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ABSTRACT 

This work presents an efficient numerical approach based on the combination of the 

mode matching technique and the finite element method (FEM) to model the sound 

propagation in silencers containing granular material and to evaluate their acoustic 

performance through the computation of transmission loss (TL). The methodology 

takes into account the presence of three-dimensional (3D) waves and the 

corresponding higher order modes, while reducing the computational expenditure 

of a full 3D FEM calculation. First, the wavenumbers and transversal pressure modes 

associated with the silencer cross section are obtained by means of a two-

dimensional FEM eigenvalue problem, which allows the consideration of arbitrary 

transversal geometries and material heterogeneities. The numerical approach 

considers the possibility of using different filling levels of granular material, giving 

rise to cross sections with abrupt changes of properties located not only in the usual 

central perforated passage, but also in the transition between air and material, that 

involves a significant change in porosity. After solving the eigenvalue problem, the 

acoustic fields (acoustic pressure and axial velocity) are coupled at geometric 

discontinuities between ducts through the compatibility conditions to obtain the 

complete solution of the wave equation and the acoustic performance (TL). The 

granular material is analysed as a potential alternative to the traditional dissipative 

silencers incorporating fibrous absorbent materials. Sound propagation in granular 

materials can be modelled through acoustic equivalent properties, such as complex 

and frequency dependent density and speed of sound. TL results computed by 

means of the numerical approach proposed here show good agreement with full 3D 

FEM calculations and experimental measurements. As expected, the numerical 

mode matching outperforms the computational expenditure of the full 3D FEM 

approach. Different configurations have been studied to determine the influence on 

the TL of several parameters such as the size of the material grains, the filling level 

of the chamber, the granular material porosity and the geometry of the silencer 

cross section. 
 

Keywords: Sound Attenuation; Silencer; Granular Material; Numerical Mode 

Matching; Finite Element Method; Computational Performance 
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1. INTRODUCTION 

Multidimensional methods are widely used for the acoustic modelling of silencers 

and other exhaust devices [1]. Accurate predictions of the sound attenuation 

performance at mid and high frequencies require the consideration of three-

dimensional waves corresponding to higher order modes. Numerical approaches 

such as the boundary element method (BEM) and the finite element method (FEM) 

are usual design tools, although the associated computational expenditure of these 

fully numerical schemes can be considerable as the number of degrees of freedom 

increases [2, 3]. Thus, an effort has been made in the last two decades with a view 

to developing alternative modelling techniques that provide improved 

computational efficiency without sacrificing accuracy. Some of these techniques are 

based on hybrid approaches [4-11] that combine analytical and numerical aspects 

of the wave propagation. For example, in silencers with irregular but axially uniform 

cross section, a numerical approach can be used to model the transversal governing 

eigenequation [7]. The complete solution of the acoustic field in a particular silencer 

subdomain is obtained by considering the contribution of the axial propagating 

terms analytically. Finally, the acoustic coupling of all the subdomains involved is 

achieved through enforcing suitable compatibility conditions of acoustic pressure 

and axial velocity across the geometrical discontinuities. Bibliography tends to 

favour the point collocation technique and mode matching method as techniques to 

enforce these conditions [4, 11-13]. In general, for geometries with small 

dimensions, mode matching has been shown to have some advantages in terms of 

speed and accuracy, due in part to symmetry properties, orthogonality of the 

transversal modes, the sensitivity of point collocation to the grid chosen and 

acoustic scattering at particular locations [4, 12, 13]. 

 

On the other hand, granular absorbent materials are studied here, from an acoustical 

point of view, as a potential alternative to the traditional fibrous materials used in 

dissipative silencers. As shown in earlier studies, sound propagation in absorbent 

materials can be modelled through complex and frequency dependent density and 

speed of sound [14]. Following the same approach for granular materials, their 
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acoustic properties can be predicted through models available in the bibliography 

[15-17], which will be used in the context of the current investigation. 

 

In this work, a mathematical approach based on a numerical version of the mode 

matching method [8, 9] is presented to compute the transmission loss of silencers 

with granular material. Multidimensional sound propagation is taken into account 

in configurations with arbitrary, but axially uniform, cross section. Transversal 

material heterogeneities are included in the model [3, 11]. Also, the possibility of 

using different filling levels of granular material gives rise to cross sections with an 

abrupt change of properties located not only in the commonly used central 

perforated passage, but also in the transition between air and material, that involves 

a remarkable change in porosity (see interface Γa_gr in Fig. 1). The computational 

requirements of a full numerical scheme such as FEM are reduced through a method 

that combines analytical axial propagation terms with numerical transversal 

eigensolutions of the silencer heterogeneous cross section. Numerical mode 

matching [8, 9] is then used to couple the modal expansions associated with each 

silencer component and to obtain the complete solution of the wave equation. To 

this end, the compatibility conditions of the acoustic fields (acoustic pressure and 

axial velocity) at the geometric discontinuities between the silencer chamber and 

the inlet and outlet pipes are taken into account. Transmission loss predictions show 

good agreement with experimental results obtained for a particular configuration. 

Also, the results obtained with the proposed approach are compared favourably 

with general three-dimensional FEM computations, offering a reduction in the 

computational effort. Finally, a number of silencer geometries with granular 

material have been considered. The effect of several parameters on the acoustic 

attenuation has been assessed, including grain size, filling level, porosity and 

silencer cross section. 

