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Kothe echelon spaces
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Abstract

Several questions about diagonal operators between Koéthe echelon
spaces are investigated: (1) The spectrum is characterized in terms of
the Kothe matrices defining the spaces, (2) It is characterized when
these operators are power bounded, mean ergodic or uniformly mean
ergodic, and (3) A description of the topology in the space of diagonal
operators induced by the strong topology on the space of all operators
is given.
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1 Introduction and Notation

Diagonal operators between sequence spaces are defined on the space of all
scalar sequences CN by M, : CN — CN, M, : (x;); = (pir;)i, with ¢ =
(¢i)i a given sequence in CN. If M, acts continuously from a space F into
a space F, we say that ¢ is a multiplier from E to F. These operators
have been investigated by many authors. We only mention here [3], [4]
and [10]. In the context of Kéthe echelon spaces, diagonal operators were
investigated by Crofts [0]. In this note we treat three aspects of diagonal
operators between Kothe echelon spaces which, apparently had not been
considered before: In Section [2] we describe the spectrum and the Waelbroeck
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spectrum of diagonal operators. Characterizations of power bounded and
(uniformly) mean ergodic diagonal operators are given in Section . In the
final Section 4| we describe the topology induced by the strong topology on the
space of all operators into the subspace of diagonal operators; see Theorem
Eh

Our notation for Kéthe echelon sequence spaces is as in 7] and [12]. We
recall here the terminology needed below. A sequence v = (v(i)); € CN
is called a weight if it is strictly positive. The weighted Banach spaces of
sequences are defined by

lp(v) = {x = (2:); € C" = py(x) = [|(v(D)2)ill, < 00}, 1 < p < o0,
co(v) :=={x = (x;); € cN . Zlg})lo v(i)z; = 0},

where || - ||, denotes the usual ¢, norm. These spaces are Banach spaces with
the corresponding norm p,, and ¢y(v) is a Banach space with the norm of
loo (V).

Now, given A = (a,),, a Kéthe matrix (i.e. a, is a weight and a, (i) <
an1(7) for all 4,n € N), the echelon space of order 1 < p < oo is defined by

Mp(A) = () tp(an) and Xo(A) = () co(an),

neN neN

endowed with the projective topologies A,(A) := proj, ey €p(an) and Ag(A) :=
Proj,en Co(@y). These spaces are Fréchet spaces with the topology defined by
the corresponding seminorms p,, := p,,, with n = 1,2, ... Observe that we
only consider in this paper Kothe echelon spaces with a continuous norm. It
is easy to extend our results to the general case, since every Kothe echelon
space is the countable product of Koéthe echelon spaces with a continuous
norm; see [7].

Our notation for functional analysis, locally convex spaces and inductive
limits is standard. We refer the reader to [5], [12] and [15]. All the locally
convex spaces are assumed to be Hausdorff. The weak topology of a locally
convex Hausdorff space E is denoted by o(E, E'), where E’ is the topological
dual space of E. The space of continuous linear operators from E into other
locally convex Hausdorff space F' is denoted by L(FE, F') and it is denoted
by L(E) when E' = F. We write L;(F, F') and L£,(E, F') to denote L(FE, F)
when it is equipped with its strong operator topology and with the topology
of uniform convergence on bounded sets of E, respectively.



If T'e L(F) and [ is the identity operator on E, the point spectrum of
T is the set 0, (T, E) of all u € C such that 7" — u/ is not injective and the
spectrum is the set o(T, E) of all u € C such that T'— I is not invertible.
The resolvent p(T, F) is the complement of the spectrum in C. It is well
known that whenever F is a Banach space, the spectrum is a compact subset
of C. This is not, in general, the case for Fréchet spaces and this fact leads
to the definition of the Waelbroeck spectrum [13, Chapter III, Section 3|
which is defined as follows. A point A € C is in p*(T, E) if there exists
d > 0 such that if |\ — p| < 9§, then u € p(7T, E) and such that the set
{(T — uI)™" . |\ — p| < 4} is equicontinuous. The set p*(T, E) is open and
its complement in C is the Waelbroeck spectrum o*(7), E).

