The sprinklers have
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Table 6.4: Number of nodes for different purposes in each scenario.

City Smart
Meters

Meteorological
Stations

Irrigation
Control
Stations

1 103 1 28
2 5100 2 541
3 5100 70 18919
4 225000 50 13514
5 1900000 6200 1675676

an overlapping of 25%. Thus, we can easily calculate the number of smart
meters and stations located in each one of the aforementioned examples, see
Table. 6.4.

Once we set the number of smart meters, meteorological stations and irrigation
control stations we can calculate the amount of traffic generated in each case.
The meteorological stations send messages of 114 bits of data and 643bits of
headers. The irrigation stations send messages of 34 bits of data and 643 bits of
headers. Finally, the smart meters send messages of 2 bits of data and 643 bits
of headers. Thus, we can calculate the generated traffic when the SDN request
data to all the nodes in each one of the aforementioned examples. The data
obtained can be seen in the Fig. 6.11. In the example with the smallest town
the data sent are 86.35Kbits and, in the biggest city, the data are 2368.43Mbits.
We can see that the lowest traffic comes from the meteorological stations in
all the cases. In four cases the major part from the traffic is related to the
smart meters. Only in the third example, when a big surface is covered by
green area, the data generated by the irrigation stations are the biggest part
of the generated traffic.

6.2.7 Conclusions

In this section we have shown a smart irrigation system for urban lawns. The
system uses data from different sensors placed at homes, gardens and water
tubes. The objective of this work is to create a smart system able to decide the
best moment to start the irrigation according to a series of given rules. Smart
meters are used to monitor the water demand at homes in order to start the
irrigation when the system detects that there is no water demand at homes.
Several meteorological stations can be used to monitor the climatic conditions
in order to delay the irrigation if it is raining or there is too much wind or too
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Figure 6.11: Data sent in each scenario to the SDN.

low temperatures. Thus, we can save water if we wait to irrigate if it is raining,
avoiding misuse of water if there is wind or avoid damages in case of possible
frost. Moreover, the system has sensors placed in the water tubes. These
sensors are monitoring water flow and humidity in the sprinklers. The sensors
in the tubes are placed to detect breakages and the soil moisture sensors close
to the sprinklers monitor the water presence in the soil and determine when
it is necessary to irrigate and when stop it. Using all these data and a smart
algorithm the system expects to save some of the water used for irrigation
and to reduce the water demand peaks. We have demonstrated the network
bandwidth required in different scenarios when this system is used. SDN is
used in this system to ensure the future scalability, the data security, and the
inclusion of the smart algorithm in the network.

6.3 SDN for Video Surveillance

In this section, an intelligent system to manage multimedia transmission in a
video surveillance IoT network is proposed. First, the architecture is shown.
Then, the algorithm is described. Finally, the messages are displayed, and the
communication process is commented.
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6.3.1 Architecture

In this subsection, the architecture of the network is described. The system
is designed for surveillance. The architecture of the proposal is a combination
of two network technologies. This combination is shown in Fig. 6.12. On the
one hand, IoT networks work as edge networks. The IoT nodes implement the
functionality of the system. On the other hand, an SDN is used to provide the
core network. The SDN controller, whose function is to ensure the best QoS, is
the central node in the network and it is able to make decisions to interconnect
the different IoT networks.

Figure 6.12: Scheme of the architecture proposed.

The two networks are joined by the Network Head (NH) of each IoT network.
It is a special node that manages the IoT network communication and sends
the data through the SDN network. Moreover, it uses the OpenFlow standard
to communicate with the controller and send it statistics about the use of the
network. This role is played by an OpenFlow-enable switch. There are also
OpenFlow-enabled switches that do not act as the NH of an IoT network.
However, the SDN controller has the AI module and it is in constant commu-
nication with it. The AI module is a set of software programs that uses AI
techniques to provide the functionalities to the system proposed.

Thereby, the network is composed by IoT networks that implement the func-
tions. There are several different kinds of IoT nodes in the system. Fig. 6.13
shows the different roles in the system and the communication between them.
The different tasks that each role implements are painted in different colors.
The SDN controller is in charge of network management and sends the statis-
tics that gather from the SDN nodes (NHs and other SDN switches) to the AI
module. The AI module uses this set of data in order to apply the AI tech-
niques and inform the controller about the multimedia traffic flowing through
the network and its resource requirements. This module is divided into two
parts: The traffic classifier, which reports whether the incoming flow is critical
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or not; and the estimator, which decides the kind of action that should be
performed by the SDN controller in order to guarantee the QoS conditions for
multimedia transmission.

Figure 6.13: Scheme of each actor in the system and their interaction.

The communication between the SDN controller and the AI module is inter-
nal, but it is composed by structured messages. The SDN controller performs
network management functions. However, the most important parts for this
paper are the traffic routing part, where the SDN controller fills the flow table
of each switch, and the statistics gathering. In order to do that, the controller
communicates with the SDN nodes by using the OpenFlow standard. Never-
theless, in some cases we need to use custom messages defined in the following
subsections. The Network Head not only performs network management tasks,
but also communicates with the IoT nodes and it is able to manage their be-
havior. With the messages described in Subsection 6.3.3, the Network Head
is able to operate with the nodes. These nodes are the ones that generate
the traffic in the network. Some of this traffic is multimedia traffic, like video
surveillance traffic, and its QoS must be guaranteed.
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6.3.2 Algorithm

In this subsection, the algorithm performed by the SDN controller is detailed,
and the different actions that can be executed either by the controller or the
nodes are described and classified. The algorithm of the network management
is simpler than the one used by the AI module. The controller initializes the
AI module. Its main task is to use the standard OpenFlow messages to gather
statistics. The algorithm used for network management uses the AI module to
detect critical traffic flows being sent through the network. This critical traffic
means multimedia traffic in this paper. When multimedia traffic is detected
by the AI module, it estimates the resources required and the best action to
perform in order to provide an acceptable level of QoE. This estimation uses
the statistics provided by the controller to be aware of the current state of
the network. With the estimation done by the AI module, the SDN controller
chooses an action to perform in the network. Depending on the resources
needed to provide enough QoE in the transmission, the AI module labels the
level of urgency of the actions to be taken. Therefore, the SDN controller han-
dles the categories of the actions. The SDN controller will perform an action
categorized into the same level of needed resources (listed in Table. 6.5) as that
of the AI module. With these actions, the SDN controller is able to change
priority, queuing policies or making routing decisions in order to guarantee
the QoS needed in the transmission. Some problems, such as media access,
are managed by the controller. If the action being performed by the SDN
belongs to the first three categories, the OpenFlow standard does not contain
any messages that could perform it. Therefore, we have designed some cus-
tom messages (explained in the next subsection) that implement these actions.
The action labeled as IoT has been specifically designed for the architecture
maintenance. They allow activating backup nodes in destination and enable
buffer mode in source. Moreover, with this ability to put some IoT nodes into
sleep mode, the system will avoid QoS problems.

