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Abstract In a large number of scientific applications, the solution of sparse
linear systems is the stage that concentrates most of the computational effort.
This situation has motivated the study and development of several iterative
solvers, among which preconditioned Krylov subspace methods occupy a place
of privilege. In a previous effort, we developed a GPU-aware version of the
GMRES method included in ILUPACK, a package of solvers distinguished
by its inverse-based multilevel ILU preconditioner. In this work we study the
performance of our previous proposal and integrate several enhancements in
order to mitigate its principal bottlenecks. The numerical evaluation shows
that our novel proposal can reach important runtime reductions.

Keywords GPUs, GMRES, sparse triangular solver, MGSO

1 Introduction

The solution of sparse linear systems of large dimension is a challenging task,
as well as the main performance bottleneck for a myriad of scientific and
engineering applications, such as the numerical solution of partial differential
equations (PDEs), and the simulation of circuits or graph theory problems [14].

This situation has motivated the study and development of several solvers.
When the dimension of the systems is moderate, direct solvers perform rea-
sonably well, and are usually the default choice. However, this type of meth-
ods face difficulties when handling large unstructured sparse systems, because
of their outstanding memory requirements. In this cases, iterative methods,
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among which preconditioned Krylov subspace methods occupy a place of priv-
ilege, become an attractive option. In this context, ILUPACK! is a remarkable
software package that comprises several iterative sparse linear system solvers,
in conjunction with an inverse-based multilevel incomplete LU (ILU) precon-
ditioning technique [7]. Although there is not a best preconditioner for all
cases, the robustness of this technique is especially remarkable in compari-
son with other ILU preconditioners families [6,15] due to its control over the
growth of the inverse approximate factors. Unfortunately, these desirable nu-
merical properties are counteracted by the elevated computational cost that
the preconditioner implies. This situation has motivated the development of
parallel versions of ILUPACK in the past [1,3,4], designed for shared and dis-
tributed memory environments. These implementations offer important values
of speedup and scalability, but are only able to address symmetric and positive
definite (SPD) matrices.

Later, in [1] we designed a GPU-aware version of ILUPACK’s Conjugate
Gradient solver, able to exploit the computational power offered by the GPUs,
and in [2], we extend these ideas with the aim of accelerating the solution of
general and symmetric indefinite linear systems using the ILUPACK BiCG,
SQMR, and GMRES implementations.

In this work, we enhance our previous proposal of a massively-parallel vari-
ant of the GMRES method, by attacking the main computational bottlenecks
of our past developments. The study of this version reveals that, after the GPU-
acceleration of the SPMV of the GMRES and the preconditioner routine, the
more demanding stages from the computational perspective are the solution
of sparse triangular linear systems (SPTRSV) on the GPU and the calcula-
tion in CPU of the modified Gram-Schmidt with selective re-orthogonalization
(MGSO) procedure [11]. In order to overcome these limitations, we substitute
the CUSPARSE routine that we have used so far for the SPTRSV, by our own
implementation, based on a recently developed approach that avoids the con-
stant synchronization with the CPU that CUSPARSE suffers from. We also de-
sign and integrate an accelerated GPU-version of the MGSO procedure that
balances the costs related with the host-device communication. The experi-
mental evaluation compares the new GPU-enabled version of the solver with
our original data-parallel proposal, over a set of real linear systems taken from
the Suite Sparse Matrix Collection?. The results show that the novel develop-
ments can outperform the original ones in values of up to 10x for each stage,
which translates into a runtime reduction of between 1.1x and 3.1x for the
whole solver.

The rest of the paper is structured as follows. Section 2 revisits the main
concepts of the iterative solvers integrated in ILUPACK and the general strate-
gies followed to accelerate them with the use of GPUs. In Section 3, we present
the performance study of our previous data-parallel variant of the precondi-
tioned GMRES method of ILUPACK. Next, Section 4 describes the main

1 Available at http://ilupack.tu-bs.de.
2 formerly known as University of Florida (Sparse) Matrix Collection
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aspects of our current proposal. This is followed by the experimental evalu-
ation in Section 5. Finally, a few remarks and some lines of future work are
summarized in Section 6.

