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GLOBAL PSEUDODIFFERENTIAL OPERATORS OF INFINITE ORDER IN
CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS

VICENTE ASENSIO AND DAVID JORNET

ABSTRACT. We develop a theory of pseudodifferential operators of infinite order for the global classes S,
of ultradifferentiable functions in the sense of Bjorck, following the previous ideas given by Prangoski for
ultradifferentiable classes in the sense of Komatsu. We study the composition and the transpose of such
operators with symbolic calculus and provide several examples.

1. Introduction

The local theory of pseudodifferential operators grew out of the study of singular integral operators, and
developed after 1965 with the systematic studies of Kohn-Nirenberg [14], Hormander [I3], and others.
Since then, several authors have studied pseudodifferential operators of finite or infinite order in Gevrey
classes in the local sense; we mention, for instance, [12, 21]. We refer to Rodino [19] for an excellent
introduction to this topic, and the references therein.

Gevrey classes are spaces of (non-quasianalytic) ultradifferentiable functions in between real analytic
and C* functions. The study of several problems in general classes of ultradifferentiable functions has
received much attention in the last 60 years. Here, we will work with ultradifferentiable functions as
defined by Braun, Meise and Taylor [5], which define the classes in terms of the growth of the derivatives
of the functions, or in terms of the growth of their Fourier transforms (see, for example, Komatsu [15]
and Bjorck [2], or [5], for two different points of view to define spaces of ultradifferentiable functions and
ultradistributions; and [4] for a comparison between the classes defined in [5] and [15]).

In [10], a full theory of pseudodifferential operators in the local sense is developed for ultradifferentiable
classes of Beurling type as in [5], and it is proved that the corresponding operators are w-pseudo-local,
and the product of two operators is given in terms of a suitable symbolic calculus. In [9, II] the same
authors construct a parametrix for such operators and study the action of the wave front set on them
(see also [1] for a different point of view). On the other hand, very recently, Prangoski [I§] studies
pseudodifferential operators of global type and infinite order for ultradifferentiable classes of Beurling and
Roumieu type in the sense of Komatsu, and later, in [8], a parametrix is constructed for such operators.
See [18] [I7] and the references therein for more examples of pseudodifferential operators in global classes
(e.g., in Gelfand-Shilov classes).

Our aim is to study pseudodifferential operators of global type and infinite order in classes of ultra-
differentiable functions of Beurling type as introduced in [5]. Hence, the right setting is the class S, as
introduced by Bjorck [2]. We follow the lines of Prangoski [I8] and Shubin [20], but from the point of
view of [10], in such a way that our proofs simplify the ones of [I§]. Moreover, we clarify the role of some
kind of entire functions [0 [16] that become crucial throughout the text.

The paper is organized as follows. First, in Section [2 we introduce our setting, we give some useful
results about the class S,, and we recall from [0, [16] the existence of some kind of w-ultradifferential
operators very useful in the next sections. In Section [3| we introduce our symbol (amplitude) classes and
define the corresponding pseudodifferential operators. We give in Proposition [3.11] a characterization in
terms of the kernel of an w-regularizing (pseudodifferential) operator, which are very important in the
construction of parametrices of hypoelliptic operators. We see in Example that many operators
are pseudodifferential operators according to our definition. In particular, we show that our classes of
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2 ASENSIO AND JORNET

symbols are different from the ones of [I8]. In Section 4] we develop the symbolic calculus and we state
some previous results needed to compose two pseudodifferential operators. In Section [5| we study the
composition of two of our operators. To this aim, we analyse carefully the behaviour of the kernel of a
pseudodifferential operator outside the diagonal in Theorem m This result is an improvement of [I7,
Theorem 6.3.3] and [18, Proposition 5]. The results that we obtain let the study of parametrices for
hypoelliptic differential operators in this setting.

2. Preliminaries

We begin with some notation on multi-indices. Throughout the text we will denote by o = (a1, ..., aq) €
N¢ a multi-index of dimension d. We denote the length of a by

la| = a1+ ...+ aq.

For two multi-indices a and 3 we write < « for 8; < o, when j =1,...,d. Moreover, a! = a1!- - ag!
and if 8 < «, then

()= () () -

B)  \B Ba Bl a— B
We also write
o = (Lye (Do,
8%1 al‘d

and using the notation D, = —i%, j=1,...,d, where 7 is the imaginary unit, we set

D* = D1 ... D,
For x = (z1,...,24) € RY, let

O L g
¢ =] x,.

We denote (z) = (1+ \a:|2)% for every x € R, where |z| is the Euclidean norm of z. Our setting requires
weight functions as defined by Braun, Meise and Taylor [5].
Definition 2.1. A non-quasianalytic weight function w : [0, +oo[— [0, +0o0[ is a continuous and increas-
ing function which satisfies:
() 3L >1 st w(2t) < L(w(t) + 1), Vt >0,
oo Wt
(B) / t(Q)dt < +o0,
1
(v) log(t) = o(w(t)) as t — oo,
(6) o :ts w(e') is convex.
Throughout the text, if necessary, we will denote ¢ by ¢,, in some cases.

Example 2.2. The following functions are, after a change in some interval [0, M|, examples of weight
functions:

(i) w(t)=tdfor 0 < d< 1.
(ii) w(t) = (log(1+1t))% s> 1.
(iii) w(t) = t¢(log(e +1))*, 0 < d < 1,5 # 0.
By definition, we extend the weight function in a radial way to C%, i.e.

w(é) =w(l€]), &€= (&,..., &) €C™

We observe that there exists L' > 0 depending on the constant L > 0 of Definition [2.1/(c) and the
dimension d such that for any = = (z1,...,14) € C%

w(r) < Lw(|z|e) + L' < L'w(z) + L, (2.1)
where |7]o := max(|z1],...,|zq|). Moreover, as in [5, Lemma 1.2], if #,y € C%, then
w(z+y) < L(w(z) +w(y) +1). (2.2)
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We will assume without loss of generality that wlj ;) = 0, which gives some useful properties (see [3]).
For instance, we have

w((2)) = (VI 2P) < w(l + Jal) < Lw(z) +1). (2.3)
We consider now property (0) of Definition and define:
Definition 2.3. The Young conjugate ¢* : [0, 00[— [0, 00[ of ¢ is given by
" (t) == sup{st — p(s)}.
s>0
Since wljg,1) = 0, we have ¢*(0) = 0. Moreover, ¢* is convex, the function *(t)/t is increasing and

QD** — (p.
It is not difficult to prove the next two results; see, for instance, [10, Lemma 1.4, Remark 1.7].

Lemma 2.4. For each n,k € N and t > 1, we have
tk:

inf t7Ieke"(B) < ehw(t)Hlog(t), (2.5)
Jj€No B

o (%) ”w(t) (2.4)

IN

Proposition 2.5. If a weight function w satisfies w(t) = o(t*) as t — +oo for some constant 0 < a < 1,
for every B > 0 and A > 0, there exists a constant C > 0 such that

B"n! < Ce®¥ (3, n € Ny.
It is an exercise to see that:
Lemma 2.6. For every (z,y) € R?? we have
(@ —y) < V2(z,y)).
From the convexity of ¢* and the fact that ¢*(0) = 0 we have (see, for instance, [10, Lemma 1.3])

Lemma 2.7. (1) Let L > 0 be such that w(et) < L(w(t)+1) (this is possible from Definition[2.1](c)).
We have

AL (555) +ny < A" (5) + A Z o, (2.6)

for everyy >0, A >0 and n € N.
(2) For all s,t, A > 0, we have

() <a0'(5) + ' (5

The following lemma is taken from [10, Lemma 1.5 (2)]:

Lemma 2.8. If £¢* () <log(t) < NHgo *(2£H), then

t

20"
L4 )

s+t
).

) < Ap¥( )

N 2k (5) < o—hu(t) Hog(t)

It is not difficult to see the following

Lemma 2.9. Let 0 < a <1 be a constant and let w and o be weight functions. Then:

(1) Ifw(t%) =o0(o(t)) as t — oo, for all A\, > 0 there exists C := Cy , > 0 such that
)‘900'()\) <C+Ma¢w(i)7 jENO-
(2) Ifw(t%) =O(o(t)) ast — oo, there is C > 0 such that for each A > 0,

A%(A) < A+ arCyl (<2

AC) 7 € Ng.
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We consider also the Fourier transform of u € L'(R?) denoted by

F(§) = () = [ ul@e e ds, e,

with standard extensions to more general spaces of functions and distributions. We will work in the
global spaces of ultradifferentiable functions and ultradistributions as defined by Bjorck [2]:

Definition 2.10. For a weight w as in Deﬁnition we define S,(R?) as the set of all u € L' (RY) such
that u and its Fourier transform u belong to C*°(RY) and
(i) for each A >0 and a € N&,  sup @) | D%(x)| < 400,
r€R

(ii) for each A >0 and a € N4, sup & |DG(¢)| < +o0.
£cRe

As usual, the corresponding dual space is denoted by S!,(R%) and is the set of all the linear and continuous
functionals u : S,(R?) — C. We say that an element of S',(R?) is an w-temperate ultradistribution.

Now, we give a useful characterization of S,,(R?). See [3] for an exhaustive characterization of the
space S,,(RY) in terms of seminorms.