 

2. MODE MATCHING APPROACH 

As indicated previously, the mode matching approach is combined with FEM to 

reduce the computation time of a full 3D FEM formulation. The procedure can be 

especially useful for configurations with arbitrary, but axially uniform, cross section, 
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which are very commonly found in commercial silencer designs. In the current 

study, as observed in Fig. 1, the filling level of the silencer is assumed to be uniform 

along the z-direction, according to the previous premise. In addition, several 

subdomains can be distinguished depending on the propagation medium: air within 

the central airway of the silencer, denoted by ΩA; granular material in the central 

chamber surrounding the perforated central duct, represented by ΩCgr, and air on 

the top of the chamber, described by ΩCa. In the context of the current work, the 

symbol Γ is used to denote the boundary of a given subdomain Ω, while S refers to 

its cross section (the same subscripts associated with subdomains are also used for 

corresponding Γ and S to keep notation consistency). Finally, the transition 

air/material boundary is defined by Γa_gr, whereas Γp refers to the perforated surface 

used to confine the granular material inside the outer chamber of the silencer. The 

air is characterized by its density ρa and speed of sound ca, while the equivalent 

properties of the granular material are ρgr and cgr, both complex and frequency-

dependent. Finally, the inlet and outlet ducts subdomains are denoted by ΩI and ΩO. 

 
Figure 1. Scheme of silencer with granular material. 

 

In the current investigation, only the procedure used to obtain the eigenvalues (axial 

wavenumbers) and eigenvectors (pressure modes) associated with the cross 

section of the chamber will be described, since computing the eigenvalues and 

eigenvectors associated with the rigid wall inlet/outlet ducts is straightforward [7, 

11, 18]. Then, the compatibility equations of the acoustic pressure and axial velocity 
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are applied at geometric discontinuities to obtain the modal amplitudes and to 

compute the silencer attenuation. 

 

2.1. Acoustic formulation of the problem 

The sound propagation within the air subdomains ΩA and ΩCa is governed by the 

wave equation for a heterogeneous medium [3, 11] 

 
21 0,a

a a
a a

kP P
 

∇ ⋅ ∇ + = 
 ρ ρ

 (1) 

where ∇ is the gradient operator, Pa the acoustic pressure, ρa the air density and ka 

the wavenumber, defined as the ratio between the angular frequency ω and the 

speed of sound ca. In a similar way, the equations associated with mass continuity, 

dynamic equilibrium and energy [1] can be considered for the equivalent fluid 

corresponding to the granular material [14], the resulting wave equation being 

expressed as [3, 11, 19, 20] 

 
21 0,gr

gr gr
gr gr

k
P P

 
∇ ⋅ ∇ + =  

 ρ ρ
 (2) 

Pgr being the acoustic pressure, kgr the wavenumber, and ρgr the equivalent density 

associated with subdomain ΩCgr [14]. Then, assuming a chamber with axially 

uniform cross section, and applying separation of variables, allows to express the 

acoustic pressure as [7, 8] 

 ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( )

j

, ,  ,
, , , e            , , ,  , ,

, ,  ,

z

xy
A A

k zxy xy xy
Ca Ca

xy
Cgr Cgr

x y x y S
P x y z x y x y x y x y S

x y x y S

−

 Ψ ∈
=Ψ ⇒ Ψ = Ψ ∈
Ψ ∈

 (3) 

where ( ),xy x yΨ  is the transversal pressure mode and kz the axial wavenumber. 

Now, combining Eq. (3) with (1) and (2) yields three tranversal wave equations for 

SA, SCa and SCgr, that can be written as 

 
( )2 2

1 0,a zxy xy
A A

a a

k k− 
∇ ⋅ ∇Ψ + Ψ = 

 ρ ρ
 (4) 



7 
 

 
( )2 2

1 0,a zxy xy
Ca Ca

a a

k k− 
∇ ⋅ ∇Ψ + Ψ = 

 ρ ρ
 (5) 

 
( )2 2

1 0.gr zxy xy
Cgr Cgr

gr gr

k k− 
∇ ⋅ ∇Ψ + Ψ =  

 ρ ρ
 (6) 

 

2.2. FEM formulation and quadratic eigenvalue problem 

In the framework of a 2D FEM discretization, the transversal pressure ( ),xy x yΨ  of 

Eq. (3) for SA, SCa and SCgr can be approximated by shape functions as 

 ( ) ( ), , ,xy x y x yΨ =N Ψ  (7) 

where ( ),x yN  contains the nodal shape functions of each subdomain (functional 

dependence in terms of the independent variables x and y is dropped hereinafter to 

simplify the notation), and Ψ  contains the unknown nodal values of each 

transversal pressure mode [21]. Now, the weighted residuals method is applied to 

Eqs. (4)-(6) together with Green’s theorem and the Galerkin approach [11, 21]. 

Assuming rigid wall subdomains, this leads to 

 ( )( )2 21 1 ,
A p A

T T T A
z a AS

a a

k k dS d
nΓ ∩Γ

∂Ψ
∇ ∇ + − = Γ

∂∫ ∫N N N N Ψ N
ρ ρ

 (8) 

 ( )( )
_

2 21 1 ,
Ca a gr

T T T Ca
z a CaS

a a

k k dS d
nΓ

∂Ψ
∇ ∇ + − = Γ

∂∫ ∫N N N N Ψ N
ρ ρ

 (9) 

 
( )( )

_

2 21

1 1 .