The algorithm is described in Algorithm 6.1 and it is graphically shown in
Fig. 6.14, where the Execute_Action subprocess is detailed. The SDN con-
troller starts gathering statistics and providing these statistics to the AI mod-
ule. When a new packet is reported to the controller, it sends the packet to the
AI module. The AI module detects if it is a critical situation. If it is, the AI
module also estimates the action to perform. The controller is notified about
the action and it sends the messages needed to perform this action in the SDN
nodes. The messages needed to be sent change depending on the action to be
executed. When the action is done, the controller returns to its usual stats
reporting activity.
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Table 6.5: Possible actions and their category.

Category Action

Queuing Change the queuing priority
Queuing Use QoS queuing
VLAN Use VLAN PCP for packet priority

treating on each switch
BW Enable an alternative route
BW Enable load balancing
BW Send the traffic through a priority

treatment route
BW variation Enable link aggregation

IoT Back up nodes in destination
IoT Enable buffer mode in source node

NH Congestion Sleep mode in source IoT network

6.3.3 Messages

The messages sent from the controller to the nodes belong to the OpenFlow
standard in almost all cases. In this subsection, the communication processes
described are not only those between the SDN controller and the nodes, but
also between the SDN controller and the AI module. In addition, the structure
of the messages added in order to expand the capabilities of the SDN controller
is also detailed.

Since the SDN controller contains the AI module, the messages exchanged
between them are not sent through the network. However, it is very important
to describe this communication in order to understand how both actors work.
The communication process in which the SDN controller receives a new packet
is shown in Fig. 6.15. The OpenFlow “Packet_In” message is sent from the
NH to the controller. The controller sends the packet to the AI module, which
classifies the new flow and decides if it is critical or not. Then, if the flow
is critical, the AI module estimates the level of criticalness depending on the
state of the network. These states have been built up thanks to the messages
sent by the SDN controller to the AI module (displayed in Fig. 6.16. These
messages contain the statistics gathered by the nodes. The AI module reports
its classification to the SDN controller. With this info, the SDN controller
executes an action that matches with the estimation performed by the AI
module.
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Algorithm 6.1

Given: Actions

Initialize_AI(Actions)

Cat_Prev = Cat_initial
Foreach new iteration

Stats = Get_Statistics()
AI_Sent_Statistics(Stats)
If New_Packet

Cat = AI_Send_Packet(Packet)
If Cat != No_Crit

Execute_Action(Cat)
End If

End If
End Foreach

Depending on the action to be executed, the OpenFlow messages will change.
Table. 6.6 shows the actions taken when each message is sent.

A special case is when the action is related to the IoT networks. In that case,
there are no OpenFlow standard messages to implement the actions, so the
messages shown in Fig. 6.17 are used. They are the following ones:

• Category: Used to communicate with the AI Module and reports which
kind of resource has to be improved.

• Sleep: Used to inform the NH that all the networks in the IoT network
must be put to sleep when the timer reaches 0 except the video source.

• Awake: Used to inform the NH that all the networks in the IoT network
must be awakened when the timer reaches 0. Used also to activate the
backup nodes in the destination IoT network.

• Buffer_Mode: Activates the buffer in the video source indicated by its
ID.

The communications steps differ when an OpenFlow message is used and when
one of the custom messages are used. This happens because the custom mes-
sages are focused on IoT network management. The communication process of
each case is shown in Fig. 6.18 and Fig. 6.19. This process is the continuation
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Table 6.6: Actions taken when each message is sent.

Action Messages Used

Change the queuing
priority

OF_PACKET_OUT
(ENQUEUE)

Send the traffic through a
route with higher priority

OF_FLOW_MOD

Enable load balancing OF_FLOW_MOD
Enable an alternative

route
OF_FLOW_MOD

Enable link aggregation OF_FLOW_MOD
Use VLAN PCP for high
priority packets on each

switch

OF_PACKET_OUT

Back up nodes in
destination

Awake

Enable buffer mode in
source node

Buffer_Mode

Sleep mode in source IoT
network

Sleep
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Figure 6.14: SDN controller operation diagram.

of the one described in Fig. 6.15 (when the AI module indicates that the flow is
critical and the action that should be executed). Fig. 6.18 shows the message
exchange when the action is focused on the SDN nodes. The SDN controller
uses the OpenFlow messages to inform the SDN nodes of the network on which
action must be performed. Fig. 6.19 describes the process when the IoT net-
work is involved and the NH is the destination of the messages sent by the
controller.

6.3.4 Methodology and Results

Once the AI system is trained and explained, its application to the SDN must
be measured. In this section, the experiments performed to measure the im-
provement during multimedia transmission are detailed. First, the topology
and the software used in the experiments are described. Then, the results are
shown and discussed.
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Figure 6.15: Message communication process when a new packet arrives.

Methodology and Topology

The experiments ran over the emulator Mininet. This emulator provides SDN
emulation by using Linux Hosts as PC and Switches. The experiments consist
of sending video streaming through the core network in different scenarios.
The streaming is performed using the VLC software. Both the source and the
destination network are emulated as Linux hosts in Mininet; so, we manage
them as hosts in the network.

Mininet allows us to modify the network conditions and, along with the multi-
media traffic sent, to simulate different scenarios. These conditions are defined
in a script and the network is built with those characteristics. The topology
used in the experiments is the one shown in Fig. 6.20. This topology allows
us to use different techniques, such as alternative routing, thanks to the path
redundancy. The streaming source is H1, and the destination, H2. The path
chosen for the delivery is S1-S3-S5 because the others present higher delay.
Moreover, the link between S1 and S3 is marked in Fig. 6.20. This is because
we are able to use link aggregation in that link in order to increase the available
bandwidth.

