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Abstract

As part of the data assimilation methods, the ensemble-based methods have
gained popularity in hydrogeology given their ability to deal with huge
amounts of observed data simultaneously. More recently, researchers have
started to employ these method to deduce contamination source informa-
tion in synthetic cases (Xu and Gómez-Hernández, 2016b; Xu and Jaime,
2018). Based on these previous work, we take a step further to evaluate
their performance in sandbox experiments. The main objective of this the-
sis is to verify the capacity of the ensemble-based methods in identifying
contaminant source problem and complex geological heterogeneity.

The thesis could be divided into four parts. In the first part, the restart
ensemble Kalman filter (r-EnKF) is used for the spatiotemporal identifica-
tion of a point contaminant source in a sandbox experiment, together with
the identification of the position and length of a vertical plate inserted in the
sandbox that modifies the geometry of the system. The results show that
the r-EnKF is capable of identifying both contaminant source information
and aquifer-geometry-related parameters.

The second part shows an application of the restart normal-score ensem-
ble Kalman filter (NS-EnKF) with covariance inflation in a heterogenous
condcutivity laboratory experiment. The method is first tested using a syn-
thetic case that mimics the sandbox experiment to establish the minimum
number of ensemble members and the best technique to prevent filter col-
lapse. Then, its application to the sandbox data shows that the restart
NS-EnKF can benefit from Bauser’s inflation to reduce the ensemble size
and to arrive to a good joint identification of both the contaminant source
and the spatial heterogeneity of conductivities.

In the third part, the ensemble smoother with multiple data assimilation
(ES-MDA) is employed for the simultaneous identification of a contaminant
source and the spatial distribution of hydraulic conductivity while using the
r-EnKF as a benchmark. The outcome shows that the ES-MDA is able to
outperform the r-EnKF, marginally, for the specific synthetic case analyzed
with almost the same CPU consumption, and it can perform far better than
the r-EnKF just with a cost of larger CPU usage.

The forth and last part investigates the performance of the ES-MDA in a
time-varying release history identification problem. The influence of differ-
ent observation intervals and inflation factor schemes on the determination
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of the release curve are discussed. The outcome shows that the ES-MDA
performs great in recovering release history when the history curve is dis-
cretized in not too many steps, and that it fails when the discretization is
large. The frequency at which observation data are sampled is an influential
factor in this application, while the number of iterations or the inflation
schemes have less effect.



Resumen

Como parte de los métodos de asimilación de datos, los métodos basados
en conjuntos han ganado popularidad en hidrogeoloǵıa dada su capacidad
para manejar grandes cantidades de datos observados simultáneamente. Re-
cientemente, se ha comenzado a emplear este método para la identificación
de fuentes de contaminación en casos sintéticos (Xu and Gómez-Hernández,
2016b; Xu and Jaime, 2018). Basándonos en estos trabajos anteriores, hemos
dado un paso adelante evaluando su rendimiento en experimentos de tanque
de laboratorio.

La tesis se puede dividir en cuatro partes. En la primera parte, el filtro de
Kalman de conjuntos con reinicio (r-EnKF) se utiliza para la identificación
espacio-temporal de una fuente puntual de contaminantes en un experimento
en tanque de laboratorio, junto con la identificación de la posición y longitud
de una placa vertical insertada en el tanque que modifica la geometŕıa del
sistema. Los resultados muestran que el r-EnKF es capaz de identificar tanto
la fuente como los parámetros relacionados con la geometŕıa del acúıfero.

La segunda parte muestra una aplicación del filtro de Kalman de con-
juntos con anamorfosis normal y reinicio (NS-EnKF) y con inflación de la
covarianza en un experimento de laboratorio con conductividad heterogénea.
El método se prueba primero utilizando un caso sintético que imita el ex-
perimento del tanque para establecer el número mı́nimo de miembros del
conjunto y la mejor técnica para evitar el colapso del filtro. Luego, su apli-
cación a los datos del tanque muestra que el NS-EnKF con reinicio puede
beneficiarse de la inflación de Bauser para reducir el tamaño del conjunto
y llegar a una buena identificación conjunta tanto de la fuente de contami-
nantes como de la heterogeneidad espacial de las conductividades.

En la tercera parte, el filtro de Kalman de conjuntos suavizado con
asimilación múltiple de datos (ES-MDA) se emplea para la identificación
simultánea de una fuente de contaminantes y la distribución espacial de la
conductividad hidráulica utilizando el r-EnKF como punto de referencia.
El resultado muestra que el ES-MDA puede superar al r-EnKF, marginal-
mente, para el caso sintético espećıfico analizado con el mismo consumo de
CPU, y puede funcionar mucho mejor que el r-EnKF a cambio de un mayor
costo de CPU.

La cuarta y última parte investiga el rendimiento del ES-MDA en un
problema de identificación de una inyección de contaminante que vaŕıa en
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el tiempo. Se analiza la influencia de diferentes intervalos de observación y
esquemas de inflación de la covarianza en la determinación de la curva de
inyección. El resultado muestra que el ES-MDA funciona muy bien en la
identificación de la curva de inyección cuando la discretización de la misma
no es muy alta, pero encuentra problemas de fluctuación en los casos con
discretizaciones altas. La frecuencia con la que se muestrean los datos de
observación es un factor influyente, mientras que el número de iteraciones o
los métodos de inflación de la covarianza tienen menos efecto.



Resum

Com a part dels mètodes d’assimilació de dades, els mètodes basats en con-
junts han guanyat popularitat en hidrogeologia donada la seua capacitat
per a manejar grans quantitats de dades observades simultàniament. Re-
centment, s’ha començat a emprar aquest mètode per a la identificació de
fonts de contaminació en casos sintètics (Xu and Gómez-Hernández, 2016b;
Xu and Jaime, 2018). Basant-nos en aquests treballs anteriors, hem fet un
pas avant avaluant el seu rendiment en experiments de tanc de laboratori.

La tesi es pot dividir en quatre parts. En la primera part, el filtre de
Kalman de conjunts amb reinici (r-EnKF) s’utilitza per a la identificació
espaciotemporal d’una font puntual de contaminants en un experiment en
tanc de laboratori, juntament amb la identificació de la posició i longitud
d’una placa vertical inserida en el tanc que modifica la geometria del sistema.
Els resultats mostren que el r-EnKF és capaç d’identificar tant la font com
els paràmetres relacionats amb la geometria de l’aqǘıfer.

La segona part mostra una aplicació del filtre de Kalman de conjunts amb
anamorfosis normal i reinici (NS-EnKF) i amb inflació de la covariància en
un experiment de laboratori amb conductivitat heterogènia. El mètode es
prova primer utilitzant un cas sintètic que imita l’experiment del tanc per
a establir el nombre mı́nim de membres del conjunt i la millor tècnica per
a evitar el col·lapse del filtre. Després, la seua aplicació a les dades del
tanc mostra que el NS-EnKF amb reinici pot beneficiar-se de la inflació de
Bauser per a reduir la grandària del conjunt i arribar a una bona identificació
conjunta tant de la font de contaminants com de l’heterogenëıtat espacial
de les conductivitats.

En la tercera part, el filtre de Kalman de conjunts suavitzat amb as-
similació múltiple de dades (ES-MDA) s’empra per a la identificació si-
multània d’una font de contaminants i la distribució espacial de la conduc-
tivitat hidràulica utilitzant el r-EnKF com a punt de referència. El resultat
mostra que l’ES-MDA pot superar al r-EnKF, marginalment, per al cas
sintètic espećıfic analitzat amb el mateix consum de CPU, i pot funcionar
molt millor que el r-EnKF a canvi d’un major cost de CPU.

La quarta i última part investiga el rendiment de l’ES-MDA en un prob-
lema d’identificació d’una injecció de contaminant que varia en el temps.
S’analitza la influència de diferents intervals d’observació i esquemes de in-
flació de la covariància en la determinació de la corba d’injecció. El resul-
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tat mostra que l’ES-MDA funciona molt bé en la identificació de la corba
d’injecció quan la discretització no és massa alta, però troba problemes de
fluctuació amb discretitzacions massa fines. La freqüència amb la qual es
mostregen les dades d’observació és un factor influent en aquesta aplicació,
mentre que el nombre d’iteracions o els mètodes d’inflació de la covariància
tenen menys efecte.
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1
Introduction

1.1 Motivation and Objectives

In groundwater contamination issues, source information is generally dif-
ficult to obtain during the processes of environmental risk assessment, re-
sponse accountability and further restoration. In general, the first sign of a
contamination is normally some concentration measurements downgradient
from the source while the source remains unknown. Attempting to iden-
tify the source from these limited downgradient observation data becomes
a difficult inverse problem. Moreover in strong heterogeneus fields, where
the problem of source identification is known to be ill-posed (Skaggs and
Kabala, 1994; Carrera and Neuman, 1986).

Dozens of works have focused on this topic and many methods have
been developed (Atmadja and Bagtzoglou, 2001b; Michalak and Kitanidis,
2004; Bagtzoglou and Atmadja, 2005; Sun et al., 2006a, e.g.,). They can
be grouped into two main categories: optimization approaches and prob-
abilistic approaches. The optimization approaches cast the problem as a
deterministic one in which parameters are found that minimize a given
objective function, such as least-squares regression, maximum likelihood,
hybrid heuristic approach (e.g., Gorelick et al., 1983; Wagner, 1992; Aral
et al., 2001; Yeh et al., 2007; Mirghani et al., 2009; Amirabdollahian and
Datta, 2014; Ayvaz, 2016); the probabilistic approaches cast the problem
in a stochastic framework and the parameters to estimate become random
variables, such as minimum relative entropy method, adjoint state method
(e.g., Bagtzoglou et al., 1992; Woodbury and Ulrych, 1996; Neupauer and
Wilson, 1999; Butera et al., 2013; Koch and Nowak, 2016).

1
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Among these researches, only a few works applied their methods to real
cases (e.g., Woodbury et al., 1998; Michalak and Kitanidis, 2004; Cupola
et al., 2015a; Zanini and Woodbury, 2016). The main reason why is the in-
herent heterogeneity of aquifer properties (e.g., Gómez-Hernández and Wen,
1998; Knudby and Carrera, 2005; Zinn and Harvey, 2003). Finding a reliable
method to identify the contaminant source and aquifer properties jointly is
a challenging task.

In the last decades, data assimilation methods are routinely used for
identification purposes because of their ability to deal with various kinds
of observed data simultaneously. The ensemble Kalman filter (EnKF) is
the data assimilation method most used nowadays. This efficient method
was first proposed by Evensen (2003) and has gained popularity in hydro-
geology (Chen and Zhang, 2006; Huang et al., 2009; Kurtz et al., 2014; Li
et al., 2012a; Franssen and Kinzelbach, 2009). More recently, researchers
started to employ EnKF variants to deduce contamination source informa-
tion in groundwater aquifer. Xu and Gómez-Hernández (2016b) use the
restart normal-score Ensemble Kalman filter (Ns-EnKF) for contaminant
source identification in a synthetic deterministic aquifer and later extended
this method to jointly identify hydraulic conductivity and source informa-
tion (Xu and Jaime, 2018). In the meanwhile, the ensemble smoother (ES),
which was firstly introduced by van Leeuwen and Evensen (1996), and later
developed into a variant named ensemble smoother with Multiple Data As-
similation (ES-MDA) Emerick and Reynolds (2013a), has proven its ability
in dealing with history-matching problems. Based on these previous works,
we take a step further to evaluate their performance in sandbox experiments
for the purpose of contaminant source identification.

The sandbox experiments are carried out in the hydraulic laboratory of
the Department of Engineering and Architecture of the University of Parma.
The whole equipment is built with Polymethyl methacrylate (PMMA) plates
of dimensions 120 cm × 14 cm × 70 cm. Inside the box, two reservoirs at the
edges allow us to define prescribed constant boundary conditions. And by
using different size of glass beads and a vertical plastic plate, we can vary the
heterogeneity of the sanbox and its geometry. One moveable injector was
installed at the upstream part and able to release tracer as desired. With
the help of this device, we then were able to conduct several laboratory
experiments to evaluate and analyse the application of the EnKF and the
ES-MDA for contaminant source identification.

The main objectives of this thesis can be summarized as follows: first, to
verify the capacity of the EnKF to identify a contaminant source together
with geological heterogeneity, such as the presence of a vertical impermeable
barrier or the heterogeneous spatial variability of the glass beads; second,
to contrast the new ES-MDA method with the EnKF for the solution of
the same problem; and third, to identifiy complex release histories using the
ES-MDA.
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1.2 Thesis Organization

The chapters have been written so that they could be published as indepen-
dent papers. For this reason, there is some repetition. When this happens,
it is indicated in the text so that the reader that has read the entire thesis
does not have to go through it again, but the reader interested only in a
specific chapter does not have to go through the whole thesis to find some
of the material already presented. The next four chapters are independent
papers which are published or under review or to be submitted in refereed
international journals. Chapter 2 and Chapter 4 are published in Journal
of Hydrology, Chapter 3 has been submitted to Mathematical Geosciences
and under revision. And the last chapter is the summary of the whole work.

Chapter 2 presents an application of the restart ensemble Kalman filter
in a contaminant source identification problem. The work focuses on the
identification of the parameters defining a finite-pulse point injection of a
solute, together with the position of a vertical plate that modifies the initial
rectangular geometry of the sandbox.

Chapter 3 illustrates the performance of the restart normal-score ensem-
ble Kalman filter (Ns-EnKF) for the joint identification of a contaminant
source and a heterogeneous hydraulic conductivity distribution in a labora-
tory sandbox experiment.

Chapter 4 shows the capacity of the ensemble smoother with multiple
data assimilation (ES-MDA) for the simultaneous identification of a con-
taminant source and the spatial distribution of hydraulic conductivity by
assimilating both piezometric head and concentration observations in a syn-
thetic aquifer while using the restart ensemble Kalman filter as a benchmark.

Chapter 5 applies the ES-MDA method to identify a time-varying con-
taminant injection. The impacts of different inflation schemes, number of
iterations, and observation intervals are evaluated.

Chapter 6 summarizes all the works in this thesis and shows some sug-
gestions for future research.





2
Joint identification of

contaminant source and
aquifer geometry in a

sandbox experiment with the
restart Ensemble Kalman

filter

Abstract

Contaminant source identification is a key problem in handling groundwa-
ter pollution events. The ensemble Kalman filter (EnKF) is used for the
spatiotemporal identification of a point contaminant source in a sandbox
experiment, together with the identification of the position and length of
a vertical plate inserted in the sandbox that modifies the geometry of the
system. For the identification of the different parameters, observations in
time of solute concentration are used, but not of piezometric head data since
they were not available. A restart version of the EnKF is utilized, because
it is necessary to restart the forecast from time zero after each parameter
update. The results show that the restart EnKF is capable of identifying
both contaminant source information and aquifer-geometry-related param-
eters together with an uncertainty estimate of such identification.
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2.1 Introduction

The problem of identifying a contaminant source in an aquifer using solute
concentration data has been the subject of attention for many years (e.g.,
Atmadja and Bagtzoglou, 2001b; Michalak and Kitanidis, 2004; Bagtzoglou
and Atmadja, 2005; Sun et al., 2006a, and references therein). Briefly, the
proposed methods could be grouped into two categories: optimization ap-
proaches and probabilistic approaches. The main difference between the
two approaches is that the optimization approaches cast the problem as a
deterministic one in which parameters are found that minimize a given ob-
jective function, whereas the probabilistic approaches cast the problem in a
stochastic framework and the parameters to estimate become random vari-
ables. In the first category, Gorelick et al. (1983) identified the groundwater
pollution source information through an optimization model using linear
programming and multiple regression; Wagner (1992) employed a non-liner
maximum likelihood method to estimate source location and flux; Mahar
and Datta (2000) used a nonlinear optimization model for estimating the
magnitude, location and duration of groundwater pollution sources with
binding equality constraints; Yeh et al. (2007) developed a hybrid approach,
which combines simulated annealing, tabu search and a three-dimensional
groundwater flow and solute transport model to solve the source identifica-
tion problem; and Ayvaz (2010) utilized a harmony search-based simulation-
optimization model to determine the source location and release histories
by using an implicit solution procedure. In the second category, Bagtzoglou
et al. (1992) applied a particle method to estimate, probabilistically, source
location and spill-time history; Woodbury and Ulrych (1996) used a mini-
mum relative entropy approach to recover the release and evolution histories
of a groundwater contaminant plume in a one-dimensional system; Neupauer
and Wilson (1999) employed a backward location model based on adjoint
state method (BPM-ASM) to identify a contaminant source; Butera et al.
(2013) utilized a simultaneous release function and source location identi-
fication (SRSI) method to identify the release history and source location
of an injection in a groundwater aquifer; and Koch and Nowak (2016) de-
rived and applied a Bayesian reverse-inverse methodology to infer source
zone architectures and aquifer parameters.

The ensemble Kalman filter (EnKF), which could be included in the
group of probabilistic approaches mentioned above, has recently addressed
the problem of contaminant source identification. The EnKF introduced by
Evensen (2003) has gained much popularity in recent years for its efficiency
in solving inverse problems in different fields such as oceanography, mete-
orology and hydrology (Houtekamer and Mitchell, 2001; Li et al., 2012a;
Xu et al., 2013b). The advantages of the EnKF can be summarized as fol-
lows (Chen and Zhang, 2006; Zhou et al., 2011): computational efficiency
when compared with other inverse approaches, easy integration with differ-
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ent forecast models, ability to account for model and observation errors, and
easy uncertainty characterization since the final outcome is always an en-
semble of realizations. In hydrogeology, the EnKF has been mainly applied
for the identification of aquifer parameters such as hydraulic conductivity
or porosity (Li et al., 2012b; Xu et al., 2013a; Zhou et al., 2014; Xu and
Gómez-Hernández, 2015; Xu and Gómez-Hernández, 2016a). Recently, Xu
and Gómez-Hernández (2016b) demonstrated the possibility to apply the
EnKF for the identification of a contaminant source in a deterministic syn-
thetic aquifer, and later Xu and Jaime (2018) showed that the method can
be also applied for the simultaneous identification of hydraulic conductiv-
ities and the parameters defining a contaminant source also in a synthetic
aquifer.

All the works mentioned above were tested in synthetic cases. Only a few
works can be found in the literature for laboratory or field cases. Woodbury
et al. (1998) extended the minimum relative entropy (MRE) method to re-
cover the release history of a contaminant and applied it to reconstruct the
release history of a 1,4-dioxane plume observed at the Gloucester Landfill
in Ontario, Canada. Michalak (2003); Michalak and Kitanidis (2004) em-
ployed a Bayesian inverse formulation to estimate the contaminant history
of trichloroethylene (TCE) and perchloroethylene (PCE) in an aquifer at
the Dover Air Force Base, Delaware, a site that had already been analyzed
by Liu and Ball (1999) in the same context of source identification. Cupola
et al. (2015b,a) compared the source location identification (SRSI) method
to the backward probability model based on the adjoint state method (BPM-
ASM) with data taken from a sandbox experiment. Zanini and Woodbury
(2016) also used data from a sandbox experiment to apply an empirical
Bayesian method combined with Akaike’s Bayesian Information Criterion
(ABIC) to deduce the release history of a groundwater contaminant.