Cgr

a gr p Cgr

T T
z gr CgrS

gr

Cgr CgrT T

gr gr

k k dS

d d
n nΓ Γ ∩Γ

∇ ∇ + −

∂Ψ ∂Ψ
= Γ+ Γ

∂ ∂

∫

∫ ∫

N N N N Ψ

N N

ρ

ρ ρ

 (10) 

The coupling conditions at boundaries Γa_gr and Γp are applied as follows. In the first 

case, continuity of pressure and normal acoustic flow are considered, the latter 

being written as 

 1 ,CgrCa

a grn n
∂Ψ∂Ψ

= −
∂ ∂

φ
ρ ρ

 (11) 
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where ϕ is the porosity of the granular material and n represents the outward 

normal direction. Eq. (11) is introduced in Eq. (10), then Eq. (10) is multiplied by ϕ 

and finally Eqs. (9) and (10) are considered altogether, yielding 

 
( )( )

( )( )

2 2

2 2

1

,

Ca

Cgr p Cgr

T T
z a CaS

a

CgrT T T
z gr CgrS

gr gr

k k dS

k k dS d
nΓ ∩Γ

∇ ∇ + −

∂Ψ
+ ∇ ∇ + − = Γ

∂

∫

∫ ∫

N N N N Ψ

N N N N Ψ N

ρ

φ φ
ρ ρ

 (12) 

where it should be noted that the boundary integrals at Γa_gr have been cancelled. 

Eq. (12) can be written in compact form as 

 ( )2 ,
p Cgr

CgrT
C z C C

gr

k d
nΓ ∩Γ

∂Ψ
+ = Γ

∂∫K M Ψ Nφ
ρ

 (13) 

where CΨ  contains the unknown nodal values CaΨ  and CgrΨ  in SCa ∪ SCgr (the 

perforated central passage is not yet included). The corresponding submatrices are 

 ( ) ( )2 21 ,
Ca Cgr

T T T T
C a grS S

a gr

k dS k dS= ∇ ∇ − + ∇ ∇ −∫ ∫K N N N N N N N Nφ
ρ ρ

 (14) 

 
1 .

Ca Cgr

T T
C S S

a gr

dS dS= +∫ ∫M N N N Nφ
ρ ρ

 (15) 

Eq. (8) can also be written in compact form as follows 

 ( )2 1 ,
p A

T A
A z A A

a

k d
nΓ ∩Γ

∂Ψ
+ = Γ

∂∫K M Ψ N
ρ

 (16) 

with 

 ( )21 ,
A

T T
A aS

a

k dS= ∇ ∇ −∫K N N N N
ρ

 (17) 

 1 .
A

T
A S

a

dS=∫M N N
ρ

 (18) 

Regarding the perforated duct, the acoustic coupling of Eqs. (13) and (16) at Γp (air 

in the central passage with the surrounding chamber) can be carried out by means 

of the perforated duct impedance. The continuity of the normal acoustic flow given 

by Eq. (11) is considered together with the condition corresponding to the 
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impedance pZ , the latter being defined as the ratio of the pressure jump to the 

acoustic velocity normal to surface [1, 11]. The condition applied over Γp is 

expressed as follows 

 j ,A CgrA
a

pn Z
Ψ −Ψ∂Ψ

=−
∂ 

ρ ω  (19) 

 
j

.Cgr gr A Cgr

pn Z
∂Ψ Ψ −Ψ

=
∂ 

ρ ω
φ

 (20) 

After substituting Eqs. (19) and (20) in expressions (13) and (16), the following FEM 

system of equations is obtained 

 ( ) ( )2 j ,
p A

T
A z A A A C

p

k d
ZΓ ∩Γ

+ =− − Γ∫K M Ψ N NΨ NΨ


ω
 (21) 

 ( ) ( )2 j ,
p Cgr

T
C z C C A C

p

k d
ZΓ ∩Γ

+ = − Γ∫K M Ψ N NΨ NΨ


ω
 (22) 

which is expressed in matrizant form as 

 ( )2 .zk+ =K M Ψ 0  (23) 

The following global matrices K and M have been defined 

 _ _

_ _

,A A A C

C A C C

 
= 
 

K Κ
K

Κ K
 (24) 

 ,A

C

 
= 
 

M 0
M

0 M
 (25) 

and all the unknown nodal values are included in vector Ψ . The corresponding 

submatrices are 

 _
j ,

p A

T
A A A

p

d
ZΓ ∩Γ

= + Γ∫K K N N


ω
 (26) 

 _
j ,

p Cgr

T
C C C

p

d
ZΓ ∩Γ

= + Γ∫K K N N


ω  (27) 

 _
j ,

p A

T
A C

p

d
ZΓ ∩Γ

=− Γ∫K N N


ω  (28) 
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 _
j .

p Cgr

T
C A

p

d
ZΓ ∩Γ

=− Γ∫K N N


ω  (29) 

Finally, the system of equations (23) can be conveniently arranged as an eigenvalue 

problem [7, 11] 

 1 ,z
z z

k
k k−

    
=    −    

Ψ Ψ0 I
Ψ ΨM K 0

 (30) 

I being the identity matrix and 0 a matrix composed of zeros. The solution provides 

the axial wavenumbers and the pressure modes associated with the cross section of 

the chamber. 