2 Spectrum of diagonal operators

First we characterize the multipliers between Kothe echelon spaces. The
following result is well known and can be easily deduced from [8] Q].

Lemma 1 Let A = (a,,) and B = (b,) be Kdthe matrices. For 1 < p < o0
and p = 0, My, : \p(A) — A\,(B) is continuous if, and only if, for each
n € N there exists m € N such that

bn ) 7
aup Ol _

1€EN am(z)
Lemma 2 Let X be \,(A) or ¥, for 1 <p <oo orp=0. Then,
O'pt(Mg,,X> = {ng . Z € N}

Proposition 1 Let 1 < p < oo orp=0. Then the following assertions are
equivalent:

(1) 1€ p(Mg, Ap(A)),
(2) for each n € N, there exists m > n such that

a,(i) 1
sup T <
ieN am(1) [0i —

Q.

i p

Proof. Set ¢ = <#> . Since My is the inverse of M, — ul, whenever it
exists, the equivalence of (1) and (2) is a consequence of Lemma O



Corollary 1 Let 1 < p <oo orp=0. Then,

o(My, Ap(A)) = {pi : i € N}

Proof. Since {y; : i € N} = 0, (M, \,(A)), we have

{pi - 1€ N} Ca(My, N\(A)).

For the other inclusion let 4 € C\ {¢; : ¢ € N}. Then there is 6 > 0
such that |u — ¢;| > 20, for i € N. Proposition [1| yields p € p(M,, A\, (A)).
Assume p € 0(M,, A\y(A)). Then we must actually have p € do (M, Ay (A)).
Thus, there exists A € o(M,, A\,(A)) such that [ — A| < ¢ and therefore, for
every ¢ € N, we have

A=l = |p— @il = [p—=A[>20-5=0.

From this we deduce, again by Proposition , that A € p(M,, \p(A)), which

is a contradiction. Hence, 1 & o (M., A\,(A)).
O

Example 1 It is easy to give examples showing (M, \,(A)) # o(M,, \,(A)).
Let 1 < p < ooorp=0. Consider A = (a,), with a,(i) = i" and take
i =1—1. We show that 1 € o(M,, \,(A)) N p(M,, \,(A)). Clearly, using
Corollary [1, 1 € {p; : i € N} = o(M,, \,(A)). Now take n € N and let
m =n+ 1. Then we have

a(i) 1 11

up —=+ ——— =sup-— =
ieN am (1) |pi — 1| ien @5

and thus 1 € p(M,, \,(A)), by Proposition [1]

Theorem 1 Let1 <p<oo orp=0. Then

0" (M, Ap(A)) = 0(My, Ap(A)) = {; : i € N}

Proof. Set X := A,(A). By the very definition, we have o(M,, X) C
o*(M,, X). It remains to prove the other inclusion. Let A € C\{p; : ¢ € N}.
There exists ¢ > 0 such that if [ — A| < 26, then p € p(M,, X). We show
that the set

{(My —pI)™" A= p| <6}
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is equicontinuous. By Lemma [2| we know that ¢; € o(M,, X), and thus
loi — A| > 25. Therefore, if u € C satisfies |A\ — p| < 9§, then for every i € N
we have

jpi —pl = [pi = Al = [A—p| >26 =6 =4
Now let z € X and let y* = (M, —pl) 'z = M<#) x, for each p € C with

Pi—H )

A — p] < 4. Then for every i € N we have

X

Yi — K

1
1= || < Fal

From this we deduce
B 1
(M — pI) ') < <pa(®),

for all n € N and for all g with |\ — | < §. Therefore the set {(M,—ul)~"! :
|\ — p] <6} is equicontinuous, hence A € p* (M, X). 0

3 Mean ergodicity of diagonal operators

The aim of this section is to characterize the power boundedness, the mean
ergodicity and the uniform mean ergodicity of the diagonal operators defined
on Kothe echelon spaces. An operator T' € L(FE), defined on a locally convex
Hausdorff space E is called power bounded if the set {T* : k € N} is
equicontinuous. Here T% denotes the composition of 7' with itself k-times.
The operator is called mean ergodic (resp. uniformly mean ergodic) if the
sequence of Cesaro means T := %E;‘le TV converges on L,(E) (resp. on

Ly(E)).