The different scenarios tested are the following ones: In the first scenario (sce-
nario 1), there is a bandwidth problem and the action indicated by the AI
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Figure 6.16: Message communication process when statistics are demanded.

module is to use an alternative path, with an increment of delay. In the sec-
ond one, the problem is the same, but the action to perform is to use link
aggregation in order to increase the bandwidth. In scenario 3, the AI module
suggests using queuing to modify the priority and reduce the loss rate. Finally,
in scenario 5, there is congestion in the source IoT network, and the AI module
reports the custom message that is necessary to put the nodes to sleep. In the
next subsection, the results of each scenario are presented.

Results

The results of the experiments are displayed and discussed in this subsection.
Not only are QoS parameters measured, but also QoE has been analyzed, and
it is discussed at the end of the subsection.

In Fig. 6.21, the comparison between the bandwidth used by the multimedia
streaming in both cases, with and without the proposed system, is displayed.
Without any system that performs actions to improve the QoS, the bandwidth
has a maximum of 1.83Mb/s. However, with the proposal, that maximum
increases up to 3.08Mb/s. The minimums are 16.4kb/s and 104.12kb/s, re-
spectively. The average bandwidths are similar, 1.19Mb/s and 1.08Mb/s.
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Figure 6.17: Custom messages used when actions in the IoT networks are required.

In terms of jitter, the performance is compared in Fig. 6.22. The average jitter
without the proposed system is 2.47ms. However, by using the alternative path,
the average is 8.19ms. The maximums are 11.13ms and 47.62ms, respectively.
Finally, the minimum jitter also increases from 0.01ms to 0.13ms with the
proposed action.

In scenario 2, due to the network status, the action to perform is link aggre-
gation. Fig. 6.23 shows the changes produced in terms of bandwidth when the
system is used. Without it, the average bandwidth is 1.12Mb/s. There was
a maximum of 1.89Mb/s and a minimum of 10.9kb/s. When the system is
used, the average bandwidth is 1.42Mb/s, the maximum is 2.99Mb/s, and the
minimum is 16.4kb/s.

Regarding the jitter, there is a reduction when the system performs the action
indicated by the AI module, as shown in Fig. 6.24. The average jitter is reduced
from 2.4ms to 0.49ms. The maximums are similar: 8.89ms when the proposal
is not being used, and 7.63ms when it is. The minimums are 0.22ms and
0.03ms, respectively.

In scenario 3, the loss rate is measured. The AI module decides to use pri-
ority techniques using queues. Fig. 6.25 shows that the bandwidth does not
change like in the previous scenarios. The average bandwidths are 1.01Mb/s,
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Figure 6.18: Message communication process when there is an SDN-node-based action.

without applying the action, and 1.07Mb/s when applying it. The maximum
is 1.95Mb/s in both cases and the minimum is 16.4kb/s.

However, the jitter presents some differences. Fig. 6.26 shows that the average
jitter without the proposal is 4.77ms, and it is reduced to 1.35ms when it
is used. The average jitter is quite different: 10.2ms for the proposal, and
43.05ms when it is not used. The minimums are 0.01ms with the proposal and
0.13ms without it.

Fig. 6.27 shows the reduction of the loss rate from 9.07% to nearly 1.16%. This
loss rate reduction works to improve the QoE, as is shown at the end of the
subsection.

The last scenario is used to test the custom characteristic for QoS improvement
using IoT characteristics. The congestion in the source network is handled by
putting the rest of the nodes to sleep. So, the QoS of the multimedia transmis-
sion is improved, as shown in Fig. 6.28. It shows that the maximum bandwidth
consumed by the multimedia flow is increased from 1.79Mb/s to 2.92Mb/s by
using the proposed solution. The average bandwidth is also increased from
0.85Mb/s to 1.24Mb/s. The minimum bandwidth consumed is 8.98kb/s with
the system and 104.1kb/s without it.
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Figure 6.19: Message communication process when the IoT network is affected.

The jitter also changes with this action. It is displayed in Fig. 6.29. The
congestion in the source network produces an average jitter of 9.93ms. There
is a maximum of 48.08ms and a minimum of 0.12ms. Nevertheless, with the
action performed, this jitter is reduced to 0.27ms of the average, 6.19ms of the
maximum and 0.01 of the minimum.

After testing these scenarios, the video obtained in the destination network is
watched by 11 users, 8 males and 3 females. They chose for each player a score
from 1 to 5, 5 being the best quality and 1 being the worst one. The results
are shown in Fig. 6.30. All the actions performed by the controller increase
the MOS obtained by the users. On the one hand, the greatest improvements
are those produced in scenario 3, where the MOS increases from 2.1 to 5, and
in scenario 4, where it increases from 1 to 3.2. On the other hand, in scenario
2, the increment is from 3 to 3.75 and, in scenario 2, the MOS increases from
3.2 to 4.1.
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Figure 6.20: Topology used in the experiments.

6.4 SDN for Emergency Managemenet in Smart Cities

This section presents an SDN implemented in a smart city that provides a
management system in emergency situations, notified by alarms. First, a typ-
ical scenario and the IoT architecture proposed in this work are shown. The
section also includes the packet exchange for both the case when an alarm
is detected and the case when the alarm is finished. Finally, the employed
structure of the messages is described.

6.4.1 Architecture and Algorithm

IoT networks are composed by nodes that provide data to the network in
order to make intelligent and efficient decisions. On the other hand, an SDN
is composed by virtual devices, specifically Openflow Switches, which play the
role of the CH. In our scenario (See Fig. 6.31), the traffic elements such as
cameras and traffic lights compose each IoT network while each OpenFlow
switch is managed by an SDN controller that can make decisions about the
behavior of the nodes on the IoT networks. The SDN network is in charge of
gathering data from all IoT networks and distributes this information along the
rest of the OpenFlow switches. Additionally, the SDN controller communicates
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Figure 6.21: Bandwidth obtained in scenario 1.

with a cloud service which is capable of requiring actions from the controller
in order to make changes in the SDN network and in the IoT networks.

As Fig. 6.31 shows, the entire city is a smart city where the control plane
is directed by the SDN network and the data plane is composed by the IoT
networks. When an emergency event is registered, the SDN controller receives
data from the OpenFlow switches and the SDN controller sends requests for
available resources throughout all the networks, as well as the location (by
using area IDs) of each IoT network and the possibility of fast reaching the
place where the emergency was detected. At that moment, the flows are opened
to allow communication between the IoT nodes that have to collaborate in
order to divert urban traffic and make decisions so as to obtain the fastest
paths for the emergency services.