 

2.3. Continuity of the acoustic pressure and axial velocity fields. Numerical 

mode matching 

For the subdomains involved (inlet/outlet ducts defined by ΩI and ΩO, respectively, 

as well as the chamber ΩC = ΩA ∪ ΩCa ∪ ΩCgr), the full acoustic pressure and axial 

velocity fields can be described by modal expansions depending on incident and 

reflected waves. In the case of the inlet duct, the following expressions can be used 

[1, 7, 11, 22-24] 

 ( ) ( ) ( ), ,j j
,

1
, , e  e , ,I n I nk z k z

I n n I n
n

P x y z I I x y
∞

−+ −

=

= + Ψ∑  (31) 

 ( ) ( ) ( ), ,j j
,

1

1, , e  e , ,I n I nk z k z
I n n I n

na

U x y z I I x y
∞

−+ −

=

= − Ψ∑ρ ω
 (32) 

+
nI  and −

nI being the unknown modal amplitudes associated with the incident and 

reflected waves, respectively, and ( ), ,I n x yΨ  the transversal pressure mode related 

to the cross section of the inlet duct (note that, compared to Eqs. (3)-(6), superscript 

xy is dropped hereinafter to simplify the notation). Besides, kI,n represents the inlet 

duct axial wavenumber, ω the angular frequency and j the imaginary unit. The 

acoustic fields within the chamber and the outlet duct can be analogously described 

after the appropriate modifications, the unknown modal amplitudes being nC + , nC − , 
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nO+  and nO− . From a practical point of view, the expansions are truncated to NI, NC and 

NO terms, respectively. 

 

To take advantage of the modal orthogonality properties, and with a view to 

reducing the computational effort of numerical integrations, the pressure expansion 

of Eq. (31) for the chamber takes into account the transversal pressure modes 

( ), ,C n x yΨ , while the velocity expansion of Eq. (32) considers the mode 

( ) ( ) ( ), , ,, ,C n U a C nx y x yΨ = Ψρ ρ . Here, ρ  is chosen depending on the subdomain of 

the chamber cross section involved (SA, SCa or SCgr, see Fig. 1 for details). Additional 

details of the procedure can be found in references [23, 24]. 

 

With a view to computing the sound propagation within the silencer, it is necessary 

to evaluate all the unknown modal amplitudes. The acoustic fields are matched at 

geometric discontinuities to generate a suitable system of equations. Compatibility 

conditions are provided by continuity of acoustic pressure and axial velocity at the 

expansion/contraction, and zero axial velocity normal to the rigid endplates [1, 7-9, 

11]. For the expansion, these equations can be written as 

 ( ) ( ) ( ), , 0 , , 0       , ,I C I AP x y z P x y z x y S S= = = ∈ ≡  (33) 

 ( ) ( ) ( ), , 0 , , 0       , ,I C I AU x y z U x y z x y S S= = = ∈ ≡  (34) 

 ( ) ( ), , 0 0      , ,C C AU x y z x y S S= = ∈ −  (35) 

where sections SI ≡ SA belong to the inlet and the central perforated passage, 

respectively, and SC = SA ∪ SCa ∪ SCgr is related to the complete section of the chamber. 

On the other hand, at the contraction, the compatibility equations can be written as 

 ( ) ( ) ( ), , , , 0       , ,C C O A OP x y z L P x y z x y S S′= = = ∈ ≡  (36) 

 ( ) ( ) ( ), , , , 0       , ,C C O A OU x y z L U x y z x y S S′= = = ∈ ≡  (37) 

 ( ) ( ), , 0      , ,C C C AU x y z L x y S S= = ∈ −  (38) 

SO being the cross section of the outlet duct. 

 



12 
 

Now, regarding the expansion, Eq. (33) is multiplied by the weighting function 

( ), ,I m x yΨ  corresponding to the transversal mode of the inlet duct, and integrated 

over SI ≡ SA. This leads, for m = 1, 2, …, NI, to the following expression 

 ( ) ( ) ( ) ( ), ,, ,0 , , ,0 , .
I A

I I m C I mS S
P x y x y dS P x y x y dSΨ = Ψ∫ ∫  (39) 

It should be noticed that, due to the orthogonality of the transversal modes, the 

previous equation can be simplified and written as 

( ) ( ) ( ) ( )2
, , ,

1
( , ) , , .

C

I A

N

m m I m n n C n I mS S
n

I I x y dS C C x y x y dS+ − + −

=

+ Ψ = + Ψ Ψ∑∫ ∫  (40) 

where no modal summation appears on the left hand side. Besides, Eqs. (34) and 

(35), related to the axial acoustic velocity field, can be multiplied by the incident 

transversal mode of the chamber ( ), ,C m x yΨ , with m = 1, 2, …, NC. The first equation 

is integrated over SI ≡ SA, and the second one over SC - SA, resulting after summation 

in 

 ( ) ( ) ( ) ( ), ,, ,0 , , ,0 , .
I C

I C m C C mS S
U x y x y dS U x y x y dSΨ = Ψ∫ ∫  (41) 

Considering the orthogonality properties of the transversal modes leads to [23, 24] 

 
( ) ( ) ( )

( ) ( ) ( )

, , ,
1

, , , ,

, ,

, , .

I

I

C

N

I n n n I n C mS
n

C m m m C m U C mS

k I I x y x y dS

k C C x y x y dS

+ −

=

+ −

− Ψ Ψ

= − Ψ Ψ

∑ ∫

∫
 (42) 

Now, following a similar procedure for the contraction, Eqs. (36)-(38) can be 

rewritten as  

 
( ) ( ) ( )

( ) ( )

, ,j j
, ,

1

2
,

e e , ,

                                                           , ,

C
C n C C n C

A

O

N
k L k L

n n C n O mS
n

m m O mS

C C x y x y dS

O O x y dS

−+ −

=

+ −

+ Ψ Ψ

= + Ψ

∑ ∫

∫
 (43) 

 
( ) ( ) ( )

( ) ( ) ( )

, ,j j
, , , ,

, , ,
1

e e , ,

, , ,

C m C C m C

C

O

O

k L k L
C m m m C m U C mS

N

O n n n O n C mS
n

k C C x y x y dS

k O O x y x y dS

−+ −

+ −

=

− Ψ Ψ

= − Ψ Ψ

∫

∑ ∫
 (44) 
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where Eqs. (43) and (44) are related to the acoustic pressure and axial velocity 

fields, respectively. The former has been multiplied by the weighting function 

( ), ,O m x yΨ , with m = 1, 2, …, NO, and the latter by ( ), ,C m x yΨ , with m = 1, 2, …, NC. 

