Towards Data Wrangling Automation
through Dynamically-Selected
Background Knowledge

José HernandezOrallo

CésarferriRamires

" S UNIVERSITAT — -

| POLITEENICA =

DEVALENERET——=
A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

Towards Data Wrangling Automation
through Dynamically-Selected
Background Knowledge

By
Lidia Contreras Ochando

Supervised by

José Herndndez Orallo Universitat Politecnica de Valéncia
Cesar Ferri Ramirez Universitat Politécnica de Valéncia

Evaluation committee

Chair: Maria Alpuente Frasnedo Universitat Politecnica de Valéncia
Vocal: Sebastijan Dumanci¢ KU Leuven
Secretary: Fabrizio Riguzzi Universita di Ferrara

External reviewers

Andrew Cropper University of Oxford
Sebastijan Dumanci¢ KU Leuven
Raul Santos Rodriguez University Of Bristol

UNIVERSITAT
POLITECNICA
DE VALENCIA

A thesis submitted for the degree of
Doctor of Philosophy in Computer Science

Departamento de Sistemas Informaticos y Computacion
- Valencia, December 2020 -

This research was supported by the Spanish MECD Grant FPU15/03219;
and partially by the Spanish MINECO TIN2015-69175-C4-1-R (Lobass) and
RTT2018-094403-B-C32-AR (FreeTech) in Spain; and by the ERC Advanced
Grant Synthesising Inductive Data Models (Synth) in Belgium.

To Francisco and Carmen — my parents.

Abstract

Data science is essential for the extraction of value from data. However, the
most tedious part of the process, data wrangling, implies a range of mostly
manual formatting, identification and cleansing manipulations. Data wrangling
still resists automation partly because the problem strongly depends on domain
information, which becomes a bottleneck for state-of-the-art systems as the
diversity of domains, formats and structures of the data increases.

In this thesis we focus on generating algorithms that take advantage of the
domain knowledge for the automation of parts of the data wrangling process.
We illustrate the way in which general program induction techniques, instead of
domain-specific languages, can be applied flexibly to problems where knowledge
is important, through the dynamic use of domain-specific knowledge. More
generally, we argue that a combination of knowledge-based and dynamic learning
approaches leads to successful solutions. We propose several strategies to
automatically select or construct the appropriate background knowledge for
several data wrangling scenarios. The key idea is based on choosing the best
specialised background primitives according to the context of the particular
problem to solve.

We address two scenarios. In the first one, we handle personal data (names,
dates, telephone numbers, etc.) that are presented in very different string formats
and have to be transformed into a unified format. The problem is how to build
a compositional transformation from a large set of primitives in the domain
(e.g., handling months, years, days of the week, etc.). We develop a system
(BK-ADAPT) that guides the search through the background knowledge by
extracting several meta-features from the examples characterising the column
domain. In the second scenario, we face the transformation of data matrices in
generic programming languages such as R, using an input matrix and some cells
of the output matrix as examples. We also develop a system guided by a tree-
based search (AUTOMAT[R|IX) that uses several constraints, prior primitive
probabilities and textual hints to efficiently learn the transformations.

With these systems, we show that the combination of inductive programming
with the dynamic selection of the appropriate primitives from the background
knowledge is able to improve the results of other state-of-the-art —and more
specific— data wrangling approaches.

Resumen

El proceso de ciencia de datos es esencial para extraer valor de los datos. Sin
embargo, la parte més tediosa del proceso, la preparacién de los datos, implica una
serie de formateos, limpieza e identificacion de problemas que principalmente son
tareas manuales. La preparacion de datos todavia se resiste a la automatizacion en
parte porque el problema depende en gran medida de la informacién del dominio,
que se convierte en un cuello de botella para los sistemas de tltima generacién a
medida que aumenta la diversidad de dominios, formatos y estructuras de los
datos.

En esta tesis nos enfocamos en generar algoritmos que aprovechen el
conocimiento del dominio para la automatizacion de partes del proceso de
preparaciéon de datos. Mostramos la forma en que las técnicas generales de
induccién de programas, en lugar de los lenguajes especificos del dominio,
se pueden aplicar de manera flexible a problemas donde el conocimiento es
importante, mediante el uso dindmico de conocimiento especifico del dominio. De
manera mas general, sostenemos que una combinacién de enfoques de aprendizaje
dindmicos y basados en conocimiento puede conducir a buenas soluciones.
Proponemos varias estrategias para seleccionar o construir automaticamente el
conocimiento previo apropiado en varios escenarios de preparacion de datos. La
idea principal se basa en elegir las mejores primitivas especializadas de acuerdo
con el contexto del problema particular a resolver.

Abordamos dos escenarios. En el primero, manejamos datos personales
(nombres, fechas, teléfonos, etc.) que se presentan en formatos de cadena de
texto muy diferentes y deben ser transformados a un formato unificado. FEl
problema es cémo construir una transformacién compositiva a partir de un
gran conjunto de primitivas en el dominio (por ejemplo, manejar meses, anos,
dias de la semana, etc.). Desarrollamos un sistema (BK-ADAPT) que guia la
busqueda a través del conocimiento previo extrayendo varias meta-caracteristicas
de los ejemplos que caracterizan el dominio de la columna. En el segundo
escenario, nos enfrentamos a la transformacion de matrices de datos en lenguajes
de programacién genéricos como R, utilizando como ejemplos una matriz de
entrada y algunas celdas de la matriz de salida. También desarrollamos un
sistema guiado por una busqueda basada en drboles (AUTOMAT [R]IX) que
usa varias restricciones, probabilidades previas para las primitivas y sugerencias
textuales, para aprender eficientemente las transformaciones.

Con estos sistemas, mostramos que la combinacién de programacién inductiva,
con la selecciéon dinamica de las primitivas apropiadas a partir del conocimiento
previo, es capaz de mejorar los resultados de otras herramientas actuales
especificas para la preparacién de datos.

Vii

Resum

El procés de ciéncia de dades és essencial per extraure valor de les dades.
No obstant aixo0, la part més tediosa del procés, la preparacié de les dades,
implica una seérie de transformacions, neteja i identificacié de problemes que
principalment sén tasques manuals. La preparacié de dades encara es resisteix
a l'automatitzacié en part perque el problema depén en gran manera de la
informaci6 del domini, que es converteix en un coll de botella per als sistemes
d’altima generacié a mesura que augmenta la diversitat de dominis, formats i
estructures de les dades.

En aquesta tesi ens enfoquem a generar algorismes que aprofiten el
coneixement del domini per a 'automatitzacié de parts del procés de preparacio
de dades. Mostrem la forma en que les tecniques generals d’induccié de programes,
en lloc dels llenguatges especifics del domini, es poden aplicar de manera
flexible a problemes on el coneixement és important, mitjancant 1’is dinamic
de coneixement especific del domini. De manera més general, sostenim que una
combinacié d’enfocaments d’aprenentatge dinamics i basats en coneixement pot
conduir a les bones solucions. Proposem diverses estrategies per seleccionar o
construir automaticament el coneixement previ apropiat en diversos escenaris
de preparacié de dades. La idea principal es basa a triar les millors primitives
especialitzades d’acord amb el context del problema particular a resoldre.

Abordem dos escenaris. En el primer, manegem dades personals (noms, dates,
telefons, etc.) que es presenten en formats de cadena de text molt diferents i
han de ser transformats a un format unificat. El problema és com construir una
transformacié compositiva a partir d’'un gran conjunt de primitives en el domini
(per exemple, manejar mesos, anys, dies de la setmana, etc.). Desenvolupem un
sistema (BK-ADAPT) que guia la cerca a través del coneixement previ extraient
diverses meta-caracteristiques dels exemples que caracteritzen el domini de la
columna. En el segon escenari, ens enfrontem a la transformacié de matrius de
dades en llenguatges de programaci6 generics com a R, utilitzant com a exemples
una matriu d’entrada i algunes dades de la matriu d’eixida. També desenvolupem
un sistema guiat per una cerca basada en arbres (AUTOMAT[R]IX) que usa
diverses restriccions, probabilitats previes per a les primitives i suggeriments
textuals, per aprendre eficientment les transformacions.

Amb aquests sistemes, mostrem que la combinacié de programaci6 inductiva
amb la seleccié dinamica de les primitives apropiades a partir del coneixement
previ, és capag¢ de millorar els resultats d’altres enfocaments de preparacié de
dades d’tltima generaci6 i més especifics.

Acknowledgements

Six years ago, I started working as a researcher at Universitat Politecnica de
Valéncia. To do my research, I had to learn about different fields, not only from
computer science but also including environmental chemistry. I enjoyed so much
the work that I told my parents: “I'm being paid for being happy”. For that
reason I started a PhD two years later. However, I soon realised that I was not
prepared for what awaited me, neither academically nor mentally. The PhD has
been a long and frustrating path of never stopping learning and making lots of
mistakes. I thought several times about leaving it, but I never liked giving up.
So, here we are: I got it.

Obviously, I would never have imagined ending up this way: writing the
thesis completely alone and defending it online because of the lockdown, in the
middle of a global pandemic of covid-19. However, that makes this thesis even
more special.

Many people have shared moments with me during this time, for better or
for worse. Here, I will only name those people who have helped me during this
process, either on an academic level or on a personal level. To everyone else,
thank you.

First of all, I would like to thank my thesis supervisors for their help over
the years. To Cesar, thank you for letting me know the “research world” and
open the doors of the DMIP group for me. The enthusiasm for research that
you transmitted to me was unequivocally what convinced me to take this path.
To José, thank you for all the support throughout this process; for guiding me
when I was lost; for talking when I didn’t know what to say; and for explaining
everything I didn’t understand. Without your help and dedication, I would not
have made it. Thank you both for spending time on every little detail of the
process (including my never-ending English mistakes) and your infinite patience
with me.

Thanks also to Luc de Raedt, for allowing me to do two stays in Belgium
within his group. Working in the DTAI group has been enriching both
academically and personally. Thank you very much for the opportunity.

To Andrew Cropper, Sebastijan Dumanci¢ and Raul Santos —external
evaluators of the thesis—; thank you for your comments and suggestions that have
helped to improve this manuscript significantly. To Maria Alpuente, Fabrizio
Riguzzi and Sebastijan (again) —jury of my defence—; thanks for all the
questions and comments and to award me with the highest mark.

I would also like to thank all the people in the ELP group, in which I have
worked all these years. In particular, I would like to thank Maria José Ramirez
for all her help, both academically and personally, and for collaborating on my
papers and giving me the opportunity to teach the data science workshop with

Xi

Acknowledgements

her. Maria José, you are the most caring and attentive professor I have ever met
in my life.

Special mention to all my lab colleagues with whom I have spent most of
the time. Julia, thanks for trusting me, making my days happier and always
checking that the calendar is not leaning. To Sergi, Angel and Raiil, thanks for
all the laughs, bravas and runs. To Nando and David, thanks for the time we
have spent together inside and outside the department; for the projects that have
been born from the whiteboard; for the trips, dinners, dips with the unicorn,
cocktails in Benicassim, cakes for depression and padel afternoons. Thank you
for sharing with me (almost) all these years and for making me laugh so much.
This path would not have been the same without you. And, finally, to Nacho.
Thanks for the gossip afternoons at the lab; for the walks on the beach; the
nights of Worms and Diablo IIT; and for being virtually with me in the lockdown
and supporting me when I felt so alone.

I cannot name all the people I've known travelling, but I would like to
especially thank the people with whom I have spent most of the time in Belgium.
Gust, thank you for collaborating with me and trying to understand me. Ondrej,
thanks for all the conversations in the lab, for reminding me the lunchtime and
advising me to stop working in the evening, and, of course, for being my personal
photographer in Brussels. Evgenya, many thanks for being an unexpected friend
when I most needed one. To both of you, thank you for celebrating happiness
with me and dancing until dawn. And finally, to Laura. Thank you for the
sightseeing; the ice creams on the boat; and for all the conversations we had.
You showed up right before it all fell apart and you helped me to stay afloat.

Thanks, above all, to my family and friends who have always been with me.
To my brother, Fran; thank you for always being a big support when I need
it, a shoulder for crying on and the best playmate. To my Hogwarts’ friends:
Vero, Arantxa and Ainara, for all the laughs, Asian food, Harry Potter gifts
and Scotland memories. To Dani, for being that friend capable of travelling
to Belgium when it was more difficult to keep moving forward. Cristina: I
don’t have enough words to thank you for everything you’ve done for me since
I met you. Infinite thanks for being my friend and my best adventure fellow.
Finally, to Jose; for spending these last few months with me in a forced distance,
encouraging me to keep moving forward every day. Whatever happens, thank
you.