In order to ease the access of emergency services to the place where the emer-
gency was detected, the SDN network modifies the behavior of the traffic lights
changing, for example, the duration of the intervals between sequences of green
/ amber / red lights for vehicles, the time pedestrians spend crossing or the
diversion of vehicles to certain directions. Traffic lights and traffic panels can
be employed to modify the routes for vehicles and disperse them from the place
of the emergency. In this way, it is possible to coordinate traffic lights that ini-
tially were not and, after varying the routes or conditions, this cooperation is
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Figure 6.22: Jitter obtained in scenario 1.

needed for better management of the emergency situation. The pseudocode of
the algorithm is presented in Algorithm 6.2. First, the type of the emergency
is obtained from the emergency ID, if the emergency is labeled as a high-risk
emergency, additional security resources are asked. Then, the shortest route is
calculated for each resource, and taking into account that some resources can
share parts of the route to the emergency area. Finally, the SDN flows of the
CH are modified, the CH is informed about the emergency and the behavior
of the IoT nodes are communicated.

In order to completely understand the algorithm, the messages exchanged are
described in the next subsection.

6.4.2 Messages

In this subsection, the structure of the exchanged messages is detailed. The
exchange of messages when an alert occurs is displayed in Fig. 6.32. Fig. 6.33
represents the flow of the messages when the emergency has been handled.

Fig. 6.32 describes the process of communication when the emergency service
notifies an emergency alert. It sends the message to the SDN controller that
read the data to know if the emergency has been classified as a high-risk
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Figure 6.23: Bandwidth obtained in scenario 2.

emergency. If it is a high-risk emergency, the SDN controller asks for resources
to the local security service located in the city. The service provides local
security resources and notifies there are via Resource Allocation messages.
After that, the algorithm determines the routes for the normal traffic and for
every emergency resource available. By using OpenFlow Flow Modification
messages the controller changes the communication between the IoT networks.
Then, it informs the CH of the affected areas that the behavior of the node has
to change due to an emergency, using the FL Emergency Behavior message.
The FL Behavior set the behavior of an individual IoT node.

In a similar way, Fig. 6.33 describes the communication established to set the
behavior of the nodes back to the usual way of operating. The message flow is
similar to the described in Fig. 6.32. Instead of asking for resources, the SDN
controller informs that the resources have been released because of the end of
the emergency. Then, modifies the flow table again in every CH and informs
them that they have to change the behavior of their nodes to the one that has
been previously used. That is performed via FL Normal Behavior message.

The structure of the messages is used in the next subsection for calculating the
energy consumed in the transmission during an operation.
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Figure 6.24: Jitter obtained in scenario 2.

In Fig. 6.34 the messages using in the algorithm are described. All the messages
used in this proposal follow the structure TLV (type, length, value). As it is
showed in Fig. 6.34, the field Type is composed by 4 bits, and can describe 16
different types of messages. Then, the field Length (1 Byte) is used to inform
about the size of the message. Finally, the field Value contains the data that
the applications need in order to work properly.

The messages used in the protocol are:

• FL Behavior: Assigns a concrete behavior to a traffic control node.

• FL Normal Behavior: Informs the CH that it must configure its nodes
back to the normal behavior.

• FL Emergency Behavior: Notifies the CH that an emergency has been
alerted and the controller will send FL Behavior messages to modify the
workings of the nodes.

• Release of Resources: It is utilized to advise the local security service
that the resources allocated to an emergency are not used anymore.

• Ask for Resources: Requests the allocation of local security resources to
an emergency.
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Figure 6.25: Bandwidth obtained in scenario 3.

• Resource Allocation: Informs that the resource is assigned to the emer-
gency. As well as the area ID and the number of resources that the service
is going to allocate then.

• Emergency Alert: Message used by the emergency system to inform that
there is an emergency.

• Emergency Finished: The emergency system uses this message to notify
that the emergency is finished, and the resources allocated to it have been
released.

The value of the field Type indicates which of the previous messages is being
sent. Then, the length field specifies the size of the Value field, where the
important data is located. The ACK message has no value field and its length
field it is equal to zero.

In order to invoke the local security unit service, the emergency has to be
classified into high risk and low risk. This classification, which is done by the
emergency service, it is notified by using the Emergency ID in the Emergency
Alert message. The first bit of the field Emergency ID is set to 1 if the emer-
gency is classified as high-risk emergency. Therefore, there are 256 emergency
IDs, 128 low risk IDs and 128 high risk emergency IDs.
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Figure 6.26: Jitter obtained in scenario 3.

The emergency ID is used to identify a concrete emergency during an es-
tablished period of time. Both the controller and the emergency service can
expand the emergency ID or generate a new one in their respective databases
in order to manage them and enhance their applications or provide some new.

6.4.3 Energy Consumption Model

In this section, the energy consumption model used to measure the energy
consumed in the entire emergency treatment process is described.

As is detailed on [197], the energy consumed per bit in the transmitter-receiver
model can be modeled by the equations (6.3) to (6.7).

Ebit = Ebit−tx + Ebit−out + Ebit−rx + Ebit−cod (6.3)

Where

Ebit−tx =
Ptx−e(

header+payload+trailer
rate

) + Ptx−iniTtx−ini

payload
(6.4)
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Figure 6.27: Loss rate obtained in scenario 3.

Ebit−out =
Ptx−out(

header+payload+trailer
rate

)

payload
d2 (6.5)

Ebit−rx =
Prx−r(

header+payload+trailer
rate

) + Prx−iniTrx−ini

payload
(6.6)

Ebit−cod =
Ecoding + Edecoding

payload
(6.7)

and

Ebit−tx = energy consumed per bit in electronic transmission

Ebit−out = energy consumed per bit in output transmission

Ebit−rx = energy consumed per bit in electronic reception

Ebit−cod = energy consumed per bit in coding/decoding processes

It is assumed that the energy dissipated in transmission (Ptx−e) 50 nJ/bit,
is exactly the same as the energy dissipated in electronic reception (Prx−e)
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Figure 6.28: Bandwidth obtained in scenario 4.

the other hand, the energy that is consumed in output transmission is 100
pJ/bit/m2 [198].

In addition, the maximum energy consumed in coding and decoding, by using
AES encryption, is 0.55 nJ/bit [199].

Attending to Fig. 6.32 Fig. 6.33 and and, a node is involved in the following
messages exchanged during an emergency situation in which the node belongs
to an affected route:

• It receives a FL Behavior in order to modify the actions that it executes
in its usual way of working from the CH.

• It also receives a FL Behavior from the CH for each neighbor that exists
in the new route. This is done for malfunction utilities.

• It sends an ACK message to each neighbor. It also receives an ACK from
every neighbor.