2 Accelerated Solution of Sparse Linear Systems with ILUPACK

ILUPACK is a software package that comprises several methods for the numer-
ical solution of sparse linear systems. It includes a comprehensive set of rou-
tines that handle different matrix types, precisions, and arithmetic, covering
Hermitian positive definite/indefinite and general real and complex matrices.

The most remarkable feature of this package is its inverse-based multilevel
ILU preconditioner, which can be applied to accelerate the convergence of
Krylov subspace-based iterative solvers. However, despite the advantageous
numerical properties, the high complexity of this type of preconditioner makes
its application, which occurs (at least) once per iteration of the solver, the most
demanding task from the computational point of view.

2.1 Computation of the preconditioner

The computation of the ILUPACK preconditioner, for a system Ax = b where
A € R™™ and z,b € R", is organized in a recursive manner. First, the matrix
A is scaled by a diagonal matrix D € R"*" and reordered by a fill-reducing
permutation P € R™*" Then, an incomplete factorization is performed on the
resulting sparse matrix. This factorization procedure is based on the Crout
variant of the LU decomposition and, broadly speaking, applies a test on the
current row and column that determines how their factorization will affect
the norm of the inverse factors. If this norm exceeds a certain threshold, the
factorization of the current row and column is postponed, sending the rows and
columns that fail the test to the bottom right corner of the matrix. After all the
rows and columns have been processed, the factorization proceeds recursively
on the the bottom-right £ x k submatrix that contains the rejected k pivots,
until this matrix is void or sufficiently dense to be handled by a dense solver.

If P € R™*" is a matrix that records the permutations of rows and columns
that preserve the norms of the inverse factors, at level [, the multilevel pre-
conditioner can be recursively expressed as

_(BF\ _~=5(Lp0\ (Ds 0 Us Ur\ a7 50~ 1
Ml_<GC)~DPP(LGI>(O Ml+1)<0 I)ppp @

where Lpg and Ug are unit lower triangular, Dp is diagonal, and M;; stands
for the preconditioner computed at level I + 1. A more detailed explanation of
the factorization procedure can be found in [7].
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2.2 Application of the preconditioner during the iterative solve

Now consider the computation of z := Ml_lr7 which is the application of the
preconditioner on the residual vector r at level [. This is equivalent to the
solution of the following system of linear equations:

L0\ (D 0 UsUr\ AT pri—1. BT BT -1
(LGI)(O MM)(O I>PPD = PTPTh . (2)

After computing 7 := PTPT(Dr), and partitioning the vectors accordingly,
the linear system in (2), can be solved for w(= PTPTD~1%) in three steps,

()()-()
B
(59)(2)- )

where the second system implies the recursive stage.
This leads to the following expressions for y, x, and w:

Lpyp =78, yc :=7c — Lays. (6)
zp = Dg'yp , vc = M yc. (7)
we = xc , Upwp = 5 — Urwe. (8)

In the recursion base step, M;41 is void and only xp has to be computed.
Once w is obtained z is easily computed as z := D(P(Pw)).

To save memory, ILUPACK keeps only the blocks G and F, discarding L¢g
and Up (which suffer from the factorization fill-in) after the preconditioner is
computed. Thus, (6) is changed as:

Lec =GUL'Dy' = yo :=ic — GUZ'Dg'ys = ic — GU5'D5'L'tp, (9)
while the expressions related to (8) are modified as
Ur = D3'L;'F = Upwp = Dp'ys — D' L' Fuc. (10)
This yields the final expressions

LgDgUpsp =B, yc = rc — Gsp,
LBDBUB§B:FIUC wp = SB—§B

(11)