The main objective of this paper is to assess the performance of the
restart EnKF (r-EnKF) for the identification of contaminant source param-
eters and aquifer geometry with data from a sandbox experiment. The
source parameters of interest are the release location, release starting and
ending times, and contaminant load, and regarding the geometry the method
should try to retrieve the position and length of a plate that is inserted about
the center of the sandbox and induces a deflection of the flowlines towards
the bottom of the sandbox. The state information assimilated by the r-
EnKF is limited to concentration data at a few observation points, since no
piezometric head data were available.

The paper is organized as follows, first, the state equations and the
fundamentals of the r-EnKF will be recalled, second, the sandbox charac-
teristics are described together with the numerical model used to reproduce
its behavior, third, the r-EnKF is tested with data from a synthetic ex-
periment that mimics the sandbox experiment with the aim to verify if the
r-EnKF is capable of identifying the kind of parameters sought, and four, the
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r-EnKF is applied with observation values taken from the sandbox exper-
iment, the problems encountered are analyzed, alternative approaches are
discussed and the final results presented. The paper ends with a summary
and conclusions on the main findings.

2.2 Methodology

2.2.1 Groundwater Flow and Solute Transport Equation

The sandbox will be modeled as a two-dimensional system in the XZ plane,
where an inert contaminant spreads due to advection and dispersion under
a steady-state flow. The dimension of the sandbox in the y direction is small
enough to assume that the state variables are constant along any line for
any given (x, z) value. The governing equations are:

Ss
∂h

∂t
= ∇ · (K∇h) + w, (2.1)

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs (2.2)

where Ss represents the specific storage [L−1]; h is the hydraulic head [L]; t
denotes time [T ]; ∇· is the divergence operator, while∇ represents the gradi-
ent operator; K denotes the hydraulic conductivity [LT−1] and w represents
distributed sources or sinks [T−1] . In the transport governing equation, θ
represents the porosity of the medium; C is dissolved concentration [ML−3];
D represents the hydrodynamic dispersion coefficient tensor [L2T−1]; v is
the flow velocity vector [LT−1] derived from the solution of the flow model;
qs represents volumetric flow rate per unit volume of aquifer associated with
a fluid source or sink [T−1] and Cs is the concentration of the source or sink
[ML−3].

The flow equation is solved using MODFLOW (McDonald and Har-
baugh, 1988), and the transport equation is solved using MT3DS (Zheng
and Wang, 1999).

2.2.2 The Ensemble Kalman Filter

The ensemble Kalman filter was first introduced by Evensen (2003) to cir-
cumvent the difficulty of propagating covariances in time in the original
and extended Kalman filter formulations. The restart EnKF (r-EnKF) has
proven its capacity for contaminant source identification in synthetic cases
(Xu and Gómez-Hernández, 2016b; Xu and Jaime, 2018); now, we propose
to test the r-EnKF in a sandbox experiment. For this specific case, there
will be eight parameters to identify, six related to the contaminant source,
and two related to aquifer geometry. In the first group, they are the contam-
inant source location (Xs, Zs), the injection concentration, Ic, the injection
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rate, Ir , plus the starting Ts and ending Te release times. In the second
group, the algorithm will try to identify the position along the x direction
Xb and the total depth Zb of a vertical plate inserted about the center of
the sandbox to deflect the flowlines. The rest of the parameters defining the
flow and transport conditions in the sandbox are not subject to identifica-
tion and are equal to their observed values as explained in the description of
the experiment in the next section. The r-EnKF is shortly described next.

In the ensemble Kalman filter with extended state vector, we deal with
two types of variables, the system parameters subject of identification, of
which there could be observations or not, and the state of the system, of
which there will be observations. The state is forecasted in time solving the
corresponding state equations, with the latest parameter update, up to the
specific time steps when observations are collected; these observations are
assimilated by the filter and serve to update the parameters and the state of
the system. In the restart filter, state variables are not updated, only system
parameters are, because the system state forecast for the next observation
time is restarted from time zero to make sure that the forecasted system state
is fully coherent with the state equations, and, in our case, with the updated
contaminant source. (In the original implementation of the filter, both state
and parameters are updated, and the state system is forecasted from the
last updated state values using the last updated parameters.) The r-EnKF
is an iterative algorithm that cycles forecast and data assimilation (with the
corresponding parameter update) until all observations have been accounted
for. The implementation of the r-EnKF for the identification of the eight
parameters described above can be summarized as follows (Evensen, 2003;
Xu and Gómez-Hernández, 2016b):

1. Generate an initial ensemble of parameter values. An ensemble of Ne

realizations of eight-tuples of the parameters to be identified is gener-
ated. Parameter values are drawn, independently, from uniform distri-
butions defined between first-guess minimum and maximum values—
there are no restrictions on these uniform distributions, their range
can be wider or narrower than the one used, and they do not have to
necessarily contain the “real” value, they are simply used to initialize
the algorithm. We build a matrix S with the eight parameters plus
Nm concentration data for Ne realizations:

S =

(

(Xs,Zs ,Xb,Zb, Ic, Ir ,Ts ,Te)T

(C1, C2, . . . , CNm
)T

)

(2.3)

where Nm is the number of model nodes and the superscript T stands
for transpose.

2. Repeat for each system state observation time. Forecast the state.
For each ensemble member, forecast the system state, that is, the
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concentrations in the aquifer, for the tth observation time using the
values of the parameters from the last update (or the initial parameters
for the first observation time). In the original implementation of the
EnKF, the system state at the tth observation time is forecasted based
on the concentrations at the (t− 1)th observation time and using the
last updated parameters; however, it is virtually impossible to account
for an update of the source location or the injection time unless the
state equation is solved from time zero, thus the need to restart the
simulation from time zero (Xu and Gómez-Hernández, 2016b). The
forecast of the augment matrix is given by

Sf
t = ψ

[

C0, A
a
t−1

]

, (2.4)

where the superscripts f and a refer to forecasted, and updated values
after assimilation, respectively; ψ represents the numerical model that
forecast, in time, concentrations, on a grid withNm nodes; Sf

t is an (8+
Nm) × Ne matrix containing the updated parameters and forecasted
concentrations for all realization; Aa

t−1 is the matrix with the last
updated parameters; C0 is the initial contaminant concentration of
the domain, which is the same for all realizations. The forecast of the
parameters is simply

Af
t = Aa

t−1. (2.5)

3. Parameters update. First compute the parameter covariance through
the ensemble of forecasted realizations

P
f
t =

1

Ne − 1

Ne
∑

i=1

{[Sf
i,t − Sf

t ][S
f
i,t − Sf

t ]
T } (2.6)

with

Sf
t =

1

Ne − 1

Ne
∑

i=1

Sf
i,t (2.7)

where P
f
t is an (8 + Nm) × (8 + Nm) matrix of augment parameter

covariances and Sf
t is an (8 + Nm) × 1 column vector of parameter

averages.

Then, compute the Kalman gain matrix,

Kt = P
f
t H

T [HP
f
t H

T +Rt]
−1 (2.8)

where H is the observation matrix that extracts out of the whole
augmented state vector the elements at which No observations where
taken, Rt is an No×No observation error covariance matrix, which will
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be assumed to follow a Gaussian distribution of zero mean, given vari-
ance, and no correlation between observations, and proceed to update
the parameter values, realization by realization by

Sa
t = Sf

t +Kt

[

yobst + εi −HSf
t

]

, (2.9)

where yobst is an No × 1 vector of observed concentrations at time step
t, εi stands for an observation error with zero mean and covariance
Rt.

4. Go back to step 2 and repeat the whole process until all observations
are assimilated.

2.3 Experimental Case

2.3.1 Description of the experiment

A single point pollution experiment was performed in a sandbox using
sodium fluorescein as tracer. The sandbox is built in plexiglass and has
external dimensions of 120 cm × 14 cm × 70 cm as sketched in Figure 2.1.
The internal volume of 96 cm × 10 cm × 70 cm is filled with constant-
diameter spherical glass beads. There are two reservoirs at the edges of the
box imposing constant water levels of 60.7 cm and 53.6 cm upstream and
downstream, respectively. An injector was set up at the upstream part of
the sandbox at the location indicated by a red square in the figure, and
a plastic plate was vertically inserted inside the glass beads in the mid-
dle of the sandbox, whose position and length is also shown in the figure.
The experimental equipment was placed in a dark box and a digital cam-
era was used to capture, every 5 s, the fluorescein luminosity within the
rectangular zone of 85 cm by 44 cm marked with a ticked rectangle in Fig-
ure 2.1. The pictures were then processed and the fluorescein luminosity
transformed into concentrations after a calibration procedure, as described
by Citarella et al. (2015). In this case, eight different fluorescein concen-
trations (C = 0; 2.5; 5; 10; 20; 25; 30; 35 mg/l) were used to calibrate and
generate the luminosity-concentration curves in each picture pixel.

The total experiment time lasted 1965 s, the injection started at time
120 s and finished at time 1000 s. During the experiment, the rate and
concentration of the injection were also recorded.

It is very important to note that there are no piezometric head obser-
vations. The design of the tank did not allow for those observations. Had
there been piezometric head data, they could have been assimilated in the
filter and, without doubt, would have helped in improving the identification
(as shown by Xu and Jaime (2018)).
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Figure 2.1. Sketch of the experimental device with indication of the upstream
(Hu) and downstream (Hd) constant head boundaries. The ticked rectangle corre-
sponds to the area captured by the camera in which concentrations will be mon-
itored. Red dot is the release location. Dashed line around red dot indicates the
release suspect location. Dimensions are in cm. Coordinates of the four corners of
the flow and transport models are also shown.

2.3.2 Numerical Model

Since the thickness of the sandbox along the y axis is relatively small, we can
assume that the variability of piezometric heads and concentration along this
direction is negligible. Therefore, a two-dimensional groundwater flow and
transport model in the XZ plane is built. The upstream and downstream
vertical boundaries are set as constant prescribed piezometric head values,
and the bottom boundary is impermeable while the top boundary is the
phreatic surface. The model corresponds to the yellowish area in Figure 2.1,
where the coordinates of the four model corners are given.

The tank is filled with homogeneous spherical glass beads with a conduc-
tivity of 0.58 cm/s, porosity of 0.37. The vertical plastic plate was inserted
at a distance of 52 cm from the left boundary and its length is of 42 cm. It is
modeled as an impermeable barrier, which will deflect the flowlines towards
the bottom of the sandbox. The sandbox is discretized into 96 columns, one
row, and 70 layers; the size of each cell is (∆x,∆y,∆z) = (1, 10, 1) cm. The
total simulation time is 1800 s and is discretized into 90 uniform time steps.
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Table 2.1. Parameters of the groundwater flow and transport model

Hydr. conduct., K 0.58 cm/s
Porosity, φ 0.37

Long. disp., αL 0.16 cm
Transv. disp., αT 0.048 cm

Table 2.2. Source and geometry parameters. True values and suspect ranges for
the generation of the initial ensemble of realizations

Parameter Actual Value Suspect Range

Xs (cm) - x-coordinate of source 18.5 16− 25
Zs (cm) - z-coordinate of source 30.5 23− 32
Xb (cm) - x-coordinate of plate 52.5 50− 59

Zb (cm) - x-plate length 42.5 35− 43
Ir (cm3/s) - injection rate 0.95 0.6− 1.1
Ic (mg/l) - injection load 20 5− 24

Ts (s) - starting release time 120 80 − 260
Te (s) - ending release time 1000 960 − 1140

Citarella et al. (2015) evaluated the longitudinal and transverse disper-
sivities of the spherical beads, resulting in values of 0.16 cm and 0.048 cm,
respectively. The flow and transport parameters are collected in Table 2.1.

The release happens at coordinates (18.5 cm, 30.5 cm), with a concen-
tration of 20 mg/l and an injection rate of 0.95 cm3/s.

To start the ensemble Kalman filter 800 8-tuples of the source and plate
parameters are generated from uniform distributions (not centered at the
true values). The true values of the parameters to identify and the suspect
range of the uniform distributions used to generate the initial ensemble are
collected in Table 2.2.

2.4 Application

The objective of this work is to demonstrate the capacity of the r-EnKF for
the identification of contaminant source information, including contaminant
source location (Xs , Zs), injection information (Ic, Ir) and release time
(Ts , Te) together with the position and length of the vertical plate (Xb,
Zb), using concentration observations collected in a laboratory experiment.
As a prior test, we analyze a synthetic case, in which the concentration data
are generated by the numerical model of the sandbox, therefore removing
any modeling error since the forward model used to forecast by the r-EnKF
will coincide with the model used to generate the observations. In the next
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section, we will redo the analysis using the laboratory data, we will analyze
the problems found and propose some solutions.

2.4.1 Synthetic Sandbox Test

In this case, we design two scenarios (S1, S2) with different number of obser-
vation wells to evaluate the performance of the r-EnKF and the sensitivity
of the observation wells near to the contaminant source: scenario S1 with
20 observation wells, and scenario S2 with 24 observation wells containing
4 additional wells (#21, #22, #23, #24) located at the four corners of the
suspect release area (see Figure 2.1). In both scenarios, model error is ne-
glected and we assume that observation errors are uncorrelated and follow a
Gaussian distribution with mean zero, and standard deviation of 0.1 mg/l.

Figure 2.2 and 2.3 show the time evolution of the ensemble mean and
the ensemble variance, respectively, of the updated state parameters for the
two scenarios. Figure 2.4 and Figure 2.5 show the evolution in time of
the boxplots computed from the 800 ensemble members. After time step
60, the convergence rate of the means and variances of the parameters are
less than 1% and 5%, respectively, all the parameters get close to the final
estimation and become stable. We can distinguish between the parameters
that are perfectly identified by an ensemble mean equal to the true value,
and practically zero variance, and those that are approximated closely but
which are not exact and present some residual uncertainty.

In the first group, there are the position parameters for the plate, Xb

and Zb, plus the vertical location of the release source Zs, independently
of whether 20 or 24 data are used during the assimilation steps; in the sec-
ond group are the remaining parameters, which become more precise (mean
closer to the true value) and less uncertain (smaller variability) for S2 than
for S1. The horizontal source location Xs is less sensitive to the concen-
tration data, and only when the four additional data points in the corners
of the suspect release location are added the algorithm is able to provide
a good estimate for this parameter; similar comment can be made about
the beginning Ts and end Te times of the release. The injection concentra-
tion Ic and injection rate Ir are well identified by their median values, with
smallest uncertainty for S2. These results are consistent with the sensitivity
of concentrations at the observation locations to changes in the parameter
values: concentration distributions are most sensitive to the position of the
plate, which affects the flow field, and the vertical release location, which af-
fects the main trajectory of the contaminant plume, but are less sensitive to
the other parameters, for which variations within the identified uncertainty
ranges induce concentration changes of the same order of magnitude as the
observation errors. Also notice that the horizontal coordinate of the release
and the starting and ending release times are correlated for the purpose of
identifying their values (a displacement of the horizontal coordinate of the
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Figure 2.2. Time evolution of the ensemble mean of the 8 updated parameters,
including contaminant source location (Xs, Zs), plate position (Xb, Zb), injection
information (Ic, Ir) and release time interval (Ts , Te) in scenarios S1 and S2.
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Figure 2.3. Time evolution of the ensemble variance for the same parameters and
scenarios as in the previous figure.
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release could be compensated with a displacement of its starting time), what
also explains their larger uncertainties.

These results prove that the r-EnKF could work for the identification
of a contaminant source and of some parameters defining the geometry of
the aquifer. The next step is to test the algorithm under more realistic
conditions using observations obtained from a laboratory experiment.

2.4.2 Laboratory Sandbox Test

The sandbox experiment was carried out as described previously. Figure 2.6
shows a picture of the fluorescein plume at the 48th time step (840s since the
beginning of the release) already transformed into concentration values and
the position of the observation points. The deflection of the flowlines induced
by the vertical plate is clearly seen. Notice that only a few observation
concentration points will actually detect the plume breakthrough.

Before testing the r-EnKF, we performed a simulation of the concen-
tration evolution using the known release parameters and compared the
predictions with the observed data. Figure 2.7 shows a comparison between
observed and numerically predicted concentrations at five observation loca-
tions (wells #7, #7, #10, #13, #22) through which the plume passes. As
can be seen, the reproduction is very good for the closest well #22, and it de-
teriorates with the distance from the source, but not dramatically, except for
well #9. For this well, the beginning and ending times of the breakthrough
curve are the same for predictions and observations, but the mismatch in
concentrations indicates either some error in the model parameters or faulty
observations. The predicted breakthrough curve in the farthest well, though,
is quite close to the observed one.

In the application that follows we will analyze different observation error
distributions in an attempt to identify the source parameters by the r-EnKF.

We have run the r-EnKF with three different magnitudes of the obser-
vation error, which will be referred to as R1, R2, and R3. In all three cases,
the error mean is zero and its standard deviation is 0.5 mg/l for R1, 1.0 mg/l
for R2, and 3.0 mg/l for R3. Model error is introduced through an uncer-
tainty in the hydraulic conductivity value, which is considered homogeneous
in each realization and drawn from a Gaussian distribution with a mean of
0.58 cm/s and a standard deviation of 0.05 cm/s. The Gaussian description
of these uncertainty instead of a certain value is an effective way to mimic
the fluorescein calibration system and the hydraulic conductivity field, in
the meanwhile, r-EnKF is optimal for the case where the parameters and
state variables are multiGaussian (Aanonsen et al., 2009), and the relation-
ship between the state variables and the observation/model error is linear.
Therefore, to keep the Gaussinity, it is necessary to keep observation/model
error Gaussian distributed.
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Figure 2.4. Boxplot of the 8 updated parameters at different time steps (1, 15,
30, 45, 60, 75, 90) for scenario S1.
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Figure 2.5. Boxplot of the 8 updated parameters at different time steps (1, 15,
30, 45, 60, 75, 90) for scenario S2.
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Figure 2.6. Fluorescein concentration field in the sandbox at the 48th time step.
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observation wells.
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Figure 2.8. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenario R1.
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Figure 2.9. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenario R2.
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Figure 2.10. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenarios R3.
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Figure 2.11, Figure 2.12 and Figure 2.13 show the boxplots of the up-
dated parameters at different time steps for the three scenarios R1, R2, and
R3. The results are not as good as for the synthetic case, for which the ob-
served concentrations were generated with the same numerical model used
for the forecast step in the Kalman filter. The first thing to note is that for
scenario R1, the use of a small observation error makes the r-EnKF to seek
for source parameter values that can be far from the true ones in order to
produce concentrations that are close to the observed values, and, particu-
larly, the injection concentration and injection rate do not seem to converge
to a stable value after 90 time steps. The other parameters do reach a stable
median, not as close to the true values as for the synthetic case but close
enough except for the horizontal position of the vertical plate.