In order to reduce the energy consumption, the system uses UDP instead of
TCP. This decision not only avoids the connection establishment mechanism or
congestion control as it is not necessary for this proposal, but also reduces the
bits transmitted. With the combination of IEEE 802.15.4 for communicating
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Figure 6.29: Jitter obtained in scenario 4.

the nodes with the CH, IPv6 and UDP the size of the messages is between 80
and 82 bytes.

With this way of communicating we can define the energy consumed in com-
munication as it is expressed in equation (6.8):

Ecom = NNeig ∗ SAck ∗ (Ebit−tx + Ebit−out + Ecoding)+

+NNeig ∗ SAck ∗ (Ebit−rx + Edecoding)+

+(NNeig + 1) ∗ SBeh ∗ (Ebit−rx + Edecoding)

(6.8)

Where

NNeig = Number of Neighbors

SAck = Size of ACK message

SBeh = Size of FL Behavior message

The first addend corresponds to the energy wasted in forwarding the ACK
to every neighbor. The second one is related to the received ACKs from the
neighbors. Finally, the last addend belongs to the energy consumed in the
reception of the behavior messages from the CH.

291



Chapter 6. Applications

Figure 6.30: QoE obtained in each scenario.

6.4.4 Methodology and Results

In this section, the experiments performed to test our proposal are detailed.
They are all executed in a scenario where a smart city is deployed exactly as the
one showed in Fig. 6.35. This smart city is treated as an SDN. The equivalent
SDN is showed in Fig. 6.36. In this figure, can be seen as the IoT networks
are replaced by OpenFlow switches and the different neighbors are converted
into PC hosts. The links between the Switches or PCs are the different roads
and highways in the city. Fig. 6.36 shows also the different labels and IP
addresses given to every node in the SDN. Nodes s1-s6 belong to the city itself
and have some hosts connected to them. Switches s3 and s4 represent the
inner-city. Furthermore, s7-s14 represents the beltway of the city. The color
of the links describes the different scenarios where those roads are involved in
the emergency. This is further explained in the next subsection.

The experiments are run by using the emulator Mininet, which provides an
easy way to test the SDN by emulating the Switches as Linux Hosts using
OpenvSwitch. The urban traffic (emergency and regular traffic) corresponds
to packets in the SDN.

The experiment is divided into two parts. The first part compares the be-
havior of real urban traffic during an emergency in both situations, with the
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Figure 6.31: Scenario and proposed architecture.

performance of our proposal and without it. The second part measures the en-
ergy consumed in three different scenarios depending on the number of nodes
and the neighbors in the IoT networks. Each experiment is described in the
following subsections.

Traffic Comparison

The traffic in the city is simulated as packets that go through the network.
In this first test several multimedia streams are launched in order to emulate
normal traffic in a city. The delay is measured as the time the cars need to get
to their destination. Then, an emergency occurs, and some emergency traffic
is sent to the emergency area. The delay of the emergency resources is also
measured.

This experiment is run in two different scenarios. First, the emergency hap-
pens, and no algorithm is functioning, so our proposal does not provide any
solution. This is the emulation of the usual way of working with emergencies.

On the other hand, in the second scenario, we also measured the delay that
both the emergency and the normal traffic have when the proposal provides
solutions for emergency priority routes and normal traffic diversion. In order to
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Algorithm 6.2 Alert Treatment

Given: Alert_ID, Alert_Area, Resources

Alert.Type = Get_Type(Alert_ID)
If Alert.Type == HIGH_RISK

Local_Resources = Ask for Resources to the Local Security service
Resources = Resources U Local_Resources

End If
(CH_Set, Flows, Behaviors) = Calculate_Routes(Resources, Alert_Area)
Send the OpenFlow Modification Messages(CH_Set, Flows)
Send Emergency_Notification(CH)
Foreach each IoT Node n in CH_Set

Send FL Behavior(Behaviors)
End Foreach

achieve this, an emergency in the area emulated as the switch s3 is launched.
This emergency is emulated as a congestion in the links in red as seen in
Fig. 6.36. The links in other colors are not congested. The meaning of these
colors is explained in the following experiment and they are not relevant in the
first one.

When the emergency is launched, the emergency traffic is sent. In the first
scenario, it shares the congested links with the normal traffic along the entire
path to s3. However, when the algorithm is running, it forwards the normal
traffic through s2.

The dynamic modification of the path used to forward the normal traffic that
the algorithm uses, together with the priority of the emergency results, implies
a variation of the delay of both types of traffic. This is showed in Fig. 6.37 and
Fig. 6.38, where the delay of normal traffic is displayed, and in Fig. 6.39 and
Fig. 6.40, where the delay of the emergency traffic is presented. In the nor-
mal traffic graphs, the x-axis represents the packet number in the multimedia
stream. However, in the emergency traffic, the resources are treated individu-
ally, and the x-axis represents the moment in time after the emergency occurs,
when the resource is sent. In Fig. 6.37 and Fig. 6.39 the traffic is sent in the
first scenario, without algorithm and, in Fig. 6.38 and Fig. 6.40, the algorithm
is working.

In Fig. 6.38, the normal traffic is being sent in the first scenario in normal
conditions until the packet number 1366 approximately, where the emergency
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Figure 6.32: Message exchange when alarm is detected.

happens. In Fig. 6.37 the normal traffic is suffering the congestion and then,
the algorithm modifies the route paths. Both graphs show the change that
delay values experience.

In the first scenario, regarding the normal traffic, it starts with normal val-
ues of delay of 20ms and sometimes around 100 (due to the variation of the
multimedia bitrate). The average delay, however, is around 10ms. When the
emergency occurs, the links are slightly congested and shared with emergency
traffic. The average delay increments to more than 130ms.

In the second scenario, the normal traffic experiments a delay just like the
delay in scenario 1, but when the algorithm changes the path towards one
slower and longer but not congested route, the delay decreases, achieving an
average delay of 67ms. The average delay is greater than the delay obtained
when there is no emergency in the path, but it is significant lower than the
one obtained when there is no algorithm, a 50% of average delay reduction
approximately.

Regarding the emergency traffic, Fig. 6.39, related to the first scenario, shows
that the average delay is 26ms. When the algorithm is running, in Fig. 6.40,
the average delay decreases to 17ms. There is a 33% of average delay reduction.
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Figure 6.33: Message exchange when alarm is finished.