In summary, each level of the application of the preconditioner involves, two
SPMV, solving two LDU linear systems, and three other types of operations:
diagonal scalings, vector permutations, and vector updates of the form z :=
a—b.
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2.3 Data-Parallel Variants of ILUPACK

As mentioned previously, although ILUPACK has demonstrated its effective-
ness to improve the convergence rate of Krylov subspace-based iterative meth-
ods [6,7,15], in several cases the higher complexity in relation to other ILU-
based alternatives can make it impractical from a computational perspective.
To remedy this situation, we are interested in the exploitation of the data-
level parallelism of the operations that compose the application of the precon-
ditioner, and those that integrate the different solvers, using GPUs. In this
work, we focus our efforts on developing an efficient GPU-aware implementa-
tion of ILUPACK’s GMRES method for general systems.

Before we introduce our new contributions, it is necessary to revisit the
data-parallel implementations of ILUPACK that were introduced previously
in [2]. For many of the systems that we evaluated in [2], the computational cost
required to apply the preconditioner was dominated by the sparse triangular
system solves (SPTRSV) and the SPMV appearing in equation (11). We relied
on the NVIDIA CUSPARSE library to perform these operations in the GPU, since
it is a publicly available and well accomplished library that offers kernels for
these two operations. The vector updates that appear in the preconditioner
gain only mild importance for highly sparse matrices of large dimension, and
were accelerated in our codes via ad-hoc CUDA kernels.

ILUPACK represents the multilevel preconditioner as a linked list that
contains the information computed at each level, such as pointers to the factors
of B, the G and F blocks, and the permutation vectors that represent the
matrices l~), 15, and P of Section 2.1.

The factorization of B is stored in a modified CSR (MCSR) format [10],
were the columns of the strict lower part of L and the rows of the strict upper
part of Up are interlaced in the same CSR data structure, while the diagonal
matrix Dp is stored (inverted) as a separate vector.

Using CUSPARSE requires to adapt the sparse storage layouts employed by
ILUPACK to those supported by CUSPARSE. We therefore separate the MCSR,
data structure into lower and upper factors, stored by rows in the conventional
CSR format. This transformation is done only once, during the calculation of
each level of the preconditioner, and occurs entirely in the CPU. Afterwards,
these factors are transferred to the GPU, where the triangular systems involved
in the preconditioner application are solved later by means of two consecutive
calls to the routine cusparseDcsrsv_solve. This routine requires a previous
analysis phase, which determines a parallel execution schedule based on the
dependencies between the equations of the linear system. This stage is executed
only once for each level of the preconditioner, and runs asynchronously with
respect to the host CPU.

In order to compute the SPMV in the GPU, G and F are also transferred
to the device during the computation of the preconditioner. These matrices
need no reorganization, as they are stored in plain CSR format.
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[ Operation [ kernel ]

A—- M Compute preconditioner
Initialize x¢, 70, q0, PO, - - -
k:=0,8:= IITOII €1 = (1707 .- -70)T
while (k < m)
211 = M1 (Aqe) SPMYV + apply preconditioner
[H(:,k + 1), gkt1] := MGSO(Qk, 2k+1)
k=k+1
end while
yi = arg miny |81 — Hy|
Tg =10 + QYK
T = ||b — Awg||2
if (7 > Tmax) then
T 1= T)
restart GMRES
end if

Fig. 1 Algorithmic formulation of the preconditioned GMRES (m) method. The threshold
Tmax 1S an upper bound on the residual for the computed approximation to the solution.

3 Performance study of the GPU-based preconditioned GMRES

In previous work [2], we accelerated ILUPACK’s implementation of GMRES
(which we describe in Figure 1) by off-loading the application of the precondi-
tioner and the SPMV operations that appear in each iteration of the solver to
the hardware accelerator. In the sequential version of ILUPACK these were the
most time-consuming operations of the method. However, once we accelerated
these two tasks, other operations of gained significant importance, especially
for some problems of large dimension that show a slow convergence rate.