 

Finally, the weighting integrals can be numerically computed, and the algebraic 

system defined by Eqs. (40), (42)-(44) provides NI + 2 NC + NO equations to obtain 

the modal amplitudes. To compute the transmission loss (TL), two additional 

conditions are required given by an incident plane wave at the inlet duct (
+ += = ∀0 1,  0,  nI I n) and an anechoic termination at the outlet duct ( − = ∀0,  nO n ) [7, 8-

13]. Finally, once the modal amplitudes are known, the attenuation of the silencer 

can be obtained as 

 020log ,O

I

STL O
S

+ 
= −  

 
 (45) 

assuming that the outlet duct is long enough to guarantee the rapid decay of higher 

order evanescent modes [11, 22, 23]. 

 

3. ACOUSTIC MODEL FOR THE GRANULAR MATERIAL 

The granular material can be modelled by means of its equivalent acoustic 

properties, e.g. density and bulk modulus, both complex and frequency dependent. 

According to the bibliography [15, 16], the equivalent density of the granular 

material can be expressed as 

 
2 2

2 2

4
1 1 ,

Λ
a p

gr a
a p

jωρ q kμσρ ρ q
jωρ k q μ σ

 
 = + +
 
 

 (46) 

where q is the tortuosity [14], μ is the dynamic viscosity, σ the volume porosity 

(which can differ from the surface porosity ϕ at the interfaces Γa_gr and Γp defined in 

the previous section), kp the permeability and Λ the viscous characteristic length 

defined as follows  

 ( )
( )

4 1 Θ
Λ ,

9 1 Θ
partσqR−

=
−

 (47) 
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Rpart being the particle radius (spheres in the context of the present investigation), 

while tortuosity is given by  

 11 .
2
σq
σ
−

= +  (48) 

In addition, permeability is represented by kp = μ/R, where R is the flow resistivity 

that can be written as  

 ( ) ( )µ σ
σ
− −Θ

=
− Θ + Θ−Θ2 2 23

9 1 5 1
.

2 5 9 5part

R
R

 (49) 

In Eqs. (47) and (49), Θ is the cell radius defined as  

 ( )3Θ 1 .
2

σ
π

= −  (50) 

In addition, the complex bulk modulus can be expressed as [16] 

  0

2

2

,1
Λ81 1

Λ 16

gr

a

a

γPK γγ
jωρ Prμ

jωρ Pr μ

=
−

−
′

+ +
′

 (51) 

γ being the specific heat ratio, P0 the atmospheric pressure, Pr the Prandtl number 

(Pr = Cp μ/κ, where Cp is the heat capacity at a constant pressure and κ the thermal 

conductivity), and Λ′ the thermal characteristic length that can be written as 

 
( )
3ΛΛ .

2 1 Θq
′=

−
 (52) 

Once ρgr and Kgr are obtained, the equivalent characteristic impedance of the 

granular material can be determined by [16] 

 ,gr gr grZ K ρ=  (53) 

while the wavenumber kgr and the speed of sound cgr are defined through the 

following expressions 

 ,gr
gr

gr

ρ
k ω

K
=  (54) 
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 .gr
gr

gr gr

Kωc
k ρ

= =  (55) 

 

4. RESULTS 

First, the validation of the numerical mode matching approach previously described 

and a study of convergence of the solution are presented. In addition, some results 

are shown to assess the influence of a number of parameters related to the granular 

material (composed of rigid spherical particles), such as the grain size, the volume 

of the chamber filled with spheres and the porosity. Finally, the impact of the cross 

section geometry has been also analysed to evaluate the acoustic behaviour of 

different silencer configurations with granular material. Regarding the porosity of 

the perforated duct, it is assumed high enough so that, in practical terms, its acoustic 

impedance can be neglected [1]. Therefore, its influence is not considered in any of 

the cases under study, detailed in Table 1. 

 

4.1. Validation and study of convergence 

4.1.1. Validation  

The first silencer configuration under study presents a circular cross section, its 

main dimensions being: LI = LO = 0.1 m (length of the inlet/outlet ducts), LC = 0.3 m 

(length of the chamber), RI =RO = 0.0268 m (radius of the inlet/outlet ducts) and RC 

= 0.091875 m (radius of the chamber). The air properties have been measured at 

room temperature (21.4°C), the speed of sound being c0 = 344.13 m/s and the 

density ρ0 = 1.1979 kg/m3. The validation of the mode matching approach has been 

carried out for cases I and II (see Table 1 and, Figs. 2 and 3, respectively). In both of 

them the granular material presents a porosity of 39.9% and is composed of spheres 

of 0.006 m in diameter. 
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Case 
Granular 

diameter (m) 

Volume filling of the 

chamber (%) 

Chamber cross 

section shape 
Porosity (%) 

I 0.006 25 Circular 39.9 

II 0.006 37.5 Circular 39.9 

III 0.001 100 Circular 39.9 

IV 0.003 100 Circular 39.9 

V 0.006 100 Circular 39.9 

VI 0.002 100 Circular 39.9 

VII 0.004 100 Circular 39.9 

VIII 0.001 25 Circular 39.9 

IX 0.001 50 Circular 39.9 

X 0.001 75 Circular 39.9 

XI 0.001 100 Circular 42 

XII 0.001 100 Circular 47.6 

XIII 0.006 100 Circular 42 

XIV 0.006 100 Circular 47.6 

XV 0.001 100 Elliptical 39.9 

XVI 0.001 100 Triangular 39.9 

Table 1. Silencer configurations containing spherical granular material. 