Finally, the most important: my parents. Thanks for supporting me at
all times, unconditionally, independently of the distance and always with love.
Thank you for always being there, regardless of whether things have gone wrong
or right. Thank you for supporting my decisions, even if they ended up being
wrong. Thank you for encouraging me to continue or advising me to stop. Thank
you for not dropping me and helping me to stand up. I wouldn’t have got this
far without everything I've learnt from you.

And for me, this deserved smile :)

s Lidia Contreras Ochando
Valencia, January 2021

Xii

Contents

Abstract v
Resumen vii
Resum ix
Acknowledgements xi
Contents xiii
List of Figures xvii
List of Tables xix
I Introduction 1
1 Introduction 3
1.1 Motivation 3
1.2 Research Questions and Objectives 6
1.3 Research Methodology 7
1.4 Thesis Outline 9

II Background 15
2 Inductive Programming 17
2.1 Introduction L Lo 17
2.2 Learning programs 21
2.3 Inductive Bias oo 23
24 General Purpose Inductive Programming Systems 25
3 Data Science Automation 31
3.1 Introduction oL 31
3.2 Data Science Trajectories 33
3.3 Data Wrangling 35
3.4 Data Wrangling Automation 38

Xiii

Contents

IIT BK-ADAPT: Automating Data Format Standardisa-

tion

4 Domain-specific Induction
4.1 Introduction o o
4.2 Problem Definition
4.3 Experiments L oo
4.4 Conclusions e

5 Dynamic Background Knowledge

5.1 Introduction o
5.2 Upgraded Approach
5.3 Methodo
5.4 Experiments o o
5.5 Conclusionso

IV AUTOMATIR]IX: Automating Matrix Transforma-
tions

6 Learning Simple Matrix Pipelines

6.1 Introduction
6.2 Problem Definition
6.3 Method
6.4 Experiments Lo oo
6.5 Conclusions o

V Conclusions

7 Conclusions and Future Work
7.1 Conclusions e
7.2 Future Work

Bibliography
Appendices

A Data Collection
Al Survey to collect personal data,

B Data Wrangling: Competences and Skills
B.1 List of Data Wrangling Competences
B.2 List of Data Wrangling Hard Skills
B.3 List of Data Wrangling Soft Skills

C Logging Data Scientists

Xiv

43

45
45
48
52
95

59
99
60
61
63
70

73

75
76
78
79
84
93

95

103

117

119
119

121
122
122
123

125

Contents

BK-ADAPT: Supplementary Material 129
D.1 Background Knowledge: List of Functions 129
D.2 Data: List of Meta-features 140
D.3 Experiments: Extended Results 142
D.4 Tool: System Overview 149
AUTOMATI[R]IX : Supplementary Material 153
E.1 Background Knowledge: List of Functions 153
E.2 Prior Probabilities: List of Top Functions in GitHub . . . 155
E.3 Text Hints: Frequent Terms from Function’s Documentation 156
E.4 Data: List of Examples 160
E.5 Pipeline of events for a simple example 161

XV

List of Figures

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

4.1
4.2

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

B.1
C.1

D.1
D.2
D.3

D.4
D.5

E1
E.2

Supervised machine learning L 0oL 20
Ensemble Algorithms L. 21
Inductive vs deductive inference 22
MagicHaskeller: running times 29
Data Science definition oL oL, 32
CRISP-DM 33
Data Science space 34
Data wrangling classification 36
Automating data wrangling with inductive programming 48
Meta-features L L 52
Meta-features L o 61
Automating data wrangling with IP 62
Average of time depending on the strategy used 66
Average of accuracy depending on the strategy used 67
Size of the dynamic background knowledge 68
Example of data transformation using matrices 76
TF-IDF values 84
Ablation study T 87
Ablation study IT 88
Accuracy depending on the strategy used 90
Time needed to solve the problems by strategy 91
Time needed to solve all the problems 91
Schema of competence groups and skills 122
Logging Clowdflows 127
Interface of BK-ADAPT 149
BK-ADAPT: domain recognition 150
BK-ADAPT: meta-features extracted and the background knowl-

edge generated Lo 151
BK-ADAPT fills automatically the rest of the output 152
BK-ADAPT: system architecture. 152
TF-IDF values for the R primitives I 156
TF-IDF values for the R primitives IT 156

List of Figures

E.3
E.4
E.5
E.6
E.7
E.8

XViii

TF-IDF values for the R primitives IIT 157
TF-IDF values for the R primitives IV.. 157
TF-IDF values for the R primitives V. 158
TF-IDF values for the R primitives VI. 158
TF-IDF values for the R primitives VIT 159
AUTOMAT[R]IX: pipeline of events 161

List of Tables

1.1
1.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

6.1
6.2
6.3
6.4

B.1
B.2
B.3
B.4
B.5

D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8
D.9

Example of personal data 4
Dates under very different formats where the day of the month is

extracted L b)
Dataset composed of dates (input) and desired output format . 46
Extracting the name of the month 47
Functions included in MagicHaskeller 49
Functions for replacing a dash with aslash 49
Dataset with dates under very different formats 51
Data wrangling repository oL 53
DSI: accuracy 54
Exampleof results 57
Data wrangling repository 63
Results for the domain detection 64
Results of BK-ADAPT 69
Functions most used on GitHub 85
Results for the synthetic examples 86
Results for the examples from StackOverflow 90
Number of solutions found for each example 92
Competences required for data wrangling 122
Hard skills for data wrangling 123
Technical knowledge for data wrangling 123
Soft skills for data wrangling 124
Personal attitudes for data wrangling 124
Functions included by default in MagiccHaskeller. 133
Functions generated for the Freetert domain. 136
Functions generated for the Dates domain. 137
Functions generated for the EFmails domain. 137
Functions generated for the Names domain. 138
Functions generated for the Phones domain. 138
Functions generated for the Times domain. 139
Functions generated for the Units domain. 139
Meta-features generated to characterise the problems from the

different domains. 141
Results for the primitive estimator 142

List of Tables

D.11
D.12

D.13

D.14

D.15

D.16

D.17

Bl
E.2
E.3

XX

Comparison with Trifacta Wrangler 143
Comparison with FlashFill and Trifacta Wrangler using datasets
of dates e 145
Comparison with FlashFill and Trifacta Wrangler using datasets
of emails 145
Comparison with FlashFill and Trifacta Wrangler using datasets
of mames 146
Comparison with FlashFill and Trifacta Wrangler using datasets
of phomes 146
Comparison with FlashFill and Trifacta Wrangler using datasets
of times e e 147
Comparison with FlashFill and Trifacta Wrangler using datasets
of units oL 148

Functions from the R language included in the background knowledge 154
List of the R functions most used in GitHub 155
Description of the problems 160

Part |

Introduction

Introduction

“If knowledge can create problems,
it is not through ignorance that we can solve them.”
Isaac Asimov

1.1 Motivation

Consider the situation where a data expert should analyse a dataset (see Table
1.1). One of the columns in this dataset includes dates that several users have
entered manually, without following any standard (i.e., each of them is presented
in a different format). When the expert introduces the dataset into a data
analysis tool, it returns an error: “the data type of the column ‘Date & Time’
is not recognised”. This tool includes an option to convert data belonging to
known types into standard formats, so the expert —knowing that all the data
on the column are dates— decides to use it to convert all the dates into a unified
standard format. The tool transforms a few of them, and returns another error:
“some rows are not recognised as standard date formats”. It is possible that this
problem could be easily solved using some programming language. Nevertheless,
the expert does not have programming expertise, so she has no choice but to
transform the rest of the dates by hand. This should not be a big problem when
the dataset includes only a few rows, but it could end as a really overwhelming
task for datasets with thousands of rows and columns. In these cases, the data
expert will end up wasting most of her time just transforming all the data into
a unified format.

It is widely recognised that a great proportion of the time of data science
projects is taken up to carry out data preparation tasks, such as acquiring,
understanding, cleaning and transforming the data [30]. Data wrangling is a step
inside the data science process that usually involves these tasks. Increasingly
often, the available data we are analysing are messy, diverse, unstructured and
incomplete, which makes their analysis more difficult. Consider again the data
shown in Table 1.1. This table contains some information gathered in different
formats, depending on the user’s geographical region. Note that converting
the (non-standardised) data from each column into a unified format needs a
non-negligible manual effort.

Thus, a data wrangling process is usually needed before using the data in
most applications of data science, machine learning, databases, etc., where the
data are typically provided in a spreadsheet format that has to be formatted.
Unfortunately, even when data wrangling is essentially a programming problem
[70] (the process could be made easier using data analysis programming languages,
such as R or Python), most users lack programming expertise [35]. Programming

3

1. Introduction

requires multiple skills and the learning process of these languages to simply
write a small snippet of code can be long and frustrating. Transforming data is
usually tricky and the composition of the right primitives (using the appropriate
libraries) to get a correct transformation is not always easy.

Can we understand how humans solve this problem so that we can automate
the process? Michael Polanyi [143] observed in 1966 that humans perform many
tasks without knowing very well how we do them. Trying to explain how to
automate data wrangling tasks is an almost impossible work. Nevertheless, recent
researches have shown that deep learning is able to automate many tasks from
other areas [35, 102, 153] by using a huge quantity of data. For example, the
problem of face recognition: any human is able to recognise the faces of friends
in a crowd of people, but this is not an easy task to explain how to do it. Deep
learning is able to recognise faces based on the characteristics learned by studying
thousands of faces (shapes, colour, nose, eyes, etc.). According to Polanyi [143],
the type of tasks that we understand only in a tacit way has proved to be the most
difficult to automate, specifically those demanding judgement, common sense,
creativity and experience. Recent studies using different methods have similar
conclusions analysing that some jobs are more susceptible to computerisation
than others [3, 39, 40, 52, 86]. Some of those jobs difficult to automate are, for
instance: “collect, organise, interpret, and summarise data to provide usable
information”; “compile and compute data according to statistical formulas to use
in statistical studies”; or “create, modify, and test the code, forms, and scripts
that allow computer applications to run”. This means that, inside the data
science process, one of the most difficult steps to automate is data wrangling.

Despite the increasing efforts for automating some other processes included in
data science, such as machine learning [67], the manual tasks of data wrangling
still resist fully automation, partly because the problem strongly depends on
domain information. If we really want to automate data science we need to know
how data scientists behave and learn from them. For instance, if two different
dates are to be formatted into a different format to be properly recognised by a
data analytics tool, humans usually process this in two steps: (1) they recognise
that the problem is related to dates and (2) they apply specific conversions
for dates. However, these conversions are specialised for application domains.
For instance, the mechanisms to manipulate dates are very different from those

Name Address Date & Time Country
Alejandro Pala C. C/Jose Todos, 22 03/04/17 19:39 Spain
Clau Bopper Rua bolog, 136 27/06/2017 22h56 France

Srta. Maria Garcia Av. Del Mar 14, piso 6, 12 4 octubre 2017 10:20 Mexico
Dr Lauren Smith Flat 5, Royal Court, Coventy 30 October 2017 9:45 UK
Sabrina Bunha P. Rua Beni, 365, Alegre 27/11/2017 07h05 Brasil
Mr David Bozz 88 Lane of trees, Texas 77925 12/21/2017 12:30 PM USA

Table 1.1. Example of personal data presented in different formats
depending on the user’s geographical region.

Motivation

to manipulate addresses or any other type of data. Consider Table 1.2. The
difficulty of this problem lies in the different date formats, where the day can be
the first, second or third number. Additionally, these numbers can be delimited
by different symbols.

[Input Output
25-03-74 25
03/29/86 29

1998/12/25 25
06 30 1975 30
25-08-95 25

o UL W NS

Table 1.2. Example of a dataset with an input column composed of
dates under very different formats and the output where the day of the
month is extracted.

A second problem that slows down the progress in the automation of these
data science processes is the fact that there is rarely a public repository of raw,
messy or unprepared data to work with, since most of the publicly available
datasets have been already transformed or pre-processed. Besides, the work of
cleaning and preparing the data is not usually fully detailed or documented [133].
It becomes very difficult to automate a task when it is not well described or
defined, and also lacks enough examples for learning how to do it.