When the observation error is increased (scenario R2), the two main
findings are that the two injection parameters now seem to reach a stable
estimate (albeit with large uncertainty) with a median close to the true
value, and that all parameters have a wider uncertainty range. The median
estimate of the initial and ending release times is also closer to the true ones
than in R1. The horizontal position of the vertical plate continues to be
underestimated, as well as the length of the plate.

When the observation error is increased even more (scenario R3) the
main effect is that the final estimates have wide uncertainty estimates, and
for some of the parameters it seems as if the concentration observations
do not bring any added value since the boxplot width remains unaltered
through the assimilation steps. The estimates of the parameters by their
median is comparable to the results in R2, but their uncertainty is larger.

The predicted concentrations at three observation wells that were not
used during the assimilation step computed using the initial 8-tuples of pa-
rameters, and using the 8-tuples obtained at the end of the three scenarios
are shown in Figure 2.14. The figure shows the true concentrations in the
sandbox as a dotted blue line, each one of the 800 predicted concentration
breakthrough curves computed with the 8-tuples of the ensemble, along with
their median, as a red line, and their 90% confidence interval, as dashed lines.
It can be observed that, prior to assimilation (top row), concentration pre-
dictions were very scattered, and that after the assimilation (bottom three
rows, one for each scenario) the breakthrough curves change substantially
(compare, for instance, the median curves). For scenario R1, the scatter of
prediction curves is the smallest but recall that these wells were not used
during the assimilation, the updated parameters were biased because the
algorithm tried to fit the observed concentrations too closely and as a re-
sult, at the control wells, the prediction of the true curves by the ensemble
median is also biased, up to the point that the true curves are outside the
90% confidence interval. For scenarios R2 and R3 the median curves for the
three wells have a smaller bias than for R1, and the main difference between
R2 and R3 is the same as for parameter prediction, the uncertainty is the
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Figure 2.11. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenario R1.
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Figure 2.12. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenario R2.



CHAPTER 2. JOINT IDENTIFICATION OF . . . 27

1 15 30 45 60 75 90

Time step

5

10

15

20

25

30

35

40

v
a
lu

e

R3: Ic (mg/l)

True value

1 15 30 45 60 75 90

Time step

0.6

0.8

1

1.2

1.4

1.6

v
a
lu

e

R3: Ir (cm 
3
 /s)

True value

1 15 30 45 60 75 90

Time step

0

50

100

150

200

250

v
a
lu

e

R3: Ts(s)

True value

1 15 30 45 60 75 90

Time step

900

950

1000

1050

1100

1150

v
a
lu

e

R3: Te(s)

True value

1 15 30 45 60 75 90

Time step

12

14

16

18

20

22

24

26

28

v
a
lu

e

R3: Xs

True value

1 15 30 45 60 75 90

Time step

22

24

26

28

30

32

34

36

38

v
a
lu

e

R3: Zs

True value

1 15 30 45 60 75 90

Time step

45

50

55

60

v
a
lu

e

R3: Xb

True value

1 15 30 45 60 75 90

Time step

34

36

38

40

42

44

46

48

50

v
a
lu

e

R3: Zb

True value

Figure 2.13. Boxplot of of the 8 updated parameters at time steps 1, 15, 30, 45,
60, 75 and 90 for scenarios R3.
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Figure 2.14. Breakthrough curves at control wells. The blue dots correspond to
the curves in the sandbox experiment. The thin gray lines are the curves for all 800
realizations; they are summarized by their median (red diamond lines) and their 5
and 95 percentiles (black dash lines).
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widest for R3. The true curve is in both cases within the 90% confidence
interval of the predictions.

At this point, it seems that an observation error with a standard devi-
ation of 1 mg/l was the most consistent with our observations and model.
Actually, this conclusion fits the description of calibration of the same device
in another experiment very well, in which the maximum measurement error
was estimated as less than 3 mg/l and the standard deviation is around 1
mg/l (Cupola et al., 2015b). Yet, we were concerned with the big discrep-
ancy between predictions and observations at well #9, so we decided to rerun
scenario R2 without using the data from this well. The results for this sce-
nario, called R2b, are shown in Figure 2.15. When comparing this figure to
Figure 2.12 we can notice that there is some overall improvement in the esti-
mation of the true parameters —particularly for the position parameters—
by the median values of the ensemble without a significant change on their
uncertainty. This improvement reinforces our suspicion that there could
have been some problems in the data collection at well #9.

We also considered that there could be a problem with the tightness of
the vertical plate after its insertion in the sandbox, since the vertical plate
was inserted into the sandbox afterwards, it could not match the sandbox
without any gap in a practical way, not being completely impermeable as
implemented in the numerical model. Therefore, we decided to rerun sce-
nario R2 but assuming that the plate is slightly permeable, more precisely,
with a conductivity of two orders of magnitude smaller than the beads. The
results for the new scenario, referred to as R2c are shown in Figure 2.16.
(Note that well #9 was kept in this scenario.) The main difference of this
run is that the estimate of the size of the vertical plate by the median of the
ensemble jumps from 40.5 cm to 44.2 cm (true value is 42.0 cm) indicating
that possibly the plate conductivity used in this scenario was too large and,
as a consequence, the algorithm enlarges the plate to reproduce the observed
concentrations. The result proves the thought that the gap will influence
the performance of the r-EnKF and it’s better to take these model error into
account in a real case.

These results show that the r-EnKF can be applied to a more realistic
case of a homogeneous aquifer in a sandbox for the identification of a con-
taminant source and some geometry parameters. A proper evaluation of the
observation errors is paramount, since attempting to match too closely the
data may result in biased estimates of the parameters.
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Figure 2.15. Boxplot of the 8 updated parameters in scenario R2b at different
time steps (1, 15, 30, 45, 60, 75, 90).
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Figure 2.16. Boxplot of the 8 updated parameters in scenario R2c at different
time steps (1, 15, 30, 45, 60, 75, 90).
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2.5 Summary and Conclusion

The main purpose of this paper was to test whether the restart ensemble
Kalman filter, which had been successfully applied in synthetic experiments,
could be applied to a more realistic case based on a sandbox experiment.
The test focuses in the identification of the parameters defining a finite-pulse
point injection of a solute, together with the position of a vertical plate that
modifies the initial rectangular geometry of the sandbox.

As a preliminary step, we tested the r-EnKF in a synthetic case mim-
icking the sandbox. Under these very controlled conditions, the algorithm
performs well, as expected. The main difference with previous synthetic
analyses is that no piezometric head data were used during the assimilation
step of the filter.

Then, the r-EnKF is tested using the data coming from the laboratory
experiment. In this case, the observations were not generated by a com-
puter code nor we knew the observation error magnitude. The analysis of
the results show that using a too small observation error covariance results
in more or less precise but biased estimates, both for the parameters subject
to identification and for the concentrations at control locations. When a
larger observation error (with a standard deviation of 1 mg/l) is introduced,
estimates and predictions improve, although with larger uncertainty. And
finally, when the observation error is large, the results worsen considerably.
The removal of a suspicious observation well, the concentration of which is
always underestimated by our forecast model, improves the results, indicat-
ing that the measurements from such well may need to be reconsidered. The
changes observed after making the vertical plate slightly permeable do not
appear to justify the hypothesis that the plate leaks.

The r-EnKF appears as a good algorithm for source identification in
aquifers, yet it still needs further tests in closer-to-reality conditions. Cur-
rently, the sandbox has been replaced with a heterogeneous distribution of
glass beads, and the challenge is to test the method in this new sandbox.



3
Contaminant Spill in a

Sandbox with non-Gaussian
Conductivities: Simultaneous
Identification by the Restart

Normal-Score Ensemble
Kalman Filter

Abstract

The joint identification of the parameters defining a contaminant source and
the heterogeneous distribution of the hydraulic conductivities of the aquifer
where the contamination took place is a difficult task. Previous studies have
demonstrated the applicability of the restart normal-score ensemble Kalman
filter (rNS-EnKF) in synthetic cases making use of sufficient hydraulic head
and concentration data. This study shows an application of the same tech-
nique to a non-synthetic case under laboratory conditions and discusses the
difficulties found on its application and the avenues taken to solve them.
The method is first tested using a synthetic case that mimics the sandbox
experiment to establish the minimum number of ensemble members and the
best technique to prevent the filter collapsing. The synthetic case shows
that among different techniques based on update damping and covariance
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inflation, the Bauser’s covariance inflation method works best in preventing
filter collapse. Its application to the sandbox data shows that the rNS-
EnKF can benefit from Bauser’s inflation to reduce the number of ensemble
realizations substantially in comparison with a filter without inflation; yet,
arriving to a good joint identification of both the contaminant source and
the spatial heterogeneity of the conductivities.

3.1 Introduction

The motivation of this paper is to advance in the problem of the joint iden-
tification of a contaminant source in an aquifer together with the spatial
distribution of hydraulic conductivities. The restart normal-score Ensemble
Kalman filter (rNS-EnKF) has been tested in synthetic aquifers for the joint
identification of a source parameters and conductivities and in a sandbox
experiment for the identification of just the source parameters (Chen et al.,
2018; Xu and Jaime, 2018). In both cases, the rNS-EnKF performed well;
however, it could be argued that the synthetic case was far from reality,
and that the sandbox experiment used a known homogeneous conductivity.
For these reasons, a new sandbox experiment was designed, with a binary
heterogeneous distribution of conductivity, and with the aim of testing the
rNS-EnKF for the joint identification of the source and a spatially hetero-
geneous conductivity field.

In addition, previous experience on the application of the rNS-EnKF
(Xu et al., 2013a) showed the effect of filter collapse, a problem that can
be tackled by the proper choice of number of ensemble realizations, covari-
ance inflation, covariance localization or update damping. For this reason,
the paper starts with the analysis of a synthetic field, resembling the new
sandbox experiment, to determine the choice of number of realizations and
the technique that prevents the filter to collapse and yields an acceptable
identification of both source and conductivities within reasonable computer
times. Once these choices are made, the sandbox experiment is directly
addressed.

The importance of contaminant source identification, for instance in re-
lation with the protection of wellhead capture zones (Feyen et al., 2003b,a),
does not need to be stressed and it has been the subject of research for
many years. The reader is referred to any of the review papers that can be
found in the literature (e.g., Atmadja and Bagtzoglou, 2001b; Bagtzoglou
and Atmadja, 2005; Michalak and Kitanidis, 2004; Sun et al., 2006a). A
very brief review, including some works that appeared after the mentioned
review papers, follows.

Most contaminant source identification approaches can be classified into
two main categories: optimization ones and probabilistic ones. In the opti-
mization approaches, an objective function is built and the algorithm tries to
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minimize the discrepancies between simulated and measured concentrations
using an optimization approach such as least-squares regression or maximum
likelihood (e.g., Amirabdollahian and Datta, 2014; Aral et al., 2001; Ayvaz,
2016; Gorelick et al., 1983; Mirghani et al., 2009; Wagner, 1992; Yeh et al.,
2007). In the probabilistic approaches, the problem is cast in a stochastic
framework and the algorithm tries to maximize the posterior probabilities
of the simulated concentrations conditioned on the observed values using
techniques such as those based on minimum relative entropy or the use of
adjoint states (e.g., Bagtzoglou et al., 1992; Butera et al., 2013; Koch and
Nowak, 2016; Neupauer and Wilson, 1999; Woodbury and Ulrych, 1996).

The main criticism to the approaches that can be found in the literature,
and the reason why it is difficult to find applications of any of those tech-
niques in practice, is that they have worked on synthetic cases, focusing on
the identification of the contaminant source parameters and assuming that
aquifer hydraulic conductivities are perfectly known. But the truth is that
geological properties are quite heterogeneous, only sparsely known in reality,
and very influential in how the aquifer behaves (e.g., Gómez-Hernández and
Wen, 1998; Knudby and Carrera, 2005; Zinn and Harvey, 2003). Only a few
papers discuss the simultaneous identification of conductivity and the con-
taminant source, but, almost all of them are limited to either homogeneous
aquifers or with a simplistic description of its heterogeneity (Datta et al.,
2009; Mahar and Datta, 2000; Wagner, 1992). Only the works by Koch and
Nowak (2016) and Xu and Jaime (2018) address the problem of identifying
heterogeneous conductivities; the former using a Bayesian methodology, and
the later using the rNS-EnKF.

This paper builds on the previous work by Chen et al. (2018) and (Xu
and Gómez-Hernández, 2016a; Xu and Jaime, 2018) in which the capabili-
ties of the rNS-EnKF, for the purpose of the identification of the parameters
defining a point contaminant source and the aquifer hydraulic conductivi-
ties, had been shown in a synthetic case and in a laboratory experiment, and
on the experience of the research team on addressing the problem of char-
acterization of non-Gaussian conductivities (Capilla et al., 1999; Franssen
and Gómez-Hernández, 2002; Journel et al., 1993; Zhou et al., 2012a,b).
The goal of this paper is to advance towards a practical application of the
rNS-EnKF for contaminant source identification in an aquifer with sparse
information about hydraulic conductivity heterogeneity. In comparison with
previous papers, this paper works with data collected in a sandbox exper-
iment, instead of with generated synthetic data, and the sandbox has a
binary heterogeneous distribution (unknown to the algorithm), instead of a
known homogeneous distribution. There is an additional important differ-
ence with respect to the work by Xu and Jaime (2018), which is that no
piezometric head data are available, and, therefore, the parameter identifi-
cation will have to be solely based on concentration observations. This adds
an additional complication to the performance of the rNS-EnKF since an
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important source of information for conductivity heterogeneity identification
will be missing.

In an initial attempt to apply the rNS-EnKF directly to the sandbox
data, numerous problems were found related with computing running time,
filter collapsing and filter divergence. For this reason, a decision was taken
to analyze first a more controlled synthetic experiment mimicking the het-
erogenous sandbox to decide on the number of realizations and the best
technique to prevent the filter to collapse without comprising the results (in
a reasonable time, with a reasonable uncertainty). As a result, the paper
contains two case studies, (i) the synthetic case, in which a sensitivity analy-
sis is performed combining two numbers of realizations, two update damping
schemes and two covariance inflation approaches, out of which the number
of ensemble realizations and a filter collapse prevention technique are cho-
sen; and (ii) the laboratory case, in which the rNS-EnKF is demonstrated
using the findings from the synthetic case.

Filter collapsing is dealt with the use of covariance inflation. Several
such techniques can be found in the literature (e.g., Anderson, 2007; Li et al.,
2009; Liang et al., 2012; Bauser et al., 2018; Hendricks Franssen and Kinzel-
bach, 2008; Wang and Bishop, 2003; Zheng, 2009), of which the damping
method, Wang’s method and Bauser’s method will be tested. These meth-
ods will be discussed in detail further on in the corresponding section.

The paper shows the power of concentration data for the joint identifi-
cation of conductivities and contaminant source information in a sandbox
experiment by the rNS-EnKF. After this introductory review, the paper
continues with a review of the methodology and a description of the sand-
box experiment and its numerical modeling, followed by the synthetic data
analysis and the sandbox data analysis. The paper ends with the discussion
of the results and some conclusions.

3.2 Methodology

3.2.1 Groundwater Flow and Solute Transport Equations

Water flow and contaminant transport in the sandbox are modeled using
the corresponding governing equations for groundwater flow (Bear, 1972)
and contaminant transport (Zheng and Wang, 1999), the equations were
already introduced in chapter 2.2.1, but they are repeated here for a matter
of completeness:

Ss
∂h

∂t
= ∇ · (K∇h) + w (3.1)

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs (3.2)
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where Ss is specific storage [L−1], h is hydraulic head [L], t is time [T ],
∇· is the divergence operator, ∇ is the gradient operator, K is hydraulic
conductivity [LT−1] and w represents distributed sources or sinks [T−1]; θ
is porosity; C is dissolved concentration [ML−3]; D is the hydrodynamic
dispersion tensor [L2T−1]; v is the flow velocity vector [LT−1] derived from
the solution of the flow equation, qs represents volumetric flow rate per unit
volume of aquifer associated with a fluid source or sink [T−1] and Cs is the
concentration of the source or sink [ML−3].

The groundwater flow equation is numerically solved with MODFLOW
(McDonald and Harbaugh, 1988) and the contaminant transport equation
with MT3DS (Zheng and Wang, 1999).

3.2.2 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was developed by Evensen (1994) as an
extension to the Kalman filter (KF). The main difference between the EnKF
and the KF is that, in the KF, the state covariance matrix is propagated
in time using an explicit expression based on a linear transition equation,
while, in the EnKF, this covariance matrix is derived from the statistical
analysis of an ensemble of state realizations obtained after the solution of
the state equations in each realization of the ensemble. The advantage of the
EnKF over the KF is for systems in which the state transition equation is not
linear; in such a case, the linear transition equation used by the KF is only an
approximation and the resulting covariance deteriorates in time; whereas, in
the EnKF, since the covariance is directly calculated from actual state spatial
distributions, its value is more accurate, with the only limitation that the
covariance is computed from a finite ensemble of realizations (if the number
of realizations is small, the resulting estimate may be also inaccurate).

Although the EnKF was initially developed to update only the state of
the system as observations are gathered, it has been shown that it can be
also used for the update of the parameters using what is called an aug-
mented state that includes both state variables and the parameters that
control them (e.g., Chen and Zhang, 2006; Houtekamer and Mitchell, 2001;
Li et al., 2012a,c). In summary, the EnKF has been proven to be an efficient
algorithm for parameter identification, for strongly non-linear state-transfer
equations, (Franssen and Kinzelbach, 2009), and has received much atten-
tion in the last decades. Next, the algorithm is described for the case study
at hand, that is, the identification of the parameters defining a contaminant
source together with the identification of the conductivities in a sandbox
experiment for which only concentration data are available. The equations
of r-EnKF were already introduced in chapter 2.2.2, but they are repeated
here for a matter of completeness.
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First, build an augmented state vector S including the model parameters
and the state variables:

S =

(

A
B

)

=





(Xs, Zs, Ic, Ir, Te)
T

(lnK1, lnK2, . . . , lnKNm
)T

(C1, C2, . . . , CNm
)T



 (3.3)

where A stands for model parameters, B for state variables, and Nm is
the number of grid cells. In our case, the model parameters are those de-
scribing the contaminant source, Xs, Zs, which are the contaminant source
coordinates in the horizontal and vertical directions, Ic, the injection con-
centration, Ir, the injection rate, and Te, the end release time, plus the
hydraulic log-conductivities, lnK; and the state variables are the contami-
nant concentrations. The augmented state vector evolves in time, starting
with an initial value at time 0, S0.