Lemma 2.11. If f € S(RY), then f € Su(R?) if and only if for every A\, u > 0 there is Dy, > 0 such
that for all « € N& and x € R%, we have

* (Lol
D% f(z)] < Dy e (3) o), (2.7)
Proof. If f € S,,(RY), by [3, Theorem 4.8] we have that for all A, z > 0 there exists C) , > 0 such that
« 1ol * @
sup 27D f(z)] < Cy e (15) gre (% ), o, B e N& (2.8)

reR4
We fix 8= (B1,...,04) € Nd and x = (21,...,24) € R Assume w.l.o.g. that |71] = || > 1. We have
2P D f(2)] = |1 . |eql 2| DO f(@)] < Jay| PP\ D f ()] = 2P DO f ()],
where B = (Bl + ...+ B4,0,.. .,O) € N¢ and, obviously, |E! = |B]. We apply our hypothesis (2.8) to «

and S to obtain

~ ar / * 18]
1[4 D ()] = [P D f ()] < Oy e (5) 240" (i) (2.9)

for a positive constant C , where L' > 0 is the constant of (2.1)). Now, we put j := 1+...4+64 = || € Ng
in formula (2.9) to obtain, by (2.5 and (2.1)),

D) < Cope (8 (ing fag el 40 (i)

j€No

a

" (5) gt/ + 1)l ) +log o]

IN

a

< C’f\’ue)‘w*(T)e_”Llw(‘m) < e”L/Cf\,#eA‘p*(T)e_““(x), (2.10)

for some new constant C”A L > 0.
181

Conversely, by (2.4)), for || > 1 and any u > 0, we have |z°| < |z|lfl < e“‘p*( " )e““’(x). Thus, by our
hypothesis (2.7)), for each «, 5 € Ng and = € RY, we get

« (ol * 7|

2707 f(2)] < |2 P|D" f(a)] < Dy e (F) e ()

which concludes the proof. O
Remark 2.12. For A > 0, we denote for f € S,,(R%),

Y

:= sup sup |Df(z e‘“’*(%)ekw(ﬂc)
£ p sup [Df(x)] :
a€eNg zeR4
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which is a seminorm. Observe that for any x € R4, X\ > 0 and o € Ng, we have
|Df(z)] = |D*f(x)|e (51) )‘w(w)e)‘ﬂa*(‘%l)ef)\w(m)

< e (8 e,

By Lemma {I- ’)‘}A>0 is a fundamental system of seminorms in the class S,,(R?).

We write P(&,r) for the polydisc of center £ = (&1,...,&) € C? and polyradius r = (rq,...,7y4), where
each r; is positive, j = 1,...,d. That is,
P(&,r)=D(&,7m1) X ... x D(€g,mq) = {¢ = (G-, Ca) €CH |G = & <7y, 1<) <d}.
And, also,
OP(&,r) =={z€C: |zj—&|=r;, j=1,...,d}.
Let us recall the following results on several complex variables.
Theorem 2.13 (Cauchy’s integral formula for the derivatives). Let Q C C¢ be an open set, a € Q and

r=(r1,...,rq) €RYr; >0 for every j =1,...,d so that P(a,r) C Q. Let f : Q — C be continuous and
partially holomorphic. Then for all « € N4 and all z € P(a,r):

N al f(&)
DS = G iy i

Proposition 2.14 (Cauchy’s inequalities). Under the assumptions of Theorem for every multi-
index B € Ng, the following formula holds:

|DPf(a)] < sup {!f( W} 5

(€dP(a,r)

ﬁl

Now, we need to introduce the following space of functions (see [5], [10]). Let w be a weight function.
For an open set Q C R?, we define the space of ultradifferentiable functions of Beurling type in Q as

Ew)(Q) :={f€C®() : |flrx < oo for every A > 0, and every K C  compact},

where

x Lo
)\ i= sup sup \D"‘f(x)|e_/\‘ﬂ (T)
aENg zeK

We endow such space with the Fréchet topology given by the sequence of seminorms |f|x, n, where
(Kn)n is any compact exhaustion of Q and n € N. The strong dual of £,(£2) is the space of compactly
supported ultradistributions of Beurling type and is denoted by Eéw)(Q).

The space of ultradifferentiable functions of Beurling type with compact support in €2 is denoted by
D(,)(2), and it is the space of those functions f € &(,)(£2) such that its support, denoted by supp f,
is compact in €. Its corresponding dual space is denoted by Dzw)(Q) and it is called the space of
ultradistributions of Beurling type in €.

We also need the notion of (w)-ultradifferential operator with constant coefficients, which plays an
important role in structure theorems for ultradistributions [6, [I5]. Let G' be an entire function in C¢ with
log |G| = O(w). For ¢ € &, (R?), the map Tg : Ew) (R?) — C given by

Ta) = 3 2260 pag)

OZ.
aGNg

defines an ultradistribution T € Eéw) (Rd) with support equal to {0}. The convolution operator G(D) :
DEW) (RY) — Dzw) (R?) defined by G(D)(u) = Te*pu is said to be an ultradifferential operator of (w)-class.

The following result is due to Langenbruch [16, Corollary 1.4]. It shows the existence of entire functions
with prescribed exponential growth (cf. [6 Theorem 7]).
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Theorem 2.15. Let w : [0, 00[— [0, 00] be a continuous and increasing function satisfying the conditions
(@),(7) and (8) of Definition[2.1 Then there exist an even function f € H(C) and Cy, Ca, C3 > 0 such
that

i) log|f(2)| <w(z)+C1, z€eC;
i) log |f(z)| > Cow(z), for z€U:={z€C:|Im(z)| < C3(|Re(z)| +1)}.

From this result we deduce the analogous statement for several variables.

Theorem 2.16. Let w satisfy the hypotheses of Theorem . Then there are a function G € H((Cd)
and some constants C1,Co,Cs,Cy > 0 such that

i’) log|G(2)| <w(z) + C1, z€C%
ii’) log |G(2)| > Cow(z) — Cy, for z € U:= {z cCe: [Im(z)] < Cs(|Re(z)] + 1)}

Proof. By Theorem there exist an even function f € H(C) and strictly positive constants C, 6*2, 6’;
such that
log|f(z)] < w(z)+Ci, z€C; (2.11)
log|f(2)] > Chw(z), for zeU:={zeC:|Im(z)| < Cs(|Re(2)| +1)}. (2.12)

Since f is even,
o0
= E anz?
n=0

for some {a,}72, € C. We observe that log |f(0)| > 0 by formula (2.12)), and then, ag is not zero. Now,

for a fixed z = (z1,...,24) € C?\ {0}, we set w = /22 + ...+ 22 (here we consider a square root for
which w is well defined) and define

= Zan(z% o+ 22" = f(w).

G is well defined and entire, according to the properties of f. Observe that, since w = /22 + ...+ zfl eC,

we have, by (2.11]),
log|G(2)] = log|f(w)| < w(w) + Ci.

This proves condition '), since

wiw) = w(lwl) < w(y/121+.. +1231) = w(z).

On the other hand, to prove '), first we observe that for a small enough 0 < € < 1, |[Im(z)| < €|Re(2)]
implies that w € U. Therefore, by m, we deduce

log |G(2)| = log | f(w |>ng |\/z1 +zd‘ C’gw 24+ 22

if [Im(z)| < €|Re(z)|. Now, from Definition [2.1f«) and by the continuity of G, it is easy to see that there
are constants Cy, C3, Cy > 0 such that

) (2.13)

log |G(2)| > Cow(z) — Cy, (2.14)
for |[Im(z)| < C3(|Re(z)| + 1). O
Proposition 2.17. Let G € H((Cd) be the function obtained in Theorem . Then the function

q(§) == sz)’ € e RY, satisfies

|DPq(¢)| < CRIRPlemKw®), (2.15)
for some constants C, K, R > 0 and every multi-index 8 € Ng and every & € R,
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Proof. First, we observe that if we take the polyradius r = (R,...,R) € ]Rﬂlr, with R < C3 then the

1
Nz
polydisc P(&,r) satisfies

P(&,r) CU :={z e C:|Im(2)| < C5(|Re(2)| + 1)},

where U and C3 > 0 are taken from Theorem i1’).

Now, we fix a multi-index § € Ng. By taking C' = exp{Cy}, where Cy > 0 comes from Theorem m
and Cauchy’s inequalities, we have

! ~ B!
|D%q(6)] < £ sup  |q(Q)] < C% sup e C2(0).
" ceop(gr) ™ ceop(e,r)
Now, since the weight w is increasing and satisfies («), it is not difficult to see that

_CQW(C) < —Kw(f) + Av

where K, A > 0 only depend on Cs, Cs, the weight w and the dimension d. Moreover, 8 = RIAl so we
obtain ([2.15)) for ¢ € RY, which finishes the proof. O

In what follows, we will consider a suitable power of the function of Proposition The following
result can be proved in the same way.

Corollary 2.18. Forn € N, let G™ denote the n-th power of the entire function G of Proposition [2.17
Then q" = G™" satisfies

DAgr(e)] < Cm RISl I, (2.16)
for the same constants C, K, R > 0 from Proposition and for every B € Ng and & € R?,

Moreover, we see that there is a constant C' > 0 such that

la]

D°G(0)] < ateCe 0% (&), (2.17)

for all a € Ng. To prove this, we fix r = (R,...,R) € Ri with R > 0 and « € Ng. By Cauchy’s integral
formula we obtain

ac(o) = 2 _GE)
D60 = (2mi)d /8P(0,r) §“+(1=---71>d§'
Hence,

ol (27m)4R? ol Lryto
_— M < W 1
= (27_(_)(1 R|a|+d Cegllja(}é,’r’) |G(<)| — R'a‘ € )

where C7 > 0 comes from ') of Theorem Besides, we have

inf {R711e P = (sup {Rlale—w(R)})*l < (sup {es|a\e—ap(s)})*1
R>0 s SuD

|D*G(0)]

= (ePesolslal—e(o}) "1 o=¢" (oD,

This implies
|DG(0)] < ale@r—#"(lol),
Then, we can take C':= max{C1, 1} to obtain (2.17).
Since G is entire, we can write G(z) = EaeNg anz%, z € C?, for some sequence (aa)aeNg C C. Hence,
we also have
* al
|aa| < e (%), ac Ng. (2.18)
If n € N and we consider the n-th power of G, G", we also have G"(z) = EaeNg baz®, z € C?, for
some sequence (by) aeNg C C,; proceeding as before we can see that

(1o
bl < e (), aeng. (2.19)
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3. Pseudodifferential operators

Following Prangoski [I8] and Shubin [20] we state our definition of global symbol and global amplitude.
In what follows, m € R and 0 < p < 1.

Definition 3.1. A symbol in GSJ"* is a function p(x,§) € C (R2d) such that for all n € N, there exists
C, > 0 with
1 « (latB]

anb n — ) prw(z) ;mw(§
‘D$D£p($,f)} < CnWe e ( )e ( )6 ( ),

for all (z,€) € R?? and (o, B) € N2<.