Recently, Inductive Programming (IP) [49, (2] has been successfully
applied to the automation of data transformation problems [5, 59, 101, 144].
Inductive reasoning makes generalisations from specific observations, i.e., it takes
observations (a few examples), discerns a pattern, makes a generalisation, and
infers an explanation or a theory (rules on some programming language, generally
declarative). To do this, inductive programming uses a declarative' background
knowledge (BK).

It should be noted that all of these recent IP systems are based on domain-
specific languages (DSLs), i.e., languages that are defined for a particular kind of
processing (e.g., string processing, number processing, etc.). If we choose some
of these domain-specific systems, e.g., one specialised for string processing, to
solve the problems on Table 1.2, they may never find the right solution. The
trouble for these systems is that their basic functions do not allow them to really
know what the real problem is: Extracting the first number? Two digits? Or
everything before any symbol? In order to solve this problem we must know how
the domain works, its constraints and how it is usually represented. This means
that solving the diversity of problems from each different domain will require
the appropriate background knowledge. As a result, too much information can
become a bottleneck as the diversity of domains and formats increases, since

1The functions or primitives in the background knowledge are expressed using declarative
languages.

1. Introduction

when the set of primitives becomes too large the search for a suitable combination
will become almost intractable [42; 73].

One alternative to DSLs is general-purpose declarative (programming)
languages (GPDL). These languages are the base for most of the inductive
programming systems created during the last two decades, such as Progol [128],
MagicHaskeller [90], FLIP [45, 72], Metagol [131], gErl [116] and many others.
Unfortunately, inductive programming using GPDLs is usually inefficient and/or
incomplete because of the large search space, as they are not specialised for a
particular domain. Nevertheless, with the correct definition of a reduced library
of functions (or predicates) in a domain-specific background knowledge (DSBK),
the search space for these generic inductive programming tools can be bounded by
the size of the solution and the number of functions in this DSBK. In other words,
in theory, the use of inductive programming using GPDL + DSBK can be as
powerful as the use of inductive programming tools that are specifically designed
for a particular DSL. The advantages of using this approach are manifold. First,
the same data wrangling tool with inductive programming can be used for a
diversity of problems and domains, without specialised tools for every domain.
Second, a library of DSBKs could be provided with the data wrangling tools
using inductive programming. The user just needs to suggest which one to
use for a particular problem: dates, times, emails, names, cities, addresses, etc.
Since the languages for creating the DSBK are general-purpose and well known
(Haskell, Prolog, etc.), users can create their own DSBKs and share them with
other users to help them automate their data wrangling transformations.

Every problem related to data preparation can become easy to automate by
using the appropriate background knowledge, but the number of domains can
make the size of the space of solutions too large, making the problem difficult
to be solved with current systems. The answer to this issue can lie in the use
of general purpose languages together with IP systems but dynamically finding
the correct piece of the background knowledge to adapt the solution to each
particular problem. Finally, if we really want to automate or semi-automate this
process, we should require the less intervention of the user as possible, i.e., we
need to solve the problem by using only a few examples from the user.

1.2 Research Questions and Objectives

Automating data wrangling would be tremendously useful. However, as we have
seen on the introduction, there are some issues that do not allow the process to be
completely automatic, such as a lack of documented examples of data wrangling
problems. Inductive programming is capable of learning, even when there are
few examples, but a sufficient domain knowledge is needed to be able to solve
different problems. The problem for this paradigm is that, if the background
knowledge is too large, it becomes a bottleneck that slows down —or even makes
intractable— the inference of the solution.

With these problems in mind, this thesis will try to answer the following
questions:

6

Research Methodology

e« What are the challenges for an algorithm to correctly and efficiently
automate the data transformation process independently of the data
domain?

e How can we dynamically select the background knowledge of an inductive
programming system to find the solution to the problem?

The aim of this thesis research is to provide algorithms and inductive
programming systems capable of dynamically select the appropriate
background knowledge —depending on the problem to solve— when
dealing with data wrangling tasks, but requiring the lowest user
intervention possible (i.e., automatically or semi-automatically).

To achieve this main goal, the following objectives will be accomplished:

o Analyse the role of data wrangling and its automation in the trajectories
of data science projects.

e Study which data domains are normally used in data cleansing tools and
what characteristics they have.

e Acquire sufficient examples of common problems related to the transfor-
mation of data belonging to the studied domains in different scenarios.

o Generate a domain-specific background knowledge for each domain, large
enough to be able to solve as many problems as possible.

e Generate algorithms to dynamically handle the background knowledge,
regardless of its size, for a range of data wrangling problems and domains,
requiring the least possible time.

e Provide systems based on inductive programming, which use the algorithms
and the generated background knowledge, in order to solve the collected
problems, using as input as few examples as possible.

1.3 Research Methodology

To reach the goal described in the previous section, the Design Science Research
(DSR) methodology [78] has been applied, which is fundamentally a problem-
solving paradigm. The goal of this methodology is to produce a viable artefact
such as algorithms, human/computer interfaces, design methodologies (including
process models) and languages, and develop knowledge that other professionals
and researchers of the field can use to design new solutions. In this respect, all
the experiments, code and data have been published in public repositories shared
with the community to allow for further experiments and repeatability.

Following the DSR methodology guidelines [167] this thesis has followed the
following steps:

1. Identification of the problem: first, a research on the state-of-the art
systems for data wrangling has been carried out. The goal of this step is to
find the tools developed today that help on transforming data in a manual,
semi-automatic or automatic way and which are the advantages of using

7

1.

Introduction

them as well as their limitations. With this information it is possible to
define what kinds of problems prevent us from automating data wrangling
process.

. Definition of objectives: if we want to automate data wrangling tasks

the main problem to solve is to deal with all the different domains and
data formats. After the study on the current systems and as stated in
section 1.2, this thesis attempts to explore new ways of reducing the size of
the background knowledge for the inductive inference when dealing with
data wrangling automation.

. Research design: when the objective is clear, the research has to be

designed. In this case, we have done this in three steps: (1) we have made
a study to know the different existing inductive programming systems
in order to choose which is the best one to use for our purpose, as well
as the language in which they are implemented; (2) after the study of
the state-of-the art tools for data wrangling, we have compiled a list of
common problems related to data transformation that are repeated in
different systems and asked in several help forums. These kinds of problems
(for instance, transforming a date into a specific format) are real problems
when working with data that can be simplified by automating the process;
(3), with the list of problems we have put together a collection of data from
several sources in order to have real problems to work with. The following
data sources have been used:

e Personal data collected through surveys: we have created a
survey” in order to collect personal data (name, surnames, address,
phone, etc.) from people. The goal of this survey is to collect data in
very different formats depending on the user’s geographical location.
The survey has been open on Twitter for a month and in total we
have collected 59 responses. After the collection of these data an
anonimisation process has been performed to the data.

e Data collected from the literature: as we will explain in section
5.4, we have also collected most of the datasets tested previously in
other tools for data manipulation in the literature [6, 41, 59, 156,
157].

e Data generated by pattern: Following the patterns from the
data collected in the above points but changing the values, we also
have generated new examples.

e Data collected from help forums: we have collected examples re-
lated to data transformation from help forums such as StackOverflow?,
since they are a really good place to look for real problems.

2The survey can be found in Appendix A.
3StackOverflow: https://stackoverflow.com/

https://stackoverflow.com/

Thesis Outline

o Synthetic data: finally, we have also generated some examples of
random matrices for the experiments® of Chapter 6.

And finally, (4), we have developed the theoretic formulation of the
solutions, we have designed the algorithms (by defining the inputs, outputs,
instructions, constraints, etc.) and we have performed a preliminary
analysis (both theoretical and experimental).

. Development of artefacts: with all the information collected and the
studies done, we have finally developed two different systems to automate
different data wrangling problems: (1) The first one has been implemented
using an existing IP system as the back-end that allows us (and future users)
to generate new transformations of data in a general-purpose declarative
(programming) language; (2) The second system (created from scratch)
implements an algorithm in a common statistical language, which allows
us to generate a package that future users can download easily.

. Evaluation of the solution: the systems have been tested with the
collected examples (using only one —full or partial-— example as input) and
evaluated following different criteria: (1) we have measured the accuracy
of the systems using the number of correct solutions obtained; (2) we have
measured the time spent to solve the problems; (3) we have measured the
size of the background knowledge or the number of solutions explored for
each problem solved with the different strategies presented; and (4) we
have compared the results obtained with the results obtained with other
existing tools.

. Communication of the problem and the solutions: we have shared
the results and data used in three different ways: (1) We have developed
a new data wrangling dataset repository including the data collected or
generated; (2) we have created a GitHub repository with the code of the
systems; and (4), all the methods and results shown in this thesis have
been published and presented in different venues (conferences, journals,
seminaries, summer schools and other meetings) in different formats (papers,
posters, presentations and demos).

1.4 Thesis Outline

The dissertation has been divided into five parts, being the first one the
preliminaries that include this introductory chapter. The second part includes
two chapters describing the fundamentals and covering the state-of-the art
through the literature of the main fields used for the development of this thesis:
inductive programming and data science. The two main research contributions

4The criteria followed to gathered the data of this bullet point and the bullet point above
is presented in section 6.4.

1.

Introduction

of this work are described in parts three and four. Finally, part five closes the
thesis with the conclusions and future work.

10

A detailed description of each chapter is provided below:
o Part II: Background

— Chapter 2 summarises the basic concepts of artificial intelligence,

machine learning and inductive programming. The chapter also
presents the process of inductive inference and discusses the problem
of the inductive bias when too many primitives are added to
the hypothesis space in program synthesis. Finally, the chapter
describes some general-purpose inductive programming systems
and the functionality and theory behind the inductive functional
programming system, MagicHaskeller, used as the core of the BK-
ADAPT system. The chapter also analyses how the inductive bias
can affect MagicHaskeller.

In Chapter 3 the process of data science is presented and the progress
and challenges in the automation of some of ts activities, data
wrangling in particular. We follow the examples of [114] to describe
data science as a space of activities where many of them can occur,
once or repeated times in the same project without following a
determined order or path. Then, the chapter focuses on one of
the data science steps: data wrangling. Data wrangling automation,
which is the main goal of this thesis, is described in different sections.
First, the issues of its automation are exposed as well as some possible
solutions. Then, the full data wrangling process and its issues are
presented following the criteria of [133]. The chapter analyses the
current research lines for automating data transformation and the
future challenges of this field. This chapter is partially based on the
following publications:

+ Logging Data Scientists: Collecting Evidence for Data
Science Automation.
Lidia Contreras-Ochando, Fernando Martinez-Plumed, Cesar
Ferri, José Hernandez-Orallo, Maria José Ramirez-Quintana.
AljDataSci @ NIPS, 2016.

* Applying the Skills in Data Science with Those in
AI/ML.
José Hernandez-Orallo, Lidia Contreras-Ochando.
Dagstuhl Seminar 18401 Automating Data Science, 2018.

x+ CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories.
Fernando Martinez-Plumed, Lidia Contreras-Ochando, Cesar
Ferri, José Hernandez-Orallo, Meelis Kull, Nicolas Lachiche,

Thesis Outline

Maria José Ramirez-Quintana, Peter Flach.
IEEE Transactions on Knowledge and Data Engineering, 2019.

o Part III: BK-ADAPT: Automating Data Feature Transformation

— In Chapter 4 the domain-specific background knowledge approach
is included. This is used to solve the problem of having a big
set of functions when several domains have to be added to a data
transformation system. Here, the data wrangling dataset repository
is created with six different domains and used to evaluate whether
the use of a domain-specific induction can be useful to improve the
search of the right primitives. This chapter is based on the following
publications:

x General-Purpose Inductive Programming for Data
Wrangling Automation.
Lidia Contreras-Ochando, Fernando Martinez-Plumed, Cesar
Ferri, José Herndndez-Orallo, Maria José Ramirez-Quintana.
AljDataSci @ NIPS, 2016.

x Domain specific induction for data wrangling automa-
tion.
Lidia Contreras-Ochando, Cesar Ferri, José Hernandez-Orallo,
Fernando Martinez-Plumed, Maria José Ramirez-Quintana,
Susumu Katayama.
AutoML @ ICML, 2017.

x Domain specific induction for data wrangling automa-
tion.
Lidia Contreras-Ochando.
Dagstuhl Seminar 17382 Approaches and Applications of Inductive
Programming, 2017.

x General-purpose Declarative Inductive Programming
with Domain-Specific Background Knowledge for Data
Wrangling Automation.