Second, forecast, using the groundwater flow and transport equations,
the augmented state vector St at time t based on the state variable Bt−1

and the model parameters At−1 obtained at time t− 1:

Sf
t = ψ(Ba

t−1, A
a
t−1) (3.4)

where the superscript f stands for forecasted values and a stands for up-
dated values after assimilating the state observations; ψ represents the state-
transfer function. (In the forecast step, the parameters A remain unchanged
—the transfer function is the identity function—, and the state B evolves
according to the flow and transport equations.)

Next, assimilate the state observations. The discrepancy between fore-
casted states and observed ones is used to update the forecasted augmented
state vector according to the following expression:

Sa
t = Sf

t +Kt

[

yobst + εi −HSf
t

]

(3.5)

where yobst are the observed concentrations at time step t, εi stands for an
observation error with zero mean and covariance Rt, H is the observation
matrix that extracts out of the whole augmented state vector the elements
at which observations where taken, Kt is the Kalman gain matrix:

Kt = P
f
tH

T [HP
f
tH

T +Rt]
−1 (3.6)

P
f
t =

1

Ne − 1

Ne
∑

i=1

{[Sf
i,t − Sf

t ][S
f
i,t − Sf

t ]
T } (3.7)

wherePf
t is the experimental covariance computed from the ensemble of aug-

mented forecasted states, and Sf
t is the experimental ensemble mean. (No-

tice that because observations are sparse, the observation matrix is mostly
made out of zeroes, and it is not necessary to compute all the elements in
P

f
t , but only those that are multiplied by the non-zero elements of H in

P
f
tH

T .)
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The normal-score EnKF

The EnKF was further extended to deal with non-Gaussian variables. The
EnKF was found to be very effective to deal with non-linear transfer func-
tions, but it failed when the augmented state followed a non-Gaussian dis-
tribution (Zhou et al., 2014). Several approaches have been developed to
address this issue: Gaussian mixture models, reparameterizations, iterative
approaches, and Gaussian anamorphosis, also known as normal-score trans-
form (e.g., Chang et al., 2010; Sun et al., 2009; Zhou et al., 2011). In this
paper, the normal-score approach is used, and more precisely, the normal-
score EnKF (NS-EnKF) as described by Zhou et al. (2011) or Li et al.
(2012b).

The NS-EnKF is based on transforming all parameters and variables into
Gaussian variates, performing EnKF in the Gaussian space, and then, back-
transforming the results into the original space. The normal-score transform
is a univariate transform that ensures that the transformed variates follow
a Gaussian distribution, but it does not ensure that higher-order moments
will follow a multiGaussian distribution; yet, the results obtained with the
NS-EnKF outperform those of EnKF for clearly non-Gaussian parameters.

The restart NS-EnKF

The EnKF was designed to update both parameters and state variables at
each assimilation step. That is, the discrepancy between forecasted and
observed variables is used to update the whole augmented state (see Eq.
(3.5)). However, in general in the case of subsurface flow and transport, and
in particular in the case at hand of contaminant source identification, the
updated states could be inconsistent with the updated parameters, either
because the mass conservation laws are not longer abided, or because the
updated state is not coherent with the updated contaminant source location.
For this reason, the forecast of the augmented state to the next observation
time is not done based on the updated augmented state at the previous time
state, but it is preferable to perform a forecast from time zero with the latest
updated parameters (Camporese et al., 2011; Crestani et al., 2012). This
approach is called, for this reason, the restart ensemble Kalman filter, or, in
our case, the restart normal-score ensemble Kalman filter (rNS-EnKF).

The forecast function in Eq. (3.4) changes into:

Sf
t = ψ[C0, A

a
t−1] =

(

Aa
t−1

Ct

)

(3.8)

where C0 stands for the initial contaminant concentration in the domain.
The restart EnKF has been applied before, for instance, by Camporese et al.
(2011) and Crestani et al. (2012).
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Damping

One way to deal with filter collapsing is to use a damping factor α, between
0 and 1, at the update step (Hendricks Franssen and Kinzelbach, 2008):

Sa
t = Sf

t + αKt

[

yobst + εi −HSf
t

]

(3.9)

Inflation Methods

Another way to reduce filter collapsing is by covariance inflation. There are
several covariance inflation approaches in the literature (Anderson, 2007;
Bauser et al., 2018; Liang et al., 2012; Wang and Bishop, 2003). In this
work, two different time-dependent multiplicative covariance inflation meth-
ods are used, the one proposed by Wang and Bishop (2003) and the one by
Bauser et al. (2018). In both methods, the augmented state vector should
be inflated, after the forecast, as follows:

Sinf,f
i,t =

√

λt(S
f
i,t − Sf

t ) + Sf
t (3.10)

where Sinf,f
i,t is the inflated augmented state vector of realization i after

forecast to tth time step, and λt is the inflation factor, the computation of
which depends on the approach used.

In the work by Wang and Bishop (2003), λt is given by:

λt =
(R

−

1

2

t dt)
TR

−

1

2

t dt − nb

trace{R−

1

2

t HP
f
t (R

−

1

2

t H)T }
(3.11)

where nb is the number of observations, and dt is a vector with the resid-
uals between the observation data and the mean of the forecast data at
observation locations:

dt = yobst −H ∗ Sf
t (3.12)

Then, the updated augmented state vector is calculated as:

Sa
i,t = Sinf,f

i,t + λtP
f
tH

T [HλtP
f
t H

T +Rt]
−1

[

yobst + ε−HSinf,f
t

]

(3.13)

Wang and Bishop (2003) already recognize that parameter λt could vary
significantly in time, particularly at the early stages when concentrations
are small everywhere. For this reason, following their recommendations, its
value is restricted to be between 0.7 and 1.2.

In the work by Bauser et al. (2018), λt is treated as a state variable,
which is used to inflate the model parameters. Because it is a state variable,
it is forecasted and updated using the Kalman filter formulation as follows:

λft = λat−1 (3.14)
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Figure 3.1. A flowchart of Bauser’s method to update the inflation factors, λat .

λat = λft +Kλt
[dλt

− hλ(λ
f
t )] (3.15)

where the superscripts f and a stand for forecasted and updated values, Kλt

is the Kalman gain, dλt
is the absolute value of dt, and hλ(λ

f
t ) represents the

mean residual between observation data and forecasted mean at observation
location. These values are obtained by:

Kλt
= P

f
λt
HT

λt
[Hλt

P
f
λt
HT

λt
+Rλt

]−1 (3.16)

(hλt
(λft ))i = [(Rλt

)ii]
1

2 (3.17)

The covariance of the inflation parameter, Pf
λt
, the observation matrix Hλt

and the inflation parameter observation error Rλt
can be obtained from the

state covariance matrix P
f
t , the observation matrix H and the observation

error covariance matrix R of the augmented state vector S by:

(Pf
λt
)ij = σ2λ|(Pf

t )ij |[(Pf
t )ii(P

f
t )jj]

−

1

2 (3.18)

(Hλt
)ij = [2[(λft )j ]

1

2 (hλt
(λft ))i]

−1
∑

m

(H)ij(H)im(Pf
t )jm[(λft )m]

1

2 (3.19)

(Rλt
)ij = |(R)ij + (HP

inf,f
t HT )ij | (3.20)

where σλ stands for the uncertainty about the inflation factor, which, in this
case, is set to one, the same value used by Bauser et al. (2018), Pinf,f

t stands
for the inflated forecast error covariance matrix, which is given by:

P
inf,f
t = (

√

λft

√

λft

T

) ·Pf
t (3.21)

A workflow summarizing how to apply Bauser’s inflation method is
shown in Figure 3.1.

Finally, the updated augmented state vector is computed as:

Sa
i,t = Sinf,f

i,t +P
inf,f
t HT [HP

inf,f
t HT +Rt]

−1
[

yobst + ε−HSinf,f
t

]

(3.22)
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Table 3.1. Parameters used in the groundwater flow and transport models

Hydr. conduct., K 4 mm beads 10.4 cm/s
Hydr. conduct., K 1 mm beads 0.65 cm/s

Porosity, φ 0.37
Long. disp., αL 4 mm beads 0.2 cm
Long. disp., αL 1 mm beads 0.106 cm

TRVT, αT /αL 0.45

3.3 Sandbox Experiment

The lab set up is the same as in chapter 2.3.1, it is repeated here for a matter
of completeness. A contaminant experiment was carried out in a sandbox
with sodium fluorescein as the tracer. The size of the sandbox is 120 cm by
14 cm by 70 cm. Two reservoirs with constant water levels at 62.5 cm and
60.6 cm with respect to the bottom of the sandbox are set at the upstream
and downstream boundaries, respectively. (Notice that the experiment was
performed with the upstream boundary on the right side of the sandbox, and
all figures are represented in this way.) These two tanks define prescribed
head boundaries, the bottom of the sandbox is impermeable and the top
boundary is the phreatic surface. Between the upstream and downstream
tanks, the area filled with glass beads has a size of 95 cm by 10 cm by 70 cm,
which, for the purpose of modeling, is discretized into 95 columns, 1 row,
and 70 layers of equal-sized cells of 1 cm by 10 cm by 1 cm. The sandbox is
filled with glass beads of two different diameters, 1 mm and 4 mm, according
to a spatial arrangement generated using a truncated Gaussian simulation
(Journel and Isaaks, 1984) with the first quartile as the truncation threshold,
resulting in a large-bead proportion of 0.25. The spatial distribution of the
glass beads in the sandbox can also be seen in Figure 3.2. An injector is
located at column 86, layer 40, at the position identified with a red dot in
the figure. The whole sandbox was placed in a darkroom with a blue light
source that was used to excite the injected fluorescein. Pictures of the plume,
as it evolved in time, were taken and luminosity values were converted into
concentration after a calibration procedure following Citarella et al. (2015).

The hydraulic properties of the beads (Table 3.1) had been characterized
before with the same sandbox equipment (e.g., Cupola et al., 2015b; Citarella
et al., 2015). The hydraulic conductivity of the large beads was estimated
as 10.4 cm/s, and that of the small beads as 0.65 cm/s. The porosity is
constant, independent of the bead size, and equal to 0.37. The longitudinal
dispersivity within the large beads was estimated as 0.25 cm, and within the
small beads as 0.106 cm. The ratio of transverse to longitudinal dispersivity
is constant and equal to 0.45.

Although after processing the pictures the spatial distribution of concen-
tration is fully known within the entire central area of the sandbox (dashed
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Figure 3.2. Sketch of the experimental device (view from the camera side inside
the darkroom). Hu and Hd stand for the constant head boundaries, the dashed
rectangle corresponds to the area captured by the camera in which concentrations
will be monitored, the red triangle is the release location, and the small square
around the red dot indicates the release suspect location during the identification
process. Units are in cm. Pairs of numbers in parenthesis refer to row and column
pairs in the numerical model.
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rectangle in Figure 3.2), in order to mimic a potential sampling campaign in
the field, only the concentrations observed at the twenty nine dots identified
as observation points in the figure will be used for the purpose of identifying
both the hydraulic conductivity and the contaminant source parameters.
The release lasted 1200 s, the fluorescein concentration was 20 mg/l and the
injection rate 2.60 cm3/s. Observations were taken until after 3000 s from
the beginning of the injection, every 30 s for a total of 100 observations at
each observation point.

3.4 Definition of Scenarios and Ensemble Initial-

ization

On a first attempt to apply the rNS-EnKF directly with the observed sand-
box concentrations, some difficulties were found mostly related with the filter
collapsing. These difficulties lead to perform a synthetic experiment prior
to the application to the real data to analyze the impact of the number of
ensemble realizations and the use of different approaches to prevent the fil-
ter to collapse. For this purpose, a reference set of synthetic concentrations
was generated by solving, numerically, the flow and transport equations in
a field with the same spatial distribution of conductivities as the sandbox,
the same boundary conditions, and the same solute injection pulse. Then, 6
scenarios (S1 − S6) were analyzed with different ensemble sizes and differ-
ent damping and inflation methods, more precisely, two ensemble sizes were
tested (500 and 1000), two values for the damping coefficient (damping with
a factor of 0.1 and with a factor of 0.5) and two covariance inflation methods
(Wang’s method and Bauser’s method). After the analysis of the results us-
ing the synthetic reference, the conclusion was reached, as discussed below,
that Bauer’s inflation method was the best method to prevent filter collapse,
thus two additional scenarios (R1 − R2) were run using the experimental
data to test Bauer’s inflation approach. The combination of ensemble sizes
and inflation methods for the different scenarios is shown in Table 3.2.

The initial ensembles of log-conductivity realizations are the same for
all scenarios (for the scenarios of 500 realizations only the first 500 of a
total of 1000 realizations are retained). They are generated using a Gaus-
sian random function with a mean equal to the weighted mean of the bead
log-conductivities, 1.07 ln cm/s, and a variance equal to the variance of a
binary Gaussian mixture of two facies with the means and proportions of
the sandbox and an internal variance of one within each facies, i.e., 1.55
(ln cm/s)2. The correlation range of the log-conductivities is isotropic and
equal to 15 cm. Previous studies (Xu et al., 2013a), in which no condition-
ing conductivity values had been used —as in this case—, have shown that
the initial ensemble of log-conductivities is not as important as a sufficient
number of observations of the state of the aquifer.
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Table 3.2. Definition of scenarios

Scenario Inflation method Ensemble size

Synthetic

S1 no inflation 500
S2 no inflation 1000
S3 damping factor=0.1 500
S4 damping factor=0.5 500
S5 Wang’s method 500
S6 Bauser’s method 500

Experimental

R1 no inflation 1000
R2 Bauser’s method 500

Table 3.3. Suspect ranges of source parameters for the generation of the initial
ensemble of realizations and their true values

Parameter Actual Value Suspect Range

Xs - x-coordinate of source (cm) 86 78− 87
Zs - z-coordinate of source (cm) 40 38− 47

Ir (cm3/s) - injection rate 2.60 2− 3
Ic (mg/l) - injection concentration 20 5− 25

Te (s) - final release time 1200 1050 − 1250

Similarly, the initial ensembles of source locations and pulses are the
same for all scenarios. They are generated within suspect ranges that are
defined using uniform distributions. The suspect source location (Xs, Zs),
in cm, ranges in U[78, 86] × U[38, 47] (see Figure 3.2), the suspect injection
rate ranges in U[2, 3] cm3/s, the suspect injection concentration ranges in
U[5, 25] mg/l and the suspect final release time ranges in U[1050, 1250]
s (see Table 3.3). These parameters are generated independently among
them and of the log-conductivities. These ranges are used exclusively for
the generation of the initial ensembles; afterwards, the updated parameter
values are not restricted by any bounds.

3.5 Performance Evaluation

The rNS-EnKF is applied to each scenario assimilating the observed con-
centrations at the points indicated in Figure 3.2 at each time step. No
log-conductivity or piezometric head data are observed at any time. After
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assimilating the concentration data at the end of each time step, the filter
provides an ensemble of updated parameters, which are analyzed in different
ways:

1. Computing the ensemble mean and variance of the contaminant source
parameters at the end of each time step. The ensemble mean can be
interpreted as a parameter estimate and the variance as a measure of
the estimation uncertainty,

2. Visually analyzing the spatial variability of the cell ensemble mean and
ensemble variance of log-conductivities with respect to the reference
log-conductivity spatial distribution,

3. Computing the root mean-squared error (RMSE), the ensemble spread
(ES), and the ratio RMSE/SE of log-conductivities as given by

RMSE =

√

√

√

√

1

n

n
∑

i=1

(lnKref
i − lnKi)2, (3.23)

ES =

√

√

√

√

1

n

n
∑

i=1

σ2
lnKi

, (3.24)

with n being the number of cells over which the averages are com-
puted, lnKref

i is the reference log-conductivity value at cell i, lnKi

is the average of the ensemble of log-conductivity realizations at cell
i, and σ2

lnKi
is the variance. The RMSE measures how accurate is

the ensemble average as an estimate of the reference field, and the ES
measures the uncertainty associated with such an estimate. The ratio
RMSE/ES is a measure of filter inbreeding, which may cause the filter
to collapse, and should, ideally, be close to one (e.g., Liang et al., 2011;
Xu et al., 2013a).

3.6 Results

As mentioned above, two analyses have been performed, a preliminary one
using synthetic data to decide on the number of realizations and on a method
to prevent filter collapse, followed by a specific analysis of the data collected
at the sandbox experiment.

3.6.1 Analysis of the Synthetic Data

The synthetic analysis is performed on six scenarios with combinations be-
tween two numbers of realizations and five alternatives to prevent filter
collapse as given in Table 3.2. Recall that the reference for the synthetic
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case comes from a numerical simulation of flow and transport with the same
characteristics as the sandbox experiment.

Figures 3.3 and 3.4 focus on the source parameters, they provide the
ensemble mean and the ensemble variance, respectively, of all five source
parameters, after the update at each time step for all six scenarios. The
ranges of the ensemble variances were very different for each parameter
and for this reason the results are displayed after standardization by the
ensemble variances of the initial ensembles. It is hard to argue which is the
scenario that performs best. Scenario S3, the one with a damping factor of
0.1, can be discarded since it is the one that ends with the highest variances
for most of the parameters. Scenario S5, the one with Wang’s inflation
method, should also be discarded because it collapses the ensemble after
a few time steps as shown by the rapid decrease of the ensemble variance
to zero for almost all parameters. Scenario S2, with no inflation, but 1000
realizations –double than the rest of the scenarios– performs well in that
it provides an estimate close to the true values and the variance decreases
in time consistently and similarly to the rest of the scenarios. Scenario S1,
with no inflation and 500 realizations shows some filter collapse, which does
not happen as quickly as for S5 but ends with similar magnitudes for the
ensemble variances. Scenario S4, with a damping factor of 0.5, does a good
job in the estimation of the source parameters, except for Ic but the final
uncertainties are the largest after S3 for most of the parameters. Finally,
scenario S6, with Bauser’s inflation method, could be considered as the
one with the best performance, since it provides very good estimates for all
parameters, except for Ir, and it has low final uncertainties without filter
collapse. All methods estimate the vertical position Zs of the release point
lower in the sandbox than its real position, this behavior can be produced
by local velocity variations induced by the proximity of the injection to the
boundary between two cells with different glass bead diameters which are
not resolved by the observations.

