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Some results about diagonal operators on
Köthe echelon spaces
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Abstract

Several questions about diagonal operators between Köthe echelon
spaces are investigated: (1) The spectrum is characterized in terms of
the Köthe matrices defining the spaces, (2) It is characterized when
these operators are power bounded, mean ergodic or uniformly mean
ergodic, and (3) A description of the topology in the space of diagonal
operators induced by the strong topology on the space of all operators
is given.

Keywords Echelon Spaces, Diagonal Operators, Mean Ergodic Operators,
Power bounded Operators
Mathematics Subject Classification 47B37, 47A10, 46A45

1 Introduction and Notation

Diagonal operators between sequence spaces are defined on the space of all
scalar sequences CN by Mϕ : CN −→ CN, Mϕ : (xi)i 7→ (ϕixi)i, with ϕ =
(ϕi)i a given sequence in CN. If Mϕ acts continuously from a space E into
a space F , we say that ϕ is a multiplier from E to F . These operators
have been investigated by many authors. We only mention here [3], [4]
and [10]. In the context of Köthe echelon spaces, diagonal operators were
investigated by Crofts [9]. In this note we treat three aspects of diagonal
operators between Köthe echelon spaces which, apparently had not been
considered before: In Section 2 we describe the spectrum and the Waelbroeck
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spectrum of diagonal operators. Characterizations of power bounded and
(uniformly) mean ergodic diagonal operators are given in Section 3. In the
final Section 4 we describe the topology induced by the strong topology on the
space of all operators into the subspace of diagonal operators; see Theorem
4.

Our notation for Köthe echelon sequence spaces is as in [7] and [12]. We
recall here the terminology needed below. A sequence v = (v(i))i ∈ CN

is called a weight if it is strictly positive. The weighted Banach spaces of
sequences are defined by

`p(v) := {x = (xi)i ∈ CN : pv(x) := ‖(v(i)xi)i‖p <∞}, 1 ≤ p ≤ ∞,

c0(v) := {x = (xi)i ∈ CN : lim
i→∞

v(i)xi = 0},

where ‖ · ‖p denotes the usual `p norm. These spaces are Banach spaces with
the corresponding norm pv, and c0(v) is a Banach space with the norm of
`∞(v).

Now, given A = (an)n, a Köthe matrix (i.e. an is a weight and an(i) ≤
an+1(i) for all i, n ∈ N), the echelon space of order 1 ≤ p ≤ ∞ is defined by

λp(A) =
⋂
n∈N

`p(an) and λ0(A) =
⋂
n∈N

c0(an),

endowed with the projective topologies λp(A) := projn∈N `p(an) and λ0(A) :=
projn∈N c0(an). These spaces are Fréchet spaces with the topology defined by
the corresponding seminorms pn := pan , with n = 1, 2, . . . Observe that we
only consider in this paper Köthe echelon spaces with a continuous norm. It
is easy to extend our results to the general case, since every Köthe echelon
space is the countable product of Köthe echelon spaces with a continuous
norm; see [7].

Our notation for functional analysis, locally convex spaces and inductive
limits is standard. We refer the reader to [5], [12] and [15]. All the locally
convex spaces are assumed to be Hausdorff. The weak topology of a locally
convex Hausdorff space E is denoted by σ(E,E ′), where E ′ is the topological
dual space of E. The space of continuous linear operators from E into other
locally convex Hausdorff space F is denoted by L(E,F ) and it is denoted
by L(E) when E = F . We write Ls(E,F ) and Lb(E,F ) to denote L(E,F )
when it is equipped with its strong operator topology and with the topology
of uniform convergence on bounded sets of E, respectively.
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If T ∈ L(E) and I is the identity operator on E, the point spectrum of
T is the set σpt(T,E) of all µ ∈ C such that T − µI is not injective and the
spectrum is the set σ(T,E) of all µ ∈ C such that T − µI is not invertible.
The resolvent ρ(T,E) is the complement of the spectrum in C. It is well
known that whenever E is a Banach space, the spectrum is a compact subset
of C. This is not, in general, the case for Fréchet spaces and this fact leads
to the definition of the Waelbroeck spectrum [13, Chapter III, Section 3]
which is defined as follows. A point λ ∈ C is in ρ∗(T,E) if there exists
δ > 0 such that if |λ − µ| < δ, then µ ∈ ρ(T,E) and such that the set
{(T − µI)−1 : |λ− µ| < δ} is equicontinuous. The set ρ∗(T,E) is open and
its complement in C is the Waelbroeck spectrum σ∗(T,E).