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo,
Fernando Martinez-Plumed, Maria José Ramirez-Quintana,
Susumu Katayama.

arXiv preprint arXiv:1809.10054, 2018.

— Chapter 5 introduces the BK-ADAPT system. BK-ADAPT is a
system able to transform data that are presented in very different
formats for a domain. Here, the dynamic background knowledge
approach is presented. This system uses the domain-specific induction
together with a machine learning meta-model that is feed with meta-
features extracted from the data to estimate the functions needed to

11

1.

Introduction

12

solve each specific problem. This chapter is based on the following

publications:

* Automated Data Transformation with Inductive Pro-

gramming and Dynamic Background Knowledge.
Lidia Contreras-Ochando.

Dagstuhl Seminar 19202 Approaches and Applications of Inductive

Programming, 2019.

* Automated Data Transformation with Inductive Pro-

gramming and Dynamic Background Knowledge.

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo,
Fernando Martinez-Plumed, Maria José Ramirez-Quintana,

Susumu Katayama..

European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD),

2019.

+ BK-ADAPT: Dynamic Background Knowledge for Au-

tomating Data Transformation.

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo,
Fernando Martinez-Plumed, Marfa José Ramirez-Quintana,

Susumu Katayama.

European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECMLPKDD),

2019.

o Part IV: AUTOMAT[R]IX: Automating Matrix Transformations

— In Chapter 6 the AUTOMAT[R]IX system is presented. First, the
chapter describes the problem that is represented by programming
in the context of data transformation for people with a lack on
programming skills. As a case of study the matrix transformation
problem is illustrated. Then, the chapter describes the method and
the algorithm created for AUTOMAT [R]IX using a probabilistic
approach that uses the dimensions of the input/output matrices, prior
information in the form of frequency of use of the functions and some
(optionally) tips from the user in the form of natural language. Finally,
the chapter shows the experiments performed and results obtained.

This chapter is based on the following publications:

* Automating Common Data Science Matrix Transforma-

tions.

Lidia Contreras-Ochando, Cesar Ferri, José Hernandez-Orallo.
ADS @ ECMLPKDD, 2019.

x* AUTOMAT[R]IX: Learning Simple Matrix Pipelines.

Thesis Outline

Lidia Contreras-Ochando, Cesar Ferri, José Hernandez-Orallo.
Machine Learning, 2020 (to appear).

o Part V: Conclusions

— Finally, Chapter 7 closes the thesis with the conclusions, main
contributions and possible directions for further research in the field
of data wrangling automation.

At the end we have also added some appendices with further information:

o Appendix A includes the survey used to collect personal data.

o In Appendix B we describe the competence groups that identify the main
competences and skills required in data wrangling process.

e Appendix C describes some ideas for logging data scientists in order to
learn from their behaviour.

o Appendix D includes some supplementary material for the BK-ADAPT
approach, including the extended results and the description of the system
architecture.

e In Appendix E we also include supplementary material for the AU-
TOMAT[R]IX approach and a pipeline of the events with a simple example.

13

Part Il

Background

Inductive Programming

In this chapter, we describe the fundamentals and goals of inductive programming.
We discuss how to deal with a large space of solutions that is dominated by
the inductive bias. The chapter also includes a description of MagicHaskeller,
a general-purpose learning system used as the core of the BK-ADAPT system
presented in this thesis.

This chapter is organised as follows. Section 2.1 summarises what artificial
intelligence, machine learning and programming induction are and explores how
machines learn. This section also explains the random forest technique that
will be used in the following chapters. The basis of the inductive inference of
programs is illustrated in section 2.2 and the the problem of inductive bias
is explained in section 2.3 in the context of programming by example, a kind
of inductive programming. Finally, section 2.4 lists some of the inductive
programming systems and ends with section 2.4.1 presenting the inductive
functional programming system MagicHaskeller.

2.1 Introduction

In 1950, Alan Turing proposed that machines can ‘learn’ [165]. Following Ada
Lovelace’s objection that machines can only do what they have been told to do
[118], he stated that machines could learn if they were programmed to imitate a
child’s mind. This way, we could teach machines with experiments that exercise
their “minds” by an education process. Turing established the fundamental goal
and vision of Artificial Intelligence (AI). AT is the science of making machines
perform human tasks on their own, by the simulation of human intelligence and
human abilities. The goals of artificial intelligence include learning, reasoning,
and perception [51]. A few examples of applications of Al are: Google assistant’,
Siri?, Alexa® and other personal assistants; self-driving cars; or IBM’s Watson®.

In order to make Als able to “think” on their own, we need some techniques
to teach them how to learn. Machine Learning (ML) is a specific subset of AI
that trains a machine on how to learn using data. In machine learning, machines
are not specifically programmed to do a task, instead, some data is given to them
to learn how to do it. Then, the machines look for patterns in the data and try
to draw conclusions. The result of this is a machine learning model. As Peter
Flach defines in [46]: “Machine learning is the systematic study of algorithms
and systems that improve their knowledge or performance with experience”.

1Google assistant: https://assistant.google.com/
2Siri: https://www.apple.com/siri/

3Alexa: https://developer.amazon.com/es-ES/alexa
4IBM’s Watson: https://www.ibm.com/watson

17

https://assistant.google.com/
https://www.apple.com/siri/
https://developer.amazon.com/es-ES/alexa
https://www.ibm.com/watson

2. Inductive Programming

Machine learning is closely related to the fields of statistics and data mining
[66, 132] and is used in a wide variety of applications, such as email filtering
and computer vision, where it is difficult to develop conventional algorithms to
perform the needed tasks.

There are many different ways in which Al systems can learn, and many
machine learning techniques have tried to cover a wide range of possibilities.
One important dimension to characterise all these techniques would be how data-
intensive they are. Here, the spectrum goes from models that are constructed in a
data-driven way (i.e., making decisions based on data analysis and interpretation),
to models that are built in a theory-driven or compositional way (i.e., the
hypotheses are made from theories that explain a behaviour) [54, 100]. The
former are now predominant in machine learning because they are appropriate for
large volumes of data and work well when we do not know the appropriate bias
information for each domain (or we are unable to put that bias into the systems).
The latter are usually better for learning from a few examples, especially if the
information about the domain can be incorporated as background knowledge
composed of a set of auxiliary primitives (functions) or concepts as explained
in section 1.1. Inductive Programming (IP) [419, 62] is a clear example of this
family of techniques. Inductive programming learns theories (logic, functional,
or functional-logic programs) from incomplete specifications, such as a few
input/output examples, possibly using a declarative background knowledge that
works as a powerful explicit bias to reduce the search space and to find the
right level of generalisation. However, there are scalability issues since the
hypothesis space grows exponentially with the size of the background knowledge.
However, we find that most IP systems are only able to select the functions of
the background knowledge by simply considering the appropriate types of the
arguments, in the best of cases, but not according to the problem at hand.

2.1.1 How Machines Learn

In cognitive science, learning is the process of gaining knowledge through
observation. We need to have some prior knowledge related to a task in order to
do it in a proper way. For instance, when children learn how to add they can
easily transfer this knowledge to better understand and learn how to multiply.
Besides, if we keep learning and gaining more knowledge about the task we can
improve and perform it more efficiently [154]. Human learning can happen in
three ways: (1) we try to do it ourselves until we success (search, self-experience),
(2) someone expert in the task teaches us and guides us (demonstration), or (3)
we learn by knowledge generated from others in the past (transmission) [74].
So, can these types of learning be applied to machines? Tom M. Mitchell
defines that “a computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E” [121]. That is, a machine
can learn if it is able to collect experience (from training data) by doing a task
and improve its performance doing it. It can also do other similar tasks in the
future (generalisation). The primary elements of machine learning are features

18

Introduction

(the description of the objects), tasks (the problem we want to solve regarding
the features) and models (output of a machine learning algorithm applied to
data) [46].

Overall, there are three main types of learning related to machine learning
(though hybrids do also exist), depending on the nature of the feedback available
to the learning system [103]:

e Supervised learning: The computer is given the example inputs and
their expected outputs. The goal is to learn a general rule that maps inputs
to outputs. Basically, we are telling the machine “Do like I do”. We call
these tasks classification when the labels (outputs) are categorical values,
and regression when they are quantitative values.

e Unsupervised learning: No labels are given to the algorithm, so it has
to find the relations in its input. Unsupervised learning can be used for
discovering hidden patterns in data or for feature learning. In this case,
we say to the machine “Find patterns in the data”.

¢ Reinforcement learning: The algorithm interacts with a dynamic
environment used for learning how to behave when given occasional reward
or punishment signals while the algorithm must perform a certain goal. So,
here we are telling the machine “Do whatever you want to get the highest
score”.

Other types of machine learning are: active learning, which lets users play
an active role in the learning process by asking them to label examples; and
semi-supervised learning, where the data are a mixture of labelled and unlabelled
examples [66].

2.1.1.1 Feature-based learning techniques: random forest

Many supervised machine learning techniques map inputs to outputs in nonlinear
ways where the goal is to approximate the mapping function so you can predict
the output variables from new input data. The learning stops when the algorithm
achieves an acceptable level of performance. For the purpose of our work we will
use a supervised machine learning technique (Random forest). In this section
we will describe this technique with more detail. Supervised models estimate
unknown future values. Inside supervised models we can find classification
and regression tasks [44, 137]. Figure 2.1 summarises how supervised machine
learning methods work. In the supervised approach, the objective is to learn a
mapping from inputs x to outputs y, given a training set D = {(z;, yi)}f-v:l, where
N is the number of examples. Each training input x; is a feature, attribute, co-
variate of features or a complex structured object (such as an image, a sentence,
etc.). The supervision comes from the labelled examples in the training data set.
[132].

In order to understand how the random forest technique works, we first need
to introduce how decision trees are learned. Decision tree learning is one of

19

2. Inductive Programming

“CATS”

Label: “CATS” Label:
“NOT CATS”
“NOT CATS”

Figure 2.1. Supervised machine learning: (1) The machine learning
algorithm is given labelled data for learning; (2) The algorithm is provided
with new unlabelled data; (3) The algorithm tags the new data according
to the information learnt in the first step. Adapted from [15].

the oldest and most popular techniques in machine learning and statistics [11,
82, 89, 147]. These methods construct a model based on conditions on the
attribute values organised as a tree. Each node of the tree corresponds to one
of the features and from every node, there are edges (branches) for each of the
possible values of the feature. Each leaf node represents a possible value for the
output variable (label). The decision tree can be turned into a logical expression.
Decision tree learning is not limited to classification; it can be used in almost
any machine learning task (such as regression and clustering).

Random forest is an ensemble model, i.e., a combination of models. Ensemble
models are one of the most powerful techniques in machine learning. One way of
building an ensemble model is by training models on random subsets of the data.
These random samples taken from the data are known as bootstrap samples
(bagging). The number of features for each sample is a ‘hyperparameter’ that is
set to some percentage of the total. For a sample of size n, the probability that
a data point is not selected is (1 — 1/n)™ (i.e., each bootstrap sample leaves out
approximately a third of the data). Random forest uses decision trees as the
base classifier and their models that are independently trained [16]. Each tree
includes a random sample from the original data set, adding randomness that
prevents overfitting.

The predictions of the models returned are combined (they can be combined
by many methods, including averaging, voting, and probabilistic methods [40]),
treating them as a “committee” of decision makers to make the overall prediction.
This committee of decision should have better overall accuracy, on average, than

20

Learning programs

any individual committee member (see Figure 2.2).

Random Random

subset 1 subset n
Random

subset 2

L] L] L]
] B IC T 1 C1T1C e

Class1 Class 1 Class 2

Majority voting

Final Class

Figure 2.2. Ensemble Algorithms: Random Forest. The class is selected
with the majority of the votes from all the trees. Adapted from [12].

2.2 Learning programs

Many machine learning models are represented as mathematical entities, linear
or non-linear models with weights that connect inputs and outputs. Some of
them are expressed in terms of distances, or even represented as rules. But we
can also think of a model as a program. When taking this perspective, the goal
is to build a program, but not by writing the instructions from a specification.
Instead, the program is built by inductive inference, following a few examples of
what the program has to do. Inductive Programming —also known as program
induction, example-based programming or inductive program synthesis—, is a
sub-field of machine learning and an inter-disciplinary domain of research, of
which goal is to construct a computer program or algorithm from an incomplete
specification (only some parts are specified) of a target function. As Figure 2.3
shows, in contrast to deductive inference —where a set of rules (theory) have to
be applied to predict the observations [17, 109, 110]—, inductive inference makes
generalisations (discoveries) from specific and incomplete observations (called
the evidence) by identifying general patterns in the data. Such observations
can be positive and negative examples, clausal constraints, uses cases, desirable
behaviour of a software, computational traces, etc. [3, 50, 96].