In this section we study the computational performance of our previous
data-parallel version of the GMRES method to determine the performance
bottlenecks that arise after the acceleration of the SPMV and the precondi-
tioner routine, and how they affect the overall performance of the solver.

We first describe the test cases and the hardware platforms utilized in the
numerical evaluation. Later, we summarize the experimental results obtained
from the execution of our previous effort.

3.1 Experimental Setup

The experimental platforms used in this work are two servers equipped with
quad-core CPUs and NVIDIA GPUs of different characteristics. On the one
hand, the GTX TitanX, of the Maxwell architecture family, is a graphic card
well-suited for scientific computing applications, with 12 GB of memory and
a superior double-precision performance, while the GTX 1080Ti is a recent
and powerful gaming GPU, of the Pascal generation, that presents a higher
number of cores, clock speed and memory bandwidth than the TitanX. Some
specifications of each platform are summarized in Table 1.
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Table 1 Description of the platform used in the experimental evaluation.

[ MAXWELL [ PAscAL |

Model GTX TitanX GTX 1080 Ti
Arch. Maxwell Pascal
Cores 3072 3584

GPU Freq. (GHz) 1.08 1.58
RAM (GB) 12 11
Max. bw. (GB/s) | 336.5 484
Model Intel Core i7-6700 | Intel Core i7-4770
Cores 4 4
Freq. (GHz) 3.40 3.40

CPU Cache (MB) 8 8
RAM (GB) 64 16
Max. bw. (GB/s) | 34.1 25.6

Soft C compiler acc 4.8.5 acece 7.3.1
OTWAI® | CUDA Toolkit 8.0 9.2

3.1.1 Test cases

We selected a set of medium to large-scale matrices from the Suite Sparse
benchmark collection to numerically evaluate our enhancements. The choice
of matrices intends to be sufficiently varied regarding the origin of the problem,
its dimension, and its degree of sparsity. The details of the selected problems
are displayed in Table 2.

Table 2 Matrices used in the experiments: dimension n and number of nonzeros nnz.

[ Matrix i n | nnz | nnz/n |
apache2 715176 | 2766523 3.9
ASIC_320ks 321671 | 1827807 5.7
atmosmodd 1270432 | 8814880 6.9
cagel3 445315 | 7479343 16.8
ecology?2 999999 | 2997995 3.0
G3_circuit 1585478 | 4623152 2.9
lung2 109460 492564 4.5
parabolic_fem 525825 | 2100225 4.0
ship_003 121728 | 4103881 33.7
thermomech_dK 204316 | 2846228 13.9

3.2 Analysis of the baseline implementation

In Table 3 we summarize the runtimes taken by the original sequential CPU
version of ILUPACK’s GMRES method and the GPU data-parallel version
described previously in platform MAXWELL. We detail the fraction of the total
runtime implied by the SPMV operation of the iterative solver, the application
of the preconditioner and the MGSO procedure.
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Table 3 Evaluation of GMRES for selected cases with expensive re-orthogonalization: Num-
ber of iterations for convergence; execution time (in sec.) of each stage of the GMRES solver
and cost (in %) relative to the total time; and relative residual of the solution. In the GPU
variant, the SPMV and the application of the preconditioner (identified with the label “Appl.
M~1”) proceed in the GPU, while MGSO and other operations are performed by the CPU.

SpPMV Appl. M~ T MGSO Total

Matrix Dev. || #It. | Time % Time % | Time % time
apache? CPU 5 | 0.016 12.33 0.072 54.54 | 0.026 19.33 0.132
GPU 5 | 0.007 10.24 0.020 28.39 | 0.025 35.79 0.070