 

The attenuation computed by means of the mode matching approach for filling cases 

I and II is compared in Figs. 2 and 3 with experimental measurements [24, 25] and 

numerical results. The former have been obtained in the experimental facilities of 

the research centre, and show good agreement with the TL obtained through the 

mode matching method, thus validating the proposed numerical technique from a 

practical point of view. Also, a comparison is provided with full 3D FEM 

computations carried out with the commercial package Comsol Multiphysics®, 
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showing an excellent agreement with undistinguishable attenuation curves. 

Regarding the agreement with the experimental results, however, higher 

discrepancies appear in filling case II (see Fig. 3b) compared with case I in the 

frequency range from about 1300 Hz to around 2000 Hz. Therefore, the filling level 

of the silencer seems to play a role in the discrepancy between measurements and 

computations. In principle, the transmission loss discrepancy of Fig. 3b is similar to 

some of the values found in the literature related to silencers [1]. It may be 

associated, on the one hand, with deviations corresponding to the manufactured 

laboratory silencer prototype (duct locations, radii and lengths). On the other hand, 

and more important here, with deviations of the acoustic model for the granular 

material described in section 3, justifying higher transmission loss discrepancies as 

the amount of particles is increased, that is, when the volume of the sound 

propagation medium occupied by the granular material ΩCgr is greater. It is also 

worth noting that deviations appear mainly where the TL behaviour is relatively 

complex and abrupt (with several resonances), which seems reasonable. These 

sources of discrepancy will be studied further in future research. In addition, it is 

worth noting that the addition of granular material within the chamber increases 

the TL in the mid and high frequency range, as expected. 

 

 a) 
 b) 

Figure 2. a) Picture of the prototype; b) TL of a silencer partially filled with granular 
material, case I: +++, experimental measurement; —, mode matching method; - - -, Comsol 

Multiphysics®. 
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 a) 
 b) 

Figure 3. a) Picture of the prototype; b) TL of a silencer partially filled with granular 
material, case II: +++, experimental measurement; —, mode matching method; - - -, 

Comsol Multiphysics®. 

 

4.1.2. Numerical impact of the weighting modes  

Several computations have been carried out to assess the accuracy and computation 

time of the mode matching method with an increasing number of weighting modes 

(see Fig. 4a and 4b). The geometry under consideration is the same as in the 

previous section, but now the chamber has been fully filled with 0.001 m, 0.003 m 

and 0.006 m spheres (cases III, IV and V, respectively). The transversal FEM mesh of 

the complete chamber is composed of 104 8-node quadratic quadrilateral elements. 

 

In order to compare the results obtained when using a different number of 

weighting modes, a full 3D FEM “reference” solution computed with Comsol 

Multiphysics® has been considered. In this case, a mesh with an element size of 

approximately 0.001 m has been used to obtain accurate results, with 101688 nodes 

and 33300 elements (8-node axisymmetric quadratic quadrilaterals), thus 

providing around 100 quadratic elements per wavelength for the maximum 

frequency fmax = 3200 Hz considered in the simulations. This analysis has required a 

computational effort of several hours due to the small size of the element compared 

to the dimensions of the silencer. The relative errors between the “reference” 

solution and the results computed with the numerical mode matching method have 

been computed as 
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 ( ) ( ) ( )2 2

1 1
100.

n _ freq n _ freq
ref ref

i i i
i i

Error % TL TL TL
= =

= −∑ ∑  (56) 

The analyses have been carried out for a frequency range from 20 Hz to 3200 Hz 

considering increments of 20 Hz, and the corresponding results are shown in Fig. 4. 

In addition, the weighting modes considered are: 1, 2, 5, 10, 20, 40, 60, 80 and 100 

for each sphere size. 

 

As it can be observed in Fig. 4a, the relative error decreases as the number of 

weighting modes increases, showing the same trend for the different grain sizes. 

However, the condition of the problem has been measured through the reciprocal 

condition number. This parameter is close to zero for badly conditioned matrices 

and, in the current investigation, it presents values 10-18, 10-20 and 10-21 for 0.001 m, 

0.003 m and 0.006 m grain sizes, respectively. It can be noticed that as the diameter 

increases the problem tends to be worse conditioned and the error becomes higher. 