Lemma 3 Let 1 <p<ooorp=0. If T := M, € L(N\,(A)) satisfies that

TT% — 0 as k — oo for each x € N\, (A), then ||¢|l < 1. This holds in

particular if T is power bounded or mean ergodic.

Proof. For each j € N, let ¢/ = (8;;); € \p(A). Then

. L |(Tred);|
lim == = lim =—=—= =0,

with (T%e7); the j-th coordinate of T%e7. This implies |¢;| < 1.

5



If T is power bounded, then <T7k)k clearly converges to 0 in Ls(\,(A)).

On the other hand, if T is mean ergodic, then TT% = Tpr — %T[k_l]x
converges to 0 as k — oo for each x € \,(A). O

Proposition 2 Forl <p <ooandp =0, M, € L(\,(A)) is power bounded
if, and only if, ||¢]le < 1.

Proof. Necessity follows from Lemma [3] Conversely, if [|¢[j < 1, then
pn(Mix) < po(x) for every k,n € N and x € A\ (A). Thus M, is power
bounded. O

Lemma 4 Let (y*), C Mo(A) be bounded with limy y¥ = 0 for each i € N.
Then (y*)i converges to 0 for the weak topology o(Xo(A), (Ao(A))').

Proof. Let u = (u;); € Ao(A). There is m € N such that (u;/a,(i)); € 1.
Since (y*); is bounded, there is M > 0 such that a,,(i)|y¥| < M for each
i,k € N. Given ¢ > 0, there is i(0) € N such that

> s
i=i(0)+1 am(i) — 2M

Now, there is ky € N such that for all & > £(0) and ¢ = 1,...,4(0), we have
ly¥| < /(2i(0)(Ju;| +1)). We have, for k > k(0),

00 (0) 1%
. Ui
(Y, u)| = nyuz SZ\nyiH Z [ [ (1) an() <Ee.
i=1 i=1 i=i(0)+1 m

Therefore (y*);. converges to 0 for the weak topology a(Ao(A), (Ao(A))). O

Theorem 2 For 1 <p < oo orp =0, M, € L(N\,(A)) is mean ergodic if,
and only if, ||¢|le < 1.

Proof. If M, is mean ergodic, by Lemma [3] ||¢]lo < 1.

Now we assume that [|¢||.c < 1 and distinguish three cases.

1. If 1 < p < oo, the space \,(A) is reflexive. By [2 Corollary 2.7],
every power bounded operator in A\,(A),1 < p < oo is mean ergodic. The
conclusion follows from Proposition

6



For the rest of the proof, we may assume without loss of generality that
p; # 1for all i € N. Otherwise we split the space into two sectional subspaces
and observe that in the subspace in which ¢; = 1, the diagonal operator acts
as the identity.

Under this assumption, the following expression of the i-th coordinate of
the means (M) of the iterates evaluated at x € \,(A) is useful.

pit ol el
M - 5 4 - 7
(o) = E5 g B,
2. For the case p = 1. Fix x € A\{(A). We want to show that (M, )y
converges to 0 in A;(A). Let ¢ > 0 and fix n € N. Since z € A\;(A), there
exists i € N such that

[e.9]

) €
Z an(i)|x;] < 3
i=ip+1
For each 7 € N we have
il 11 = ¢F] g 2%l 1
| = lim &2 i -
lcggoK( o)t T)il = Py 11— |‘ il = kfolo E |1 —

Then, for i =1, ..., 1, select k; € N such that for k > k;,

€
|(( L;0)[]6]1') | 2an(z)20
If k> max{k; : i=1,...,ip}, then
|901| |1 %l
p [Ic]'r Zan ‘ | |
< il [1 = ¢fl R
<Y e PIEZ ey 3 ) [P
i=1 ‘ - il i=ig+1
0
< D an(i) g + Z an(i)|zi] < .