Figure 3.5 shows the ensemble mean and Figure 3.6 the ensemble vari-
ance of the initial lnK realizations and of the updated ones computed at the
90th time step for all synthetic scenarios. The ensemble mean and ensemble
variance of the initial lnK are almost homogeneous and equal to their prior
values since no conditional data of lnK is employed. After assimilating all
concentration data during 90 time steps, the ensemble mean of the updated
lnK conductivities can capture the main patterns of variability of the glass
bead distribution with a substantial reduction of the ensemble variance in
most of the sandbox. A comparison among the different scenarios shows
that, again, S3 performs worst, with the worst estimation of lnK and the
largest estimation variances and S5 shows filter collapse at most locations.
Of the remaining scenarios, S2 and S6 give the best results, with S2 being
slightly better in lnK pattern estimation thanks to the larger number of
ensemble members. For a more quantitative evaluation of the identification
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Figure 3.3. Time evolution of the ensemble means of the updated contaminant
source parameters for all the synthetic scenarios (S1− S6).
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Figure 3.4. Time evolution of ensemble variances of the updated contaminant
source parameters for all synthetic scenarios(S1−S6). Each variance plot has been
standardized by the variance of the initial ensemble.
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Figure 3.5. Ensemble mean of the initial lnK realizations and the updated lnK
realizations of all synthetic scenarios(S1− S6) at the 90th time step.

of lnK, Figure 3.7 shows how the three statistics RMSE, ES and RMSE/ES
evolve in time as the data assimilation proceeds. The best performance
would be for the lowest values of RMSE and ES and the closest-to-one
RMSE/ES ratio. The two best scenarios are S2 and S6, with S6 having the
RMSE/ES ratio closest to one.

Taking into consideration the performance of the rNS-EnKF for the dif-
ferent synthetic scenarios, the two scenarios that will be analyzed with the
experimental data are the non-inflation method with 1000 realizations, re-
ferred to as R1, and the Bauser’s inflation method with 500 realizations,
referred to as R2.

3.6.2 Analysis of the Sandbox Data

The difficulties found on the first attempt to apply the rNS-EnKF to the
sandbox data must be due to observation errors in the concentrations. Ac-
cording to earlier work (Chen et al., 2018), an underestimation of the obser-
vation error will force the filter to fit the concentrations too closely producing
biased estimates of the parameters, and an overestimation of the observation
error will allow too loose a fit producing estimates with large uncertainty.
Since the same sandbox equipment as Cupola et al. (2015b) and Chen et al.
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Figure 3.6. Ensemble variance of the initial lnK realizations and the updated
lnK realizations of all synthetic scenarios(S1− S6) at the 90th time step.
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Figure 3.7. Time evolution of lnK RMSE, ES and the ratio of RMSE to ES for
all synthetic scenarios(S1− S6).

(2018) is used, the same observation error distribution with a mean of 0
mg/l and a standard deviation of 1 mg/l is retained for this analysis.

Figures 3.8 and 3.9 show the evolution of the ensemble mean and the en-
semble variance, respectively, of the contaminant source parameters for the
two sandbox scenarios (R1, R2). Both approaches perform well with mean
estimates close to the true values and estimation variances that go down
close to zero for all parameters. It seems that the injection concentration
and the injection rate are more difficult to identify, they have the largest
estimation error and the largest estimation variance; however, if the mass
loading rate is computed, that is the product of the injection rate times
the injection concentration, its mean and variance is similar to those of the
other contaminant parameters. This result seems to indicate that there may
be some indetermination in the identification of parameters Ic and Ir that
disappears when the subject of identification is its product. Disregarding pa-
rameters Ic and Ir, it can be concluded that both scenarios perform equally
and, therefore, that Bauser’s inflation method can make up for the reduction
from 1000 realizations to 500 realizations with similar performance.

Figure 3.10 shows the ensemble mean and variance of lnK for scenarios
R1 and R2 at the 90th time step. Figure 3.11 shows the ensemble mean of
the absolute differences between the reference and updated lnK maps at the
90th time step. Both scenarios capture the main patterns of variability of
lnK and the ensemble variance is substantially reduced in the areas of low
conductivity. Comparing the two scenarios, variance reduction is larger for
scenario R2 and the absolute deviations between reference and estimated
conductivities are smaller for R2, implying again that Bauser’s inflation
method is a valuable approach to reduce ensemble size and achieve similar
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Figure 3.8. Time evolution of the ensemble means of the updated contaminant
source parameters for the two sandbox scenario (R1, R2). Also shown the mass
loading rate Ic · Ir.
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Figure 3.9. Time evolution of the ensemble variances of the updated contaminant
source parameters for the two sandbox scenario (R1, R2). Also shown the mass
loading rate Ic · Ir. Notice that each ensemble variance has been normalized by
their values at time zero.
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Figure 3.10. Ensemble mean (top row) and ensemble variance (bottom row) of
updated lnK of scenarios R1 and R2 at the 90th time step.

Figure 3.11. Ensemble mean of the absolute deviation between reference and
updated lnK in scenarios R1 and R2 at the 90th time step.

(or better) results as when a larger ensemble is used. Figure 3.12 shows the
evolution in time of the lnK RMSE, ES and RMSE/ES ratio for scenarios
R1 and R2. Again, scenario R2 performs remarkably well as compared to
scenario R1, with a similar RMSE, smaller ES and a ratio RMSE/ES not
too far from one.

Figure 3.13 shows the evolution of the contaminant plume in the sandbox
at the 10th, 40th, 60th and 90th time steps. Figures 3.14 and 3.15 show
the ensemble mean of the contaminant plumes for scenarios R1 and R2,
respectively, at the same time steps as in Figure 3.13 computed with all the
parameters updated at the 90th time step. The comparison of the simulated
plumes with the observed ones is very favorable, demonstrating that the
estimated parameters are conditioned on the observed concentrations, and
that they are capable of giving a good prediction of contaminant movement.
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Figure 3.12. Time evolution of lnK RMSE, ES and the ratio of RMSE to ES for
scenarios R1 and R2.

T10: contaminant plume T40: contaminant plume 

T60: contaminant plume T90: contaminant plume 

Figure 3.13. Reference contaminant plume evolution at the 10th, 40th, 60th and
90th time steps in the sandbox. Red triangle denotes the real injector.



CHAPTER 3. CONTAMINANT SPILL IN A SANDBOX . . . 57

T10: contaminant plume T40: contaminant plume 

T60: contaminant plume T90: contaminant plume 

Figure 3.14. Ensemble mean of contaminant plume evolution of scenario R1 at
the 10th, 40th, 60th and 90th time steps with all parameters updated after the 90th
time step. Red triangle denotes the real injector.

T10: contaminant plume T40: contaminant plume 

T60: contaminant plume T90: contaminant plume 

Figure 3.15. Ensemble mean of contaminant plume evolution of scenario R2 at
the 10th, 40th, 60th and 90th time steps with all parameters updated after the 90th
time step. Red triangle denotes the real injector.



58 CHAPTER 3. CONTAMINANT SPILL IN A SANDBOX . . .

3.7 Discussion and Conclusions

Xu and Jaime (2018) showed the capabilities of the the restart normal-
score ensemble Kalman filter (rNS-EnKF) for the simultaneous identifica-
tion of source parameters and hydraulic conductivities in synthetic aquifers.
This work presents the first attempt to apply it to a non-synthetic exer-
cise. An aquifer is mimicked by a laboratory sandbox in which geometry,
initial and boundary conditions are known. The first finding was that it was
not straightforward to apply the approach to the collected data; working
under laboratory conditions does not preclude measurement and other er-
rors, what prevented the filter to work properly on first attempts. The filter
would collapse, even for large ensemble sizes, what led to an analysis of a
synthetic case using solute concentrations generated by a numerical model,
thus getting rid of model or measurement errors. In this synthetic exercise,
six scenarios were compared showing the importance of a good selection of
an approach to prevent filter collapse. Of the four alternative approaches,
Bauser’s covariance inflation method appeared as the most appropriate, al-
lowing to reduce the ensemble size from 1000 members (without inflation) to
500 (with inflation) to yield similar results. In these synthetic scenarios, it
could be observed also that the horizontal coordinate of the source was well
identified, but that the vertical one was estimated a little bit downwards
from the original position. The explanation must be due to the closeness of
the source to a boundary between the large glass beads and the small ones.
The synthetic results also showed that it is difficult to identify a binary con-
ductivity field starting from a continuous distribution of log-conductivities,
yet, the two main zones of high and low conductivities are well captured in
the different scenarios, with the scenario having 1000 realizations perform-
ing best, followed by the scenario with 500 realizations and using Bauser’s
covariance inflation method.

The application of Bauser’s inflation and 500 realization to the data
observed in the sandbox was compared with a non-inflated filter and 1000
realizations, with comparable results. The identification of the source pa-
rameters is good in both cases, even for the vertical coordinate of the injec-
tion. A better identification of the source vertical position in the sandbox
than in the synthetic exercises could be explained by the larger measurement
error variance used in the sandbox observations than in the synthetic sce-
narios. A larger measurement error gives the filter more flexibility to update
the parameters to fit the observations while resulting in a larger variance on
the ensemble of final parameters. It was also evident that the estimation of
both injection rate and injection concentration were biased; a further anal-
ysis showed that there is a degree of indetermination in the estimation of
these two parameters since the parameter that really matters is their prod-
uct, the mass loading rate. The mass loading rate is well estimated with
no bias and little uncertainty. As in the synthetic case, the estimation of a
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binary conductivity field by a continuous one is almost impossible, but the
final ensemble of log-conductivities displays enough spatial heterogeneity to
distinguish two main areas of high and low conductivities, and, more impor-
tantly, the solution of the mass transport equation in the final conductivity
fields yields a contaminant plume that moves in space and time in a very
similar pattern as the one observed in the sandbox.

It is important to notice that, in the sandbox experiment, the only avail-
able data was concentration data; no observations of either conductivities or
piezometric heads were available. In a practical case, both conductivity and
piezometric head data could also be assimilated resulting in an improved
estimation of all parameters being identified.

In conclusion, the rNS-EnKF has been demonstrated to work for the
joint identification of a contaminant source and conductivities beyond the
synthetic exercises were it had been tested previously. The demonstration
is still far from field conditions, where boundary and initial conditions, forc-
ing terms or geometry are not necessarily known, but the sandbox exercise
included a binary heterogeneous conductivity spatial distribution, which is
always difficult to identify. Further work should focus on the application of
the rNS-EnKF to a field case.
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4
A comparison between

ES-MDA and restart EnKF
for the purpose of the

simultaneous identification of
a contaminant source and

hydraulic conductivity

Abstract

Understanding a contaminant source may help in a better management and
risk assessment of a polluted aquifer. However, contaminant source infor-
mation may not be available when a pollutant is detected in a drinking
well. The restart ensemble Kalman filter (r-EnKF) has been demonstrated
in synthetic and laboratory experiments as an efficient solution for the iden-
tification of a contaminant source. Recently, the ensemble smoother with
multiple data assimilation (ES-MDA) has been proposed as an alternative
to the r-EnKF as a more efficient solution given that the r-EnKF needs to
restart the simulation of the state equation from time zero after each data
assimilation step. An analysis, in a synthetic aquifer, of the performance
of the ES-MDA for the simultaneous identification of a contaminant source
and the spatial distribution of hydraulic conductivity by assimilating both
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piezometric head and concentration observations is carried out using the r-
EnKF as a benchmark. The conclusion is that for the ES-MDA to reach the
same level of accuracy as the r-EnKF the number of multiple data assimila-
tions must be large, and therefore, the apparent advantage of the ensemble
smoother, i.e., the assimilation of all observational data at once, vanishes.
The ES-MDA is able to outperform the r-EnKF, marginally, for the specific
synthetic case analyzed, only for a sufficiently large number of iterations at
a cost of larger CPU consumption than the r-EnKF, and it can perform far
better than the r-EnKF just with a cost of larger CPU consumption.

4.1 Introduction

When contaminant is released into the subsurface, it will jeopardize not
only human health but also damage the local ecosphere, especially if the
contaminant is hazardous. When contamination happens inadvertently or
is purposely hidden, it may be difficult to trace it back from concentration
observations taken downstream from the source.

Yet, knowledge of the contaminant source is vital for groundwater con-
tamination management, contamination control, contamination risk assess-
ment and remediation.

How to identify a contaminant source once contamination has been de-
tected has attracted much attention in the last decades. It is a difficult prob-
lem that has been addressed using inverse modeling. According to their char-
acteristics, the inverse modeling approaches for contaminant source identi-
fication could be classified into three categories: optimization approaches,
probabilistic approaches and deterministic approaches. The reader is re-
ferred to the reviews by Sun et al. (2006b); Atmadja and Bagtzoglou (2001b)
for further information.

In the optimization approaches, the objective is to minimize an objective
function that measures the differences between simulated concentrations and
measurement observations and that is written in terms of the parameters
defining the contaminant source. Some of the approaches used are least-
squares regression and linear programming (Gorelick et al., 1983), maximiza-
tion of correlation coefficients (Sidauruk et al., 1998), constrained robust
least squares (CRLS) (Sun et al., 2006a), CRLS estimator combined with
a branch-and-bound global optimization (Sun et al., 2006b), evolutionary
search algorithms (Mirghani et al., 2009), or hybrid simulation-optimization
(Ayvaz, 2016).

In the probabilistic approaches, the objective is, generally speaking, to
maximize some posterior probability of the source parameters given the
observations. Some approaches used for this purpose are minimum relative
entropy (Woodbury and Ulrych, 1996; Woodbury et al., 1998; Cupola et al.,
2015a), the geostatistical approach (Sun, 2007; Gzyl et al., 2014; Butera
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et al., 2013), Markov chain Monte Carlo (Wang and Jin, 2013), or a Bayesian
approach (Zeng et al., 2012; Zhang et al., 2015; Zanini and Woodbury, 2016).

In the deterministic approaches, the main objective is to solve the advection-
dispersion equation backward in time. Some of the approaches employ the
marching-jury backward beam equation method (Atmadja and Bagtzoglou,
2001a; Bagtzoglou and Atmadja, 2003), Tikhonov regularization (Skaggs
and Kabala, 1994; Neupauer et al., 2000), or a quasi-reversibility method
together with minimum relative entropy (Skaggs and Kabala, 1995).

In addition to the three types of approaches mentioned above, recently,
the use of the restart ensemble Kalman filter (r-EnKF), was proposed by
Xu and Gómez-Hernández (2016b) to identify a contaminant source by as-
similating concentration observations. The work was inspired by the EnKF,
which can give the efficient results obtained in the solution of standard inver-
sion problems(e.g., Franssen and Kinzelbach, 2009; Xu et al., 2013a; Xu and
Gómez-Hernández, 2015). Later, (Xu and Jaime, 2018) extended their work
to jointly identify the source information and the underlying hydraulic con-
ductivity field in a synthetic aquifer, and they also have successfully tested
it in a tank experiment (Chen et al., 2018). These works have proven the ca-
pability of the EnKF for contaminant source identification. However, given
the nature of the ensemble Kalman filter, with an extended state vector
including the parameters controlling the state equation, it was impossible
to forecast the state (concentration distribution) from the updated concen-
trations and to account for the updated parameters, which, in this case, are
the ones describing the source. To consider the updated parameters (say,
the updated location of the release) there is a need to restart the simula-
tion from time zero after each updating step, since the contaminant source
parameters refer to the source at time zero, but this restart makes it very
time consuming as the number of observation steps increases, as well as
some updated source parameters still with high uncertainty (e.g., Xu and
Gómez-Hernández, 2016b; Xu and Jaime, 2018; Chen et al., 2018).

The ensemble smoother (ES), first proposed by van Leeuwen and Evensen
(1996), is an alternative that could alleviate the computational burden of the
EnKF, because it assimilates all data for all time steps at once. This avoids
the restart of the simulation at every time step and makes the ES faster and
easier to implement than EnKF (Emerick and Reynolds, 2013a). However,
the performance of the ES for the case of non-linear state equations is not
good (e.g., Evensen and van Leeuwen, 2000; Crestani et al., 2012), the main
reason being the lack of multiple updating inherent to the EnKF.

A detailed explanation why the EnKF outperforms the ES in dealing
with non-linear problems can be referred to the work Evensen (2018). Here,
a brief explanation is given as follows. Both the EnKF and the ES rely heav-
ily on covariances, which can only capture linear relationships. The EnKF
recursively updates the parameters of interest by assimilating observation
information in time to refine it close to the reference solution.The ES makes
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a single update using all the data from all time steps. That is, the EnKF
is equivalent to many linear approximations to the state equation followed
by incremental updates along the linear approximation, whereas the ES is
equivalent to a single linear approximation to the state equation and a sin-
gle large update along the linear approximation. The EnKF is equivalent
to a non-linear optimization based on local linear approximations, whereas
the ES is a linear minimization, which may be very far from optimal if
the state equation is highly nonlinear. Unless, iteration is also introduced
into the ES. This is what Emerick and Reynolds (2013a) propose with their
ensemble smoother with multiple data assimilation (ES-MDA). The basic
idea is to assimilate all data from all time steps several times, progressively
updating the parameters after each assimilation.

Several successful applications of the ES-MDA are reported in the reser-
voir history-matching literature (e.g., Emerick et al., 2013; Emerick and
Reynolds, 2013b; Le et al., 2015, 2016; Lee et al., 2013; Fokker et al., 2016).
In these works, the reservoir state equations are nonlinear, and the ES-MDA
results outperforms the EnKF for both synthetic and real field problems. Re-
cently, a few applications have been reported in the hydrogeology literature
(Li et al., 2018b,a) for the characterization of hydraulic conductivities by
assimilating piezometric heads.

In this paper, the ES-MDA is used, for the first time to the best of our
knowledge, to jointly identify a heterogeneous hydraulic conductivity field
and contaminant source information on a synthetic aquifer. As a benchmark,
the performance of the ES-MDA will be compared with the restart EnKF (r-
EnKF). Note that the main aim of this work is to evaluate the capability of
the ES-MDA and compare the performance difference between the ES-MDA
and r-EnKF in the joint identification of conductivity field and contaminant
source information.

The paper is organized as follows. First, we introduce the algorithmic
description of the r-EnKF and the ES-MDA, and then test and compare
the ES-MDA with the r-EnKF on a synthetic aquifer. The paper ends with
a summary discussion of whether the ES-MDA actually outperforms the
r-EnKF or not.