2 Spectrum of diagonal operators

First we characterize the multipliers between Köthe echelon spaces. The
following result is well known and can be easily deduced from [8, 9].

Lemma 1 Let A = (am) and B = (bn) be Köthe matrices. For 1 ≤ p ≤ ∞
and p = 0, Mϕ : λp(A) −→ λp(B) is continuous if, and only if, for each
n ∈ N there exists m ∈ N such that

sup
i∈N

bn(i)|ϕi|
am(i)

<∞.

Lemma 2 Let X be λp(A) or `p for 1 ≤ p ≤ ∞ or p = 0. Then,

σpt(Mϕ, X) = {ϕi : i ∈ N}.

Proposition 1 Let 1 ≤ p ≤ ∞ or p = 0. Then the following assertions are
equivalent:

(1) µ ∈ ρ(Mϕ, λp(A)),

(2) for each n ∈ N, there exists m ≥ n such that

sup
i∈N

an(i)

am(i)

1

|ϕi − µ|
<∞.

Proof. Set φ =
(

1
ϕi−µ

)
i
. Since Mφ is the inverse of Mϕ − µI, whenever it

exists, the equivalence of (1) and (2) is a consequence of Lemma 1. 2
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Corollary 1 Let 1 ≤ p ≤ ∞ or p = 0. Then,

σ(Mϕ, λp(A)) = {ϕi : i ∈ N}.

Proof. Since {ϕi : i ∈ N} = σpt(Mϕ, λp(A)), we have

{ϕi : i ∈ N} ⊂ σ(Mϕ, λp(A)).

For the other inclusion let µ ∈ C \ {ϕi : i ∈ N}. Then there is δ > 0
such that |µ − ϕi| > 2δ, for i ∈ N. Proposition 1 yields µ ∈ ρ(Mϕ, λp(A)).

Assume µ ∈ σ(Mϕ, λp(A)). Then we must actually have µ ∈ ∂σ(Mϕ, λp(A)).
Thus, there exists λ ∈ σ(Mϕ, λp(A)) such that |µ− λ| < δ and therefore, for
every i ∈ N, we have

|λ− ϕi| ≥ |µ− ϕi| − |µ− λ| > 2δ − δ = δ.

From this we deduce, again by Proposition 1, that λ ∈ ρ(Mϕ, λp(A)), which

is a contradiction. Hence, µ 6∈ σ(Mϕ, λp(A)).
2

Example 1 It is easy to give examples showing σ(Mϕ, λp(A)) 6= σ(Mϕ, λp(A)).
Let 1 ≤ p ≤ ∞ or p = 0. Consider A = (an)n with an(i) = in and take
ϕi = 1 − 1

i
. We show that 1 ∈ σ(Mϕ, λp(A)) ∩ ρ(Mϕ, λp(A)). Clearly, using

Corollary 1, 1 ∈ {ϕi : i ∈ N} = σ(Mϕ, λp(A)). Now take n ∈ N and let
m = n+ 1. Then we have

sup
i∈N

an(i)

am(i)

1

|ϕi − 1|
= sup

i∈N

1

i

1
1
i

= 1 <∞,

and thus 1 ∈ ρ(Mϕ, λp(A)), by Proposition 1.

Theorem 1 Let 1 ≤ p ≤ ∞ or p = 0. Then

σ∗(Mϕ, λp(A)) = σ(Mϕ, λp(A)) = {ϕi : i ∈ N}.

Proof. Set X := λp(A). By the very definition, we have σ(Mϕ, X) ⊂
σ∗(Mϕ, X). It remains to prove the other inclusion. Let λ ∈ C\{ϕi : i ∈ N}.
There exists δ > 0 such that if |µ − λ| ≤ 2δ, then µ ∈ ρ(Mϕ, X). We show
that the set

{(Mϕ − µI)−1 : |λ− µ| ≤ δ}
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is equicontinuous. By Lemma 2, we know that ϕi ∈ σ(Mϕ, X), and thus
|ϕi − λ| > 2δ. Therefore, if µ ∈ C satisfies |λ− µ| ≤ δ, then for every i ∈ N
we have

|ϕi − µ| ≥ |ϕi − λ| − |λ− µ| > 2δ − δ = δ.