21

2. Inductive Programming

Inductive Deductive
Inference Inference

Figure 2.3. Inductive reasoning vs deductive reasoning.

The inference can be based on background knowledge or the learner can query
an oracle (the user) [49]. Depending on the programming language used, there
are three types of inductive programming: (1) Inductive functional programming
[7], (2) inductive logic programming [127] and (3) inductive functional logic
programming [77]. An induced program contains function primitives, i.e.,
predefined functions known by the IP system or given as a background knowledge.
However, the hypotheses are not always easy to construct. On the one hand,
the hypothesis space can be huge and complex when the background knowledge
has many primitives, resulting in scalability issues because of a combinatorial
explosion. On the other hand, there is a problem if the used language is not
expressive enough to represent the target hypothesis.

For humans it is easier to give examples of a target concept than to program it
[164]. Inductive programming can be applied to many areas such as evolutionary
programming, grammar inference, programming languages and verification [75].
Furthermore, inductive programming approaches are of interest in programming
by demonstration applications for end-user programming as well as in cognitive
models of inductive learning. Recently, it has been shown that the capability of
inducing programs from examples makes inductive programming also suitable
for many real-world applications [62]. Programming by example (PbE) [104,
149] is a sub-field of inductive programming, where the specification comes in
the form of input-output examples [60]. The user provides examples of data
before and after processing; the computer must find a function for transforming
the input to the output. Generally, in order to make PbE widely useful, only
a few examples should be sufficient to induce the right solution even when the
examples are incomplete. The use of declarative languages allows the synthesis
of programs including recursion or loops, as well as primitives from a declarative

22

Inductive Bias

background knowledge [50, 76, 97, 129]. In particular, PbE can help to automate
many data manipulation tasks, such as extracting terms from texts, transforming
data format, inverting strings, etc. Since 99% of people who use computers lack
programming skills [31], they often spend considerable time and effort performing
tedious and repetitive tasks, for instance capitalising a column of names manually.
Inductive Programming can liberate users from many tasks of this kind, because
it addresses the human act of computer programming by generating programs
or scripts automatically [49].

2.3 Inductive Bias

From a machine learning point of view, the selection of functions from the
background knowledge can be seen as a kind of bias [121]. Infinitely many
(semantically) different programs can meet the specification. Hence, one needs
criteria to choose between them. As said before, the background knowledge
is usually composed of a set of auxiliary primitives or concepts that can be
combined to find the hypothesis that covers the data. However, if this set of
primitives becomes too large then the search for a suitable combination becomes
huge. As usual, bias makes the learning of some hypotheses easier (or possible)
at the cost of other hypotheses. A similar problem appears in other incremental
settings when a system learns concepts, representations or features gradually
but at some point there are too many to combine [96].

In particular, the term ‘inductive bias’ refers to the assumptions a learning
system does to prioritise some hypotheses over others [122]. In approaches where
the hypothesis combines primitives or concepts, the inductive bias has the aim
of adapting the depth (d) —how many primitives or elements are needed— and
breadth (b) —how many choices there are in the library of components— of
the learning process. Thus, with no alteration of the search procedure, the
background knowledge can be used to produce a bias on learning. However,
as the background knowledge grows to reduce d for more and more problems,
the search becomes intractable because of the growth of b. To avoid these
problems, inductive programming can use different mechanisms to constrain
the search for hypotheses: language bias (determining the hypothesis space,
i.e., which programs can be induced) and search bias (determining how to
search in the hypothesis space, i.e., determining which generalised programs
are constructed first) [9]. If we only provided a few general primitives, d would
increase considerably, as these primitives should be combined in elaborate ways
to make even simple transformations. However, as more kinds of functions
are required, the library would become very large, and hence b. Clearly, both
depth and breadth highly influence the hardness of the problem, jointly with
the number of examples, n. Actually, for theory-driven induction, this hardness
strongly depends on d and b, in a way that is usually exponential, O(b%) [45,
71], with n being mostly irrelevant. Still, the great advantage of inductive
programming is that it can infer a solution for one or a few examples (the benefit
of automation disappears if the user has to provide many examples).

23

2. Inductive Programming

Inductive bias has been analysed in incremental and lifelong learning scenarios
[45, 120, 123]. The general idea is to combine the hypothesis generation process
with a forgetting mechanism to limit the amount of background knowledge that
must take part in learning. [115] explains an approach that rate rules from
an inductive engine. The algorithm uses a coverage graph to introduce several
metrics that allow forgetting some of the worst rules and the promotion of the
selected ones. In [28], Cropper uses two different methods (syntactical and
statistical) to forget redundant knowledge reducing the background knowledge.
The experiments show that forgetting can improve the learning performance
and avoid overwhelming by too much background knowledge. In a recent work
[38], Duman¢i¢ and Cropper claim that re-structuring the knowledge is essential,
instead of removing or updating it. The paper argues that re-structuring
knowledge can provide a better inductive bias to a learner. In this thesis, we
will see a method for restructuring the knowledge in a dynamic way based on
domain-specific induction (chapter 4) and on the use of probabilities with a tree
based search, that also combine the deletion (or forgetting) of those hypotheses
that the system detects that will never become a solution to the problem (chapter
6).

Another idea is to predict which functions may be needed and select only
those ones. In [4], Balog et al. train a neural network with a set of generated
problems that is able to predict which functions may be needed for a particular
problem (presence or absence of individual functions). The results show that
the system is able to speed up the process compared with a baseline using prior
as function probabilities, although they only include 34 functions in the DSL®.
To avoid the combinatorial explosion with huge DSLs, the EC? algorithm [12]
(based on the E.C. algorithm, introduced by [33]°), learns a reduced set of
functions through three steps: (1) exploring the space of programs guided by
a neural network searching for programs that solve the task; (2) compressing
the DSL with domain-specific subroutines; and (3) compiling the DSL using
a neural network to write programs. The learned DSL uses the domain as a
prior and the input-output example for a specific task as a posterior. Using this
approach in the text editing domain, they are able to solve 74% of the problems.
In [119], the idea of ranking the functions according to some text features is
presented. However, in this work, Menon et al. rely on the fact that input and
output strings are closely related. For instance, the output is a sub-string of the
input. In chapter 5 we will see an approach to rank the functions included in the
background knowledge —based on meta-features extracted from the examples—,
that is able to obtain the solution even when the background knowledge includes
more than 200 functions.

In order to guide the search thought the hypothesis space, in [135], Oliphant
and Shavlik use two Bayesian networks, one trained in “good” predicates and the
other trained in all the predicates, to generate a weight that can be attached to

5The DSLs are explained in section 1.1.
6The E.C. algorithm is able to solve multi-task program induction by learning from simple
tasks a search space structure that enables it to solve more complex tasks.

24

General Purpose Inductive Programming Systems

all the candidate predicates. The algorithm runs a hill-climbing algorithm” using
the weights to guide the search. In this way they are able to use probabilities
to select the predicates to apply for each example. Finally, the results shown
in [158] suggest the usefulness of a measure of relevance on the background
knowledge to guide the search over programs relying on expert knowledge. In
this thesis, we will see how the search can be guided by the syntactic structure
of the examples (part IIT) and with the use of tips or descriptions in natural
language about the problem that can be provided by the user (part IV).

2.4 General Purpose Inductive Programming Systems

The first attempt to make an Inductive Programming System (IPS) was made by
Summers with the THESYS system [160]. He noticed that with certain allowed
primitives, a program schema, and some small sets of positive input/output
examples, a recursive LISP program can be found after a search in program space.
The system synthesised linear recursive LISP programs by rewriting the examples
into traces. This led to further research on the topic and several IP systems
have been created. For the purpose of our work, we looked for a general-purpose
IP system using a well-known declarative language (not DSLs) so we can modify
both the system and the background knowledge with the domain knowledge (as
we will see in chapters 4 and 5). In this section we summarise some of these
systems® and the reason why we choose one of them: MagicHaskeller. We divide
these systems into four groups, as follows:

e Analytical approaches: These systems follow a example-driven way,
that is, the structure of the examples is used to guide the construction of
the programs.

— IGOR I [97): modern extension of Summer’s THESYS system. Uses
LISP and the functions can only be first-order (i.e., not taking
functions as arguments nor returning functions as result). No nested
or mutual recursion is allowed.

— IGOR II [95]: this system relies on constructor-term rewriting
techniques. The functions are defined with algebraic data-types
and the search is guided by pattern matching. The specifications
are presented as sets of example equations that can contain variables
and the background knowledge can be provided in form of additional
example equations.

e Search-based approaches: These systems first construct one or more

THill-climbing algorithm tries to find a better solution by incrementally varying a single
element. If the change produces a better solution, another incremental change is made to the
new solution, repeating this process until no improvements can be found.

8This list is based on the list of systems published at https://inductive-programming.
org.

25

https://inductive-programming.org
https://inductive-programming.org

2. Inductive Programming

hypothetical programs, evaluate them with the input/output examples and
then work with the most promising hypotheses.

— ADATE [1306]: synthesises function definitions in a subset of the
programming language ADATE ML, guided by an evaluation function
that tests a given program and says how good it is. Inspired by basic
biological principles of evolution (genetic algorithms). It is especially
suitable for reinforcement learning and it is intended as a system that
automatically improves a part of an existing program, covering the
examples via a generate and test.

— MagicHaskeller [92]: The system generates HASKELL programs by
using type-constraints. It searches the space of A-expressions (i.e., a
function definition that is not bound to an identifier) for the smallest
program satisfying the specification. The expressions are generated
using function composition with user provided functions and data-
type constructors. It uses a breadth-first search over the candidate
programs guided by the type of the target function.

e ILP Systems: These systems have a focus on learning recursive logic
programs.

— GOLEM [130]: This system constructs a set of definite clauses
from groups of positive and negative atomic examples together with
extensional background knowledge. It starts by randomly choosing
pairs of positive examples that are removed once a single clause has
been asserted, continuing on all remaining examples. However, such
a search space makes search nearly intractable.

— PROGOL [128]: The system uses PROLOG and combines “Inverse
Entailment” (i.e., using a background knowledge B, a hypothesis
H covers an example e, if and only if BA H = e) with a “general-
to-specific search” (i.e., hy is more general than A2 if and only if
(Vz € B)lha(x) =1) = (hi(x) = 1)], being h; and hs boolean-valued
functions defined in B) through a refinement graph. It performs an
A*-like search, guided by compression.

— DIALOGS-II [48]: This system uses PROLOG and no evidence needs
to be prepared in advance. It queries an oracle and invents its own
evidence about it. Type declarations are provided as language bias.

o IFLP systems: These systems have a focus on learning recursive logic
programs

— FLIP [77]: Induction of Functional Logic Programs from facts, based

on the reversal of narrowing. It is searched heuristically using a
combination of description length and coverage of positive examples.

26

General Purpose Inductive Programming Systems

Its applications are mainly program synthesis, program debugging
and data mining of small highly structured documents.

In [30], Hoffmann et al. compare all these systems with a set of experiments
and conclude that there are improvements still to be discovered. However, they
show that ILP systems need a higher number of examples than the other systems,
while IFP systems get along with much fewer examples and are much more
reliable in their results. Finally, they also state that analytic approaches, such
as MagicHaskeller, have problems when the search space is wide but the ability
of generically inventing functions is a big advantage for them.

As we will see in Part 111, for the BK-ADAPT system we decided to use
MagicHaskeller as the inductive programming core of our approach. The
reasons for that decision are several. However, it should be noticed that all the
mechanisms for primitive selection can be extended to other systems and solve
similar experiments. First of all, MagicHaskeller is a general-purpose learning
system that works with Haskell, a functional programming language that makes
it much easier to add domains and transformations. Besides, MagicHaskeller is
a very powerful system that can solve many problems using only one example
from the data. Finally, with some modification it is also possible to provide
MagicHaskeller with different domains as different sets of functions. In the next
section we will describe MagicHaskeller’s functionality.