4.2 Methodology

4.2.1 Ensemble Kalman filter

The EnKF was developed based on the Kalman filter proposed by Kalman
et al. (1960) to better tackle nonlinear state-transfer equations. The main
difference between the EnKF and the Kalman filter is on how the covariance
matrices are calculated. In the original filter, the covariances were propa-
gated in time using a linear state-transfer function (or a linear approximation
in case the function is non-linear), while in the EnKF, the covariances are
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calculated from the states obtained after solving the state-transfer function
on an ensemble of realizations (Evensen, 2003, 2009; Chen and Zhang, 2006;
Xu et al., 2013a; Xu and Gómez-Hernández, 2015). Like the Kalman filter,
the EnKF consists of two steps: forecast and analysis. The first one is to
forecast the state variables —in our case, piezometric heads and solute con-
centrations —at the tth time step (Bf

t ) from the state variables (Ba
t−1) and

model parameters —in our case, hydraulic conductivities and contaminant
source parameters —updated after the last time step (Aa

t−1).

However, as already discussed in Xu and Gómez-Hernández (2016b), it
is impossible to take into account the updated parameters (Aa

t−1) in the
forecast step when these parameters define the spatiotemporal position of
a contaminant source unless the forecast is restarted from time zero. The
details of r-EnKF was already introduced in chapter 2.2.2, but they are
repeated here for a matter of completeness. The forecast equation,

Sf
t = ψ(B0, A

a
t−1). (4.1)

where Sf
t is an augmented matrix containing the state variables and model

parameters , ψ represents the state-transfer function, and B0 represents the
state variables at time zero. The update step modifies the parameter values
from the previous time step (Aa

t−1) as a function of the discrepancy between
forecasted and observed state variables at observation locations

Sa
t = Sf

t +Kt

[

yobst + εi −HSf
t

]

(4.2)

with

Kt = P
f
AB,t(P

f
BB,t +Rt)

−1, (4.3)

where yobst + εi is the vector of observed concentrations and piezometric
heads (composed of the sum of the true head or concentration yobst plus an
observation error εi of zero mean and covariance Rt), Kt is the Kalman

gain, Pf
AB,t is the cross-covariance between parameters and forecasted state

variables at observation locations, and P
f
BB,t is the auto-covariance between

the forecasted state variables at the observation locations.

If we assume there are Ne realizations in the ensemble and each real-
ization has Nm elements. The state variable vector B contains piezometric
heads H and concentrations C at all aquifer model cells

B =

[

H
C

]

, (4.4)

with Ne realizations of 2Nm variables, and the model parameter vector A
contains hydraulic log-conductivity lnK in all aquifer model cells and the
contaminant source parameters, which are source location, X for the x-
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coordinate, and Y for the y-coordinate, initial release time T , release dura-
tion ∆T , and mass-loading rate M

A =

















lnK
X
Y
T
∆T
M

















. (4.5)

with Ne realizations of (Nm + 5) variables.

4.2.2 Ensemble smoother with multiple data assimilation

The ensemble smoother is, conceptually, the same as the r-EnKF but lim-
ited to one forecast step (for all the time steps for which observations are
available) and a single update step (based on the discrepancies between
observations and predictions at all time steps).

The equations that describe the ES are almost the same as those for the
r-EnKF above, with some differences. The forecast step is given by

Bf = ψ(B0, A0). (4.6)

where now Bf contains the state forecasted at all time steps —computed
from the initial state B0 and the initial ensemble of parameters A0. And
the update step is given by

Aa = A0 +K(yobs + ε−Bf
o ), (4.7)

with

K = P
f
AB(P

f
BB +R)−1, (4.8)

where yobs are all of the observations at observation locations, ε are the
observation errors, and Bf

o are the forecasts at observation locations. The
covariances appearing in Eq. (4.8), P

f
AB and P

f
BB are computed for all

time steps; these covariance matrices include the cross-covariances between
time steps, an aspect not accounted for in the r-EnKF that it was thought
could render the ES superior to the EnKF. From a computational point
of view, if there are No observations locations sampled Nt times, the sizes
of the matrices involved in the r-EnKF are proportional to No, whereas in
the ES they are proportional to the product No ·Nt; Hence, the size of the
cross-covariance P

f
AB,t is (Nm + 5)× 2No, the size of the covariance matrix

P
f
BB,t and Rt in Eq. (4.3) is 2No × 2No; whereas the size of the cross-

covariance P
f
AB is (Nm+5)× (2No ·Nt), the size of P

f
BB and R in Eq. (4.8)

is (2No ·Nt)× (2No ·Nt).
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The solution provided by Emerick and Reynolds (2013a) to improve the
performance of the ES for non-linear state-transfer equations is to iterate,
what is called multiple data assimilation (because the same data is assimi-
lated multiple times) on the basis that each iteration of the ES is similar to
a Gauss-Newton iteration (Reynolds et al., 2006; Gu and Oliver, 2007). Ba-
sically, Eq. (4.6) is iteratively applied using the latest updated parameters
as the initial parameters for the next iteration.

However, since all data are assimilated multiple times, there is a need
to inflate the observation error for each assimilation step. For this purpose,
a non-increasing sequence of error variance inflation coefficients {aj , j =
1, ..., Na} is used in the updating equations, with Na being the number of

assimilation iterations, and satisfying that
Na
∑

j=1

1

aj
= 1.

The ES-MDA equations display the following differences. The forecast
step is given by

Bf
j = ψ(B0, Aj). (4.9)

where j is the iteration counter, and for each iteration the forecast uses
the last updated parameters from the previous iteration. And the update
equation is given by

Aj+1 = Aj +Kj(y
obs + ε−Bf

o,j) (4.10)

with
Kj = P

f
AB,j(P

f
BB,j + ajR)

−1, (4.11)

In Eq. (4.10) and Eq. (4.11), we can see how the observation variance
is amplified by factor aj and the observation error is amplified by

√
ai.

Please notice that, in case that there may be a loss of rank in the ensem-
ble when solving (Pf

BB,j + ajR)
−1 when the setting of the case is Ne < 2No

for the EnKF or Ne < 2No ∗ Nt for the ES-MDA, the subspace inversion
introduced by Evensen (2004) is used to solve the problem. The detailed
explanation can be referred to the work by Evensen (2004); Emerick and
Reynolds (2013a).

4.3 Application

A synthetic confined aquifer is designed and constructed on a 1000 [L] by
1000 [L] by 50 [L] cube discretized into 50 by 50 by 1 cells, where each
cell is 20 [L] by 20 [L] by 50 [L]. Please note that no specific units are
given, only their dimensional analysis, any set of consistent units will yield
the same results. The reference log-conductivity field is drawn from a mul-
tivariate Gaussian random process defined by the parameters in Table 4.1
using the GCOSIM3D —a sequential Gaussian simulation program (Gómez-
Hernández and Journel, 1993). The resulting reference log-conductivity field
is shown in Figure 4.1.
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Table 4.1. Parameters of the random functions used to generate the lnK realiza-
tions. Spherical variogram with anisotropic spatial correlation defined by λmax and
λmin, which are the ranges in the maximum and minimum directions of continuity.
The angle corresponds to the maximum continuity direction and it is measured
clockwise from the North direction

Mean Std. dev. Variogram λmax λmin Angle

lnK -1 1 Spherical 300 200 135
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Figure 4.1. Reference lnK and boundary conditions. The source location is
marked with a dark dot. The inner square indicates the suspect contaminant source.
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The model boundaries, as indicated in Figure 4.1, are set as follows:
north and south boundaries are impermeable; west boundary is a prescribed
head condition with a constant value of 50 [L]; east boundary is a prescribed
flow boundary divided into two equal-length segments: the north segment
with a total prescribed flow extraction rate of 20 [L3T−1] and the south
segment with a total extraction prescribed flow rate of 40 [L3T−1]. Figure
4.2 shows the location of the 25 observation wells (red triangles) and the
two control wells (blue diamonds).

1000

1000

N
o

rt
h

in
g

0
0 Easting

Distribution of wells

#1

#2

Figure 4.2. Location of wells. Red triangles mark observation wells; blue dia-
monds mark verification wells. The black circle is the contaminant source location.

The initial concentration is zero [ML−3] and the initial head for the
whole domain is 58 [L], except the west constant boundary. Other ground-
water flow and contaminant transport parameters are assumed known and
set as homogeneous: porosity of 0.3 [−], longitudinal dispersivity of 2 [L],
transverse to longitudinal dispersivity ratio of 0.1.

We assume the contaminants are inert. Only advection and dispersion
are considered as transport mechanisms. Both groundwater flow and con-
taminant transport are under transient conditions. The groundwater flow
simulator MODFLOW (McDonald and Harbaugh, 1988) and the transport
simulator MT3DMS (e.g., Zheng, 2010; Ma et al., 2012) are used as forward
models to solve the groundwater flow and contaminant transport problems,
respectively.

The total simulation time is 10000 [T] and is discretized into 100 time
steps with increasing size following a geometric series with ratio 1.01 (The
first time step is 58.66 [T]). The observations of both piezometric head and
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concentration from the first 60 time steps (around 4790 [T]) are assimilated
for the purpose of parameter identification.

The contaminant is released at location (X,Y ) = (230, 610) [L] with a
mass-loading rate of 1000 [MT−1], starting at time 613 [T] (around the 10th
time step) and ending at time 2867 [T] (around the 40th time step), with a
release duration of 2254 [T].

Figure 4.3 shows three snapshots of piezometric head and solute con-
centration taken on the reference aquifer at the 10th simulation time step
(beginning of contaminant injection), 40th time step (end of contaminant
injection), and at 60th time step (end of assimilation period). This figure
also shows the location where both piezometric heads and concentration
are sampled for the purpose of their assimilation in the different scenarios
described next.

Seven scenarios will be evaluated. The first one, used as a benchmark
to evaluate the efficiency of the ES-MDA is the r-EnKF, which has already
proven its ability for the identification of contaminant source parameters
and hydraulic conductivity characterization; it will be referred to as S0.
The second one is the ES in its original implementation, that is, without
any iteration. Then, to evaluate the effect of the number of iterations for the
identification, the ES-MDA is run for five different scenarios, the difference
between them is the number of iterations (or data assimilations) performed;
they will be labeled S2 to S6 with 2, 4, 6, 8 and 10 iterations, respectively.
Notice that the observation error inflation coefficients ai will, in all cases,
be equal to the number of iterations, in terms of the work by Emerick and
Reynolds (2013a) in which the use of decreasing inflation coefficients leads
to only small improvements with respect to using the inflation coefficients
equal to the number of data assimilations.

An ensemble of 400 initial log-conductivity realizations is generated using
the same random function model and parameters as for the reference log-
conductivity field. Notice that there are no conditioning log-conductivity
data, thus the ensemble mean and ensemble variance of the initial log-
conductivity realizations are flat and equal to their marginal values. As
already discussed by Xu et al. (2013a) the use of the same random function
parameters for the generation of the initial realizations as for the genera-
tion of the reference case is only a marginal advantage given that there are
no conditioning conductivities. Indeed, Xu et al. (2013a) demonstrate the
effectiveness of the r-EnKF using a totally uninformative prior random func-
tion for the generation of the initial ensemble with similar results as when
the ”true” random function is used. Also, an ensemble of 400 5-tuplets for
the source parameters is generated, each 5-tuplet contains five values drawn
independently from the following uniform distributions: initial release time
T ∈ U [550, 750], release duration ∆T ∈ U [2100, 2300], mass-loading rate
M ∈ U [900, 1100], and source location (X,Y ) ∈ (U [100, 300] × U [500, 700]).
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Figure 4.3. Reference. Piezometric head (top row) and contaminant plume (bot-
tom row) at the 10th (beginning of solute injection), 40th (end of solute injection),
and 60th (end of assimilation) time steps in the reference aquifer. White triangles
mark the observation wells.
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4.4 Results

Before starting the analysis of the results, Table 4.2 shows the CPU con-
sumption for all scenarios. Recall that in the r-EnKF (S0) there are 60
assimilation plus updating steps, and 60 runs to solve the state equations,
each run strating from time zero up to the assimilation step, but in each up-
dating step only 25 observations are assimilated; whereas, in the ES-MDA
the number of assimilation plus updating steps and of model runs is equal to
the number of data assimilations, but in each updating step 1500 observa-
tions (25 observation locations times 60 time steps) are assimilated at once.
For the current model and setup, the ES-MDA is cheaper to run than the r-
EnKF up until data are assimilated four times, with an ES-MDA cost higher
than two and half times that of the r-EnKF when data are assimilated ten
times.

The r-EnKF, the ES and the ES-MDA will be used to assimilate the
piezometric head and concentration data at the 25 observation locations.
This assimilation will result in an ensemble of updated parameters (for the
spatial distribution of hydraulic conductivity and for the parameters defining
the contaminant source) that are used to produce an ensemble of piezometric
heads and concentrations past the assimilation period (60th time step) for
40 time steps more. The performance of the different scenarios will be
evaluated by comparing the different final ensembles to their corresponding
counterparts in the reference aquifer.

Figure 4.4 shows the ensemble average and the ensemble variance of
the updated logconductivities for scenarios S0 to S3 and S6, and the corre-
sponding maps for S4 and S5 for this and following figures are shown in the
appendix of this chapter. The ensemble mean shows how the main patterns
of variability of the reference are captured by the updated ensemble, and the
ensemble variance shows the local variability of the updated logconductivi-
ties. From a purely qualitative point of view it is clear that the r-EnKF does
a good job in capturing the reference patterns with a small local uncertainty
where the ensemble variance is close to zero, that the ES is able to extract
patterns which are, overall, similar to the reference but still far from them
and with a substantial local variability, and that the ES-MDA gets better
the more times data are assimilated, with scenario S6 —for which data are
assimilated 10 times —giving the best results.

The above analysis can be quantified by computing the average absolute
bias (AAB) and the ensemble spread (ESp). The AAB is used to measure
the average absolute deviation between the updated values and the refer-
ence ones. The ESp measures the precision of the ensemble of updated
realizations by calculating the root square of the ensemble variance. Their
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1Figure 4.4. Scenarios S0-S3 and S6. Ensemble mean (left column) and ensemble
variance (right column) of updated log-conductivity realizations.



74 CHAPTER 4. A COMPARISON BETWEEN ES-MDA AND . . .

Table 4.2. Definition of scenarios and CPU time consumption. The number in
parenthesis refers to the number of data assimilation steps used in the ES-MDA.
(ES would be equivalent to ES-MDA(1))

Method Scenario CPU in s CPU in % of S0

restart EnKF S0 16366 100%
ES S1 4981 30%
ES-MDA(2) S2 9526 58%
ES-MDA(4) S3 17937 110%
ES-MDA(6) S4 27432 149%
ES-MDA(8) S5 34936 210%
ES-MDA(10) S6 42422 259%

expressions are the following:

AAB =
1

Ne

Ne
∑

i=1

1

Nr

Nr
∑

j=1

| lnKi,j − lnKi,ref |, (4.12)

ESp =

√

√

√

√

1

Ne

Ne
∑

i=1

σ2i , (4.13)

where Ne is the number of model elements, Nr is the number of realiza-
tions, lnKi,ref is the reference logconductivity value at node i, lnKi,j is
the logconductivity at node i for realization j and σi is the logconductivity
ensemble variance at node i.

Figure 4.5 shows the AAB and ESp of lnK and of the parameters defining
the contaminant source for all scenarios computed before any data assimila-
tion and after data assimilation over the first 60 time steps. The values are
high when comparing the initial ensemble with the reference (no assimila-
tion has been performed yet), the AAB and ESp is reduced considerable for
the r-EnKF except for that of ∆T and M , and the values for the smoother
keeps decreasing with the number of assimilation steps. Specifically, the
AAB and ESp of updated lnK, and Y of scenarios S3-S6 is close to that
of scenario S0, and the AAB and ESp of updated T of scenario S6 is close
to that of scenario S0, while, the AAB and ESp of updated X, ∆T and M
of scenarios S3-S6 is smaller than that of scenario S0, namely that, after
4 times assimilation steps, the ES-MDA starts to perform better than the
r-EnKF.

Figure 4.6 shows the piezometric head distribution at the 60th time step
computed with the final updated parameters for scenarios S0 to S3 and S6.
The maps show, in the left column, the piezometric head distributions for
an individual ensemble member (realization #300), in the center column,
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Figure 4.5. Scenarios S0-S6. Average absolute bias (AAB) and ensemble spread
(ESp) of updated log-conductivity realizations (lnK), the source location (X and
Y ), initial release time (T ), release duration (∆T ), and mass-loading rate (M)
computed with the initial parameters and with the updated parameters after 60
time steps.
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the ensemble average obtained as the local mean of the piezometric head at
each node through the 400 realizations, and in the right column the ensem-
ble variance. Please, notice that the middle row with the ensemble mean
piezometric heads is not the solution of the state equations in the ensemble
log-conductivity average of Figure 4.4. An analysis of these maps shows the
robustness of the r-EnKF (S0) that produces an ensemble average map quite
close to the reference one (upper right corner in Figure 4.3) and with little
variability everywhere. The smoother performs well when comparing the
average ensemble with the reference map, but the uncertainties associated
are quite large, especially in scenarios S1 and S2 (with only one or two data
assimilations); there is a need to assimilate at least four times the data (S3)
to get a variance reduction that approximates that of the r-EnKF.

Figure 4.7 shows the concentration plume computed with the parameters
updated using observations at 60 time steps. In the left column, the plume
in realization #300, in the center, the ensemble average of the 400 plumes
computed in the 400 realizations with updated parameters, and in the right
column the local concentration variance computed at each node through the
ensemble of realizations. Please, notice that, as with piezometric heads, the
middle row with the ensemble average concentrations is not the solution of
the state equations in the ensemble logconductivity average of Figure 4.4.
An analysis of these maps reaches the same conclusions as for the piezomet-
ric heads, the r-EnKF is quite robust producing an ensemble average plume
quite close to the reference (lower right corner in Figure 4.3) and with lower
variability. The smoother performs well only when the number of assimila-
tions is large (S3 and S6); for the cases of 1, and 2 assimilations (S1 and S2,
respectively), the ensemble mean plume is quite spread, the local variance
is large, and the plume in the single selected realization shown in the left
column of the figure can be quite far from the reference one.

Figure 4.8 shows the time evolution of piezometric heads and solute
concentrations at the two verification wells (#1 and #2, see Figure 4.2)
computed using the initial ensembles of contaminant source parameters and
logconductivities. The spread of predicted values is quite large since no
observation has been assimilated yet. Figure 4.9 and 4.10 show the time
evolution of piezometric heads and solute concentrations computed with the
updated source parameters and logconductivity fields after the assimilation
of the observations during the first 60 time steps, respectively. The spread
of the curves after the assimilation is considerably reduced, especially for
scenarios S0, S3 and S6. Although these two wells were not used during the
assimilation, the reproduction of piezometric heads, even after the assimila-
tion period ends is very good both for the r-EnKF (S0) and for the ES-MDA
with 4 and 10 assimilations (S3 and S6), with the former performing slightly
better than the latter.