Now let x ∈ X and let yµ = (Mϕ−µI)−1x = M(
1

ϕi−µ

)
i

x, for each µ ∈ C with

|λ− µ| ≤ δ. Then for every i ∈ N we have

|yµi | =
∣∣∣∣ xi
ϕi − µ

∣∣∣∣ ≤ 1

δ
|xi|.

From this we deduce

pn((Mϕ − µI)−1x) ≤ 1

δ
pn(x),

for all n ∈ N and for all µ with |λ−µ| ≤ δ. Therefore the set {(Mϕ−µI)−1 :
|λ− µ| ≤ δ} is equicontinuous, hence λ ∈ ρ∗(Mϕ, X). 2

3 Mean ergodicity of diagonal operators

The aim of this section is to characterize the power boundedness, the mean
ergodicity and the uniform mean ergodicity of the diagonal operators defined
on Köthe echelon spaces. An operator T ∈ L(E), defined on a locally convex
Hausdorff space E is called power bounded if the set {T k : k ∈ N} is
equicontinuous. Here T k denotes the composition of T with itself k-times.
The operator is called mean ergodic (resp. uniformly mean ergodic) if the
sequence of Cesàro means T[k] := 1

k

∑k
j=1 T

j converges on Ls(E) (resp. on
Lb(E)).

Lemma 3 Let 1 ≤ p ≤ ∞ or p = 0. If T := Mϕ ∈ L(λp(A)) satisfies that
Tkx
k
→ 0 as k → ∞ for each x ∈ λp(A), then ‖ϕ‖∞ ≤ 1. This holds in

particular if T is power bounded or mean ergodic.

Proof. For each j ∈ N, let ej = (δij)i ∈ λp(A). Then

lim
k

|ϕkj |
k

= lim
k

|(T kej)j|
k

= 0,

with (T kej)j the j-th coordinate of T kej. This implies |ϕj| ≤ 1.
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If T is power bounded, then
(
Tk

k

)
k

clearly converges to 0 in Ls(λp(A)).

On the other hand, if T is mean ergodic, then Tkx
k

= T[k]x − k−1
k
T[k−1]x

converges to 0 as k →∞ for each x ∈ λp(A). 2

Proposition 2 For 1 ≤ p ≤ ∞ and p = 0, Mϕ ∈ L(λp(A)) is power bounded
if, and only if, ‖ϕ‖∞ ≤ 1.

Proof. Necessity follows from Lemma 3. Conversely, if ‖ϕ‖∞ ≤ 1, then
pn(Mk

ϕx) ≤ pn(x) for every k, n ∈ N and x ∈ λp(A). Thus Mϕ is power
bounded. 2

Lemma 4 Let (yk)k ⊂ λ0(A) be bounded with limk y
k
i = 0 for each i ∈ N.

Then (yk)k converges to 0 for the weak topology σ(λ0(A), (λ0(A))′).

Proof. Let u = (ui)i ∈ λ0(A)′. There is m ∈ N such that (ui/am(i))i ∈ `1.
Since (yk)k is bounded, there is M > 0 such that am(i)|yki | ≤ M for each
i, k ∈ N. Given ε > 0, there is i(0) ∈ N such that

∞∑
i=i(0)+1

|ui|
am(i)

<
ε

2M
.

Now, there is k0 ∈ N such that for all k ≥ k(0) and i = 1, ..., i(0), we have
|yki | < ε/(2i(0)(|ui|+ 1)). We have, for k ≥ k(0),

|〈yk, u〉| =

∣∣∣∣∣
∞∑
i=1

yki ui

∣∣∣∣∣ ≤
i(0)∑
i=1

|yki ui|+
∞∑

i=i(0)+1

|yki |am(i)

∣∣∣∣ ui
am(i)

∣∣∣∣ < ε.

Therefore (yk)k converges to 0 for the weak topology σ(λ0(A), (λ0(A))′). 2

Theorem 2 For 1 ≤ p < ∞ or p = 0, Mϕ ∈ L(λp(A)) is mean ergodic if,
and only if, ‖ϕ‖∞ ≤ 1.

Proof. If Mϕ is mean ergodic, by Lemma 3, ‖ϕ‖∞ ≤ 1.
Now we assume that ‖ϕ‖∞ ≤ 1 and distinguish three cases.
1. If 1 < p < ∞, the space λp(A) is reflexive. By [2, Corollary 2.7],

every power bounded operator in λp(A), 1 < p < ∞ is mean ergodic. The
conclusion follows from Proposition 2.
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For the rest of the proof, we may assume without loss of generality that
ϕi 6= 1 for all i ∈ N. Otherwise we split the space into two sectional subspaces
and observe that in the subspace in which ϕi = 1, the diagonal operator acts
as the identity.