2.4.1 MagicHaskeller

In a nutshell, MagicHaskeller is a general-purpose inductive functional
programming system that learns Haskell programs from pairs of input-output
examples, also expressed in Haskell, using a breadth-first search algorithm and
type inference [91]. MagicHaskeller receives an input example (z) and the
expected result (y), and returns a list of functions (f) that make the values of
the expressions fx and y be equal, which in Haskell notation is expressed as
the boolean predicate f x == y. MagicHaskeller looks for combinations of one
or more functions that are defined in its background knowledge to work like
the f above. It can take more than one example if they are separated by &&°.
Consider for instance the following two examples of the function f:
f9==48&& f 25 ==

With this input, MagicHaskeller generates a function f that computes the
square root of the input plus 1. This function can be expressed in Haskell
notation as:

f = (\a ->1+ round(sqrt(fromIntegral a)))

Note that f is composed of five function symbols or constants (1, +, round,
sqrt, fromIntegral). This is what we denote the depth (d) of the solution,
the number of function symbols that are combined in it.

MagicHaskeller works in two steps: (1) The Hypothesis Generation phase,
and (2) the Hypothesis Selection phase.

9 MagicHaskeller has a web version, where we can see some examples of how it synthesises
functions: http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

27

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

2. Inductive Programming

Hypothesis Generation phase: In this phase, MagicHaskeller starts with a
predefined d,;,q, value (maximum depth d allowed for the solution) and a set of b
functions in the library. Then, MagicHaskeller continues with the preparation of
hypotheses by generating all the type-correct expressions that can be expressed
by function application and lambda abstraction using up to the maximum depth
(dmaz) using a number of functions from the library that cannot exceed the
maximum depth (d,q.). Although MagicHaskeller is very powerful for finding
the simplest solutions (that is, those with smallest Kolmogorov complexity),
depending on the problem, the solution might require the combination of many
function symbols (that is, a solution with a large depth d). When the d required
is higher than the d,;,q, value used, MagicHaskeller is not able to find the solution
(because it cannot reach the necessary number of functions to be combined).
Trying to increase the d,,., value to achieve the result may cause an increment
of time. On the contrary, trying to reduce d, we may be tempted to add many
powerful and abstract functions to the library. But, in this case, MagicHaskeller
will have too many primitives to choose from (the breadth value b), and may
not find it either because of the time needed to combine all of them.

As we mentioned before, it is usually estimated that for the inductive inference,
the computational complexity might be in the order of O(b?) [55]. Figure 2.4
illustrates this by showing the time (in seconds) used by MagicHaskeller in this
phase when we vary both the number of functions included in the library (b)
and the maximum depth value to obtain the solution (dqz)-

Hypothesis Selection phase: Finally, in this phase we can provide one or
more examples (as I/O pairs) to solve a specific problem. MagicHaskeller will
use the combinations learnt at the previous phase, to find one or more possible
solutions to the problem. This solution (if exists) will be a combination of d
functions (where d < d;,q.). In this regard, Figure 2.4(b) shows the time spent
during this phase to solve a specific problem (with actual solution of d = 1),
using the same set of functions (with b = 15), but changing the d,,,. value. We
acknowledge that d,,., value has a strong influence too even when there are
solutions that require fewer primitives than the maximum depth.

28

General Purpose Inductive Programming Systems

Training time (s)

100
breadth (b) = 5~ 10 — 20 — 50
751
50-
251
o ;44/
0 10 20 30 40 50
dmax
(a)
3600
3000 1
2400 1
@
© 18001
E
'_
1200+
600 1
0 .
1 2 3 4 5 6 7 8 9 10
dmax
(b)

Figure 2.4. (a) Hypothesis Generation phase: Time MagicHaskeller
needs for training with a set of primitives depending on the maximum
number of primitives that are allowed in any synthesised function (dmax)
and the number of primitives in the set (b). In this phase MagicHaskeller
makes all the possible combinations with the functions included in the
background knowledge. Note that this is just the time for combining the
functions, here the system is not solving any problem yet. (b) Hypothesis
Selection phase: Time MagicHaskeller needs for solving the same problem
(concatenate two strings), using a set fixed of b = 15 primitives, varying
dmaz from 1 to 10. In this phase MagicHaskeller tests the combinations

generated in a) until it gets all the possible solutions for the problem.

In this case, the combinations are already trained, the system is only
solving the problem, i.e., applying the functions.

29

Data Science Automation

In this chapter we describe the data science process, its phases and its automation.
We focus on one of its main stages, data wrangling or data preparation, which is
one of the most tedious tasks in any data science project consuming most of the
time, but, at same time, it is a essential process before using or analysing the
data. The automation of data wrangling could be really helpful in order to reduce
time and cost of data-related projects. However, it is not fully automated. Here
we present some current researches focused on this problem and its limitations.

This chapter is organised as follows. Section 3.1 presents what data science
is and how can be described as a data-driven process. Section 3.2 describes the
data science process as a space of activities where several trajectories can occur
depending on the project. Then, section 3.4 presents the problem of automating
data science, and in particular the data wrangling phase, summarising the current
research lines and the future challenges.

3.1 Introduction

The world is changing from ‘analog’ to ‘digital’ [79]. This ‘datification’ is a
process of transforming aspects of the world that have never been quantified
before into data [34]. Data are collected about anything, at any time, and at
any place [166], generating a massive quantity of information about everything.
This huge amount of collected data has been called “big data”, i.e., massive data
sets with large, varied and complex structures. The final use for all these data
should be to turn them into real value (improve organisational performance,
finding opportunities, making decisions, etc.), even if the variety of structures
and formats makes it difficult. However, data science is here to save the day.
Data science is the science of data: Its goal is to extract knowledge from all the
available data to make informed decisions based on them. Data science tries to
answer questions such as “What happened?”, “Why did it happen?”, “What will
happen?”, and “What is the best that can happen?” [160].

Data science has gathered public attention in the last years [108]. Yet, the
essence of what constitutes data science has been built up for much longer. Data
science has deep roots in the history of different academic disciplines. According
to [10] there have been four waves of big data that have turned the term “data
science” to what we know nowadays: From the first wave in the second half of
the twentieth century with the Hubble Space Telescope that captured extremely
high-resolution images and scientific data; to the fourth wave currently occurring
with the rise of machine-generated data with the Internet of things.

Overall, data science is a field applied both in academia and in industry
(applied data science) that studies approaches to generate value and insights from

31

3. Data Science Automation

DOMAIN RESEARCH STATISTICS
EXPERTISE DATA MINING

DATA
SCIENCE

ANALYTIC

ALGORITHMS
SYSTEMS

ENGINEERING
SKILLS

Figure 3.1. Data Science definition by NIST BD-WG [13].

all these data. It is a multidisciplinary field and thus has also a strong connection
with other fields such as statistics, machine learning and big data technology
[151]. For this, the data scientist needs many different skills and knowledge (see
Figure 3.1). Unlike classical data mining methodologies, such as CRISP-DM
[14], data science is a data-driven and not a goal-oriented process. CRISP-DM
(CRoss-Industry Standard Process for Data Mining) was introduced in 1999 [14].
This methodology was conceived to categorise and describe the common steps in
data mining projects, becoming “de facto standard for developing data mining
and knowledge discovery projects” [111]. CRISP-DM provides an overview of
the life cycle of a data mining project: the phases; a set of tasks to be performed;
the elements that are produced (outputs); and the elements that are necessary
to do (inputs). The cycle consists of six phases (Figure 3.2) and depends on the
outcome of each phase which phase or task, has to be performed next. Data
mining is not over once a solution is deployed.

These goal-oriented methodologies are focused basically on processes, tasks
and roles having the data (that has been already collected) just as a useful element
to achieve the main goal. In contrast, in data science the data have a value, and
the goal is to find a way to extract this value. This methodology forgets about
orders, and becomes more exploratory, following different trajectories depending
on the domain and the decisions and discoveries of the data scientist.

32

Data Science Trajectories

A 4

Business ’ Data
Understanding 4__ Understanding

Data
Preparation

Deployment ? ¢
Y

Data

<

Modelling

Evaluation

7 N

Figure 3.2. Different phases of CRISP-DM life cycle. Adapted from
[112].

3.2 Data Science Trajectories

There are many interpretations of data science life cycle and in which way its
phases have to be followed. The reality is that, in a data science process, these
steps do not follow a fixed or straight path. Instead, data scientists can go
forward and back again on their own steps, repeating phases of the process if
necessary and skipping some others that are not useful for their project, while
exploring the data to find their value. In data science, the order of the activities
depends on the data scientist’s decisions and discoveries. For instance, when
exploring data, anomalous or missing data can be found and thus it may be
necessary to go back and do data preparation again (or for the first time);
or, when the data to explore is not available, a data source exploration or a
data acquisition phase would be in order. It should be noticed that not all the
steps have to be done for all the projects nor repeated several times. That is,
depending on the project the data science process may change.

Following this idea, different data science projects can follow different
trajectories (an acyclic directed graph over activities) through a space like
the one shown in Figure 3.3 [114]. In contrast to data mining models and
other kind of cycles and processes, there are no arrows here, because a pre-
determined order to follow through the different activities and phases is not
defined. Depending on the project, the next step to take will be decided based

33

3. Data Science Automation

on the available information, including the results of previous activities.

Data Source Data Value

Exploration Exploration

Business Data
Understanding Understanding

Data Acquisition
Data Simulation

Rata Architecting

Data Release

Evaluation Modelling

Data

Goal Deployment Preparation Result

Exploration Exploration

Narrative
Product

Explorati
Exploration xploration

Figure 3.3. Data Science space. Data science projects can follow any
path through the different activities included in this space. Adapted
from [114].

Note that, in this schema, data are the centre of the process and the activities
that are in the middle correspond to those related directly to data management
that can answer the following questions:

Data acquisition: how can relevant data be obtained or created, for example
by installing sensors or apps?

Data simulation: can we simulate complex systems in order to produce useful
data?

Data architecting: how can we design the logical and physical layout of the
data to integrating different data sources?

Data release: how can we make the data available?

Surrounding these data phases, we have the classical activities included in a
data mining project according to CRISP-DM methodology and, finally, at the

34

Data Wrangling

most external part of the space we can find those activities related to extract
some value from the data themselves:

Data source exploration: how can new and valuable sources of data be
discovered?

Goal exploration: what possible goals can be achieved in a data-driven way?

Product exploration: how can the value extracted from the data be turned
into a product?

Data value exploration: what value might be extracted from the data?

Result exploration: how do data science results relate to the goals?

Narrative exploration: what valuable stories (visual or textual) can be
extracted from the data?

3.3 Data Wrangling

Following the data science trajectories explained in the previous section, data
wrangling (also known as data munging or data engineering) is more than a data
preparation phase, being not only a pre-processing step but also requiring some
post-processing of the results and some other phases from Figure 3.3, covering
all the necessary elements inside the data science process for preparing the data,
such as data integration, cleansing or transformation [32]. Data scientists spend
(or waste) 80% of the time of their projects preparing unruly and messy data,
before it can be explored, since algorithms and tools do not work with messy
data [107]. Data wrangling is not an enjoyable job. In fact 57% of the data
scientists view cleaning and organising data as the least enjoyable part of their
work [146]. The reason for this is simple: data wrangling is still a long and
frustrating manual process but, at the same time, a necessary process that cannot
be skipped.

Following [133], the data wrangling process can be divided into three
high-level groups of problems: data organisation, data quality and feature
engineering. Additionally, theses processes may have some sub-processes. Figure
3.4 summarises these groups of processes. Note that this is not a cycle nor a
sequential path. As with the data science process, these steps can follow different
trajectories or even be skipped.

In the following lines we will try to describe briefly each of these processes
and the possible problems or limitations that the data scientists can encounter
during their work:

1. Data Organisation

a) Data Parsing: identifying the structure of the raw data source.
= Possible problems: wide variety of encoding, multiple tables
in a single file.

b) Data Dictionary: understanding the content of the data and
translating it into additional metadata (meaning and type of each
attribute).

35

3. Data Science Automation

Data Organisation

Canonicalisation
Missing Data
Data Quality

Anomalies

Non-Stationarity

Feature Engineering

Figure 3.4. Data wrangling classification into different group of
problems. Adapted as a summary of the ideas presented in [133].

= Possible problems: text documents with a profile, extra
headers, additional CSV files, missing or out-of-date metadata.

i

iii.