. CPU 2 | 0.006 20.41 0.015 49.28 | 0.002 6.05 0.030
ASIC320ks GPU 2 | 0.002 10.46 0.005 32.63 | 0.002 10.75 0.016
atmosmodd CPU 46 | 0.388 5.52 5.003 71.12 | 1.561 22.19 7.035
GPU 46 | 0.130 3.17 2.338 56.82 | 1.564 38.01 4.115

cagel3 CPU 7 | 0.058 26.13 0.122  55.39 | 0.029 13.08 0.221
GPU 7 | 0.008 7.71 0.063 57.74 | 0.026 24.12 0.108

ecology? CPU 5 | 0.020 10.84 0.097 52,59 | 0.042 22.59 0.184
GPU 5 | 0.009 9.43 0.025 25.92 | 0.037 38.70 0.096

G3_circuit CPU 5| 0.034 11.18 0.165 53.74 | 0.067 21.74 0.307
GPU 5 | 0.014 9.20 0.042 26.70 | 0.060 38.67 0.156

lung2 CPU 4 | 0.002 13.56 0.011 58.49 | 0.002 13.15 0.018
GPU 4 | 0.001 6.95 0.011 63.87 | 0.002 13.29 0.017

parabolic_fem CPU 3 | 0.008 13.64 0.032 53.63 | 0.007 12.09 0.060
GPU 3 | 0.003 10.88 0.008 25.07 | 0.008 24.46 0.031

ship_003 CPU 5| 0.021 29.94 0.041 60.23 | 0.004 5.56 0.069
GPU 5 | 0.003 7.17 0.026  73.80 | 0.004 10.49 0.035

thermomech. dK CPU 500 | 1,630 11.08 | 10,312 70.07 | 2,697 18.33 | 14,717
GPU 500 | 0.308 2.21 | 10.856 77.91 | 2.692 19.32 | 13.934

Considering the obtained results, we can see that the GPU variant of-
fers runtime reductions from 1.1x to up to 2.0x. Regarding the individual
execution of each stage, the SPMV operation diminishes its computational
importance in the GPU variant, which lies below 10.88%, while the precondi-
tioner routine, also reduces its importance in general. As a consequence, the
MGSO procedure strongly increases its impact on the total runtime, moving
from up to 22.59% to a range between 10.5% and 38.7%.

With these results we can conclude that the candidate stages to be ac-
celerated are the application of the preconditioner and the MGSO procedure,
which concentrate near to 90% of the execution time. In our previous effort the
MGSO procedure was not ported to the accelerator, and thus this line of work
is straightforward. In the case of the preconditioner routine, the main stages
are already off-loaded to be performed in the GPU. Specifically, the SPMV
over the rectangular G and F' matrices, and the solution of sparse triangular
linear solvers which is, without doubt, the most computationally demanding
stage of the whole procedure, are already computed in the accelerator using
kernels from the CUSPARSE library.

4 Extensions of the Data-Parallel GMRES of ILUPACK

In this section we describe the main aspects of the techniques employed to ac-
celerate the GPU variant of the GMRES method in ILUPACK. First, we detail
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[ Operation [ kernel ]
Initialize w := ||z%]|%, 7 := 0.99,7 := 1 | KO. pOT product
while (i <= k) Loop over all the preceding basis vectors
H(i,k+1):= ql-Tz;c K1. pOoT product
2k =2z — H(i,k+ 1)q; K2. AXPY
if (|H(i,k + 1)|2 > w7) then
B = qiTzk K3. potT product
Hik+1) = H(i,k+1)+ 8
2k = 2k — Baqs K4. AXpY
end if

wi=w— |H(i,k+1)?
if (w < 0) then
w:=0,
end if
ti=1+1
end while
Qe+1 = 2K/ |2kl K5. scaL
Hy kg1 = ||zl

Fig. 2 Algorithmic formulation of MGSO. The method performs a re-orthogonalization if
the cosine between the two vectors is greater than 7, which is set to 0.99 in our case.

our efforts to accelerate the MGSO procedure using the GPU, to then proceed
to describe the new SPTRSV routine that we employ seeking to enhance the
performance of the preconditioner.