Definition 3.2. An amplitude in GAJ™ is a function a(z,y,§) € C* (R3d) such that for alln € N there
exists Cp, > 0 with

_ |a+B+]
Do pB DY (z —y)” npe* (L2HEN) o (wo(a) () +w(€))
‘ :CDy §a(x7y7§)‘ SCH<((1}’y7§)>p|a+ﬁ+7|e € )

for all (z,y,&) € R3 and (o, 8,7) € N3<.

We define the pseudodifferential operators for amplitudes as in Definition [3.2| using oscillatory integrals.
Let x € S, (R??) be such that x(0,0) = 1. We consider for f € S,(R?) the double integral

Asn D)= [ | [ atey, (6, 56) (e (3.1)

We will see that As,(f) converges for every f € S.(R?) when § — 0, defining a linear and continuous
operator A : S, (R?) — S, (R?) given by the iterated integral

an = [ ([ e s ds res@

Proposition 3.3. Let x € S,(R??). Then, for any function f € S,(R?), the sequence (Al,x(f))neN as
in (3.1) is a Cauchy sequence in S,,(R?).

Proof. We consider the family of seminorms of Remark We show that, for any f € S,(R?) and
A >0,

goes to zero when [, k tend to infinity.
To this aim, we fix 5 € Ng and = € R, and calculate

D2 [ [ e ate. ) (x(po 1)~ x(G. 7)) F)dude
1 1

= 1x )& 61 B2 B3 = 1
51+ﬁ§53 51'52'53 //R2d & Dirale,y, D ( (k: k:f) X(lx’lg))f(y)dydg’ (3.2)

For the ultradifferential operator G(D) and its corresponding symbol G(£) given in Theorem the
following formula holds for each n € N:

1

(rx—y)€ _ n(__ 1 _ i(z—y
el )E_G"(y—x)G( Df)(Gn(g) (Dy)e( )§>‘ (3.3)
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Now, we use the notation of (2.19) and formula (3.3)), and integrate by parts to obtain the following
expression for the integrand of (3.2)):

ile—)e @fw< mGwl)GwDO@mD?M%%@X
%D (x ( ) x(%x, %@)f(y)))
1

_ i(z—y)¢ n s 7! B! N7 eB1—T1
="\ " Y G"(f)G (Dy)(G"(y—m) Z br Z Py (51—7'1)'( i) mle X

TeNd  TitTetT3=T,T1<f1
1 1

xDﬁ2DT2a(a;, y, &) DD (X(%x, %5) —x(7, 7§)>f(y))

! | |
= iz y)€ Z beb, Z & T pi! '( P)Inlehi=m x

erleales! mImlrs! (B — m)!

eTeNg 7’1+%iféi§'3:ileﬁﬁl
Det 1 DB2 D2 pT2 DB pTs 11 L1 Des
XD, Gy —z) " v e a(z,y,§) Dy D X(%l‘, %5) - X(Tf, 75) S ().

Hence, D (A%,x - A%x)(f) is equal to

el 7! B! i)l
beb. ella— y)é B1—T1
Z Z erlexleg! TIm!lrs! B! B! 53! 51 —7)! /Rd /Rd f) f

oTeNE e,
B1+pP2+B3=p8
<Dy DD ppae oD (x(Le, o) (L 1)) D e
V Gty —ay O D PEaley DD (x (g 5) = x (G 7€) ) D32 Syt

Now, we fix A > 0 and take s > X and n € N to be determined. Since f € S, (R?), for the constant
L > 0 of Lemma [2.7(1) we have

DS f(y)| < et e (538) st

Moreover, by the definition of amplitude and according to Lemma and formula (2.6)), we have that
there is a constant Fs > 0 depending on s such that

’D£2 D§2Dg2a(x, y, )| (r—y) )p|52+62+7—2‘64L45p90* (7"8222{52‘ ) (@) g (y) gme (€)

)

« [ 1Batea+T
S\/i‘52+62+7'2|64L45<p (%Tﬂ)emw(x)emw(y)emw(f)

IN

|B2+ea+7o|
< E5€4L4S€4L3590* (%) emw(w)emrJJ(y)emw(é)‘

By (2.4) and (22.3]), we also obtain
g8l < (eym—nl < A (TE) arulie) < AP () ALt ALtute)

By (2.19)), there is C; > 0 that depends only on G such that

b < e GE) ) < encrenne ()

and, by Corollary and Proposition there are constants Cs, C5,Cy > 0 which depend only on G
such that

— < C’”e_"CW(E), and
‘G”(f) ‘ !
‘ 1 0261!03—‘61|e—n02w(y—$) < CZL’LCSESL3LP*(:[}?1

€1 )e—nCQw(y—@’

ym‘

IA
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where Cs5 > 0 depends on C3 and s. Finally, since w(z) < Lw(y — z) + Lw(y) + L, and (again by
Proposition ,
p!

(B1—m)!

for some constant C?, > 0 depending on s, we get
|DE((As, — A1 )(H) ()|
<y 21 i () —ncier (L) 3y e ! Al 9lBilcr

erleales! TImlTs! B! Ba! B3!

ksl

< 2|51|T1| < 2‘;81|C/ sL3 *(SL )

E,TGNg €1+ea+ez=¢

T1+T2+T13=T, 1 <1
51+ﬁ2+53_5
xetl'? (.9;3)/)D£3D? (x(z2.29) —x(zx [/02” nCxl€) AL () A

4 3 s le1| 4 3 |Botea+7o|
xe)‘L w(g)csesL P (5L3)67n02w(y71)E864L se4L sp ( 1035 ) X

« emw(y)eme(y—w)eme(y)emLemw(f)EgesL%* (%) 6—8L3w(y)dy} de.
We set

1

n>max{ 1+)\L4—|—m) E(m—l—)\)L}.
2

The first one is stated in order to get

(MANLAnCo)(€) < —w(©)

— )

and the other one to obtain
6(mLfnCQ)w(yf:z:) < efALw(yfx).

Moreover, we put
1
$ > max {F(l + AL+ m+mL),nC:}.
In this case, by the first inequality we obtain

e(mimL—sL)w(y) < p=w(y) —ALw(y)

According to w(z) < Lw(y — x) + Lw(y) + L, we get
e*/\Lw(yfx)ef)\Lw(y) < eALef)\w(x).

By the mean value theorem, there exists c in the line segment between (%x, %f ) and (%CC, %ﬁ) such that

11 1 1 n 11
D2 DE (x(z2. 78 —x(72.79)| = IVDPDEXE)I]7 = 7/l ©)

< D;\ SeAsO* (§)+23L3>\<P ("83+ 3') ‘7 _ 7Hx||£|
for some constant D’)\’ s > 0. Now, by Lemma since s > A, we have
e () P () oo (54) oo (B538) oo () oo (4158

sL3 AL3 sL3 4sL3 sL3 2sL3
3 2 18] 3 I7] 3 el
< eAL eAL S‘)*(/\L2)(3SL S0*( ) sL s0*(51,3)_

sL3

Since the selection of n and s depends on A, we get this new estimate, for a constant C, > 0:

D((As, — A1 )()@)] (3.4)

« (_Lel s« 17l | | |
< Cﬁ\ l _ 1’ Z efnClga (ncl)efnClcp (—ncl) Z & T! ﬁ
kool d _ e1leales! T3l 811821 85!
e,TENO €1+exte3=e€
T1+12+7m3=7,11<01

B1+P2+B3=

B
Xe/\L%*(m)esL?’cp*(s'LT'g)esLSw*(szg,)’m‘e—/\w(a:)(/e—w(y)dy) (/IS‘Q—W(é)dé*).
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1
Again by Lemma [2.7 using multinomial coefficients, we obtain

Z €! 7! 6' GALQW*(%)SSLB@*( 7|
leoleal |75 1141 1351341
€1:€9:€3.T1.7T2:73. . . !
(it alelelninlml 51510
T1+7e+7m3=",71<p1

B1+B2+B5=5

>

sL3

= 3‘6""7'""5‘6)‘[/2@*()\‘7') sL3<p*( ‘T‘,) sL3<p*( lel )
< eAF2SL)(L+L?) A¢* ("3‘) sLo* (IT\)

Now, we see that the series in (3.4) converge. We treat the sum in €. Since s > nC', we have, for each
e € NI, by (25),

oo (k) sper (1) _ ( L

(3.5)

IN
w»
h
/N
Q| =
N——
o
|
3
Q
o~
A
*
—
S|
Q.
B
SN—
@)
)
AN
*
—~
m‘E
S—
IN
(@)
»
h
/~
—_
——
o

By formula [I7, (0.3.16)], we have

€
, j+d—1
#eentsld=a=("517")
Then, we deduce
NG - NG = WN\ifj+d—1
() = XX ) =2() ( -1 > (3.6)
eeNg J=0le|=j J=0
< 2d—1 i (2)] < 400
< 4 c .
7=0
The convergence of the series in 7 follows in the same way
Finally, we get
1/ 2 11
D((Ay, — A )N)@)] < cA»—l\(ZO 2y) e (5 (3.7)
X|x,€w<x>( / efw<y>dy) ( / |§ye*w@d§),
for some constant C > 0 depending on A

From (3.7) we conclude that

— 0, as k,l — +oo,

for each A > 0 and, hence, {A1 , (f)}nen is a Cauchy sequence in & (R9). O

Lemma 3.4. Given an amplitude a(x,y,§) € GAT™ and f € So(R?), for each X\ > 0 there is Cy > 0
such that for all z,& € R?, we have

} Vg (z y,é)f(y)dy‘ < Oye W& mw(@)

Proof. We follow the ideas of the proof of Proposition [3.3] and use a suitable integration by parts in the
integral

[ e et )y (3.8)
Here, we consider the formula

i(=v)¢ — _— (=D, )@=y
(& € )
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which is also true for a suitable power of G(D), say G™(D), with n € N to be determined. Integration
by parts yields that the integrand in (3.8) is equal to

i(x— 1 n
i mGT@G (Dy>(a<x,y,f)f<y>)

= e Y b Y Dl D))

ENd T1+T2=T7

Now, proceeding in a similar way to that of Proposition we get the conclusion. [l
Applying the definition of amplitude we show the following
Lemma 3.5. Given an amplitude a(z,y,&) € GAPY™ and x € S, (RQd), we denote

K(z,y) = /Rd '@V (2,y, &)x(x, )d.