Under this assumption, the following expression of the i-th coordinate of
the means (Mϕ)[k]x of the iterates evaluated at x ∈ λp(A) is useful.

((Mϕ)[k]x)i =
ϕi + · · ·+ ϕki

k
xi =

ϕi
k

1− ϕki
1− ϕi

xi.

2. For the case p = 1. Fix x ∈ λ1(A). We want to show that (Mϕ)[k]x
converges to 0 in λ1(A). Let ε > 0 and fix n ∈ N. Since x ∈ λ1(A), there
exists i0 ∈ N such that

∞∑
i=i0+1

an(i)|xi| <
ε

2
.

For each i ∈ N we have

lim
k→∞
|((Mϕ)[k]x)i| = lim

k→∞

|ϕi|
k

|1− ϕki |
|1− ϕi|

|xi| ≤ lim
k→∞

2|xi|
k

1

|1− ϕi|
= 0.

Then, for i = 1, . . . , i0, select ki ∈ N such that for k ≥ ki,

|((Mϕ)[k]x)i| <
ε

2an(i)i0
.

If k ≥ max{ki : i = 1, . . . , i0}, then

pn((Mϕ)[k]x) =
∞∑
i=1

an(i)
|ϕi|
k

|1− ϕki |
|1− ϕi|

|xi|

≤
i0∑
i=1

an(i)
|ϕi|
k

|1− ϕki |
|1− ϕi|

|xi|+
∞∑

i=i0+1

an(i)

∣∣∣∣ϕi + · · ·+ ϕki
k

∣∣∣∣ |xi|
≤

i0∑
i=1

an(i)
ε

2an(i)i0
+

∞∑
i=i0+1

an(i)|xi| < ε.

3. We now consider the case p = 0. Fix x ∈ λ0(A) and set yk := (Mϕ)[k]x.
Then

yki =
ϕixi
k

1− ϕki
1− ϕi

.
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By Proposition 2, Mϕ is power bounded and, in particular, (yk)k is bounded.
Clearly, for each i ∈ N, limk y

k
i = 0. Apply Lemma 4 to deduce that (yk)

converges to 0 for the weak topology σ(λ0(A), (λ0(A))′). By Yosida’s mean
ergodic theorem [15, Chapter VIII, Section 3] (see also [1, Theorem 2.2] and
[11]) we conclude that Mϕ is mean ergodic. 2

The following useful description of the bounded sets in a Köthe echelon
space is due to Bierstedt, Meise and Summers [7].

Lemma 5 Let 1 ≤ p ≤ ∞ or p = 0, then B ⊂ λp(A) is bounded if, and only
if, there exists v0 ∈ V := {v ∈ λ∞(A) : v(i) ≥ 0, ∀i ∈ N}, with v0 > 0, such

that B ⊂ Bv0 :=

{
(xi)i ∈ CN :

∥∥∥( xi
v0(i)

)
i

∥∥∥
p
≤ 1

}
.

Theorem 3 The following assertions are equivalent:

(1) Mϕ ∈ L(λ∞(A)) is mean ergodic,

(2) Mϕ ∈ L(λ∞(A)) is uniformly mean ergodic,

(3) Mϕ ∈ L(λ0(A)) is uniformly mean ergodic,

(4) for 1 ≤ p <∞, Mϕ ∈ L(λp(A)) is uniformly mean ergodic,

(5) ‖ϕ‖∞ ≤ 1 and for each n ∈ N and each v ∈ V ,

lim
k→∞

sup
i∈N\J

an(i)v(i)|ϕi|
k

|1− ϕki |
|1− ϕi|

= 0,

where J = {i ∈ N : ϕi = 1}.