Energy Consumption

The second experiment, whose aim is to measure the energy consumed in the
communication of the nodes, is executed in three different scenarios. These
scenarios differ in the size of the emergency in terms of links congested in the
network. The links that are affected in each emergency are colored differently
as seen in Fig. 6.36. The red ones are affected in the three scenarios, even
the third one which is the one used in the previous subsection, where only the
red links are affected. Scenario 2 includes the green link. It increments the
emergency damage isolating the neighbor connected to s3. Finally, by including
the yellow links we obtain scenario 1, where there is a high-risk emergency, and
the inner-city paths are closed. The traffic is forwarded through the beltway.

These three scenarios involve a different number of communications between
the nodes. The energy consumed per node and the total energy consumed in
the nodes due to the emergency has been measured in terms of mJ attending
to the equations presented in the previous subsection. Moreover, the number
of neighbors has been increased in each individual simulation and the total has
been calculated depending on the size of the IoT networks.

In Fig. 6.41 the individual energy consumption per node is showed. The differ-
ence between the two last scenarios regarding the individual energy consumed
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Figure 6.34: Message Structure.

is only significant when the number of neighbors increases to 5. The bigger dif-
ference appears in scenario 1, with much more nodes involved. The increment
of energy consumption is linear with the number of neighbors, which implies
that the proposal is scalable. The energy in scenario 3 increments from 37mJ
with 1 single neighbor to 185mj with 6 Neighbors.

From Fig. 6.42 to Fig. 6.44 are related to total energy consumed. The energy
in every figure is calculated with a different number of neighbors. Fig. 6.42
describes the results with 2 neighbors. The x-axis in these graphs is the number
of nodes in every IoT network. The increment of the number on nodes increases
linearly the total energy consumed in the exchange of messages. The three
scenarios described are painted in different colors. The difference between
scenario 2 and scenario 3 is not as significant as the difference between scenario
2 and scenario 1. The energy consumed in scenario 1 (6698mJ) with 3 nodes is
more than 3 times the energy wasted in scenario 2 (2009mJ). When 10 nodes in
the IoT network the difference increases, being 22327mJ the energy in scenario
1 and 6326mJ in scenario 2.

As Fig. 6.43 shows, with 4 neighbors in each IoT network the energy consumed
increases, but the results are similar to the presented in Fig. 6.42. Scenario 3
consumes 7566mJ with 10 nodes and scenario 2 12487mJ. Finally, scenario 1
wastes 41622mJ, almost 4 times the energy needed in scenario 2. Moreover,
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Figure 6.35: Scheme of the city used for testing.

the energy consumed has increased near a 100% from the consumed with 2
neighbors. From example, in scenario 2, with 2 neighbors the energy wasted
is between 3349mJ with five nodes and 6698mJ with 10 nodes in every IoT
network. However, with 4 neighbors the energy wasted is between 6243mJ and
12487mJ.

Finally, Fig. 6.44 contains the results obtained with 6 neighbors. The results
show how the difference between scenario 1 and the rest is greater than before,
passing the 60000mJ in scenario 1 and scenarios 2 and 3 consuming between
10000mJ and 20000mJ.

6.4.5 Conclusion

Smart cities provide new applications based on IoT technology. Moreover,
SDNs offer the possibility to control the network based on application require-
ments. In this section, we combine this two technologies in order to take
advantage of this possibility and propose a new application to manage emer-
gency resources, based on the routing module introduced in chapter 4. This
application uses the adaptability of the SDN in order to forward urban traffic
using intelligent traffic lights and other traffic elements that are connected to
IoT networks. The SDN controller communicates with cloud and local services
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Figure 6.36: SDN corresponding to the Smart City.

so as to gather the data needed to make the best changes in order to manage
the emergency.

Experiments show that the average time that emergency resources lose in get-
ting to the emergency area is reduced in 33%, from 26ms to 17ms. This is
due to the priority applied and path sharing avoidance. In terms of normal
traffic, there is an increment of time when this traffic is forwarded toward a
longer alternative path, but this time is lower than the time it takes to get to
the destination when the emergency area is becoming congested. The average
time difference is 50% between the alternative path and the congested path.

Furthermore, the communication protocol in case of emergency has been tested
in terms of energy consumption. Based on the energy model described, exper-
iments illustrate that the energy consumed increases linearly with the number
of nodes and neighbors in the IoT networks, which indicates that the proposal
is scalable and could be applied in every kind of smart city.
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Figure 6.37: Delay in normal traffic sending without system application.

6.5 Conclusion

In this chapter, the different applications of the SDN proposal discussed in this
dissertation have been detailed.

For each proposal, the architecture, messages and necessary details have been
studied. Moreover, for two of them, a performance evaluation has been in-
cluded.

These applications have the goal of demonstrating the capability of the pro-
posal to be included in heterogeneous networks. The adaptability of the tech-
nologies chosen in the previous chapters helps to use the proposal in different
scenarios. In the chapter, WSN, IoT and Smart Cities have been the scenarios
where the system has been deployed. For each proposal, some extensions of
the protocol have been included to implement new services.
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Figure 6.38: Delay in normal traffic sending with system application.

Figure 6.39: Delay in emergency traffic without system application.
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Figure 6.40: Delay in emergency traffic with system application.

Figure 6.41: Energy consumed per node.
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Figure 6.42: Total energy consumed per scenario with 2 neighbors.

Figure 6.43: Total energy consumed per scenario with 4 neighbors.
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Figure 6.44: Total energy consumed per scenario with 6 neighbors.
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Chapter 7

Conclusions

7.1 Introduction

In this chapter, the conclusions obtained from the work presented are discussed.
The future research lines that can be followed from this work are also described.
Finally, the publications related to the work presented in this dissertation are
shown.

7.2 Conclusion

Based on the objectives proposed in chapter 1, it can be concluded that the
main goals of this work have been reached.

The introduction of SDN could create the opportunity to bring in new mecha-
nisms and protocols in the network control plane. Thanks to the programma-
bility of this new architecture, new solutions to management problems can be
proposed. One of them, the scope of this work, is intelligent routing focused
on multimedia transmissions.

Therefore, in this work, the following objectives have been achieved. Firstly,
a new software module, a custom SDN controller, has been developed. This
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custom SDN controller made easier to develop the other software modules and
protocols presented in the work. The design of the SDN controller, along with
some implementation fragments, was presented in chapter 3. Furthermore, a
comparison of resources consumption was performed. In this comparison, the
differences in terms of CPU and RAM consumption between SDN controller
Floodlight and the custom SDN controller were discussed.