We have
a) K(z,y) € Su(R*).
b) The linear operator T : S,,(RY) — S,(RY) given by T(f)(x) = [ K(z,y)f(y)dy is continuous.

Remark 3.6. If the function y € S, (R?) only depends on &, we do not obtain a) K € S, (RZd) in the
lemma above, but this weaker condition: For every A > 0 there is C'y > 0 such that for every «, 8 € Ng
and every x,y € R%, the function K € C™ (RM) and satisfies

|D°‘D5K(az y)| < C)\e)‘@*(‘atm)em‘”(y).
However, this is also sufficient to have that the integral operator T'(f)(z) = [ K(z,y) f(y)dy is continuous.
Proof of Lemmal[3.3. a) We fix a, 8 € Nd and calculate
a! B! .
DED{Ke)= 3 g1 e DD, D

altaztas=«a
B1+p2=p

As in Proposition we perform a suitable integration by parts with the formula

. 1 .

i(z—y)§ _ G (— D, )e'(@—v)¢

e € )
Gy — o) C P

for some power n € N, to be determined, of the ultradifferential operator given in Theorem From
now on, the proof follows the lines of that of Proposition
b) First, we observe that for f € S, (R?), since ¢*(0) = 0, we have, for any u > 0,

_ 18]
sup |£(5)] < sup [f@)]e"® < sup sup [fO()le e B o) = 1),
yER4 y€ER BeNd yeRd

being | - |, the seminorm defined in Remark Now, to prove that the operator T is continuous, we
differentiate under the integral sign the function T'(f)(x) to obtain that for all A > 0, there exists C > 0
such that

IDAT(f)(x)] < / DO (2, )|/ ()l dy
<0 (K)o [t gylay < o (K)o, [eroay,

for any p > 0, which gives the conclusion. O

Theorem 3.7. The operator A : S,(R?) — S, (RY) given by the iterated integral

A = [ ([ o epsi)de (39

is well defined, linear and continuous.
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Proof. As in (3.1), we fix x € S,,(R??) such that x(0,0) = 1. Since S, (R?) is a Fréchet space, for every
f € Su(R?) the sequence {A1 +(f)}nen converges in S.(R?) by Proposition Moreover, the operator
A Sy (RY) — S, (R?) is linear and, by Lemma well defined and continuous for every n € N. We
denote by A, the operator given by the limit:

1
= Jim [ [y N . ) duds, f € SR,

R JRA n
(R

n—o0

This operator is well defined and linear from S,(R%) to S,(RY) by Proposition Moreover, it is

continuous by Banach-Steinhaus theorem.
Now, we prove formula 1' and, hence, that I, does not depend on the selection of x € Sw(RQd) with
x(0,0) = 1. By Lemma [3.4| we have, for all n € N,

| [ a1 G O] = (e go)l] [0 a0 fay

< CAe’A”(f)emw(x)( sup !x(n)o,
neRr

which is integrable in £. Moreover,
i (x— 1 1 i(x—
/6’(”5 Deale,y, ) fFW)x (e, —€)dy — /6( Na(z,y, ) f(y)dy

pointwise on z, ¢ € R? when n goes to infinity. An application of Lebesgue theorem gives the conclusion.
O

Definition 3.8. The operator A given in Theorem s called global w-pseudodifferential operator
associated to the amplitude a(x,y,§).

Remark 3.9. In the hypothesis of Proposition we can also use a function x € Sy(R?) which only
depends on the variable £&. In the same manner, Theorem is also true if we consider x € S, (R?)
depending only on & that satisfies x(0) = 1. The proofs of both results follow in the same way.

The use of amplitudes permits to extend the operator to the space of ultradistributions in an easy way
by duality, as we can see in the next result. We omit its proof since is similar to the one of [10, Theorem
2.5].

Proposition 3.10. The pseudodifferential operator A : S,,(RY) — S, (RY) extends to a linear and con-
tinuous operator A : S (R?) — S’ (R9).
As in [I0, Theorem 2.5], we observe that for any pseudodifferential operator A : S, (R?) — S, (R%)

with amplitude a(z,y, &), we have that the transpose operator when restricted to S, (R9), A?| Su(RY)

Su(R?) — S, (R?), is a pseudodifferential operator with amplitude a(y, z, —€).
The proof of the next result is standard.

Proposition 3.11. Let T : S,(R?) — S, (R?) be a pseudodifferential operator. The following assertions
are equivalent:

(1) T has a linear and continuous extension T : S',(RY) — S,,(RY);
(2) There exists K (z,y) € S (R?*®) such that

/K z,y)e(y)dy, ¢ € Su(RY).
Definition 3.12. A pseudodifferential operator T : S,,(RY) — S, (R?) that satisfies (1) or (2) of Propo-
sition |3.11) is called w-regularizing.

Example 3.13. (a) As in [10, Example 2.11], particular cases of weight functions give known definitions
of symbol classes and pseudodifferential operators. For instance, in the limit case, that we do not consider
here, of w(t) = log(1 + t), we have S,(RY) = S(R?). In this case, with a similar argument to the one
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C > 0 such hat p and on fO 6) d
‘ z yl ga(flf7 Z/7 f)‘ S C<$ — y>p|a ﬁ )|<(.T, y? 5)>mfp\a+5+’7‘,

for all z,y,& € RY. This characterization gives precisely [20, Definition 23.3] for m/ = 0.
In the same way, using [0, Example 2.11 (2)], if w(t) = t¢ for 0 < d < 1 is a Gevrey weight function
then a € GAZ* if and only if for every A > 0 there is C' > 0 such that

(x — y)Plathtl
((z,y,§))rlatFtl

for all (x,y,&) € R* and (a,3,7) € N3%. This definition of amplitude could be compared with [7}
Definition 2.1], which is the corresponding definition for the Roumieu case.

Finally, it is worth to mention also that in the case when the weight function satisfies [4, Corollary
16 (3)], the classes of ultradifferentiable functions defined by weights (as in [5]) and the ones defined by
sequences (as in [15]) coincide. In this situation, the definition given by Prangoski for the Beurling case
in [I8, Definition 1] is expected to be the same as our Definition But, if the weight sequence (M,),
satisfies only condition (M2) of Komatsu, as is assumed by Prangoski [18], our classes of amplitudes could
differ in general from the ones given by Prangoski (see [4, Example 17]). Hence, we are treating, even
only in the Beurling setting, different cases.

(alBIy1)P/dNletBle m((2.y.8)"

| DS Dy DYa(z,y,€)| <

14

(b) Let o be a weight function and let w be another weight function satisfying w(tTP) =0(o(t)) as
t — oo, where 0 < p < 1. If a(z,§) € SU(RQd), then a(x,&) € Niper GS;™. Tt is enough to prove it for
m < 0. Indeed, for every \,m’ > 0, there exists C) ,,y > 0 such that

|D?D?CL(CC,§)| S C)\ mle()\ﬁ-m’)cp;(&a;:f/‘)e(—)\—m/)o(<(z,§)>) S C)\ mle)\cpt*j(\a-;ﬁl)6(_>\_m/)o_(<(x’£)>)’

for each (z,¢) € R?? and («, 8) € N2¢ (in the last inequality we use that x + *(z)/x is increasing). By
assumption and Lemma ( ) there is C' > 0 such that for all A > 0 and j € Ny,

)\apU(A)</\+/\C P *(Aj—c). (3.10)

By , we have
s (122 —mo(@6) < An)es (12F2) J—aoes (12F2))  Moo(((@.6)) —mo((.£)))

< A (152) (g, ¢))plotBlemo (@)

Now, formula (3.10) shows that a € GS;"* for m = —m//2 < 0.
On the other hand, it is easy to see also that [,,cg G5 C S, (R2d). So, we have

S, (R*) € [ GSp C S, (R%),
meR
for every pair of weights w and o that satisfies the relation at the beginning of this example.
We observe that for weights of the type w(t) = log®(1 +t), with s > 1 (remember that here we do not
consider the limit case s = 1), we have w(t(lﬂ’)/p) = O(w(t)) as t — oo and, hence, in this particular
case, we obtain

L(R¥) = [ GSe.
meR
(c) We consider the differential operator P(z, D) = >_ |, ay(z)D7, where a, € Sy(R?) and o(t) =
o(t) as t tends to infinity. If w is another weight function such that w(t1°/?) = O(c(t)) as t tends to
infinity, by (b) it is easy to see that the corresponding symbol p(z, &) = (27) ¢ D pyj<m @y (2)€7 € G
is of finite order, i.e, we have polynomial growth in all the variables instead of exponential growth.

On the other hand, a linear partial differential operator with polynomial coefficients defines a global
symbol of finite order in GS;"* provided w(t'/?) = o(t) as t tends to infinity.



GLOBAL PSEUDODIFFERENTIAL OPERATORS OF INFINITE ORDER... 15

(d) Following [10, Example 2.11 (5)], we can consider ultradifferential operators with variable coeffi-
cients and infinite order G(x, D) := ) aeNd ao(x) D with a, € C*®(R?) satisfying the following condition:
there exists m € Ny such that for all A > 0, there is C'y > 0 with

1]

|Dﬂaa( )| < C) e)xp(p (\ﬂ\) —mpe” (W)e_mﬂo*(ﬁ)emw(z)

for each a, 5 € Ng and = € R%.

It is not difficult to show that its corresponding symbol p(z, £) := (27) 743 o Ga(x)E is a global symbol
in GS];"*’ for some k > m.

In particular, by , the ultradifferential operators G(D) with constant coefficients defined in
Section |2| are pseudodifferential operators with symbol G € GS];’” for some k > 0.