As it can be seen in Fig. 4a, there is also an important reduction of the error when 

the number of modes considered in the computations varies from 10 to 20. Although 

there may be several reasons for this behaviour, a possible explanation is likely to 

be related to the specific problem and configuration under study, as well as the 

frequency range analyzed, for which the contribution of the modes located in this 

interval on the response of the silencer is especially important. As indicated, the 

general trend found in all the computations carried out with the mode matching 

approach presented in the paper is that the error associated with the transmission 

loss becomes smaller as the number of modes is increased. In particular 

configurations, the present approach could have a lower computational 

performance (see for example case V of Fig. 4a). For this case, a more refined 

transversal finite element mesh has been considered with 274 elements, the 

corresponding error being 2.52%, slightly lower than that depicted in Fig. 4a 

(2.67%). Thus, although the convergence rate could be better, the performance of 

the method can be considered good enough (it is worth noting that relative errors 

lower than 5% are generally acceptable in practice). Also, geometries associated 

with cases III, IV and V are axisymmetric and could have been calculated with a very 

simple 1D FE mesh. Despite this, a 2D transversal mesh has been considered for the 

sake of generality, which seems more unfavourable and has a higher computational 
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cost. Thus, the method presents suitable convergence properties from a practical 

point of view. As the number of modes is modified, the particular numerical values 

associated with the error are likely to depend on specific characteristics of the 

problem under consideration, such as the dimensions of the geometry (duct radii 

and lengths), material properties (resistivity, porosity, particle size and packing), 

filling level of the chamber, etc. The authors have chosen a random packing since 

this it is immediate to achieve in practical industrial manufacturing, with the 

corresponding cost advantage that this implies. Also, the participation of each 

particular mode to the final response of the acoustic system is expected to depend 

on these specific characteristics. 

 

On the other hand, the time expenditure increases with the number of weighting 

modes (see Fig. 4b), the results being practically the same for the three cases under 

study, as expected. The numerical calculations have been carried out on an Intel 

Core i5, 2.70 GHz machine with 8 GB of RAM (OS Windows 10 Enterprise 64-bit) and 

the estimation of the computation time has been generated with the tic toc Matlab® 

function. A balance between accuracy and computational cost must be found when 

using numerical mode matching. For example, the error for 20 modes is below 5% 

in all the cases and the computation time is around 450 s, this value being much 

lower than the one required for the “reference” solution analysis. 

                                                                   
a) b) 

Figure 4. a) Relative error (%) between the TL obtained with the mode matching method 
and Comsol Multiphysics®; b) Computation time for: xxx, case III; ooo, case IV; +++, case V. 
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4.2. Influence of parameters and geometry on the attenuation 

4.2.1. Influence of the sphere diameter on the attenuation 

The influence of the spherical granule size on the acoustic behaviour of the silencer 

is studied in this section. Several diameters detailed in Table 1 have been 

considered: 0.001 m (case III), 0.002 m (case VI), 0.004 m (case VII) and 0.006 m 

(case V); in all the cases the silencer outer chamber has been fully filled. As it can be 

observed in Fig. 5, as the sphere size decreases, the attenuation achieved increases 

in practically all the frequency range under consideration, in particular at mid and 

high frequencies. According to the literature [1, 14, 23], sound absorption in 

dissipative materials is controlled, among other properties, by the flow resistivity R, 

with higher values leading to an attenuation increase. As it can be seen by inspection 

of Eq. (49), the smaller the particles are, the higher the resistivity is, thus improving 

the acoustic attenuation performance of the silencer. The underlying mechanism 

can be associated with an increase of granule surface and the corresponding viscous 

friction phenomenon. The attenuation performance due to acoustic energy 

dissipation is related to the wavelength, with increasing values of frequency (lower 

wavelength) providing also growing sound absorption. Additional acoustic 

phenomena affecting silencer transmission loss, such as reflection and/or 

transmission, as well as resonances, are expected to depend on the relationship 

between the typical size of the particles and the wavelength. For example, acoustic 

resonances may appear within air cells between particles. Note that these 

phenomena are expected in the high frequency range for particles of 0.006 m in 

diameter such as those used in the current laboratory experiments, since the 

frequency of a sound wave with the same wavelength is approximately f = c0/d = 

344.13/0.006 = 57355 Hz. This value is far beyond the usual frequency range of 

interest in automotive silencers, whose TL performance is usually computed up to 

2 or 3 kHz [1]. Finally, it is worth noting the presence of a specific resonance at 

around 1300 Hz, which is likely to be associated with higher order mode 

propagation effects [1, 22]. 
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Figure 5. TL of a silencer for different diameters of spherical granules: +++, case III; —, 
case V; ooo, case VI; - - -, case VII. 

 

4.2.2. Influence of the filling level of the chamber 

The geometries considered to study the influence of the chamber filling are detailed 

in Table 1 and the diameter of the spherical granules is given by 0.001 m. In the cases 

under study, the chamber has been filled up to 25% of the chamber volume (case 

VIII), 50% (case IX), 75% (case X) and 100% (case III). An extra case has been also 

included in order to compare the acoustic behaviour of the granular material with a 

fibrous absorbent material, such as Owens-Corning fibre, with a resistivity of 4896 

rayl/m (SI units) for 100 kg/m3 [21, 22]. In this latter case, a typical perforated duct 

has been included to confine the fibre, with hole diameter dh= 0.0035 m, thickness t 

= 0.001 m and a porosity of 10% [1, 23, 24]. 

 

As it can be observed in Fig. 6, increasing the filling of the chamber leads to higher 

TL in practically the whole frequency range. The behaviour of silencers with 

granular material tends to be similar to the configuration with fibrous material. It 

should be noticed that at high frequencies, and for the particular configurations 

under study, the attenuation achieved by some of the silencers containing granular 

material shows higher TL values than the perforated dissipative silencer with fibres. 

Therefore, for some practical applications the granular material could be a potential 

alternative to the traditional sound absorbing fibres. 
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Figure 6. TL of a silencer with different fillings of granular material with 0.001 m in 
diameter: +++, case III; - - -, case VIII; ooo, case IX; xxx, case X; —, Owens-Corning fibre. 