The next objective was to adapt a traditional routing algorithm to SDN. The
chosen routing protocol was OSPF. An adaptation of the metric based on QoS
measurements was proposed. While most of the traditional OSPF routing
protocol was kept, the metric calculation and evaluation were adapted to SDN
and multimedia transmissions. This adaptation was tested in the Mininet
emulator. The results shown that an increment of the performance, in terms
of QoS and QoE, was achieved with the metric change.

Taking into account the final goal of the work, proposing a routing proto-
col that uses artificial intelligent methods to improve the QoS of multimedia
transmissions, the next objective was to study the introduction of AI in routing
selection. However, focused on the multimedia problem, some studies about
the QoS degradation and which factors could affect to that QoS/QoE mea-
surement were needed.

In chapter 5 the studies show how the QoE could be estimated based on the
metrics of the multimedia flows. The most adequate system for QoE estimation
was CSVM and RNN. Moreover, the different methods were also used to deter-
mine when the traffic is critical and which actions should be performed in the
network to avoid a QoE degradation. Again, CNN and CSVM-based methods
presented similar results. Nonetheless, the RNN presented a better adaptation
to the classification problem. Moreover, the RNN performance based on Root
Mean Square Error (RMSE) was the highest one.

Once the traffic classification model was studied, another classification problem
was addressed. Based on the MOS QoE metric, the objective was to extract
which network and, specially, video parameters affected the QoE the most.
The preliminary study shows that there was correlation between some video
parameters and the QoE.

After that, a clustering method was carried out to extract the subpatterns
for QoE regulation model. Once the subpatterns are extracted, the system
is able to obtain video parameters from the network conditions. This allows
the system to adapt the video to get the desire QoE based on the current
status of the network. Therefore, a robust management system was described
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next. This system classifies the traffic using the classification method to detect
multimedia critical traffic. Then, the subpatters are extracted so as to select
which video parameters may improve the QoE of the multimedia transmission
if they are modified. This system allows the routing protocol proposed to add
an action based on video characteristics modification. In addition, according
to the study performed, this action can be important to improve the quality
of the transmission due to its high correlation with QoE in case there are no
other network-topology-based alternatives.

Once the AI methods were designed and proposed, the routing algorithm was
discussed. The AI method to route selection was RL, due to its independence to
a training procedure, making easier its deployment in any kind of heterogeneous
network. The adaptation of RL method to an SDN routing protocol focused
on multimedia transmissions was discussed. The set of actions that the SDN
controller can perform when a multimedia degradation is detected were listed
and the reward calculation process was detailed, together with the algorithms.

The proposed system was also compared to other alternatives and, then, eval-
uated. The results shown that the capability of evaluating the network status
thanks to the SDN architecture and its central view from the controller, along
with the introduction of complex rules based on AI and ML methods, increases
the QoE and QoS of the multimedia transmissions. Finally, a reward update
system was mentioned. This system allows the routing protocol to introduce
a period of time where the impact of the action perform is evaluated based on
the change, increase or decrease, of the QoS parameters. The proposed method
is a statistic matrix that creates a relation between network actions and QoS
parameters that are affected by those actions.

Once the proposal was presented, the next objective to cover was to evaluate
the proposal, comparing with traditional protocols. This evaluation was per-
formed and presented at the end of chapter 5. The evaluation was performed
in a network using real equipment. The equipment was Openflow-enabled, so
both traditional and SDN-based routing protocols could be used.

The evaluation of the proposals, the modification of OSPF, the routing pro-
posal based on RL and the traditional OSPF routing protocol, was performed
in different scenarios. These scenarios were designed to test the capabilities of
the alternatives when facing a wide set of actions in an SDN core network with
heterogeneous end networks and hosts. Depending on the different capabilities
and the actions taken by the proposal, the performance and the quality of the
multimedia transmission varied. The QoS and the QoE of a set of users, clas-
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sifying the quality perceived from the transmitted video was compared. The
proposal achieved a significant increment of the QoE.

Finally, in chapter 6, a variety of applications of the proposal was presented.
The objective of this chapter is to show the huge diversity of applications
of the proposal and the different kind of networks where it can be applied.
Some of the works where the proposal was introduced in different environ-
ments are introduced. From the application to WSN for smart irrigation to
the management of emergencies in a smart city or the optimal use of video
IoT surveillance systems. In this chapter, the advantage of the use of SDN,
thanks to its adaptability to heterogeneous networks, introduces new solutions
to current problems. Therefore, the heterogeneous capability of the proposal
is demonstrated. In conclusion, this work has accomplished all the previous
defined objectives. The proposal achieves an increment of the performance of
the multimedia transmission, thanks to the architecture used and the introduc-
tion of AI and ML methods. Nevertheless, due to the limitations of the work
and the huge scope this proposal can reach, some future works and improve-
ments can be researched. In the next subsection this future line of research is
discussed and detailed.

7.3 Problems Faced and Personal Contributions

During the development of this work, several problems appeared. The biggest
one may be the lack of an SDN controller that allows easy development of core
applications. This is what it caused the development of the custom SDN con-
troller. However, that development brought several problems. During the de-
velopment, the Mininet emulator caused connectivity problems with the SDN
controller. The virtual switches started disconnecting after the first messages.
The solution implied to change the socket designs to allow synchronized and
parallel communication to each node.

The topology discovery protocol was a solution to the problems raised during
the connectivity process. When a node received a flow modification message
that could not be accepted, it might reset the connection. That used to cause
inconsistencies between the SDN controller and the nodes’ states.

Finally, as regard routing, the forwarding of the data until the end host was a
problem that had to be addressed. The adding of ARP communications and
specific flow entries for the end network had to be added to deliver the data
to the specific set of end users.
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Regarding the personal contributions of this work, it has caused a feeling of
skill development in me. Working in a new technology with really few pre-
vious works forced me to have a strong control about it and about the SDN
controller I personally developed. Therefore, my ability for analyzing prob-
lems and designing protocols and software tools were tested and, eventually,
improved. Finally, all the difficulties made me not only stronger but also more
constant in the work task execution. An improvement that I will definitely
need in the future.

7.4 Future Research

The work presented in this dissertation has several lines where continue working
and researching. In this section, some of them are discussed.

As regards the SDN controller, updating the system to add compatibility with
newer versions of Openflow is one of the main aspects of improvement. How-
ever, in terms of research, there are others. For instance, some evaluations of
the performance of the SDN controller depending on the software design un-
derlying may be an interesting research. Since the application of the software
is the management of network nodes, scalability and throughput are the main
metrics. Therefore, applying different designs can help us to determine the
best way in terms of performance.