Proof. Clearly (2) implies (1) and (3).
We prove that (1) implies (5). Clearly ‖ϕ‖∞ ≤ 1, by Lemma 3. For

the rest assume that ϕi 6= 1 for all i ∈ N, i.e. J = ∅, and let n ∈ N and
v ∈ V ⊂ λ∞(A). Then, by mean ergodicity,

0 = lim
k→∞

pn((Mϕ)[k]v) = lim
k→∞

sup
i∈N

an(i)
|ϕi|
k

∣∣∣∣1− ϕki1− ϕi

∣∣∣∣ v(i),

and we conclude.
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We assume (5) and show (2) and (4) simultaneously. Assume that ϕi 6= 1
for all i ∈ N. Fix 1 ≤ p ≤ ∞, let B ⊂ λp(A) be bounded and let v0 ∈ V be
as in Lemma 5. Fix n, k ∈ N. Then we have

sup
x∈B

pn((Mϕ)[k]x) = sup
x∈B

∥∥∥∥(an(i)
v0(i)|ϕi|

k

|1− ϕki |
|1− ϕi|

|xi|
v0(i)

)
i

∥∥∥∥
p

≤ sup
i∈N

an(i)v0(i)|ϕi|
k

|1− ϕki |
|1− ϕi|

sup
x∈B

∥∥∥∥( xi
v0(i)

)
i

∥∥∥∥
p

≤ sup
i∈N

an(i)v0(i)|ϕi|
k

|1− ϕki |
|1− ϕi|

,

which converges to 0 by assumption.
Now we show that both (3) and (4) imply (5). Assume that ϕi 6= 1

for all i ∈ N. Let 1 ≤ p < ∞ or p = 0 and fix n ∈ N and v ∈ V . Let
B = {x ∈ λp(A) : |xi| ≤ v(i),∀i ∈ N} and ε > 0. By uniform mean
ergodicity, there exists k0 ∈ N such that for k ≥ k0, pn((Mϕ)[k]x) < ε for
every x ∈ B. For each s ∈ N \ J let xs = (δisv(s))i. Note that xs ∈ B for
every s ∈ N. We have, for s ∈ N and k ≥ k0,

an(s)v(s)|ϕs|
k

|1− ϕks |
|1− ϕs|

= pn((Mϕ)[k]x
s) < ε.

2

Proposition 3 Let 1 ≤ p < ∞ or p = 0 and let A = (an)n be a Köthe
matrix. The space λp(A) is Montel if and only if every mean ergodic diagonal
operator Mϕ on λp(A) is uniformly mean ergodic.

Proof. Every mean ergodic operator on a Fréchet Montel space is uniformly
mean ergodic by [1, Proposition 2.8]. If λp(A) is not Montel, then it contains
a sectional subspace which is diagonally isomorphic to `p (or to c0 if p = 0).
The conclusion follows, since there are mean ergodic not uniformly mean
ergodic diagonal operators on `p. Compare with the proof of Proposition 2.9
in [1]. 2
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4 The topology of the space of diagonal op-

erators

Let A = (am)m and B = (bn)n be Köthe matrices and 1 ≤ p ≤ ∞ or p = 0.
Set E = λp(A) and F = λp(B). By Lemma 1, Mϕ is continuous from E to
F , that is ϕ is a multiplier, if and only if for each n ∈ N there exists m ∈ N
such that

sup
i∈N

bn(i)|ϕi|
am(i)

<∞.

This is actually equivalent to

ϕ ∈
⋂
n∈N

⋃
m∈N

`∞

(
bn
am

)
=: EAB.

Endow the set EAB of all multipliers from E to F with the topology

EAB = proj
n

ind
m
`∞

(
bn
am

)
.

Then EAB is a countable projective limit of countable inductive limits of
Banach spaces. These spaces are called (PLB)-spaces. We refer the reader
to Wengenroth lecture notes [14] for more information about these spaces.

Inductive limits of sequence spaces have been thoroughly studied by sev-
eral authors; see for example Bierstedt [5]. Here we state the notation and
results we need below. Given a decreasing family of weights V = (vn)n we
define the co-echelon space of order ∞ by

κ∞(V ) :=
⋃
n∈N

`∞(vn),

endowed with the inductive topology κ∞(V ) := indn∈N `∞(vn).
In case the Köthe echelon space λ1(A), A := (1/vn)n is distinguished,

it is possible to describe the topology of κ∞(V ) using a family of weighted
seminorms. Let

V = V (V ) := {v = (vi)i ∈ λ∞(A) | vi ≥ 0 i ∈ N},

and
K∞(V ) := {x = (xi)i ∈ CN : sup

i∈N
v(i)|xi| <∞, ∀v ∈ V },
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endowed with the projective limit topology, projv `∞(v). If λ1(A) is distin-
guished, then κ∞(V ) = K∞(V ) algebraically and topologically. This result
can be seen in [7]. Distinguished λ1(A) were characterized in terms of a
condition (D) on the sequence Köthe matrix A by Bierstedt and Bonet and
Meise. We refer the reader to the survey article [6] for more details and
references.