)

4. Symbolic calculus
In order to compose two pseudodifferential operators, we need to develop a symbolic calculus in this
setting. We follow the lines of [10].
Definition 4.1. We define FGSJ"* to be the set of all formal sums 3,y aj(z,€) such that aj(z,§) €
Ok (]R2d) and there is R > 1 such that for every n > 0, there exists D, > 0 with
1 ) p(la+B]+7)
((z,))
for each j € Ny, (a, B) € N2¢ and log (<( )>) > jgo*(%)

1D2Da;(.)| < D7 e enee” (50) gt gma©), (4.1

We can assume that ag(z, ) satisfies formula when log (<(m,5)>) >0, i.e., when ((z,)) > R

Let a be a symbol in GS;* and set ag := a and aj =0 for j # 0. Then, we can regard a as the formal

sum Y a;.
Definition 4.2. Two formal sums ) a; and ) b; in FGSJ" are said to be equivalent, which is denoted
by Y- aj ~ Y bj, if there is R > 1 such that for each natural number n, there exist Dy, > 0, N,, € N with

‘D?Df ];V(aj — bj)‘ <D, (((;g)))p('aw+m

fOT every N > Nn; (Ct,ﬁ) NQd and log (((%5») > %SO*(%)

oo (B5550) et (4

We understand that a symbol a € GSJ* regarded as a formal sum satisfies a ~ 0 when ]Dng a(z, 5)’

is estimated by the right-hand side of ([#.2) for every N > N,,, (a, 3) € N2¢ and log («x £)>) > %cp*(%)
The following proposition gives a sufficient condition for a pseudodifferentlal operator to be w-regularizing
in terms of formal sums (see Definition [3.12]):

Proposition 4.3. If A is a pseudodifferential operator defined by a symbol a(x,§) which is equivalent to
zero, then A is an w-regularizing operator.

Proof. 1t is enough to show that a € Sw(]Rd), because [17, Proposition 1.2.1] states that operators with

symbols in S, (R%) correspond to kernels in S, (R??) and, by Proposition those operators are w-

regularizing. Since a ~ 0, there is R > 1 such that for every n > 0, there exist C;, > 0, N,, € N
1 ) pllatBl+N) g o on (lectBlen)

with
ol gy

x
)ZSW” (gﬂ), a, B N%d. We take 0 < ¢ < 1 and [ € N so that
((x,8))) < lw(z) + lw(€ ) Observe that there exists N > Ng, depending on

mis(@) grmas(€)

|D2D]a(x,€)]

IN

(&

for all N > Ngn, log(
w(E) = ew(t) — 1 and lo
x,& and R such that

(oo G0 <) o ) < (5 < 00 (5

R
8(
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Now, by Lemma [2.8]
-N * T, x,
[(«%Rf»> Ane (%)}p < [e_znw( (.0 Jlos (Y )} ’

n p
[emsw(<<x,§>>>+%+lw<x>+1w<s>}
< e mpew(@)—npew(€)+ 2L +pluo() +pleo(€)

Therefore we obtain, since R and ((x,£)) are greater than or equal to 1, by the convexity of ¢*,

—pN R
D5Dale )] < Conl(a ey rrsolpe (ALY T e (2] gt (542 gt g
O 222 tne” (15L) (mebpl—npe)a(@) o (m pl—npe)us(s)

Now, it suffices to select n large enough. O

IN

We can also obtain the opposite of Proposition [4.3| for weight functions of the type w(t) = log®(1 + ¢)
for s > 1. Despite we do not consider in this paper s = 1, the same argument in this case works, too. We
need the following lemma, which holds for any weight function w.

Lemma 4.4. Suppose that a € ) GSJ". Then a ~ 0 in FGSJ™ for all m € R.

meR

Proof. First, we observe that there is C' > 0, which only depends on w, such that
w(((x,€))) < C+ Cw(z) + Cw(§), (4.3)

for all z,¢ € RZ.
Now, we fix m € R. By assumption, for all n € N there is E,, > 0 (which also depends on m) such that

g (232)

((z,8))rloth

e (5%

=k, <(x’§)>p|a+ﬁ|+pN <($,§)>
for all z,& € RY, o, 3 € Nd and N € N. By , we have
—nCw(z) —nCw(§) < —nw(((z,£))) +nC < —npw(((,£))) + nC.

Moreover, by ([2.4)),

|DeDla(x,€)| < B, ¢~nC((@)+() gm(w(@)+u(€))

PN =nC(w(@)+(©)) gm(w(e)+(©))

N
n

(2, ) Ne (@) < gne™ (%)
Therefore, we obtain that for each n € N there is ), > 0 such that

% ( la+B|+N

g (228)
13

((z, &))PlatBl+pN e ),

|D2DLa(x,€)] < Cn

for all z,& € RY, o, 8 € Ng and N € N. Since the argument does not depend on m € R, we have a ~ 0
in FGS;"* for each m € R. O

Proposition 4.5. Let w(t) =log®(1+1t), for s > 1. If A is an w-regularizing operator with symbol a, we
have a ~ 0 in FGSJ™ for all m € R.

Proof. Since A is w-regularizing, the symbol a € S, (R??) by Propostion and [I7, Proposition 1.2.1].
By the argument given in Example [3.13|(b) for weights w(t) = log®(1 + t), for s > 1, we obtain a €
Nner GS,. Hence, Lemma 4.4f gives the conclusion. O

Now, we construct a symbol from a formal sum, and to do so we need some kind of partition of unity.
Here, we cannot use the estimates as in [10, Lemma 3.6] for some technical difficulties, but we consider
the usual estimates for ultradifferentiable functions instead. This is due to the fact that our symbols
are defined in the whole R? for all the variables. However, we observe that this consideration is not so
restrictive (cf. [10, Remark 1.7 (1)]).
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We consider ®(x,&) € D, (R??), where o and w are weight functions which satisfy w(t'/?) = O(a(t))
when ¢t — +o00 (Lemma [2.9(2)) and, in addition,

[@(z,8)[ <1, () =1if |(z,) <2,  &(z,§) =0if [(z,§)] = 3.

Let (jn)n be an increasing sequence of natural numbers such that j,/n — 0o as n tends to infinity. For
each jp, < Jj < jn41, We set

Ujn(w,6) =1 @((j’@), Anj = Rei#(0), (4.4)
n?]

where R > 1 is the constant which appears in Definition It is clear that Ap < A, ;. We observe
that (z,€) € supp ¥;,, implies ‘%‘ > 2 and so
((.T,f)) > 2An,j- (4.5)

3 2d amnB ko ( la+8] )
Since ® € D, (R?*?), for each k € N there is a constant Cj, > 0 such that | DD e ®(z,8)| < Cre™ .
Now, by Lemma -(2 for all k£ € N there is C; > 0 with

a la B —pla
DS DI (€)= )DaDﬁcb( )\A'*ﬁ'<ce’fp“’w( ) a, e, (4.6)

for each (a,3) € N2? and all k € N. If additionally we assume that (x,&) is in the support of any
derivative of U, ,(x,&), we have 2 < ‘%&3‘ < 3. This implies

24,5 < ((x,€)) < V104,;. (4.7)
We obtain, from (4.6)), that for all k£ € N,

DD (e, € < O g ) e (5. (19)

(@, 9)

Hence ¥ ,, € GSS"" (here, we apply Lemma (1) to get rid of the constant (1/10)?1*+5l). The proof of
the next results follow the lines of the one of |10, Theorem 3.7]:

Theorem 4.6. Let ) a; be a formal sum in FGS]". Then there exists a global symbol a € GSJ"* such
that a ~ ) a;.

Proof. We consider the functions ¥;,, defined in (4.4). Since ¥}, # 0 implies that formula (4.5)) holds,
we also have

(@, ) e (1) < (2m)~. (4.9)

If we suppose that (z,£) belongs to the support of any derivative of ¥} ,,, then formula (4.7) is satisfied.
In particular, we have

log (i%%) < 7;90*(;1)-

It is not difficult to see that, by formula (4.9),

\D;;“DB (aj(, ) Tjn(2,8))|
la+B]+j

<(.%' §)> p(la+B]+7) QHPQO*( o )emw(x)emW(g)

Do (a, §))~#1o#crnee” (455) gmet) met) (9 ) =03, (4.10)

for some constant D,, > 0, for all j € Ny, («a, ) € Ngd and log (%) > ?gp*(l) This shows that

n

aj(z,§)¥;,(z,€) is a global symbol, since log (<( ’5») < ?ga*(%) implies that ¥;,(z,£) = 0, by (4.5).
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We observe that Z;’il(QR)_pj is convergent, because R > 1. Let (j,,)n be the sequence which defines

the functions ¥;,,. By induction, we can take the elements of (j,), so that ji := 1, jn < jn+1, % — 00
and

1 D,
Dm_l.z( )pj§7zz

Then it is easy to check that

jn+1 1

D, :=D, Z

J=Jn

satisfies that D, < Dy
On the other hand, it is not difficult to see that

o jnJrl_l
a(x,f) :ao(fﬂ,g)—FZ Z \Ilj,n($a€)aj(l‘a£)
n=1 j=jn
is a global symbol in GS;"*.
Now, we claim that a ~ > a;. Assume log (<(m1’§1)%>) > ﬂ(p*(%). We consider only the case N > njj,

(which is coherent with Defintion [4.2)). For all j
have j < j,(< N) and therefore

N there is k € N with ji < j < jra1. If k£ < n, we

(@) m o Ny oLy kL
0 > > n) = = -).
g(\/mR)—N“D(n)_Jf Un) JSO(k)

In this case ¥V, = 1. If £ > n and N > j we have

(@,8)y o n Ny _k ]
_ )Y > 2 Ea
s ((280) > 2 (X 2 2o 0,
and also ¥;, = 1. Hence, we only have to analyse the case when j > N and k > n.
So, we are looking for an estimate for ’Dg‘D?\IJj’k(:c, &a(x, f)’ with j > N and k > n. We assume that

log ((( ,£)>)
rule,

> %(p* (%) (since, otherwise, W, = 0). Now, we have, by the convexity of ¢* and Leibniz’s

| DS D (U, ) ay(,€) )|

< Di{(w, &) et Br NI oo (5

(2, )0 Nekre (15 gmas)gmets),

We obtain
()05 (i) < Y@ )y=0-ebs (5) < (2m)=0-),

and thus, for its p-power also. Therefore, for k¥ > n, j > N and the constants (Dy)g>, as in (4.10) we
have

| DD (W4 (. E)ay(w,€))]
< Dy{(x, €)) Ut BN koo (1RER) 9.y =pli=N) (@) gmes(€), (4.11)

Since kK > n and j > N, we get

Je+1—1
(D;;D? (a -y aj)] <3 S DD (W ay)l. (4.12)
J<N k>n  j=jk

>N
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Now, k£ > n also implies k:pgo*(W) < npgo*(W). Therefore, using (4.11)), we can estimate
(4.12) by

Jer1—1

QRN {(r, €)Mt 3 pyckor (S5) 3T oy
k>n J=Jk
>N

< (2R)"N ((x, §)>—p(|a+ﬁ\+N)enp@* (lotPlen) emw(x) gmw(€) Z Dy,
k>n

where Zkzn Dy, is a constant depending on n, which finishes the proof. ([

From now on, we assume that ?gp*(%) > n for every j > j,. For every n € N, we define, for
Jn £J < Jn+ls
0 =Vn, wo = 1. (4.13)
A simple computation gives A, ; < A, j11. Since j, @j11 € Dy (R2d), we observe that the difference
¢j — pj+1 belongs to D, (RQd). Therefore, by , ©j — Qj+1 € GS%”.