=1 1=ig+1

3. We now consider the case p = 0. Fix 2 € X\g(A) and set y* := (M) 2.
Then
p_ piri 1 —of
Yi = k 1—o;

7



By Proposition , M, is power bounded and, in particular, (y*); is bounded.
Clearly, for each i € N, lim,y* = 0. Apply Lemma {4| to deduce that (y*)
converges to 0 for the weak topology o(Ao(A), (Ao(A))’). By Yosida’s mean
ergodic theorem [I5, Chapter VIII, Section 3] (see also [1, Theorem 2.2] and
[11]) we conclude that M, is mean ergodic. O

The following useful description of the bounded sets in a Kothe echelon
space is due to Bierstedt, Meise and Summers [7].

Lemma 5 Let 1 <p < oo orp=0, then B C Ap(A) is bounded if, and only
if, there exists Ty € V := {U € A(A) : T(i) > 0, Vi € N}, with vy > 0, such

that B C By, = {(l‘z‘)z‘ eCh: ‘ (wf(z))z

Theorem 3 The following assertions are equivalent:

<1
p

(1) M, € L(A(A)) is mean ergodic,

(2) M, € L(As(A)) is uniformly mean ergodic,

(3) My, € L(X(A)) is uniformly mean ergodic,

(4) for 1 <p < oo, M, € L(N\,(A)) is uniformly mean ergodic,

(5) ||¢lle <1 and for each n € N and each v € V,

- sup LT[ = ]

0,
k=00 jen\J k 11—

where J ={i e N : ¢; =1}.

Proof. Clearly (2) implies (1) and (3).

We prove that (1) implies (5). Clearly [|¢]e <
the rest assume that ¢; # 1 for all i € N, i.e. J =
T €V C Ao(A). Then, by mean ergodicity,

1, by Lemma . For
(), and let n € N and

1—pF
1 —

(i),

Y N N
0= Jim pel(Me)u®) = iy supani)

and we conclude.



We assume (5) and show (2) and (4) simultaneously. Assume that ¢; # 1
foralli € N. Fix 1 < p < o0, let B C A\,(A) be bounded and let vy € V' be
as in Lemma 5] Fix n,k € N. Then we have

()|l [1 = @F| ]
(an(l) koo 1=l ﬁo(i))i

Sug P (M) ) = sup

€ zeB P
< up O 1=l | (20
T ieN k 11— @il zeB || \Vo() /, »
< 000 [1 =
T ieN k 11— 4]’

which converges to 0 by assumption.

Now we show that both (3) and (4) imply (5). Assume that ¢; # 1
foralli € N. Let 1 < p<ooorp=0andfixne Nandv € V. Let
B ={z e NA) : |z;] <7(i),Vi € N} and ¢ > 0. By uniform mean
ergodicity, there exists ky € N such that for k > ko, p,((My)mz) < € for
every © € B. For each s € N\ J let 2° = (§;0(s));. Note that z* € B for

every s € N. We have, for s € N and k > kg,

a, (3)0(5)|ps] |1 — @b
k |1 - 905|

= pn((M@)[k]xs) < €.

Proposition 3 Let 1 < p < 0o or p = 0 and let A = (a,), be a Kdthe
matriz. The space A\,(A) is Montel if and only if every mean ergodic diagonal
operator My, on A\,(A) is uniformly mean ergodic.

Proof. Every mean ergodic operator on a Fréchet Montel space is uniformly
mean ergodic by [I, Proposition 2.8]. If \,(A) is not Montel, then it contains
a sectional subspace which is diagonally isomorphic to £, (or to ¢ if p = 0).
The conclusion follows, since there are mean ergodic not uniformly mean
ergodic diagonal operators on ¢,. Compare with the proof of Proposition 2.9
in [1]. O



4 The topology of the space of diagonal op-
erators

Let A = (am)m and B = (b,),, be Kothe matrices and 1 < p < oo or p = 0.
Set E = A\,(A) and F' = \,(B). By Lemma [l M,, is continuous from E to
F, that is ¢ is a multiplier, if and only if for each n € N there exists m € N
such that ‘

sup M < 00

€N am(z)

This is actually equivalent to

ee MUt (35) = Ean

neNmeN

Endow the set E 45 of all multipliers from E to I’ with the topology

FE A5 = proj i{lndﬂoo (b—n) .
Then E 45 is a countable projective limit of countable inductive limits of
Banach spaces. These spaces are called (PLB)-spaces. We refer the reader
to Wengenroth lecture notes [I4] for more information about these spaces.
Inductive limits of sequence spaces have been thoroughly studied by sev-
eral authors; see for example Bierstedt [5]. Here we state the notation and
results we need below. Given a decreasing family of weights V' = (v,,), we
define the co-echelon space of order oo by