The AI methods proposed in this work can also be improved. Further studies
and comparison between different techniques can be performed. Since the
design of the architecture is modular, the replacement of the AI method does
not imply a big change in the routing protocol.

Furthermore, the reward update system is only slightly addressed in this work.
The development and evaluation of applying a heuristic method, or a ML
method to solve this problem is a future research line that will be addressed
once this work is published.

Virtualization techniques can be also added to the proposal. The study of
applying NFV to the routing proposal may be a future line of research. This
virtualization could provide virtual SDN organized by ML protocols, or virtual
machines, which virtualize SDN, interconnected and managed by AI or ML
protocols.

The routing protocol proposed in this work could be adapted to other tech-
nologies such as mobile networks or MANETS. The use of AI techniques to
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determine interconnection could bring improvements to the spectrum use or
the energy consumed by the transmission.

Finally, another research line, where a lot of work is needed, is the integration
and enhancement of the proposal to manage IoT networks. From the archi-
tecture and the base of this project, an intelligent management system can
be designed to interconnect IoT and WSN. Therefore, protocols to allow the
interconnection of the different technologies could be developed. These proto-
cols can use the AI methods proposed, or some news, to provide the maximum
QoE from the IoT networks. Moreover, the definition of a metric similar to
QoE to interconnected IoT networks should be defined to allow the intelligent
methods to estimate the outcome of the actions performed by the protocol.

Currently, we are working on applying SDN and AI to IoT in order to analyze
and determine critical IoT traffic. This is a continuation of the work done in
this dissertation. Once the critical IoT traffic is classified, the routing protocol
can be enhanced by adding concrete actions and adapting it to other kind of
traffic and services.

7.5 Publications derived from the PhD Thesis

The following publications are derived from the research work presented in this
dissertation. The papers that are directly related with the dissertation are the
following ones:

A. Rego, A. Canovas, J. M. Jiménez and J. Lloret, "An Intelligent System for
Video Surveillance in IoT Environments," in IEEE Access, vol. 6, pp. 31580-
31598, 2018, doi: 10.1109/ACCESS.2018.2842034. Impact Factor: 4.098,
Q1.

Albert Rego, Laura Garcia, Sandra Sendra, Jaime Lloret, “Software Defined
Network-based control system for an efficient traffic management for emergency
situations in smart cities”, Future Generation Computer Systems, vol. 88, pp.
243-253, 2018. https://doi.org/10.1016/j.future.2018.05.054. Impact Factor:
6.125, Q1.

Rego, A., Sendra, S., Jimenez, J.M. et al. Dynamic metric OSPF-based
routing protocol for Software Defined Networks. Cluster Comput 22, 705–720
(2019). https://doi.org/10.1007/s10586-018-2875-7 Impact Factor: 3.458,
Q1.
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Rego, A, Sendra, S, Garcia, L, Lloret, J. Adapting reinforcement learning for
multimedia transmission on SDN. Trans Emerging Tel Tech. 2019; 30:e3643.
https://doi.org/10.1002/ett.3643 Impact Factor: 1.5945, Q3.

S. Egea, A. Rego Mañez, B. Carro, A. Sánchez-Esguevillas and J. Lloret,
"Intelligent IoT Traffic Classification Using Novel Search Strategy for Fast-
Based-Correlation Feature Selection in Industrial Environments," in IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1616-1624, June 2018, doi:
10.1109/JIOT.2017.2787959.t Impact Factor: 9.936, Q1.

Alejandro Canovas, Albert Rego, Oscar Romero, Jaime Lloret, “A robust
multimedia traffic SDN-Based management system using patterns and models
of QoE estimation with BRNN”, Journal of Network and Computer Applica-
tions, vol. 150, ISSN 1084-8045, 2020. https://doi.org/10.1016/j.jnca.2019.102498.
Impact Factor: 5.57, Q1.

Jimenez, JM.; Romero Martínez, JO.; Rego Mañez, A.; Lloret, J. “Ana-
lyzing the Performance of Software Defined Networks vs Real Networks”, In-
ternational Journal On Advances in Networks and Services. Vol. 9(3-4), pp.
107-116, 2016. http://hdl.handle.net/10251/83652.

Jimenez, JM.; Romero Martínez, JO.; Rego, A.; Dilendra, A.; Lloret, J.,
“Study of Multimedia Delivery over Software Defined Networks”, Network Pro-
tocols and Algorithms. Vol. 7(4), pp. 37-62, 2016. doi:10.5296/npa.v7i4.8794.

These are the publications in conferences:

A. Rego, S. Sendra, J. M. Jimenez and J. Lloret, "OSPF routing protocol
performance in Software Defined Networks," 2017 Fourth International Con-
ference on Software Defined Systems (SDS), Valencia, 2017, pp. 131-136, doi:
10.1109/SDS.2017.7939153.

A. Rego, L. Garcia, S. Sendra and J. Lloret, "Software defined networks for
traffic management in emergency situations," 2018 Fifth International Con-
ference on Software Defined Systems (SDS), Barcelona, 2018, pp. 45-51, doi:
10.1109/SDS.2018.8370421.

A. Rego-Mañez, S. Sendra, J. L. García-Navas and J. Lloret, "Managing
a Multi-device Multimedia Service Using Software Defined Networks," 2019
Sixth International Conference on Software Defined Systems (SDS), Rome,
Italy, 2019, pp. 221-228, doi: 10.1109/SDS.2019.8768560.
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S. Sendra, A. Rego, J. Lloret, J. M. Jimenez and O. Romero, "Including arti-
ficial intelligence in a routing protocol using Software Defined Networks," 2017
IEEE International Conference on Communications Workshops (ICC Work-
shops), Paris, 2017, pp. 670-674, doi: 10.1109/ICCW.2017.7962735.

D. Sarabia-Jácome, A. Rego, S. Sendra and J. Lloret, "Energy consumption
in software defined networks to provide service for mobile users," 2017 13th
International Wireless Communications and Mobile Computing Conference
(IWCMC), Valencia, 2017, pp. 1453-1458, doi: 10.1109/IWCMC.2017.7986498.

Jose M Jimenez, Oscar Romero, Albert Rego, Avinash Dilendra, Jaime
Lloret, “Performance study of a software defined network emulator”, The Eleventh
International Conference on Internet Monitoring and Protection,(ICIMP 2016),
2016.
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