Lemma 4.7. Let a(x,y,&) be an amplitude in GAJY, and let A be the corresponding pseudodifferential
operator. For each u € S,,(R%),

Alu) =) Aj(u)
=0
in the topology of Su(R?), where Aj, j > 0, is the pseudodifferential operator given by the amplitude
(Sﬁj - ¢j+1)(x,£)a(x,y7§).

Proof. For j, < j < jn41, it is not difficult to see that (¢; — ¢;41) (@, &)a(z,y, &) € GAJ"”. We have, for
u € S, (RY),

N—oo

Jf:oAj(U) = lim /Rd /Rd e @1 — onpa(a,€))alz, y, €)uly)dyde.

Now, we observe that, for each (x,¢) € R??,

(1 - w)(.8) = 222,

An,N+1

where ® € D(,)(R*) C S, (R*) is like in formula (4.4). Hence, ®(0,0) = 1. Moreover, Ay, n41 — 00 as
N — oo. Therefore, proceeding as in the proof of Theorem we have

A ) = tim [ ([ (1= ewa)@ O awy, Ouly)dy) e,

N—oo

and the result follows. O
Below, we denote sometimes S, (R?) by S,,.

Proposition 4.8. Let Z;’io pj(x,§) be a formal sum in FGSJ* and (Cy)n be the corresponding sequence

which appears in (4.1). Let (jn)n be a sequence as in Theorem which also satisfies that ?gp*(%) >
max{n,log Cy,} for j > j,, n € N. We set

p(aj‘, 5) = Z SOj(l‘, g)pj(l‘a 5)7
=0

which is a symbol, where ; is the function in (4.13)). Then, its corresponding pseudodifferential operator
P(x, D) is the limit in L(SW,S(L) of the sequence of operators

Sy : Su(RY) — S,(RY), N eN,
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where each Sy is a pseudodifferential operator with symbol

N J
Z (05 = <Pj+1)(f€,€)(2pz(:v,£)), N eN.
=0

J=0

Proof. By Theorem the function p(z,§) is a symbol. Moreover, for each j € Ny, one can show that

(65— i) @O (Dopil. ) = S (s pr) e Ol

=0 =0

is also a global symbol in GSJ. Hence, the function

N J N N
> (i =) @O (Do m@©) = D 0i(@, Opi(@,€) - onia (2,0 > mile,€)
1=0 j=0 =0

J=0

is a global symbol in GS;"* since it is a finite sum of global symbols.
Now, we prove that Sy — P in L(S S’ ) as N — 4o00. Since S, is a Fréchet-Montel space, it is

wH Ow

enough to show that, for any f,u € S,,
(Sv —P)f,u) -0 as N — 4o0.

The operators P and Sy, N = 1,2,..., act continuously from S, into itself. So, we have (Sy —P)f € S,
and

(Sx — P)f.u) = / (Sx — P)f(x)u(x)de

N N
_ / ( / (3 0@, Opi(@,€) — on 1 (5,6) D mi(w,€) — p(w,€) ) f(€)dE ) u(w)da
j=0 =0

for each f,u € S,. We will see that for each f,u € S,:
a) [ (f e (2w 3o, Opy(2.©)) F(©)dE Juw)dz — 0, and
) S (e (o (@6 Do mile,€)) F(€)de )u(w)dz — 0

when N — oo.

First, since f,u € S, there exists a constant D > 0 depending on m and L (the constant of (2.2)))
such that (Definition [2.10))

De~(mHL1w(E)

De—(m—l—L—i—l)w(z) ]

IA A

Now, when ¢;(z,&) # 0 and j, < j < jnt+1, we have log («x £)>) > ?cp*(%), and for the selected
sequence (Cy,)n, we obtain the estimate

|pj(x,§)| < Cnemw(x) mw E)<($ 5)) ﬂjenpﬁo ( ) <O, emw(x) mw(g)(QR)
Hence (since |p;(z,&)| < 2), we have
() (z, )p;(x,€) f(€)| < 2D*C,,(2R) e~ (LADW()+w(&),

Moreover, we observe that w(z, &) < Lw(x)+ Lw(§) + L (by (2.2)), and since log(t) = o(w(t)) for ¢t — oo,
for (z,€) € supp ¢j, we can assume (for j big enough)

e~ LemIw@) o~ Lw(§) < —w(@8) < 1 < 1

S @) " ype(3)
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By these estimates, and taking into account that log C,, < 2 2o ( ) for n € N and j, < j < jp+1, we get
for ji < N +1 < jiq,

00 0o Jnt1—1
> Jule)ei(e Opi(e. OF (©)] < 2Dt GRS TS S
j=N+1 n=l j=jn 2R ﬂJ@J n

which proves a) since the integral [[ e~ (“(@)+«(€)d¢dy is convergent.
To see b), given N we take n with j, < N 4+ 1 < jp4+1 and observe that onyi(z,§) # 0 implies

log ((( @)) > P (N+1) As before, |p;(z,€)] <2 and (for N big enough)

_ 1 1
w(z,ﬁ) S < ,
(€,8) = gpentze (552)

N

so we obtain

N N
[ue)oni(.6) (3 pi(e. ) F(©)] < 2D°Cpebe @) e (52
j=0 j=0
< Co @)~ wie (M)
where C := 2D2C, el Z] ~0 @R . This concludes the proof, since j, < N + 1 < j,4+1 implies
n N+1

* > .
v )z

O
4.1. Properties of formal sums. The following results are easy to check:

Example 4.9. Let a(z,y,§) be an amplitude in GA™ and let pj(z, &) =31, =) 4 L aDgo a(x,y, &) |,
Then the series Z;io pj(x,€) is a formal sum in FGS?)m,w.

Proposition 4.10. Let ) p; € FGS;™ be a formal sum. Then, the sequence (q;); given by q;(x,§) ==
Z|a‘+h_j ;,8 D2 (pn(z, —£)) is a formal sum for each j € N.

Definition 4.11. For Y p; € FGS)™, we define (3" p;)* as the formal sum >.; 4, where

w8 = 3 8D (e —9).

|| +h=j
In particular, if p(x,€) is a symbol, p'(x, &) denotes the formal sum Zj q; defined by
1
b, 6) = Y2 0D (bl ).
laj=j

Proposition 4.12. Let ) p; € FGSJ"™* and ) q; € FGSJ'** be two formal sums. The sequence (1),
defined by 1j(x, &) = 3| +k+hj iag‘ph(x,f)ngk(x@) is a formal sum in FGSyTm2<,

Definition 4.13. For ) p; € FGS7"*, 3" q; € FGSJ'*, we define (3 p;) o (32 q;j) = >_rj, where

8= Y o DS ).

|a|+h+Ek=j
Proposition 4.14. If > " p; ~ Zp; and Y qj ~ Zq}, then (3_pj)o (D q;) ~ (Zp;) o (> q;)
5. Composition of operators and the transpose operator

First, we study the kernel of a pseudodifferential operator and we show that it behaves like a S,,-function
outside of an arbitrary strip around the diagonal, similarly to the local case; see [10, [17].
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5.1. The behaviour of the kernel of a pseudodifferential operator outside the diagonal. For
any r > 0, we denote

Ar = {(z,y) € R : |z —y| < r}.
Lemma 5.1. Givenr > 0, there exists x € &) (R?*) such that 0 < x <1, x(z,y) = 1 if (z,y) € R*\ A,
and x(z,y) =0 if (x,y) € Ar, which satisfies that for every A > 0 there exists Cy > 0 with

* ‘O‘ BI
D2 DEx(z,y)| < Cree (57)

a,feNd zyeR?

Proof. Let ¢ € €, (R?) such that ¢(&) = 0if [£] < 5, ¢(§) =1if [¢] > 7, and 0 < ¢ < 1. The desired
function is x(x,y) = ¢(x — y). O

The next result is crucial for the proof of Theorem We observe that it is stronger than the ones
given in [I7, Theorem 6.3.3] and [I8, Proposition 5].

Theorem 5.2. Given r > 0 and an amplitude a(x,y,§) € GAJ"™, we have that the formal kernel

Kla)i= [ @« alo,y.e)dt

satisfies:
(1) K(r.9) € 0o (B &),
(2) For every A > 0 there exists Cy > 0 (which depends on r > 0) such that for all (x,y) € R*?\ A,
and all o, B € Ng, we have

ID2DPK (2, )| < Oy (5) emhwlo)o=rt)
Proof. Let o be a weight function as in Lemma (2) with a = p. We consider ¥ € Dy (]RZd) such that
U(z, &) =1if ((z,£)) <2 and ¥(z,&) =0 if ((z,£)) > 3. We write

Kola) = [ @ aloy W (55 50 ) e

We denote by A, the operator associated to the kernel K,,. By Theorem it is easy to see that
K, — K in S/,(R*).