4.1 GMRES with Accelerated Data-Parallel MGSO

As we stated in the previous Section one of the major constraints of our orig-
inal proposal was the important execution time related with non-parallelized
operations, such as the MGSO procedure described in Figure 2. In this effort,
we incorporate a GPU-based routine for the orthogonalization following pre-
liminary ideas of [12,5]. In particular, we propose a version of the modified
Gram-Schmidt procedure that follows a hybrid paradigm, trying to take profit
from the best hardware architecture for each operation, but paying special
attention to the minimization of the data interchange between the CPU and
GPU memory spaces.

Specifically, we leverage the CUBLAS library for the GPU computation the
DOT products (i.e. operations K1 and K3) and vector updates (i.e. operations
K2, K4 and K5). Considering that the SPMV of the iterative method is com-
puted into the GPU, the basis vector required by the MGSO procedure are
already in the accelerator memory. The process transforms the current basis
vector such that it becomes orthogonal to the ones computed in previous it-
erations, returning also the coefficients of the current row of the Hessenberg
matrix. As this matrix is small, and the remaining operations of the solver
expose little parallelism and computational intensity, it is natural to perform
these operations in the CPU. Because the coefficients of this matrix are the
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result of DOT products with the basis vectors of size n, the GPU computes n
flops for each coefficient that is transferred back to the CPU.

4.2 Incorporating a new triangular system solver

As we stated previously, the solutions of LDU-systems in (11) is without ques-
tion the most computationally demanding step in the preconditioner applica-
tion. Therefore, the performance of the preconditioner will be closely related
to that of the SPTRSV routine used for the LDU-systems.

Until now, we have relied on the CUSPARSE library for the GPU execution
of this operation. This library is publicly available, and it is constantly revised
and adapted to the latest NVIDIA GPU architectures. However, in recent works
we have proposed a new approach to solve sparse triangular systems in the
GPU [8,9], developing several routines for this operation, and outperforming
CUSPARSE for a varied set of sparse matrices.

The strategy proposed in [13,9] is based on avoiding the constant synchro-
nization with the CPU that cUSPARSE suffers from. The procedure advances
row-wise, such that each warp processes one row and each thread is assigned
to one nonzero element. The threads must busy-wait on the dependency repre-
sented by its nonzero entry until all the dependencies of the warp are satisfied,
instead of relying on a fixed schedule of kernel launches determined by the
level-set analysis of the sparse matrix. Besides solving the linear system faster
than CUSPARSE for several of the evaluated cases, this strategy has the ad-
vantage of being self-scheduled, which means that it does not need a previous
analysis phase.

Unfortunately there are some cases where our new strategy falls short.
Specifically, when the sparse matrix presents only few nonzero elements per
row, as each warp processes one row and each thread one nonzero, there can
be a significant waste of threads (and cores). Moreover, the thread-blocks that
are executing concurrently on the multiprocessors of the GPU at a given time
(active thread-blocks) is limited. Inactive thread-blocks have to wait until the
active ones finish their execution before starting their own. To avoid deadlocks,
the rows need to be processed in ascending index order, which means that a
warp can be ready to execute (have no dependencies) but nevertheless belong
to an inactive thread-block. This situation can be avoided by processing the
rows in one of the possible orders that derive from the level-set analysis. The
use of the analysis information to produce a fixed execution schedule can also
be of benefit on the cases where the sparse matrices present nonzero patterns
that imply a high grade of dependencies between their rows.

In this effort we exploit a new solution routine that, after performing a
level-set analysis of the sparse matrix, leverages this information to overcome
some of the above difficulties. The general idea is to partition the warp such
that each one processes either 32 rows of 1 element, 16 rows of 2 elements, 8
rows of 3 or 4 elements, 4 rows of 5, 6, 7 or 8 elements, and so on. This intends
to alleviate the waste of resources when the rows have few nonzero elements,
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while augmenting the number of rows being processed at a given time by the
active thread-blocks. It is important that the rows processed by one warp do
not have dependencies between them, so they all should belong to the same
level.