Table Understanding: exploring the data to understand their
contents, possibly involving interaction with domain experts or
the data collector.

. Feature Description: describing the features (header name

or an additional file). When it is not provided, a domain expert
should be involved or the information must be inferred.

Value Understanding: exploring the values contained in the
data.

¢) Data Integration: combining related information from multiple
sources. Aggregating the information in a single data structure.
= Possible problems: instalments (monthly/annual updates)
separated in different tables.

1.

ii.

iii.

iv.

36

Record Linkage and Table Joining: identifying records
across multiple tables that correspond to the same entity (entity
disambiguation).

Table Unioning: aggregating together row-wise different tables
containing different entities with the same information.
Heterogeneous Integration: combining data from different
structured sources (relational tables, time series, etc.) and
different physical locations (websites, repositories, etc.).
Deduplication: resolving instances containing the same or
similar information.

Data Wrangling

d)

Data Transformation: transforming the original shape of the data
that does not conform to the structure the data analyst needs.
= Possible problems: data may not be tabular.
i. Table Transformation: manipulating the data to change their
shape (removing rows or columns, switching from wide to tall).
ii. Information Extraction: extracting relevant pieces of infor-
mation from any kind of structure into multiple features (named
entity recognition, relationship extraction, natural language pro-
cessing (NLP)).

2. Data Quality

a)

Canonicalization: converting entities into a canonical format
(common or standard representation).

= Possible problems: needs a previous step of identifying which
values corresponds to the same entities.

i. Cell entity resolution: resolving instances refering to the same
entity.

ii. Canonicalization of features: representing a specific feature
type with a standard format

iii. Canonicalization of units: transforming the numerical values

and units of a feature into a standard representation.
Missing data: detecting, understanding and imputing missing values
on a dataset.
= Possible problems: many machine learning models assume the
data are complete.

i. Detection: detecting the missing values.

ii. Understanding: classifying the missing patterns in three groups
(MCAR, MAR, MNAR).

iii. Repair: removing or substituting rows or missing values.
Anomalies: detecting anomalies (supervised, unsupervised, semi-
supervised).

i. Detection: detecting anomalies in different ways: Univariate
(based only on an individual feature, syntactic or semantic),
multivariate (based on multiple features) or statistical (a model
is built for the clean distribution of a feature).

ii. Repair: removing or substituting the anomalous entries.
Non-Stationarity: detecting changes over time (change point
detection (CPD) in time series).
= Possible problems: dataset shift (distribution differs between
training and test), change in how data are collected, units changes,
labels recoded.

i. Change points: identifying those points in time with changes

in the probabilistic distribution.

ii. Protocol changes: detecting changes on the collection of data
over a period of time.

37

3. Data Science Automation

3. Feature Engineering: manipulating the data involving changes on the
number of features contained in the data or their properties. Some of the
most common feature engineering processes are [150]:

a) Binning: reducing the effects of minor observation errors. The
original data values in a given small interval are replaced by a value
representative of that interval.

b) Log Transform: transforming data distribution more approximate
to normal.

¢) One-hot encoding: spreading the values in a column to multiple
flag columns and assigns 0 or 1 to them. It changes the categorical
data to a numerical format.

d) Grouping Operations: grouping the data by the instances so every
instance is represented by only one row.

e) Feature Split: extracting the utilisable parts of a column into new
features.

f) Scaling: normalising numeric values.

Even when any of these steps could possibly be automated, in this thesis will
be focused only on two of them: data transformation and canonicalization. The
following sections will be therefore centred in describe the automation of these
processes.

3.4 Data Wrangling Automation

During the last few years, we have been seeing a significant increase in the
number of tools for automating the modelling phase within the data science
process (commonly known as autoML) [67, 83]. However, other phases do not
get as much attention even knowing that, as we have seen previously, processes
such as data wrangling end up taking a large proportion of the effort dedicated
to working with the data. Data wrangling process has not been fully automated,
although some of its tasks have been partially automated individually. We have
already seen that data wrangling it is divided in very different tasks, so the
automation of each of them can vary. In this section we will focus on describing
the current lines in this field for automating data wrangling process.

Perhaps, the first question we need to solve here is "What is automation?’.
Automation could be defined as making a process independent from the user,
allowing possibly some prior information in the form of examples, or posterior
information in the form of feedback. More focused on data wrangling, in an
automated system the user should provide information about the domain of
application and/or the description of what is required [110]. Automation requires
an understanding of what you are looking at, i.e., a context, and for this the
background knowledge is specially important. It would be desirable for a system
to take more responsibility, if there can be confidence that the system will
perform as well as a human expert.

38

Data Wrangling Automation

Data wrangling automation is not an easy task. Firstly, data wrangling
depends, most of the times, on the domain, type and source of the data, and
on the experience and knowledge of the data scientist. Secondly, the process
needs posterior feedback that requires manual effort, since the data scientist
remains responsible for making many fine grained decisions. However, there
is not enough data to automatically learn how to do it. Even when numerous
data scientists face data wrangling problems every day, this type of work is not
being documented nor the raw datasets published, so there is no (or at least not
enough) information about what steps, solutions or intuitions a data scientist
actually has to follow when dealing with data and which type of knowledge
of each domain, type or source of data is necessary. In [140], Norman Paton
exposes this precise problem and encourages data scientists to document the
process by describing some use cases in such a way it can be a better known
process in the future. However, even if the process were completely documented,
data wrangling requires some soft skills (abilities to carry out tasks [117]), such
as making decisions, recognising patterns or understanding natural language
that are very difficult (most of them impossible) to automate with the current
state of AL Finally, besides the required soft skills, data wrangling is a process
that needs many hard skills (technical knowledge) since most of the times data
wrangling is a complex task that needs programming skills [140], and/or the use
of particular tools (and knowledge on how to use them)'. These reasons make
data wrangling a process that is very difficult to automate (at least completely).
One of the possible solutions for automating data wrangling process, at least for
now, can be (and actually is) to automate its more mechanical parts or phases
separately. Nevertheless, if enough data wrangling problems were be published,
the solution may be summed up in studying how the data scientists behave when

they have to deal with these problems?.

3.4.0.1 Current Research Lines & Future Challenges

The importance of data wrangling in the quality and cost of data science projects
has motivated an enormous effort in techniques and tools, including commercial
platforms that go beyond ETL tools®. For instance, OpenRefine [65, 169]
provides a set of built-in operators to specify data transformations (assuming
the data are in a tabular format). Ajaz [53] brings a SQL-like language to data
transformations. Early work on automating end-to-end data wrangling seems
promising, but there is likely much more to do [98].

Some other tools provide learning from examples and some degree of
automation for writing partial scripts or patterns to do the transformation
automatically. For instance, Potter’s Wheel [148] infers structures or patterns

1 Appendix B includes an extended description of the competences and skills identified in
data wrangling that can be useful to automate data science process, and data preparation step
in particular.

2 Appendix C includes preliminary ideas for logging data scientists behaviour (these ideas
have been published at [26]).

30riginally from the data warehousing terminology, ETL is the process responsible for the
extraction, transformation and load of the data into a repository.

39

3. Data Science Automation

for data values in terms of a series of default domains (ASCII strings, character
strings, integer, sequences of punctuation symbols, ...) and other user-defined
domains. Data transformations are graphically specified by the user, except
from column splitting for which the user can provide a few examples showing
the desired result. Trifacta Wrangler [38], based on Potter’s Wheel generates a
ranked list of suggested transformations also inferred automatically from user
input, the data type and some heuristics using PbE techniques. Some extensions
have been introduced, such as [63], which continually provides suggestions. These
systems are able to use different approaches depending on the data type. For
instance, they do not treat numbers in the same way as they treat strings. Some
of them, such as Wrangler, have specialised “types” for emails, phone numbers,
credit cards, social security number and gender. However, these types define
that the data must have a particularly-chosen format, but not that the system
is able to discover the format or even integrate from different formats. In other
words, their pattern generation engines are usually based on predefined rules but
not on a fully inductive inference system, able to combine functions as defined
by the user (or included in new libraries) to adjust to any possible input-output
pairs.

Given this limitation of commercial systems, research has been focused on
the inductive inference part of the problem, when the pattern involves the
combination of several manipulation functions, a combination that is not part
of the original repertoire, so creating new transformations. This generation
of approaches is based on inductive programming presented in Chapter 2 and
recently recognised with a large potential for data wrangling automation [58].
In [29] Cropper et al. investigate the use of the Metagol system [131] for
learning recursive transformations for unstructured and semi-structured text
data. Microsoft also included some of these tools in Excel. One of the reasons
of the success of these systems is the use of domain-specific languages (DSLs)
[61], which are ad-hoc for data wrangling and data manipulation situations, and
reduce the search space considerably.

More recently, Neural Program Induction has been presented as an alternative
for learning string transformations. In [138] Parisotto et al. introduce a system
that uses Neuro-Symbolic Program Synthesis to learn programs in a DSL by
incrementally expanding partial programs. They perform experiments with data
wrangling examples having common substrings. Although the system is able to
solve many of these examples it still has some limitations. On the one hand, the
use of a DSL with many expressions implies a combinatorial explosion problem
when a large number of programs have to be learned. On the other hand, due to
their use of common substrings, many not-contemplated examples are impossible
to solve. In [155] Shu and Zhang propose NPBE (Neural Programming by
Example), a Programming by Example model based on deep neural networks.
NPBE induces string manipulation programs based on simple input and output
examples by inferring the right functions and arguments. For assessing the
validity of the induced programs, the authors create 1000 random examples using
the same syntax structure, which is something that does not hold in general for
real examples.

40

Data Wrangling Automation

A most recent work dealing with automatic data transformation is TDE
(Transform Data by Example) [68]. In this work, He at al. present a search
engine for Excel that indexes program snippets from different sources in order to
find relevant functions for solving problems related to data transformation, using
two or more examples. Even when their results are better than other existing
tools, the system uses more than 50,000 functions and their results tend to have
many different solutions that the user has to select which one is the correct one.
As we will see in the following chapters, this dependency on the user’s manual
effort results in worse performance when the domain of the problem is not easy
to detect.

Although the use of DSL systems for data wrangling automation seems
prominent, it also brings further disadvantages: (1) using DSLs implies the use
of languages that are specifically defined for a particular type of data processing.
(2) Whenever a new application or domain is required, a new DSL has to be
created, and the inductive engine recoded for it. (3) These systems work using a
basic set of transformations, normally working with unique input-output pairs
but not with an entirely table, and assuming the inputs of the same domain to
be in a unique format. (4) DSL-based systems usually have ‘program aliasing’
problems (many different programs satisfying the examples) in such a way that
more examples are needed to distinguishing the right hypothesis, affecting their
performance [30].

Finally, all the systems presented above usually deal with data in tabular
format. However, more and more transformations in Al require taking data
represented in other format such as matrices (e.g., an image, a dataset, a weight
matrix, a result table, etc.) and apply a few primitives (e.g., a convolution,
a pivoting, a thresholding, a column-wise mean, etc.). In [171], Wang et al.
present an inductive framework called Blaze. The approach employs the abstract
semantics of a DSL and a set of examples to find a program whose abstract
behaviour covers the examples. The authors used Blaze to build synthesisers for
string and matrix transformations. Although the results of their experiments
are positive, the number of functions included in the DSL is limited (less than
10 functions). This is motivated by the huge search space, but their very short
number of functions dramatically reduces the number of real examples that can
be solved by the system.

There are a lot of systems and tools able to automate parts or simple pipelines
of data wrangling problems, and, yet, there are a lot of problems that need
manual effort and many questions on how to automate them are still in suspense
since most of them are made ad-hoc for a particular kind of problem or data.
The problem tends to be the information domain that makes the background
knowledge a bottleneck in the advance of the field. However, even when all
the phases cannot be automated, the efforts on this research field could make
the data wrangling process much more bearable and hence data scientists more
efficient.