Given (z,y) € R\ A,, there is ¢y > 0 independent of (z,y) ¢ A, such that |z — y|e > co. We can
assume that for a given point (z,y) ¢ Ay, |2 — Yloo = |z — yi| for some 1 < [ < d. We will proceed
similarly to the proof of [I0, Theorem 2.17], but here we need to apply a further integration by parts.
We have

D30y (Knley) ~ Knie)) = 3 30 al,o‘j;"ag' <Z> (—1)Hx

aitaztaz=a uly

« /Rd ei($_y)§fa1+“Dg‘2D;_“a($, y, £) D23 (\II(M) — W(M)>d§

on 2n+1
We fix A € N and take k > A to determine later. We integrate by parts NV times, N € N, to get
(_1)N+\m

a! ~
oYy _ _
DD} (Kuloa) ~ Kunlen)) = Y P (M)

ajtaztaz=a p<y H

« /Rd ez’(xfy)ng [galJr“Dg‘QD;*“a(x,y,f)Dg?’ (\Il((x’f)) = \If((Lg)))}df

n 2n+1
ajtas+az=a Ny+No+N3=N 011!042!043! K ‘xl - yl|N Nl!NQ!NS! ((al)l + = Nl)!
By Ni<(a1)+m

% /Rd 6i(x_y)£§o‘1+“_NlelDg‘QD;_”DgQa(J:, v, f)DggDé\l% (\I/((z’f)) _ ‘I/( (if% ))df
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Now, we integrate by parts again using an ultradifferential operator G(D) as in the proof of Proposi-
tion For a suitable power G(D)® of G(D), s € N depending on A to be determined, we use the
formula

) 1 )
(z—y)¢ _ G5 ( — D) ety
’ Gy — ) (= De)e
to obtain
ol A\ (—1)NHel
Dy (e~ Koiten) = 3 e ()
a1+astas=a 1:Q2:(3: \ U 1= Y

n<y

N! 0! (ozl +/L—N1€l)!
b -
DILENDY L MIN,IN] D 511021031 (o1 + 1 — Noe, — o1)1

seN¢  Ni+Np+Ns= 81+02+83=8 (5,1)
Ni<(a1)i+m 01<a1+pu—Nie
((o)i 4 ) 1

i(z—y)€ cor+u—N1e—01 DagD'yquNgel+62 %
((041)1—1-,u1—N1)!G5(y—x)/e ¢ Py 3 a(z,y,§)

< D () (8 ae

We know by the properties of G*(D) (formulas (2.19)) and (2.16|)) that there exist D, C7, Cy > 0 depending
on G such that

|b5| esDestgo* (%) ’

IN

IN

‘G(yl_;g)‘ Cse=sCaw(y—a),

Here we set A% = C% +d and p € N so that max{v/24,6} < eP?. By the definition of amplitude, there
0
exists a constant Cj > 0 such that
— N 3
’DgzD; 'uDg et 2a(x,y,§)’
_ p(|aa+y—p+d2|+N2) 2543, (lag+y—p+dg|+No
(z y)) 2 21N akpL2 o (

TR ) meo(a) gmes(y) gmies(€).
((z,9,))

Now, we observe that the support of ¥ (%, 2%) — U (55T, Qn%) is in the set B, := {(x,£) € R?: 2" <
((z,€)) < 3-2"1}. Hence, we have, for k € N depending on ), s to be chosen later, and for the selection

of p (Lemma [2.7] (1)),

S@(

’DggDé\fgel+53 (‘11((:6’5)) _ qj((xaf)))’

mn 2n+1
25+4, + (lag+d3|+N3 1 \ laz+63[+N3
< 2Dk€4ka ¥ ( 4k L2P+4 ) R
= on
2p+4 2543+ (lea+93|+ N3 1
< 9Dyt LT ARP LT ( kL2713 )

((,£))rNs
On the other hand, we also have according to (2.4]) (observe that |a; + u| — N1 — |61 > 0 by (5.1)),

ALt (1L ) ALtu(((2.6)))

((z, )Pt

‘§a1+u—N1€z—51| < ‘§’|a1+m—N1—\61| < <(x’€)>\041+u|—N1—|51\ < €

Moreover, since |x; — y;| > ¢o, we get

2 — yi|?

(x—y)? <1+dz —yl* < 2 +dlzy — g = A%z —
0
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with A defined previously. Thus (x — y) < A|x; — y;|. Therefore, by Lemma we obtain (remember
that pu <~ from (5.1))

(x —y) \Plasty—ptdoz|+N2) 1 laoy—ptda| [ (T —y) \PN2 1
<<(w,y,§)>) =gl = v2 <<($,y,§)>> | — iV

|z +y—p+d2| 1 (z — y>N |aa4+y—ptd2|+N 1
=2 (G, )™ o — ™ = (v24) ((z, &))"

We also have, by Proposition 2.5 and Lemma [2.9]

(Oél +,u—Nlel)! ((a1)1+,ul)!

olartpl=Nigla)i+m g 1 N, 1
(o1 + p— Nieg = 01)! ((ar); 4 — N1)! .

IN

3 [01] 27, N1
S 4|a1+ﬂ‘Ek€kL ©~ (?) er‘L p‘P;(szQZ‘;)

3 [61] 2p Ny
< gleatul gy kL o (134) 2hor?e" (55

Proceeding as in previous proofs we obtain, for some constant CS\, ks >0 depending on A, k£ and s, and
(:C? 5) E Bn7

’D;}Dg (Kn(x, y) — Knt(z, y)))

< 03\7]6753'&‘2'7'6)‘1’2"0* (%) ( Z e—sDcp*(%)ekL&p* (%)3\5|)€—502w(y—z)x

5.2
send (52)

" / (@O (5, €)y—N 3N 2oL (5155) mis(a) gmty) @) g

Since the inequality (/5.2]) holds for every N € N, we can take the infimum in N to obtain, by formula (2.5)),
for some constant C' > 0,

) _oN QkPW*(ﬂ) _ . -N 2143@*(&) p
Juf (@)Yt e = (g (e, €)Ne ())
o 2kpw({(2,6)))+plog({(x.6)))
Ce—PEh—Dw({(x.£)))

Cro—20(h—1)w({(@.6) g—p(2")

VAN VARVAN

If we take s > 0 big enough and k > sD, the series in (5.2)) is convergent (proceeding as in (3.5) and
(3.6)) and, hence we can deduce that for each A\ > 0 there is some constant C > 0 such that

| DS DY (Kn(z,y) — Knt1(z,y))| < Oy (552) (@) ) (),

for every (z,y) ¢ A,.

Let x be as in Lemma It is clear that {xK,} is a Cauchy sequence in S, (]RQd). Since S, (}RQd) is
complete, there exists T € S, (R2d) such that YK, — T in S, (R2d). On the other hand, we have seen
that K, — K in S/, (R??). Hence, xK, — xK in S,,(R?>?) when n — oo. This shows that yK =T in
S, (R?*). Since K =T in R?*\ A,, we have

DaDﬁK T _ DaDﬁT T <C 6)\90* (L;BI ) ef)\w(x)ef)\w(y)
x =y Y z Py Y A )
for (z,y) € R??\ A,, which completes the proof. O

We observe that the constant C'y at the end of the proof of the last result becomes larger when r > 0
becomes smaller.
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5.2. Composition of pseudodifferential operators and the transpose operator. Now, for sim-
plicity, in what follows we denote S, for S,,(R%). The following lemma is taken from [I0], Lemma 3.11].

Lemma 5.3. Let m,n,j € N and t > 0 such that m > n and %e%’o*(%) <t< e?w(%). We have
i+l > enw(t)eQTn‘P*(ﬁ)e—j‘
In particular,

(1) 5 pn—D)w(t) 2ne* (4)

- )

for j large enough.
Theorem 5.4. Let a(z,y,&) be an amplitude in GAJ™ with associated pseudodifferential operator A.
Then there exist a pseudodifferential operator P(x,D) given by a symbol p(x,§) in GSZm"” and an w-

regularizing operator R such that Au = P(z,D)u + ﬁu for each u € S, and, moreover,

&)~ pia.6) = Z Z a(2,9,6) |,y -
j=0

=0 |a|=j
Proof. First of all we consider x(z,y) from Lemma We then decompose a(z,y,§) as

a(z,y,€) = x(z,y)a(z,y,€) + (1 — x(z,9))a(z,y, &)
On the one hand, it follows from Theorem [5.2| and Proposition that x(z,y)a(z,y,§) € GAJ™ defines

an w-regularizing operator. Then we can suppose that the support of the amplitude is in Aj; x R? for
some k > 0.
We have >, p; € FGSQ’"“’ by Example M Let (jn)n be as in the proof of Theorem with

?gp*(n) > max {n log an) log(D )}, where C,, and D,, are the constants, depending on n € N, which
appear in Definition [3.2| (of amplitude) and the definition of formal sum for 3772 p;(z,€). We take

) =Y wi(,pj(x,€),

§=0
where ¢; is deﬁned in ( - We denote P := P(z,D). By Theorem [4.6) . p ~ > p;j. By Lemma
we have A = > "3_, An, where Ay is the pseudodifferential operator with amplitude a(z,y, 5)(g0N —

cpNH)(z,ﬁ). Moreover, by Proposmon 8 P =limy_00o Sy in L(S,,,S),), where Sy is the pseudodiffer-

ential operator with symbol Z?f:o (; — @jt1)(z, 5)(2{:0 pi(z,€)).
That is, for u € S,,, we have

0= Avul) = | / I (o = i) (@, Ealw, ,€) ) uly)dyds,
N=0 N=0
and

= Jim [[ et cpj+1)(:c,£)(lzozpz(a:,f)))U(y)dydé-

Thus, we can write A — P as the series Yy _, PN, where Py is the pseudodifferential operator associated
to

an(@,,€) = (on — on) @) (ale,9,€) - Zpg z,8)),
which is an amplitude. Our purpose is to show that the formal kernel
e e}
Ko) = Y [ %oy, 0)de
N=0

belongs to S,(R?¥). We denote K;(z,y) = [ @ %G, (2, y,£)dE.
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As in [10, Theorem 3.13|, we can write the kernel K as the limit when N — oo of

N N N
SK =YL+ Qi — Wy,
j=1 j=1 j=1

where

1 . a—B o
Lzy)=> Y. il B / ¢ TED o2, ) DE P 0 a(x, x, €)dS

la]=j 0#6<a

Qilwy) = > ZM / VD] (05w, ) — (@, €)) DEPwala, y, €)de

la|=j+1 B<a

1 .
wol,6) = (j + 1) /0 a(z,x + tly — x),€)(1 — tyidt

N
Wales) = 3 3 s [ @D e (0. DE D5l . )

|ar|=1 0#£B8<x
We will not give a detailed proof of all the steps below, unless it was necessary.