The level-set analysis of the sparse matrix produces a row_order array that
groups together the indexes of the rows of each level. To achieve a distribution
as that described above, we further order this array so that the rows of 16 or
more elements are placed after those that have between 8 and 16, which in
turn must appear after those that have between 4 and 8, and so on. After that,
we post-process the ordered array to determine the size of the partition, and
the start position in row_order of the range of row indices to be processed by
each warp.

In the solution stage, after obtaining the position of the corresponding
nonzero entry of the sparse matrix, given by the base index in the row_order
array plus the lane of the thread modulo the size of the partition, the threads
will enter in the busy-waiting stage, where they fetch the corresponding entry
of the solution vector, which is initialized with an invalid value (NaN), until
they obtain a valid floating-point number.

After all values are obtained, the entire warp proceeds to the product stage,
which comprises the multiplication of the nonzero coefficient by the recently
obtained unknown, adding the result in a local register.

Finally, the values in the local registers of each partition of the warp are
reduced in parallel using warp shuffle operations, and the first thread of each
partition writes the final value of its corresponding unknown to the solution
vector.

5 Numerical evaluation of the new variants

Tables 4 and 5 summarize the results of the experiments performed on plat-
forms MAXWELL and PASCAL, respectively. In both tables, the total time
taken by the iterative solver is disaggregated to show the part of the run-
time corresponding to the most important stages of the solver, the SPMV, the
application of the preconditioner, and the MGSO routine. For each of the ma-
trices, the first line corresponds to the runtime of the version presented at [2],
which performs the MGSO stage in the CPU and relies on the CUSPARSE
library to compute the SPTRSV. The second line corresponds to our new pro-
posal, which includes the GPU implementation of the MGSO procedure and
incorporates the synchronization-free routine for the SPTRSV.

The results show that the inclusion of the new SPTRSV routine is highly
beneficial for most of the evaluated problems, reducing the runtime of the
application of the preconditioner by up to 3x. The acceleration factors are
slightly better in the MAXWELL platform than in PASCAL but maintain certain
correlation in the results for each matrix. Since each of the platforms presents
a different version of the CUSPARSE library, it is difficult to determine the
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Table 4 Experimental results in platform MAXWELL

matriz #lt. | spmv timeprTCaccel. timemS‘chcel. other timEOt‘alaccel
apache2 > | o007 | oots | " | o005 | *% | ooms | ooss | 14
asicsks |2 | gie | goos | M| goor | 2% | door | oo |
atmosmodd 46 8:}2? f:ggi 2.20 (1):?3471 8.82 8:823 Af:}éi 2.83
cagel3 7 8882 883? 236 8832 474 881} 8(1)(5)2 2.09
ccology? 5 | 0oos | 0026 | % | o006 | 5% | coss | oosr | 14
G cireuit 5 | ooia | ooss | 7 | oo | 5% | ood0 | oaos | 147
lung2 * | 0oo1 | o000 | 21 | oooe | M | o003 | oou | L0
parabolic_fem 3 888; 888? 1.16 8882 3.93 ggg 882411 1.28
ship.003 5 | o003 | oot0 | 2% | o002 | % | o003 | oorr | 2%
thermomech.dK | 500 | 050 | 1030 1 907 | 2O92 501 | DO 1S5 05

Table 5 Experimental results in platform PASCAL

matriz #lIt. sprv timeprTCaccel. timengchel. other timZOt‘alaccel
5 [ oo | o] oo [ S5 ] ses [ 000 [ Does | ves
asicaos |2 | ol | onos | 19 | oo | %4 | oon | oome | 1%
atmosmodd 46 8:};8 é:ggI 1,75 éng 10,30 8:12; ?:ggg 2,65
IR
ccology2 5 | 010 | ooz | %% | oo0s | %% | ooes | oaoo | 129
Gacircut 5 | oote | oom | % | oo | %1 | otos | o1ra | 1%
lung? * | o001 | ooos | 15| ooor | 267 | oo | oous | 12
parabolic-fems | 3| o0 | oog | 29 | 002 | 4% | 0034 | oods | B!
ship 003 5 | ooos | ooor | 2| Goor | 2% | ooos | oots | 17!
thermomech_dK | 500 8:322 ;Z;S 2,89 §ji§§ 4,32 8:(1)88 3232? 283

origin of this difference. In general, both versions of the preconditioner routine
take less time in the PASCAL platform than they do in MAXWELL.