Up to here, regarding the characterization of the logconductivity field
and the reproduction of the state variables, the r-EnKF seems to outperform
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Figure 4.6. Scenarios S0-S3 and S6. Piezometric heads as computed with the
updated parameters at the end of the 60th time step. From left to right, heads in
realization #300; ensemble mean, and ensemble variance.
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Figure 4.7. Scenarios S0-S3 and S6. Contaminant plume as computed with
the updated parameters at the end of the 60th time step. From left to right,
Contaminant plume in realization #300; ensemble mean of all contaminant plumes,
and ensemble variance of all contaminant plumes.
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Figure 4.8. Time evolution of piezometric heads (top row) and solute concentra-
tions (bottom row) at the two verification wells #1, and #2 computed on the initial
ensemble of source information parameters and lnK. The red line corresponds to
the the reference field. The black lines correspond to the 5 and 95 percentiles of
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Figure 4.9. Scenarios S0-S3 and S6. Time evolution of the piezometric heads
at the two verification wells #1, and #2 computed with the updated ensemble of
source information parameters and lnK after the assimilation of the observations of
the first 60 time steps. The red line is the evolution of the piezometric head in the
reference. The black lines correspond to the 5 and 95 percentiles of all realizations,
and the green line corresponds to the median. The vertical dashed lines mark the
end of the assimilation period.
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Figure 4.10. Scenarios S0-S3 and S6. Time evolution of the solute observations at
the two verification wells #1, and #2 computed with the updated ensemble of source
information parameters and lnK after the assimilation of the solute observations
of the first 60 time steps. The red line is the evolution of the concentration in the
reference. The black lines correspond to the 5 and 95 percentiles of all realizations,
and the green line corresponds to the median. The vertical dashed lines mark the
end of the assimilation period.
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the ES-MDA. The AAB(lnK) and ESp(lnK) are the smallest for S0 (r-
EnKF), and the piezometric head and concentration predictions are also
the best for S0. Only the ES-MDA with 10 assimilation steps (S6) gives
comparable results, although at a CPU cost 2.6 times larger than the r-
EnKF.

However, when we analyze the reproduction of the contaminant source
parameters, the ES-MDA is superior to the r-EnKF. Figure 4.5 shows the
AAB and ESp for the contaminant source parameters computed with ex-
pressions similar to Eq. (4.12) and (4.13). An analysis of this figure shows
how the AAB and ESp for the contaminant source parameters decrease with
the number of assimilation steps, reaching the smallest values for the ES-
MDA with 10 assimilations (S6). This observation is complemented by the
results shown in Figure 4.11, in which boxplots of the initial ensemble of the
source parameters and of the updated ensemble of the source parameters
for the six scenarios are shown. Some observations that can be derived from
this figure are: the r-EnKF (S0) produces good estimates for X, Y and
T with a considerable reduction of uncertainty with respect to the initial
ensemble, while the estimates for ∆T and M are somehow biased without
a large reduction of uncertainty, which is due to that the r-EnKF needs to
restart the simulation of the state equation from time zero without updating
state variables, and a few of observation at an assimilation step, enlarges the
possibility to reach the same ”observations” by different combinations of ∆T
and M ; the ES (S1) is not effective, the spreads of the ensemble is almost
the same as for the initial ensemble prior to assimilation for all parameters;
the ES-MDA starts to work after 4 data assimilations by performing mul-
tiple smaller corrections in the ensemble, and gives the best results for 10
assimilations, and, in this case, better than for the r-EnKF, especially for
parameters X, ∆T and M .
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Figure 4.11. Scenarios S0-S6. Boxplots of the source location (X and Y ), initial
release time (T ), release duration (∆T ), and mass-loading rate (M) computed with
the initial parameters and with the updated parameters after 60 time steps. The
dashed horizontal black line corresponds to the reference value.
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4.5 Summary and Discussion

The purpose of this paper is to analyze the ability of the ES-MDA for the
identification of contaminant source parameters together with a spatially
heterogeneous hydraulic conductivity field in comparison with the r-EnKF.
The results show that the ES-MDA has the ability to estimate hydraulic con-
ductivity field and identify the contaminant source parameters —including
source location, initial release time, release duration and mass-loading rate–
with a proper number of data assimilation steps, besides, the results also
indicate that these estimate parameters are good enough to provide good
forecasts of solute concentrations and piezometric heads.

Furthermore, with the comparison of the performance of the source pa-
rameters identification between the r-EnKF and the ES-MDA (also including
the performance of scenarios S4 and S5 in the appendix of this chapter), the
ES-MDA proves it performs better than the r-EnKF, especially for the iden-
tification of contaminant source parameters when using enough number of
data assimilation steps. For this specific test done here, the ES-MDA starts
to outperform the r-EnKF after 4 time assimilation steps, and spends al-
most the same computational cost as that for r-EnKF at the 4th assimilation
step. Plus, the ES-MDA can perform even better, at a cost of more com-
putational time. Specifically, for the r-Enkf, the updated mass-loading and
release duration still with large uncertainty is attributed to far less observa-
tions employed at an assimilation step compared with that of the ES-MDA,
which result in a larger possibility to reach the same ”observations” by dif-
ferent combination of mass-loading and release duration.

4.6 Appendix. Results of scenarios S4 and S5

Results for scenarios S4 and S5 are displayed in Figures 4.12 to 4.15. The
details are as follows: Figure 4.12 shows the ensemble mean and ensemble
variance of the updated lnK; Figures 4.13 and 4.14 show the 300th realiza-
tion, ensemble mean and ensemble variance of piezometric heads and of the
contaminant plume at the end of the 60th time step, respectively; Figures
4.15 and 4.16 show the time evolution of the piezometric heads and of solute
concentrations at the two verification wells #1, and #2 computed with the
updated source parameters and hydraulic conductivities.
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Figure 4.12. Scenarios S3-S4. Ensemble mean (left column) and ensemble vari-
ance (right column) of updated log-conductivity realizations. (This figure comple-
ments Figure 4.4.)
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Figure 4.13. Scenarios S4-S5. Piezometric heads computed with the updated
parameters at the end of the 60th time step. From left to right, heads in realization
#300; ensemble mean, and ensemble variance. (This figure complements Figure
4.6.)
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Figure 4.14. Scenarios S4-S5. Contaminant plume computed with the updated
parameters at the end of the 60th time step. From left to right, Contaminant
plume in realization #300; ensemble mean, and ensemble variance. (This figure
complements Figure 4.7.)
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Figure 4.15. Scenarios S4-S5. Time evolution of the piezometric heads at the
two verification wells #1, and #2 computed with the updated ensemble of source
information parameters at the end of the 60th time step. The red line is the
evolution of the piezometric head in the reference. The black lines correspond to
the 5 and 95 percentiles of all realizations, and the green line corresponds to the
median. The vertical dashed lines mark the end of the assimilation period. (This
figure complements Figure 4.9.)
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Figure 4.16. Scenarios S4-S5. Time evolution of the solute concentrations at
the two verification wells #1, and #2 computed with the updated ensemble of
source information parameters at the end of the 60th time step. The red line is the
evolution of the solute concentration in the reference. The black lines correspond
to the 5 and 95 percentiles of all realizations, and the green line corresponds to the
median. The vertical dashed lines mark the end of the assimilation period. (This
figure complements Figure 4.10.)
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5
Reconstructing the release
history of a contaminant

source via Ensemble
smoother with multiply data

assimilation

Abstract

Identifying a contaminant time-varying release history is an ill-posed prob-
lem but crucial for groundwater contamination issues. In this paper, a
recently emerging data assimilation method, the ensemble smoother with
multiple data assimilation (ES-MDA) is employed to handle this conun-
drum. The study starts with some synthetic cases in which several factors
are analyzed, such as the observation data frequency, the use of covariance
inflation, or the number of iteration used in the ES-MDA for the purpose of
identifying a time-varying contaminant injection event discretized in several
time steps. The results show that the ES-MDA performs well in recovering
the release history when the injection is discretized into 50 or 100 time steps,
but encounters fluctuation problems in the cases with 300 time steps. As
expected, the observation data frequency is a very influential factor, while
the number of iterations or the kind of covariance inflation used has a lesser
effect. The application of the method to two sandbox experiments shows
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that the ES-MDA has the ability to recover finite release injections, but
performs disappointingly when the injection is continuous.

5.1 Introduction

Groundwater contamination has gained extensive attention over the last
several decades since it is becoming a huge threat to our ecosystem. De-
terminig the responsible for the pollution is a forensic hydrogeology task
needed to ensure the accountability of those responsible. This is not an
easy task, since, in general, only a few observations downstream from the
source are available when the contamination is first detected. Even with
the help of advanced groundwater models, and with assumptions such as
knowing the release location, identifying the release history, and, therefore,
the total amount of pollutants injected into the aquifer, has proven to be a
complicated endeavour. A challenge that faces the problem of ill-posedness
(Skaggs and Kabala, 1994; Carrera and Neuman, 1986). Various methods
have been devised to address this problem and several reviews have been
published in the subject (Atmadja and Bagtzoglou, 2001b; Michalak and
Kitanidis, 2004; Bagtzoglou and Atmadja, 2005; Sun et al., 2006a, e.g.,).

Among all these methods, one branch, data assimilation methods, comes
out ahead because of their ability to deal with huge amounts of observed
data simultaneously. Data assimilation methods are versatile, efficient and
simple to understand and implement (Zhou et al., 2014). Among the data
assimilation methods, the ensemble Kalman filter (EnKF) stands out. It
was first proposed by Evensen (2003) in order to deal with the nonlinear
relationship between parameters and state variables in inverse problems,
and has gained popularity in multidisciplinary fields such as oceanography,
meteorology and geology (Houtekamer and Mitchell, 2001; Bertino et al.,
2003; Chen and Zhang, 2006; Aanonsen et al., 2009, e.g.,). Specifically, in
hydrogeology, the EnKF method has been proven able to invert aquifer pa-
rameters, such as hydraulic conductivity (Chen and Zhang, 2006; Huang
et al., 2009; Kurtz et al., 2014), porosity (Li et al., 2012a), recharge rates
(Franssen and Kinzelbach, 2009) and also boundary conditions (Chen and
Zhang, 2006). More recently, researchers have started to employ EnKF vari-
ants to identify the parameters describing a contaminant source in aquifers.
Xu and Gómez-Hernández (2016b) use the restart normal-score Ensemble
Kalman filter (Ns-EnKF) for contaminant source identification in a synthetic
deterministic aquifer and later extended this method to jointly identify hy-
draulic conductivity and source information (Xu and Jaime, 2018). Then,
Chen et al. (2018) move one step further, to identify contaminant source
information plus the position and length of a vertical barrier in a sandbox
experiment via restart Ensemble Kalman filter. Chen et al. (2018) also dis-
cusses the influence of different inflation methods in the application of the
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restart Ns-EnKF and prove its ability for the joint identification of hydraulic
conductivities and contaminant source information in a laboratory sandbox
experiment. Li et al. (2019) used Kalman filter combined with a mixed-
integer nonlinear programming optimization model to deduce the accurate
location and release history of a contaminant source. The aforementioned
work are strong demonstrations that the EnKF and its variants are valid
methods for contaminant source identification. However, the release history
identified in these works only focus on a constant pulse, the magnitude of
which is independent of time.

As an alternative to the EnKF, the ensemble smoother (ES), which was
firstly introduced by van Leeuwen and Evensen (1996), assimilate all avail-
able data in one single step instead of updating the state variable sequen-
tially. Thus, it is expected that it should be able to identify time-varying
parameters better than the EnKF (and at a cheaper price). The EnKF and
the ES produce the same results when they deal with linear state-transfer
functions since they are based on the same Bayesian formulation (Evensen,
2004). However, in studying process with strong nonlinearities, such as is
the case of inverting the groundwater flow and mass transport equations,
the EnKF outperformed the ES (Evensen and van Leeuwen, 2000), until an
iterative variant of the ES was proposed, the ES with Multiple Data As-
similation (ES-MDA), by Emerick and Reynolds (2013a). Evensen (2018)
compared the ES-MDA with other iterative ensemble smoothers to solve
history matching problems. Ranazzi and Sampaio (2019) investigated the
influence of the ensemble size on the use of an adaptive ES-MDA for his-
tory matching. Todaro et al. (2019) use the ES-MDA to find a solution of
the reverse flow routing problem. These works are all good examples about
ES-MDA dealing with time-varying input parameters.

In this work, the ES-MDA is employed for the first time to identify a
time-varying release history in both synthetic and real cases. The influence
of observation data frequency is discussed in relation with the precision with
which the release history can be identified. Also, two kinds of covariance
inflaction procedures (e.g., Le et al., 2016; Rafiee and Reynolds, 2017) are
analyzed, one predefined and the other one adaptative. In section 2, we
describe the methodology; in section 3, the synthetic and the real sandbox
experiment are presented, following by the setup of different scenarios and
evaluation criteria. Finally, in section 4, we discuss the results and draw
some conclusions.

5.2 Methodology

5.2.1 Groundwater flow and solute transport equations

The water flow and solute transport theory in a porous media under a Carte-
sian coordinate system was already introduced in chapter 2.2.1, but they are
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repeated here for a matter of completeness (Bear, 1972; Zheng and Wang,
1999),

Ss
∂h

∂t
= ∇ · (K∇h) + w, (5.1)

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs, (5.2)

where Ss represents the specific storage [L−1]; h is the hydraulic head [L];
t denotes time [T ]; ∇· is the divergence operator, while ∇ represents the
gradient operator; K denotes the hydraulic conductivity [LT−1] and w rep-
resents distributed sources or sinks [T−1]. In the transport governing equa-
tion, θ represents the porosity of the medium [-]; C is dissolved concentra-
tion [ML−3]; D represents the hydrodynamic dispersion coefficient tensor
[L2T−1]; v is the flow velocity vector [LT−1] derived from the solution of
the flow model; qs represents volumetric flow rate per unit volume of aquifer
associated with a fluid source or sink [T−1] and Cs is the concentration of
the source or sink [ML−3].

5.2.2 Ensemble Smoother with Multiple Data Assimilation(ES-
MDA)

The ES-MDA was first introduced by Emerick and Reynolds (2013a) as
an improvement of the ES for handling nonlinear models. The ES-MDA
updates the model parameters using the same set of observations with a
predefined number of iterations, it is easy to understand and to implement
(Evensen, 2018). A brief introduction of ES-MDA has already been pre-
sented in chapter 4.2.2, here we will give a more detailed description. The
ES-MDA algorithm can be described as follows:

1. Initialization.
The first step is to generate Ne realizations of n parameters. This will be

the initial ensemble of realizations. There are several approaches to generate
this values, in this case, we have chosen to draw the numbers from predifined
uniform distributions. The second step is to choose the number of iterations
(also referred to as assimilation steps), Na, and the inflation factor αj . How
to choose the inflation factor is explained in detail below.

2. Assimilation.
Once the number of iterations and the inflation coefficients are deter-

mined, it is the time for the assimilation procedure, which consists of two
steps, a forecast step and and update step. These two steps are repeated for
each iteration.

a. Forecast step
In this step, the groundwater flow and contaminant transport models,

MODFLOW and MT3DS, are run for each member of the ensemble; in our
case, for each different release history,

Bf
i,j = ψ[B0, Ai,j ], (5.3)
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for i=1, 2, . . . , Ne, and j=1, 2, . . . , Na, where Bf stands for the vector of
forecasted concentrations; ψ represents the forward numerical model; A is
the vector of source release history and its size is determined by the number
of discretization steps chosen to describe the injection curve.

b. Update step
Then, the model parameters are updated as follows,

Ai,j+1 = Ai,j +∆Aj(∆B
f
j )

T [∆Bf
j (∆B

f
j )

T + αjR]
−1[yobs +

√
αjε−Bf

o,i,j],
(5.4)

where yobs is a column vector with dimensions No · Nt dimensional of real
measurements (No is the number of locations, and Nt the number of ob-
servation time steps); ε stands for the observation error, while R is the

covariance matrix of the observation error; Bf
o,i,j stands for the vector of

forecasted concentrations at the same locations and times where and when
observations yobs are made; ∆Aj and ∆Bj are square root matrices defined
as

∆Aj =
1√

Ne − 1
[A1,j −Aj, A2,j −Aj, . . . , ANe,j −Aj ], (5.5)

∆Bf
j =

1√
Ne − 1

[Bf
1,j −Bf

j, B
f
2,j −Bf

j , . . . , B
f
Ne,j

−Bf
j ], (5.6)

where Aj and Bf
j are the ensemble means of source release history param-

eters and forecasted concentrations at the jth iteration, respectively.
These forecast and update steps will be repeated until the predefined

iterations are completed. One more thing needs to be pointed out: in our
study, since the number of the measurements is larger than the ensemble
size, it is necessary to employ the truncated singular value decomposition
(TSVD) method to do a pseudo-inversing in Eq. (5.4).

5.2.3 Schemes for the inflation factors αj

The iteration number (Na) and the inflation factor (αj) are two influen-
tial parameters in the performance of the ES-MDA Emerick and Reynolds
(2013a) have proven that the ES-MDA could sample the posterior probabil-
ity distribution function of the parameters precisly only in a linear model
and only if the inflation factor αj satisfies the following equation,

Na
∑

j=1

1

αj
= 1, (5.7)

There are still many options on how to choose the αj parameters sat-
isfying the previous equation. Apparently, chosing a decreasing series may
be the most appropriate, but some authors claim that using uniform values
give similar results, and that choosing these values arbitrarily may lead to
filter collaps (Le et al., 2016). We have decided to explore two methods to
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select the inflation factors, one proposed by Rafiee and Reynolds (2017),
and the other one proposed by Evensen (2018).

Rafiee and Reynolds (2017) define the inflation factor at the first assim-
ilation step according to the discrepancy principle, as follows

α1 = (
1

N

N
∑

i=1

λi)
2, (5.8)

where N is the minimum of Ne and No ·Nt; λi are the singular values of the
matrix Dj given by

Dj = R−

1

2△Bf
j , (5.9)

The subsequent inflation factors are chosen in a geometrical decreasing
progression,

αj = βj−1α1, (5.10)

where β is the ratio that fulfills that the sum of the inverse of the inflation
factors equals one and is given by

1− (1/β)Na−1

1− 1/β
= α1, (5.11)

Evensen (2018) defines a scheme simply selecting a nonzero value α
′

1 and
a geometrical ratio αgeo; with these two numbers defines a sequence

α
′

j+1 =
α

′

j

αgeo
, (5.12)

which is then normalized to provide the αj values that satisfy equation 5.7

αj = α
′

j(

Na
∑

j=1

1

α
′

j

) (5.13)

This scheme has the capacity of defining the inflation factor in either in-
creasing or decreasing sequence by choosing an αgeo below or above one,
respectively. Here, we define the αgeo and α

′

1 with the value of 2 and 1,
respectively.