First step. We see that 3 72, I; belongs to S, (R??). To this, we consider v,e € Nd. We begin by
differentiating I;:

1 !

PTLTACRTIND DU S N o R I
(o — B)! Ivo lva
|a|=7 0#B<a ,3(04 6) Y1+72+73="Y Y128

X /(_1)5£e+71 ei(w_y)ngD?cpj (SE, f)DgSOSD?76G($, z, f)df

Here we use integration by parts with the formula

1
Gy —z)

for a suitable power G*(D) of G(D), being G (&) the function that appears in Theorem to obtain

@=y)§ — G(— Dg)ei(m—y)E’ (5.3)

/ £6+'Yl ez(w_y)gD;‘/QD?SOj (1," g)D;?’ a;Dgiﬂa(xv z, g)d&.

i(z— 1 s € a yo—
= /ez(ac y)ﬁmG (Dﬁ){f +71D22D?<pj(x,§)DgSay Dg ’Ba(x,x,f)}df

(e 1 7! (e+7)! _
— ifz—y)§_ -~ bT e+y1—T71 %
/6 G5(y — x) Z Z T1!m!m3! (e + 71 _7_1)!5

TeNd  T1+T2+T3=T
0 T1<e+m1

x D)2 D] (2, €) DY 9g DE M alx, 1, €)dE.

Therefore

DDy li(z,y)

1 ! 7! € !
= Z Z m(_l)€ Z b, Z Y ( +’71) %

Y!v!ys! Tl sl (e + v — 71)!

|a|=7 0£B<a reNg  mAretyz=y
T1+T2+7T3=T
T1<e+m
1

[ — i(r— €+71—T B+ o ya—pB+T
< [ ST DR DI (0, DO DY (e, e

Now, proceeding as in [10, Theorem 3.13] (using Lemma , it follows that » 22, I; € S.o(R24).
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Second step. Now, let us prove that Z;’il Q; belongs to S, (R??). We proceed as before, and we first
calculate, for v, € € Ng, the derivatives of Q;:

| |
Dineen = ¥ Yangn L i

Ivolysl eqles!
laj=j+1B<a e tys=y V2731 €13€2
€1+e2=¢

x / enterele0E DY D (pj(2,€) — j41(,€)) DP DY D walw,y, €)dE.

We use again the integration by parts given by formula (5.3) with G*(D) for a suitable power of G(D)
in the integral above to obtain, in the integrand,

1
Gy — w)
= ez(z )€ Z b Z 7! (71 + 61) 5714-61—7'1 %

!l (v + e — 1))

gila—y)é G*(De) (7 DY DY (3. €) = py+1(2,€)) DI D2 D¢~ wa(2,.)

reNd T1+T2+7T3=T
T1<71t€1

xDP D™ (02, €) — @a1(2,€)) DR DE D g (2,1, €).

So, we have

! | !
DIDLQj(w,y) = Y D g Bl(a— B)! > br > (=1~ 17.1 > .

X
’}/1.’)/2.’)/3! 61!62! 7'1!7’2!7’3!

lo|=j+1 B<a TENG 11 +y2+73=Y
€1+ea=e
T1+T2+73=T7, T1<71+€1
| .
(71 + 61). 1 /ez(x—y)fé"ﬂ—i-q—ﬁ >
(m+ea—-n) Gy —2)

x DP DL (pj(2,€) — j41(x,€)) DP DY DE ™ P (w, y, €)de.

Now, fix A > 0 and take n > %. To estimate the derivatives of wy(z,y,&), we denote by p a positive
number such that 1 + k < eP, where k is the constant for the subscript of Ag. For this n, we define
n:= 16(2nL3+q + 2% L7+ 1)LP where L > 0 is the constant in Lemma (1), R > 0 is the constant in
Deﬁnltlon 1jand ¢ 6 N is such that 29 > 3R. Then, there is C;, > 0 such that

|DY? D2 DE 7 2w (2, y, 6

< (j+1)/ |1 — t)7|t]l | D2 Dot D~ R aw, 1 + t(y — ), €)|dt

[2a—B+vp+eg+To| )
n

< Cpe™¥ ( @) emel€) (5 4 1) x

! ; t(x —y)) pl2a—B+vy2tea+72|
% 1 —¢7¢ lea] < emw(ac—l—t(y—x))dt.
fon- e (e )

Since |z — y| < k, we have (t(z —y)) < V1+kZ <14k <el. Also, ((z,z+t(y — 2),&)) > ((z,%)).
With this, we argue as in the first step to see that Z;’;l Q; belongs to S, (R??) for R > 1 big enough.

Third step. Let Ty : S, — S, be the operator with kernel Wy. Since A — P = Z]OVOZO Py converges
in L(Sy,S,,), it follows that (T) converges to an operator T : S, — S, in L(S,,,S.,). In fact, we have
seen that Ejvzl I+ Zévzl Qj converges in S,,(R?) as N — +o0, hence in S/,(R??). Then, by the kernel’s
theorem, Z;VZI I + Z;VZI Q; is the kernel of an operator that converges in L(S,,S.,) as N — oc.

We want to show 7' = 0 in L(S,,S.,). To this aim, we fix N € N, j, < N +1 < j,+1 and we set
N+1)

ay = ReN#i¥’ ( We assume 2ay < ((z,€)) < 3an since otherwise D5 on+1(z, &) vanishes for all
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B #0. For f € S, we have
(Tnu, f) :/TNu( )f( dx—/ /WN z,y)u >f( )dx

-/(/ >y il Dl D e, )€ ulw)dy) ) da

la]=10#B<a

— Z Z Bila i /(/eix5D6g0N+1(x {) Baa (x,m,f)ﬁ(f)df)f(x)d:r

la|=10£B<cr
By definition of amplitude and ¢;, for all n € N there are C),, D,, > 0 with
18]
Dlons1(,6)] < Dal(w &) Wleme ()
_ [20— ﬂ\
D2 Dga(e,2,6)| < Canl(a,€)) PR Aleee (555 amato) mte)

Since u and f belong to S, by Definition there exist C1,C2 > 0 (that only depend on m) such that

[a(g)| < Che=mTDw®  and | f(z)] < Cpe~ @D,

18] « (([2a—8|
We observe that, by the convexity of ©*, €% (1 ) 2npe (25:71) < v (5 ) On the other hand, since
©*(z)/x is increasing,

N+1)

<(«T,§)>7P|a\ < (QR)*p\a|e—p\a|NL+1@*( +

These estimates give

KTNu’f Z Z 5|( —ﬁ // ConDy, 010262"’)"0 (lT) (2R)™ 2plal

< (2R)Plalg=rme” (%)

lof=10#8<a (@) 22an
72pn<p ( ) 2mw(x) mw(§)67(2m+1)w(m)e (m+1)w d{daz
- maLE
sy oy L (] + Je @O dude. (5.4)
la|=10£8<a ! R x{|¢|>2an} {|z|>2apn } xR?

Here, E,, = C1C5C5,D,,. Now, we consider in (5.4) only the integral on R% x {|¢| > 2ax}. The argument
for the addend with the integral on {|z| > 2ax} x R? is analogous. By property () of the weight function,
i e~ dz converges and, moreover, for N big enough, for some constant C' > 0, we also have

C
—w(@ge <
e =
/|§>2aN ~ (2an)?

So, we obtain the estimate

CC1CQ</ d%‘) Z Z /3! 1)p|oz CQC:%\I[)"

la]=10£B<a
Finally, by the selection of (j,), we have e ¥ (n) < e " for j > j,. This finishes the proof, since
L Con Dn < =1 gpd
aN aN aN —
N

> Y s <2 ()

1 0pea Pl QRW = \(2R)
converges when N — +o0o provided R > 1 be large enough. O

We want to prove that our class of pseudodifferential operators is closed when composing operators
and also when we take transpose operators.
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Proposition 5.5. Let P(z,D) be the pseudodifferential operator associated to p(x,§) € GS;". Then

the transpose operator, restricted to S,,, can be decomposed as P(x,D)' = Q(z, D) + R, where R is an
w-regularizing operator and Q(x, D) is the operator defined by q(x, &) ~ pt(z,§).

Proof. The transpose operator P(z, D)! is the pseudodifferential operator associated to the amplitude
p(y, —&). So, the result follows from Theorem O

The following result is straightforward, so we omit its proof [21].

Lemma 5.6. Let p(z,£),q(z,§) be symbols in GS;. If b(w,§) is a symbol in GS;* such that b(z,§) ~
¢ (z, =€) and r(z,€) € GS%’”"" is equivalent to ), Z\a|=j é@gD;‘(p(x,f)b(y,g)) |y=zs then r(z,§) ~
p(z,&) o q(z,§).

Theorem 5.7. Let p(z,§),q(z,§) be symbols in GS;", GS;'** respectively, and let P,Q : S, — S, be
the corresponding pseudodifferential operators. Then, the composition PoQ : S, — S, coincides, modulo
an w-reqularizing operator, with the pseudodifferential operator associated to (2m)%(p(z,€) o q(x, €)).

Proof. We already know that Q! is given by the amplitude ¢(y, —¢). Then, Q' = Q' + T", where T" is w-
regularizing, and Q' is defined by a symbol ¢’ that is equivalent to ¢'. Since the class of the w-regularizing
operators is closed by taking transposes, and by the fact that (Q')! = Q, we observe Q = Q1 + T}, where
Ty is w-regularizing, and @ is the operator associated to b(y,&) := ¢'(y, =€) ~ ¢'(y,—&). Moreover,
P o T is an w-regularizing operator.

We consider the composition Po @y : S,, — S, given by P(Q1f)(z) = [ p(=, 5)@(5)6”%& It is easy

~

to see that Q1 f(z) = I(—x), where I(£) := [b(y,&)f(y)e ¥ dy. Thus, Q1f(¢) = (27)%I(£), and hence
P o Q) is a pseudodifferential operator associated to (27)%p(z,£)b(y,£). Theorem and Lemma
give the conclusion. ([
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