Regarding the acceleration of the MGSO routine, the results exhibit a
notable reduction of the execution time, with acceleration factors that range
from 1.5x to 10x. The results for this stage are also slightly better in the
PascaL platform, improving the MAXWELL times by 21% on average.



An efficient GPU version of the preconditioned GMRES method 13

The combined effect of the two enhancements translates to an average per-
formance improvement of 85% on platform MAXWELL (reaching speed-ups of
up to 3x), and of 58% on platform PASCAL (obtaining a maximum accelera-
tion of 2.83x). This performance improvement is remarkable, considering that
the preconditioner routine of the baseline version is already data-parallel.

The analysis of the data also allows to confirm that the two factors that
most affect the acceleration, specially of the MGSO routine, are the dimension
of the problem and the number of iterations that the solver takes to converge
to the desired tolerance. The influence of the dimension can be observed by
considering the speedup of the MGSO stage for the 4 matrices that take 5
iterations to converge (apache?2, ecology2, G3_circuit and ship_003), while the
influence of the number of iterations is best appreciated when considering the
G3_circuit and atmosmodd problems, which are of comparable dimension but
differ greatly in the amount of iterations.

To understand this behaviour, it should be remarked that the basis vectors
involved in the Arnoldi process of GMRES need to be transferred back to the
CPU to perform the least squares solution prior to the restart. This means
that n floating point values are transferred from the GPU to the CPU after
every call to MGSO. However, the workload of this routine at a given itera-
tion k of GMRES is proportional to n x k, where k is the number of vectors
involved in the orthogonalization, which is equivalent to & modulo the restart
parameter of GMRES. The ratio between the volume of transferences and the
amount of computation in MGSO for a given iteration k is therefore k, and
improves with each iteration until the restart. As a consequence, the transfer-
ence overhead is more significant when the solver converges in only a few steps
and does not approach the restart point of GMRES, which is set at 30 itera-
tions in our experiments. In future work we plan to avoid this communication
by transferring the basis vectors asynchronously, such that this transference is
overlapped with the computation of the next basis vector, or performing the
last step of the GMRES on the accelerator.

6 Concluding Remarks and Future Work

After the GPU acceleration of the routine that applies the ILUPACK precon-
ditioner on its implementation of the GMRES method, the Modified Grahm-
Schmidt process of the GMRES gained importance to become, in some cases,
the computational bottleneck of the solver.

In this work, we have enhanced our previous implementation by proposing
a GPU-aware MGSO routine. As the acceleration of this stage shifts the most
important fraction of computational effort back to the application of the pre-
conditioner, we have also evaluated the use of a new approach to solve sparse
triangular linear systems in the context of this operation. The new routine
differs from the CUSPARSE implementation in that it uses a recently proposed
synchronization-free strategy. It also introduces several enhancements in rela-



14 J. I. Aliaga et al.

tion to previous proposals, such as the concurrent solution of several equations
in each GPU warp.

The experimental results show fair acceleration factors in both stages, re-
ducing the runtime of the MGSO by up to 10x, and reaching accelerations
of up to 3x for the routine that applies the preconditioner. The combined
application of both enhancements produces an average performance gain of
85% on platform MAXWELL (reaching speed-ups of up to 3x), and of 58% on
platform PASCAL (obtaining a maximum acceleration of 2.83x).

As future work we plan to develop a strategy that minimizes the trans-
ference overhead that limit the performance of some particular cases. We are
also interested in evaluating the behavior of our new version of this solver in
GPUs of the Volta generations.
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