Koo (V) 1= [ Loo(vn),

neN

endowed with the inductive topology koo(V') := indpen loo (Vn)-

In case the Kéthe echelon space A\i(A), A := (1/v,), is distinguished,
it is possible to describe the topology of k. (V) using a family of weighted
seminorms. Let

V=V(V)={t= @) € \(A4) | 7; >0 i €N},
and
Koo(V) = {2 = (2;); € CV : supv(i)|x;| < oo, VO € V},

1€EN
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endowed with the projective limit topology, proj;fe(v). If A1(A) is distin-
guished, then k. (V) = Ko (V) algebraically and topologically. This result
can be seen in [7]. Distinguished \;(A) were characterized in terms of a
condition (D) on the sequence Kothe matrix A by Bierstedt and Bonet and
Meise. We refer the reader to the survey article [6] for more details and
references.

We can now write E 45 as a projective limit of co-echelon spaces as

E.AB = proj Roo (Vn)a

where V,, = (é’—”) is a decreasing family of weights for each n € N. Now let

m

V = (1/am)m, then we have Koo(Vn) o Keo(V), for each n € N. Furthermore,
assuming that A\;(A) is distinguished, we get roo(V,) = Koo(V), for each
n € N. This way, we get that, for each n € N, the topology of Kk (V,) is
given by the seminorms

po(x) == sup b, (I)v(i)|7i|, 7 € koo(Vy), D E V.
ieN

Then the fundamental system of seminorms of E 45 is
Gnw(r) == sup b, ())v(i)|z;], = € Eap,n €N,DEV.
ieN

On the other hand, the topology of the space L£4(A,(A), A\p,(B)), can be
described as follows. First let 1 < p < co. Denote the seminorms of \,(B)
by

(@) = |(bul)ai)ill, © € Ap(B)n €N,

and for the case p = 0, take || - ||oo, as usual. Then, the seminorms defining

the topology of Ly(A\,(A), A\, (B)) are
rng(M) :=supg,(Mz), M € L(N\,(A),\,(B)),B C A\(A) bounded.

zeB
The following theorem is the main result and ensures that the topology

of the space L(A,(A), \,(B)) induces on the space of multipliers E 45 from
Ap(A) into A, (B) the natural (PLB)-topology defined above.

Theorem 4 Let 1 < p < oo orp=0. Assume that \{(A) is distinguished.
Then the map T : Eag — Ly(Ap(A), N\p(B)), ¢ — M,, is a topological
1somorphism into.

11



Proof. The injectivity of T' is easy.
1. Continuity of T: Fix n € N and let B C ),(A) be bounded. Apply
Lemma to find v € V such that B C By. For ¢ € E 45 we have

s (T(9)) = ras(M,)
(meroregy ) |

(5t),

< sup b, (1)0(7) | @i| = anw()-
ieN

= sup
zeB

< sup by, (7)v(7) ;| sup

€N z€EB P

2. Continuity of 77': Fixn € Nand v € V. For j € N let ¢/ = ().
Thus, €/v(j) € By. For j € N we have

Tn,B5(T(¢)) = 10 B, (M)

= sup g, (M,x)
IEBj

> 4n(M(€'7(5)))
= @ (0(5)s€") = bn(5)0(5) 1 (5)]
Since j € N is arbitrary, we have ¢,5(¢) < r, g (M,). O

The following result about the locally convex properties of the space E 45
of multipliers is a direct consequence of [I]. We refer the reader to this article
and to [I4] for the relevance of the technical conditions (@) and (w@).

Proposition 4 Consider the family (Vy)n = <<b—N> ) .
m/ N

(1) Assume (Vn)n satisfies condition (Q), i.e.

YN IM > N In VK > M Vm,e > 038 3k Va -

Then E 45 is barrelled.

12



(2) If Eap is barrelled, then (Vn)n satisfies condition (w@Q), i.e.

VYN IM >N InVK > MVYm 3k 3IS >0V :

o).
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