We can now write EAB as a projective limit of co-echelon spaces as

EAB = proj
n
κ∞(Vn),

where Vn =
(
bn
am

)
m

is a decreasing family of weights for each n ∈ N. Now let

V = (1/am)m, then we have κ∞(Vn) ' κ∞(V ), for each n ∈ N. Furthermore,
assuming that λ1(A) is distinguished, we get κ∞(Vn) ' K∞(V ), for each
n ∈ N. This way, we get that, for each n ∈ N, the topology of κ∞(Vn) is
given by the seminorms

pv(x) := sup
i∈N

bn(i)v(i)|xi|, x ∈ κ∞(Vn), v ∈ V .

Then the fundamental system of seminorms of EAB is

qn,v(x) := sup
i∈N

bn(i)v(i)|xi|, x ∈ EAB, n ∈ N, v ∈ V .

On the other hand, the topology of the space Lb(λp(A), λp(B)), can be
described as follows. First let 1 ≤ p ≤ ∞. Denote the seminorms of λp(B)
by

qn(x) := ‖(bn(i)xi)i‖p, x ∈ λp(B), n ∈ N,
and for the case p = 0, take ‖ · ‖∞, as usual. Then, the seminorms defining
the topology of Lb(λp(A), λp(B)) are

rn,B(M) := sup
x∈B

qn(Mx), M ∈ L(λp(A), λp(B)), B ⊂ λp(A) bounded.

The following theorem is the main result and ensures that the topology
of the space Lb(λp(A), λp(B)) induces on the space of multipliers EAB from
λp(A) into λp(B) the natural (PLB)-topology defined above.

Theorem 4 Let 1 ≤ p ≤ ∞ or p = 0. Assume that λ1(A) is distinguished.
Then the map T : EAB −→ Lb(λp(A), λp(B)), ϕ 7→ Mϕ, is a topological
isomorphism into.
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Proof. The injectivity of T is easy.
1. Continuity of T : Fix n ∈ N and let B ⊂ λp(A) be bounded. Apply

Lemma 5 to find v ∈ V such that B ⊂ Bv. For ϕ ∈ EAB we have

rn,B(T (ϕ)) = rn,B(Mϕ)

= sup
x∈B

∥∥∥∥(bn(i)v(i)ϕi
xi
v(i)

)
i

∥∥∥∥
p

≤ sup
i∈N

bn(i)v(i)|ϕi| sup
x∈B

∥∥∥∥( xi
v(i)

)
i

∥∥∥∥
p

≤ sup
i∈N

bn(i)v(i)|ϕi| = qn,v(ϕ).

2. Continuity of T−1: Fix n ∈ N and v ∈ V . For j ∈ N let ej = (δij)i.
Thus, ejv(j) ∈ Bv. For j ∈ N we have

rn,Bv(T (ϕ)) = rn,Bv(Mϕ)

= sup
x∈Bv

qn(Mϕx)

≥ qn(Mϕ(ejv(j)))

= qn(v(j)ϕje
j) = bn(j)v(j)|ϕ(j)|

Since j ∈ N is arbitrary, we have qn,v(ϕ) ≤ rn,Bv(Mϕ). 2

The following result about the locally convex properties of the space EAB
of multipliers is a direct consequence of [1]. We refer the reader to this article
and to [14] for the relevance of the technical conditions (Q) and (wQ).

Proposition 4 Consider the family (VN)N =
((

bN
am

)
m

)
N

.

(1) Assume (VN)N satisfies condition (Q), i.e.

∀N ∃M ≥ N ∃n ∀K ≥M ∀m, ε > 0 ∃S ∃k ∀x :

am(x)

bM(x)
≤ max

(
ε
an(x)

bN(x)
, S

ak(x)

bK(x)

)
. (Q)

Then EAB is barrelled.
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(2) If EAB is barrelled, then (VN)N satisfies condition (wQ), i.e.

∀N ∃M ≥ N ∃n ∀K ≥M ∀m ∃k ∃S ≥ 0 ∀x :

am(x)

bM(x)
≤ Smax

(
an(x)

bN(x)
,
ak(x)

bK(x)

)
. (wQ)
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