In this work, these two different schemes of generating inflation factors
are employed, and their impact discussed.

5.3 Applications

A numerical model based on real sandbox experiments is used to demon-
strate the proposed method. This sandbox equipment was built up by the
Engineering and Architecture Department at the University of Parma, and
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Table 5.1. Parameters of the groundwater flow and transport models

1 mm glass beads 4 mm glass beads

Hydraulic conductivity (cm/s) 0.65 10.4
Longitudinal dispersivity, αT (cm) 0.106 0.2

Porosity 0.37 0.37
TRVT, αT /αL 0.45 0.45

has been employed in several groundwater contamination studies (Citarella
et al., 2015; Cupola et al., 2015b; Zanini and Woodbury, 2016). In this
work, first, we generated synthetic data with this numerical model to test
the ES-MDA method for the identification of a time-varying release history
curve. In the synthetic case, we also analyze the impact of the choice of
the method to choose the inflation factors, the number of iterations, the
size of the observation time intervals and the degree of discretization with
which the release curve is represented in the numrerical model. Then, we
tested the ES-MDA with real observation data and analyzed the impact of
the observation error magnitude.

5.3.1 Sandbox Set-up

The lab set up is the same as in chapter 2.3.1, it is repeated here for a
matter of completeness. The sandbox has an internal volume of 95 cm by
10 cm by 70 cm, and is discretized into 95 columns, 1 row, and 70 layers.
The reference hydraulic field inside the sandbox is shown in Figure 5.1.
The reservoirs upstream and downstream are set up as constant piezometric
boundary with a water level of 62.5 cm and 60.6 cm, respectively. The
bottom of the sandbox is regarded as no-flow boundary while the top of
the sandbox is a phreatic surface. An injector was installed inside the glass
beads that discharges fluorescein during the experiment. There are 25 points
in total where contaminant concentration is observed for the purpose of
the application of the ES-MDA. The details about the acquisition of the
concentration data could be found in Citarella et al. (2015); Cupola et al.
(2015b). The total experiment time is 3000 s and the injection starts from
the beginning. The main hydraulic parameters for simulation are listed in
Table 5.1.

5.3.2 Performance Assessment

The use of an ensemble-based method allows to analyze the performance
of the method using the root mean square error (RMSE) and the relative
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Figure 5.1. Sketch of the experimental device (lateral view). Length unit is cm.

RMSE:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Aref −Ai)2, (5.14)

relative RMSE =
RMSE

intial RMSE
, (5.15)

where n is the number of points used to discretize the release history curve,
Aref is the reference release history while A stands for the ensemble mean
of the updated release history, initial RMSE refers to the RMSE of the
initial ensemble of realizations.

5.3.3 Synthetic Case

The first set of analyses are based on the synthetic simulation of a time-
varying release into the numerical model that mimics the sandbox. The
release function adopted is based on a proposal by Skaggs and Kabala (1994):

S(t) = 2.6 · exp(−( t
10

− 20)2

50
)

+ 0.78 · exp(−( t
10

− 50)2

200
)

+ 1.3 · exp(−( t
10

− 90)2

98
) 0 ≤ t ≤ 3000

(5.16)
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Figure 5.2. Release curve of a synthetic contaminant source.

This function is shown in Figure 5.2. For the purpose of identifying the
source, we run three sets of scenarios as a function of how many steps we used
to discretize the release history; we chose to divide the 3000 s duration of the
experiment into 50, 100 and 300 time steps. Then for each discretization,
two sampling frequency were considered, samples were taken every other
time step or every ten time steps. Also, the number of iterations was varied
between 4 and 8, and both the Rafiee and Evensen inflation schemes were
tested. In total 24 scenarios were analyzed as reported in Table 5.2. And in
all scenarios, the model error is neglected while we assume the observation
errors follow Gaussian distribution with a mean of 0, and standard deviation
of 0.1 mg/l.

An ensemble of 500 realizations was used. The initial release history
curve of every realization is generated using uniform distribution with ranges
in U[0, 52] 10−3 mg/l. Figure 5.3 shows the recovered release history of the
set of scenarios with 50 time steps. In each plot, the blue curve corresponds
to the actual release history; the gray lines are the recovered release history
curves for all 500 realizations, and they are summarized by their median (red
dotted lines) and their 5 and 95 percentiles (black dashed lines). The first
column uses Rafiee’s inflation and the second column Evensen’s inflation.
The first two rows use samples every ten time steps, and the last two rows
samples every other time step. The first and third row use four iterations
and the second and fourth row use eight iterations. It can be observed that
the median of the recovered release history curves is a good estimate of the
actual release history for almost all cases (scenarios S2 and S4 being the
exception), while the uncertainty estimate given by the spread of the curves
is larger for the scenarios with the smallest sampling frequency (scenarios
S1 to S4). Also, it can be noticed that the Rafiee’s inflation method always
yields lesser realization spread that the Evensen’s inflation method. It is
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Table 5.2. Definition of the synthetic scenarios

number of Observation Number of Inflation
Scenario time steps frequency iterations factor

S1 50 5 4 Rafiee’s scheme
S2 50 5 4 Evensen’s scheme
S3 50 5 8 Rafiee’s scheme
S4 50 5 8 Evensen’s scheme
S5 50 25 4 Rafiee’s scheme
S6 50 25 4 Evensen’s scheme
S7 50 25 8 Rafiee’s scheme
S8 50 25 8 Evensen’s scheme

S9 100 10 4 Rafiee’s scheme
S10 100 10 4 Evensen’s scheme
S11 100 10 8 Rafiee’s scheme
S12 100 10 8 Evensen’s scheme
S13 100 50 4 Rafiee’s scheme
S14 100 50 4 Evensen’s scheme
S15 100 50 8 Rafiee’s scheme
S16 100 50 8 Evensen’s scheme

S17 300 30 4 Rafiee’s scheme
S18 300 30 4 Evensen’s scheme
S19 300 30 8 Rafiee’s scheme
S20 300 30 8 Evensen’s scheme
S21 300 150 4 Rafiee’s scheme
S22 300 150 4 Evensen’s scheme
S23 300 150 8 Rafiee’s scheme
S24 300 150 8 Evensen’s scheme
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hard to argue about an improvement with the largest number of iterations,
since the results with four and eight iterations are almost the same.

Figure 5.4 shows the recovered release history of the set of scenarios with
100 time steps. The organization of the plots in the figure is the same as
in the previous one. The impact of the inflation scheme, the observation
data frequency and the number of iterations is more or less the same as for
the 50 time step case. However, the median of the recovered release history
curves is no longer able to capture the actual release history as precisely as
in the previous set of realizations, more notably in the set of scenarios with
samples every ten time steps (scenarios S9 to S12). For all scenarios, there
is clearly an excess of fluctuations in the recovered release curves, noticeable
in the individual curves and also in the ensemble median and percentile
curves. This fluctuation is more noticeable when the observation sampling
frequency is smaller (scenario S9 to S12). The fluctuations may be due to
an ill-posedness of the problem and the fact that we are trying to estimate a
large number of parameters that, initially, are assumed to be independent.
This problem could be alleviated by introducing some smoothing factor so
that the curves display a smoothness in time throughout the iterations. It is
also important to notice the poor estimation of the release curve at the end
of the experiment, with a clear non-zero estimation for the final steps. This
overestimation, which is less patent in the previous set of scenarios, must be
due to the little sensitivity that most observations have to a release in the
final stages of the simulation.

The deterioration in the estimation of the release curves becomes ex-
acerbated when the number of discretization steps is increased up to 300.
Figure 5.5 shows the results for scenarios S17 to S24, and their arrangement
follows the same pattern as the previous two figures. The original release
curves is only hinted by the final ensemble of realizations or their median
values, the main three peaks are well identified, but several other peaks
appear, the spread of the realizations is very wide and the fluctuations in
time are also quite noticeable. As in the previous set of scenarios, using a
different parameterization of the release curve to be identified might have
helped in removing these artifacts. The only positive conclusion from this
set of realizations is that, as in the previous two sets, the best results are
always obtained when using Rafiee’s inflation scheme, eight iterations and
the highest sampling frequency.

For a more quantitative evaluation of the performance of the ES-MDA to
recover the time-varying release history, Table 5.3 and Figure 5.6 illustrates
the RMSE and the relative RMSE of all 24 scenarios. Based on the RMSE
at the final iteration step, we can draw the conclusion that the ES-MDA
with Rafiee’s scheme has a better performance in most scenarios in our
case, especially when the observation data frequency is low. The iteration
evolution of the relative RMSE of the last set of scenarios, the ones with a
discretization of 300 time steps, may explain why these scenarios perform so
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Figure 5.3. Recovered release histories for scenarios S1 to S8. The blue curve
corresponds to the actual release history. The gray lines are the recovered release
history curves for all 500 realizations, summarized by their median (red dotted
lines) and their 5 and 95 percentiles (black dashed lines).
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Figure 5.4. Recovered release histories for scenarios S9 to S16. The blue curve
corresponds to the actual release history. The gray lines are the recovered release
history curves for all 500 realizations, summarized by their median (red dotted
lines) and their 5 and 95 percentiles (black dashed lines).
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Figure 5.5. Recovered release histories for scenarios S17 to S24. The blue curve
corresponds to the actual release history. The gray lines are the recovered release
history curves for all 500 realizations, and they are summarized by their median(red
dot lines) and their 5 and 95 percentiles(black dash lines).
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Table 5.3. RMSE of the synthetic scenarios at the final iteration step

Scenario RMSE Scenario RMSE Scenario RMSE

S1 2.295 S9 3.621 S17 12.585
S2 2.136 S10 5.057 S18 15.181
S3 1.979 S11 4.222 S19 8.839
S4 1.818 S12 5.671 S20 12.103
S5 1.120 S13 1.711 S21 9.221
S6 1.178 S14 2.475 S22 8.963
S7 1.321 S15 1.891 S23 7.321
S8 1.182 S16 1.959 S24 6.853

Table 5.4. Definition of the sandbox scenarios

Scenario time step observation frequency injection pulses

R1 50 5 train
R2 50 25 train
R3 100 10 train
R4 100 50 train
R5 50 5 two
R6 50 25 two
R7 100 10 two
R8 100 50 two

poorly. At the first iteration, the release history estimates are much worse
than the totally random estimates used to initialize the ensemble. In the
next realizations the method is capable to recover itself and to reduce the
initial RMSE, although the absolute values shown in the table are by far
the largest ones.

Based on this analysis, we decide to apply the ES-MDA with Rafiee’s in-
flation scheme to the sandbox experiment. The release history is discretized
into 50 or 100 time steps, and the number of iterations is set equal to eight.

5.3.4 Real Case

We performed two sandbox experiments with two kinds of release history
curves, the first curve displays a train of four pulses lasting the entire du-
ration of the experiment (Figure 5.7) and the second curve consists of two
pulses at the beginning of the experiment (Figure 5.8). In this experiment
we will not attempt to identify simultaneously the release and the conductiv-
ities, but rather, we will use the identified distribution of conductivities and
observation errors from chapter 3.6.2 for this two experiments. A number
of scenarios will be analyzed that are described in Table 5.4.
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Figure 5.6. Evolution of the Relative RMSE of the synthetic scenarios as a
function of the iteration step.
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Figure 5.7. Release curve of the first sandbox experiment.
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Figure 5.8. Release curve of the second sandbox experiment.
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Figure 5.9. Recovered release history for first sandbox experiment, scenarios R1 to
R4. The blue curve corresponds to the actual release history. The gray lines are the
recovered release history curves for all 500 realizations, and they are summarized
by their median (red dot lines) and their 5 and 95 percentiles (black dash lines).

Figure 5.9 shows the recovered release history curves for the first sandbox
experiment. The observed performance is quite similar to the one observed
for the synthetic experiments; the scenario with the smaller number of dis-
cretization steps and the highest frequency for that discretization is the one
performing best. The same fluctuation as in the synthetic cases are observed
about the four peaks of the release curve and the same uncertainty spread,
which is smaller for scenario R2. Looking closer to this scenario, we can no-
tice that the identification of the four pulses has a shift in time of a couple
of time steps, as if the injection had started a little bit later than in reality.

Figure 5.10 shows the recovered release curves for the second experiment.
The same behavior as before is appreciated here. Large fluctuations about
the two main peaks of the injection, with the best estimation by the median
of the scenario with the smallest number of discretization steps and the
largest frequency of observation for that discretization. Yet, there is a clear
pitfall in this test case in that the method is not able to capture the fact
that the injection stops slightly before the middle of the experiment (at
about 1200 s). In all scenarios, most injection curves for the individual
members of the ensemble display positive values, and their median is still a
relatively large positive value for the second half of the experiment, clearly
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Figure 5.10. Recovered release history for the second sandbox experiment, sce-
narios R5 to R8. The blue curve corresponds to the actual release history. The
gray lines are the recovered release history curves for all 500 realizations, and they
are summarized by their median (red dotted lines) and their 5 and 95 percentiles
(black dashed lines).

overestimating the total mass injected into the system. The increase of
values towards the end of the experiment is also quite noticeable. The
main explanation for this behavior is the magnitude of the concentration
observation error variance.

5.4 Summary and Conclusion

In this paper, we employ the ES-MDA for the first time to identify a time
varying release history in both synthetic and laboratory cases. In the syn-
thetic cases, we examined the capacity of ES-MDA with different levels of
discretization of the release curve, with a ratio of 1 to 6 between the coars-
est and finest discretizations; the impact of the observation data frequency
(every other time step versus one step every ten); the choice of an inflation
factor scheme (between Rafiee’s and Evensen’s schemes); and the impor-
tance of the number of iterations in the ES-MDA formulation (between four
and eight). In total, 24 scenarios with combinations of the aforementioned
features were generated and compared. The results show that the ES-MDA
with Rafiee’s scheme has a better performance in most scenarios in our case.
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Also, in all scenarios, increasing the observation data frequency always im-
proves the identification of the recovered release history curve. The number
of iterations, whether four of eight, does not have an important effect in
the performance of the ES-MDA. In general, the ES-MDA performs well in
recovering the release history, when the discretization is equal to 50 or 100
time steps, but displays large fluctuations in the scenarios with 300 time
steps. We believe this problem could be alleviated by choosing a differ-
ent parameterization of the release curve, rather than using poorly random
numbers for each time step with no temporal correlation at all.

Then, we apply the ES-MDA (using Rafiee’s inflation scheme and eight
iteration) to two sandbox experiments using different release history curves,
a train of four pulses, and two pulses during the first half of the experiment.
The results shows that the ES-MDA works well for the train of pulses, but
overestimates the injection concentrations for the second experiment after
the two pulses have ended. We believe that this poor behavior could be
explained again by the parameterization of the injection curves and the
magnitude of the concentration observation errors.

In conclusion, the ES-MDA is a method capable to identify a time vary-
ing release history in both synthetic and real cases. Better results than
the ones presented here could have been obtained with a more elaborated
parameterization of the time functions to be identified.



6
Conclusions

6.1 Summary

The work of this thesis is aimed to fulfill the main objectives described in
Chapter 1.1. The main contributions or conclusions are the following:

• The restart EnKF is proven capable to identify a contaminant source
together with some parameters defining the geometry of the aquifer
in synthetic cases. Further application of the method on laboratory
experiments shows the impact that observation errors may have in the
estimation uncertainty. Using a too small observation error covariance
results in more or less precise but biased estimates, while a too large
observation error covariance results in a poor identification and too
large uncertainty. Only with a proper evaluation of the observation
errors, the r-EnKF could obtain a reliable result.

• Through the application of the restart NS-EnKF in synthetic case, we
prove that this method with either a proper ensemble size or a suitable
inflation method is able to jointly deduce contaminant source informa-
tion and heterogenous conductivities by using only concentration data.
Of all the test cases analyzed, Bauser’s covariance inflation method ap-
peared as the most appropriate, allowing to reduce the ensemble size
from 1000 members (without inflation) to 500 (with inflation) and
yielding similar results. However, if the ensemble size is too small and
no inflation method is used, the filter will collapse. Further tests in
sandbox experiments show that with a correct description of the obser-
vation error, the filter has more flexibility to update the parameters to
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fit the observations while resulting in a larger variance on the ensemble
of final parameters. The results also show a degree of indetermination
in the estimation of the injection rate and the injection concentration;
but, their product, the mass loading rate, is still well estimated with
no bias and little uncertainty.

• Our work illustrates that the ES-MDA has the ability of identify-
ing contaminant source parameters together with a spatially heteroge-
neous hydraulic conductivity field. The comparison of the performance
between the r-EnKF and the ES-MDA shows that the ES-MDA per-
forms equally or even better than the r-EnKF when using enough num-
ber of data assimilation steps, especially in identifying mass-loading
and release duration parameters.

• The ES-MDA is a powerful method to identify a time-varying injection
in both synthetic and real cases. In the synthetic cases, Rafiee’s infla-
tion scheme outperforms Evensen’s inflation scheme. In all scenarios
anaylzed, increasing the observation data frequency always improves
the outcome of the recovered release injection curve. Using four or
eight assimilation steps in the ES-MDA did not have a significant im-
pact on the recovery of the release history in most scenarios.

6.2 Suggestions for Future Research

There are still some issues deserving further attention.

• Analyzing different contamination events and their parame-

terization.

The outcome from the last chapter indicates that a more intelligent
parameterization of the release curves could have led to better results.
The study of alternative parameterization such as using basis functions
or splines is worth investigating. Also, contamination events could be
multiple and simultaneous in time, and also not be limited a point
injection but spread over a larger area; the analysis of complex events
is another promising line for further research.

• Combining various observation data to update state param-

eters.

In this thesis, for the sandbox experiments, we used only the con-
centration data obtained after the luminosity-concentration transform
described by Citarella et al. (2015). But, in reality, we will have access
to other data, such as piezometric head data or electrical resistivity
tomography data, which will be beneficial for identification purposes.
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A promising research avenue is to combine different kind of observa-
tion data to jointly determine the contaminant source parameters and
hydraulic conductivities.

• Optimization of the observation network to improve the per-

formance of ensemble based methods.

We have discussed the impact that different space (Chapter 2) and
temporal (Chapter 5) arrangements of the observation network may
have in the correct identification of the contaminant source; but we
could go one step further and attempt to design the optimal spatio-
temporal arrangement to achieve the same results at the smallest cost.

• Demonstrating the r-EnKF, the restart NS-EnKF or the ES-

MDA in field case studies.

The works we’ve done in this thesis have already move from synthetic
cases to laboratory experiments. But these demonstrations are still far
from field conditions, where boundary and initial conditions, forcing
terms or geometry are not necessarily known. We need to consider
the impact of these uncertainties in the application of ensemble-based
algorithms, and find avenues to solve the difficulties found on field
cases.
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