 

4.2.3. Influence of porosity 

Several computations have been carried out with a view to determining the 

influence of the granular material porosity on the TL. Spheres can be arranged in 

many configurations, and the associated theoretical porosity can be calculated for 

each of them. If a random packing of spherical granules is assumed, porosity 

depends on the grain size but cannot be below 39.9% [26]. Nevertheless, the 

porosity value measured by Cobo and Simón for random packings of glass beads for 

several diameters (0.001 m, 0.002 m and 0.003 m) was 40.5%, which is close to this 

minimum value [17]. Therefore, a porosity value of 39.9% has been considered as 

the minimum porosity reachable and the maximum is assumed to be that obtained 

for an ideal cubic distribution, i.e. 47.6% [26]. Two analyses have been done with 

porosity values of 39.9% and 47.6%, as well as a third computation considering a 

porosity of 42%. In all the cases, two different granule diameters given by 0.001 m 

and 0.006 m have been considered (see Table 1). 

 

As it can be observed in Fig. 7, porosity seems to have more influence on the 

attenuation as the sphere size decreases. In fact, for grains of 0.006 m in diameter 

the effect is relatively slight and only noticeable in some narrow frequency bands. 

In general, lower porosities achieve higher TL values with the granular material 

model under consideration. The effect is stronger for the smallest spheres, for which 
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the influence of the porosity can be considerable (more than 5 dB in some frequency 

bands). 

 
Figure 7. TL for different porosities (and two sphere diameters): +++, case III; —, case XI; 

 - - -, case XII; xxx, case V; ···, case XIII; ooo, case XIV. 

 

Since a better attenuation performance can be obtained by using lower porosities, 

and porosity is influenced by the packing of the particles, it is interesting to discuss 

how the transmission loss is affected by the distribution of granular material. In the 

context of the current investigation, random distribution has been assumed due to 

its interest from a practical point of view. As commented previously, for a random 

packing of spherical granules, porosity cannot be below 39.9% [26]. Lower values 

of porosity with a limit of 26% can be achieved, however, by considering regular or 

periodic sphere packing [26] that may lead to an improved acoustic attenuation 

performance. In addition, a regular arrangement of spheres may exhibit a resonant 

behaviour and therefore the silencer transmission loss could benefit from some high 

attenuation peaks at some particular frequencies. 

 

 

4.2.4. Transmission loss for different cross section geometries 

The attenuation delivered by several silencer configurations with different cross 

section (but the same area) is studied. The configurations considered are cases III, 

case XV and XVI, all of them defined in Table 1. In all the cases, the inlet/outlet ducts 

have the same circular cross section, its radius being Rt = 0.0268 m. The dimensions 

for the concentric circular chamber (case III) have been presented in section 4.1.1, 
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while the geometry of the elliptical configuration with offset inlet/outlet pipes (case 

XV) is defined by its major and minor axes as Ly = 0.2253 m and Lx = 0.1352 m, the 

offset being d = 0.036 m (see Fig. 8a). Finally, the triangular cross section with 

rounded corners (case XVI) has Ly = 0.2354 m in height, whereas the inlet/outlet 

pipes are placed at a distance d = 0.1042 m from the bottom of the chamber. In 

addition, Ra = 0.5117 m is the radius of the rounded corners (see Fig. 8b). In all the 

cases, the chamber surrounding the central duct is fully filled with spherical 

particles of 0.001 m in diameter. To conclude, the transversal finite element meshes 

of cases XV and XVI contain 152 and 167 elements (8-node quadratic 

quadrilaterals), respectively. 

                                                                       a) 
 

                                                    b) 

Figure 8. Cross section: a) elliptical chamber; b) triangular chamber with rounded corners. 

 

Fig. 9 shows the comparison of the TL corresponding to each geometry. As it can be 

seen, the impact of the cross section shape is significant and it is well captured by 

the proposed numerical methodology. The triangular configuration achieves higher 

attenuation values in practically the whole frequency range under study. In addition, 

for the particular geometries under study, the elliptical and the triangular 

configurations shift the attenuation peak to lower frequencies, which can be 

desirable for some practical silencer applications.  
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Figure 9. TL of silencer with different cross section geometry: +++, case III, circular; —, 
case XV, elliptical; ooo, case XVI, triangular. 

 

5. CONCLUSIONS 

A numerical model based on the mode matching technique has been presented in 

this work to assess the acoustic behaviour of silencers with arbitrary cross section 

containing granular material. The approach proposed in this work has been shown 

to provide accurate predictions of the attenuation performance while reducing the 

computation time of a full 3D FEM calculation. The model for the granular material 

has also been proved to be accurate enough from a practical point of view, although 

some discrepancies may appear as the amount of spheres within the chamber 

increases. In addition, decreasing the sphere size and increasing the amount of 

granular material lead to an improvement of the attenuation delivered by the 

silencer. In particular, for small granule diameters and a fully filled chamber, the 

silencer shows a similar acoustic performance compared to a fibrous dissipative 

configuration. With the material model under consideration, the silencer 

attenuation is higher when the granular material porosity is smaller, the latter 

depending on the sphere packing arrangement. Finally, the validity of the technique 

developed for analysing arbitrary cross sections has been proved. The 

corresponding geometry has been shown to have a considerable influence on the TL. 

Among the particular configurations under study (with the same transversal area), 

the triangular configuration has provided the best attenuation in almost all the 

frequency range. 
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