41

Part |l

BK-ADAPT: Automating Data
Format Standardisation

Domain-specific Induction

In the previous chapter we have seen that one of the problems inside data
wrangling is converting entities into a common or standard representation. This
problem needs a previous step to identify which values correspond to the same
domain. As we have said before, given one or two examples, humans are good at
detecting the domain of the data and understanding how to solve the problem,
because they are able to choose the appropriate solution according to the context.
However, the automation of this process could be difficult due to the different
existent domains. In this chapter we show that with the use of general-purpose
declarative (programming) languages jointly with generic inductive programming
systems and the definition of domain-specific knowledge, we are able to detect the
domain of the data and solve many specific data wrangling problems related to
the standardisation of the values. We apply this approach to several data domains
that are automatically solved from very few examples. We also contribute with
an integrated benchmark for data wrangling, which we share publicly for the
community.
The main contributions of this chapter are:

o The publication of the first data wrangling dataset repository openly
available for the data science community.

e The definition of Domain-Specific Induction by structuring the background
knowledge in different domains of information.

o A BK-adaptable IP system based on MagicHaskeller able to incorporate
any type of domain knowledge written in Haskell.

This chapter is organised as follows. Section 4.1 presents the problem of
automating data wrangling with an IP system. The problem statement and the
domains employed are detailed in section 4.2. The experimental evaluation is
included in section 4.3. Finally, section 4.4 remarks the conclusions and future
work.

These results have been published in: [18, 23-25].

4.1 Introduction

As presented in chapter 3, the term “data wrangling” usually refers to a great
deal of repetitive and very time-consuming data preparation tasks, such as the
acquisition, integration, manipulation, cleansing, enrichment and transformation
of data from their raw format to a more structured and valuable form for easy
access and analysis [37]. The use of ETL tools and other scripting languages
for data wrangling partially alleviate the problem, but most of the effort is still

45

4. Domain-specific Induction

manual and non-systematic. Consequently, progress in the (semi-)automation of
data wrangling tasks can have an enormous impact in the costs of data science
projects and other data manipulation problems, and can also allow data scientists
focus on the valuable knowledge discovery process or on the actual task they are
doing.

Many data wrangling problems look automatable, especially because the user
can indicate a few illustrative examples that can be used by an IP system [50,
76, 97, 129] to infer a pattern, or inductive hypothesis, that can be applied to
complete the rest of the examples automatically. Table 4.1 shows one example
that can be completed by non-expert people easily, without further knowledge
about the source of the data. It is a very encapsulated problem, inputs and
outputs, which should be well handled by machines.

Id Input Outputs

1 25-03-74 25/03/7)
2 29-03-86 29/03/86
3 11-02-96 11/02/96
4 11-17-98 17/11/98
5 17-05-17 17/05/17
6 25-08-05 25/08/05
7 30-06-75 30/06/75
8

Table 4.1. Dataset composed of dates (input) and desired output
format. An automatic data wrangling system is fed with the two first
examples (in italics) and should automatically complete the rest of the
cells (outputs).

Nevertheless, many other data wrangling problems are more challenging, and
require an important degree of background knowledge because they depend on
the application context of the data. Table 4.2 shows an example of a common
data wrangling problem: given a list of dates, extract the name of the month
from each of them. The difficulty lies, again, in the different date formats, where
the month can be in a different position and these dates delimited by different
symbols. In order to understand and complete the transformation, we must
know, for instance, that there are only twelve months, that days can only range
between 1 and 31 and that years are usually abbreviated with two single digits.

In order to solve this problem, we can split the data wrangling problem
into two steps: first, we need to know which the domain is (e.g., dates); and,
second, we need to know which transformations we have to apply to the input
to obtain the output. For humans this is a relatively easy step because we can
recognise the context, but it is not so easy for machines. We need to specify
relevant background knowledge depending on the domain. Of course, some of this
knowledge may be insufficient to sort out some ambiguities, such as “11.02.18”
(this date may be in DDMMYY, YYMMDD or MMDDYY formats). This
problem may be automatically solved by computers (through program synthesis)

46

Introduction

if they are able to recognise the domain (i.e., dates), and have a sufficiently rich
set of functions to deal with the context. Not only does this impose a strong
bias that guides the process of finding the transformation pattern that has to
be applied but also introduces some useful functions that render the solution
(the inferred program) much shorter in terms of the functions involved, i.e., the
depth d that we describe in chapter 2.

Of course, dates are not the only kind of data. If we want to deal with
physical addresses, we need to provide functions that handle symbols such as
“St”, “Rd”, order of postcodes, etc. Similarly, if we want to deal with people
names, we should understand strings such as “Mrs”, “Dr”; etc. Since all of
these cases are very common in databases and other kinds of data that are
processed in data science projects, we can add the relevant functions to a general
domain library. However, as more kinds of data are required, this library would
become huge. Even if the depth would have not changed for the original date
problem, the inductive inference process needs to choose from a much larger
space of functions, the breath b as we have seen in chapter 2, which makes it
much harder. Based on any IP system, which is hypothesis-oriented rather than
data-oriented, we see that the effort only depends on these two parameters, d
and b, being almost constant on the number of examples. How can we keep both,
and especially b, at very low levels?

In this chapter, we propose to control the depth and breadth of the inductive
inference problem by choosing a domain-specific background knowledge (DSBK)
for each kind of problem. The user just needs to suggest which domain to use for
a particular problem: dates, times, emails, names, phones, etc. Nevertheless, we
envisage that this step is easily automatable too, using some domain inference
process that can suggest this to the user, as we discuss at the end of the
chapter. It is important to remark that the inductive inference engine is the
same, independently of whether we are handling dates or telephone numbers. We
do not build a data wrangling system specialised for a particular domain-specific
language for each case. Instead of this, we allow the system to use different
DSBKs. Thus, in that follows, we will refer to our approach as Domain-Specific
Induction (DSI).

Id Input Output
1 25-03-74 March
2 03/29/86 March

3 21.02.98 February
4 1998/12/25 December
5 17/05/57 May

6 25-08-05 August
7 0630 1975 June 8

Table 4.2. Dataset composed of dates under very different formats
(input) from which the name of the month is extracted (output).

47

4. Domain-specific Induction

There are several advantages of this approach. The same data wrangling
tool can be used for a diversity of problems and domains, without specialised
tools for every domain. Second, a set of DSBK libraries can be provided by the
tool but also extended by users and communities, especially if the language for
adding or modifying functions is general-purpose and well known (e.g., Haskell
[141, 142], Prolog [106], etc.).

4.2 Problem Definition

The overall idea is to (semi-)automate the process of transforming data from
one format to another, depending on the data domain, using a general-purpose
IP system at the core, but enhanced to handle configurable function libraries for
each domain (see Figure 4.1). For this, we do the following steps:

1. We take a dataset of input-output pairs and detect the domain of the data.

2. We set the domain by selecting the appropriate background knowledge for
the IP system.

3. One or more examples are sent to the IP system as inputs, such as the
few first rows in Table 4.1, in the same way a user could complete a few
examples. These examples are used for training the system.

4. With the correct DSBK, the system is able to return a list of transformations
addressing the problem as the resulting function (f) that is applied to the
rest of the inputs, obtaining the new values for the output column.

mcl mc2
Lel + .. 1|
Row No. Station :: /m
1 001 6-10-16 20:35 2016 w
69851 001 03/10/2018 00:25:45 2018
69852 001 16/11/2019 00:18:36 2019 >tr‘ansformToLongVear‘(getYear(getDate Date)))

Figure 4.1. Automating data wrangling with inductive programming:
process example. The first row (Data and Output) is used as a training
example for the IP system. The function returned using the correct
domain is applied to the rest of the instances to obtain the outputs.

4.2.1 Domain-Specific Induction

For the purpose of this work we have used MagicHaskeller (presented in section
2.4.1) as the IP core system.

48

Problem Definition

By default, MagicHaskeller includes a list of 189 basic Haskell functions
(the default background knowledge). Table 4.3 shows some of these functions’.
Although MagicHaskeller is able to solve many string and Boolean problems by
using its default library [90], this list of functions is not enough to solve more
complex problems. For instance, the example shown previously in Table 4.1 is
impossible to solve with MagicHaskeller’s default library since there is a need to
replace each dash symbol (*-’) with a slash symbol (‘/’), and MagicHaskeller is
unable to generate or use any character or digit if it is not defined as constant
in its library or if it is not provided as an input parameter.

Functions

0 :: Int

1:: Int

(++) :: forall a . (->) ([a]) ([a] -> [a])
filter :: forall a . (a -> Bool) -> [a] -> [a]

isLower :: (->) Char Bool

words :: [Char] -> [[Char]]

(+) :: Int -> Int

True :: Bool

False :: Bool

isPunctuation :: (->) Char Bool

(+) :: (->) Int ((->) Int Int)

takeWhile :: forall a . (a -> Bool) -> [a] -> [a]

isDigit :: (->) Char Bool

not :: (->) Bool Bool

(-) :: Int -> Int -> Int

(&) :: (->) Bool ((->) Bool Bool)

(]]) =+ (->) Bool ((->) Bool Bool)

not :: (->) Bool Bool

(-) :: Int -> Int -> Int

reverse :: forall a . [a] -> [a]

Table 4.3. Some default functions included in MagicHaskeller. The
complete list of functions is presented in Appendix D.1.

In order to solve this kind of problem we have to add constants to the library
and some new functions to work with string problems. For this particular case,
we can solve the problem by adding the primitives in Table 4.4 to the library.

Functions Description

dash :: [Char] Constant for dash (’-’) symbol
slash :: [Char] Constant for slash (’/’) symbol
changePunctuationString :: [Char] -> [Char] -> [Char] Replace a punctuation sign

Table 4.4. Functions we need to add to MagicHaskeller in order to
replace a dash symbol with a slash symbol in strings.

Following the example of Table 4.1 and some other examples [134] and the
most common operators used by other data science tools [93][88][172], we have
added many new functions to MagicHaskeller for solving common problems

1The complete list of functions included in our approach can be seen at Appendix D.1

49

4. Domain-specific Induction

related to string manipulation. Concretely, we have added 108 functions to solve
the following string operations:

e Constants: Symbols, numbers, words or list of words.
e Map: Boolean functions for checking string structures.

o Transform: Functions that return the string transformed using one or
more of the following operations:

— Add: Appending elements to a string, adding them at the beginning,
ending or a fixed position.

— Split: Splitting the string into two or more strings by positions,
constants or a given parameter.

— Concatenate: Joining strings, elements of an array, constants
or given parameters with or without adding other parameters or
constants between them.

— Replace: Changing one or more string elements by some other given
element . This operation includes converting a string to uppercase
and lowercase.

— Exchange: Swapping elements inside strings.

— Delete/Drop/Reduce: Deleting one or more string elements by
some other given parameter, a position, size or mapping some
parameter or constant.

— Extraction: Get one or more string elements.

With this set of functions (the freetext background knowledge) in the system’s
library, we are able to solve many common string manipulation problems, such
as the example in Table 4.1. However, the results can be less accurate for some
other examples. Trying to solve the example in Table 1.2 from section 1.1, where
we wanted to extract the day from the dates, using the first row as a predicate (f
"25-03-74" == "25") the first three results obtained may be: (1) takeWhile
isDigit "25-03-86"; (2) getStartToFirstSymbol "25-03-86" dash; and
(3) take 2 "25-03-86". When we apply these functions to the first row, we
obtain the desired results, but, what happens if we apply these functions to the
rest of the table? We can see the results in Table 4.5. It should be noted that
only in the cases when the day is the first element of the date (with solutions
1 and 3) and the next symbol is a dash (with solution 2) the result is correct.
The problem here is that we cannot assume that all the data in a column always
has the same format. In this case, dates come from very different formats and
extracting the first element not always results in getting the day. When data
belong to a particular domain and the problem at hand ends up being a very
exclusive task pertaining to that domain, more precise functions are needed
in order to get correct results considering the context. However, as we have
seen in section 2.4.1, it is critical to reduce b while at the same time having the
appropriate abstract primitives to learn the function with a short hypothesis
(small d). This could be solved by detecting the domain of the data to be

50

Problem Definition

transformed and choosing a domain-specific library for it.

Id Input Expected Output | Actual Output (1) | Actual Output (2) | Actual Output (3)
1 25-03-74 25

2 | 03/29/86 29 03 03/29/86 03

3 21.02.98 11 21 21.02.98 21

4 | 1998/12/25 25 1998 1998/12/25 19

5 17/05/57 17 17 17/05/17 17

6 25-08-05 25 25 25 25

7 | 06 30 1975 30 06 06 30 1975 06

8

Table 4.5. Example of a dataset with an input column composed
of dates under very different formats, the expected output (day) and
the actual outputs obtained using an inductive system with string
manipulation functions. The first row is used as input predicate for
the system. Green examples are correct results. Red examples are
incorrect results. Solution (1): takeWhile isDigit "input"; solution
(2): getStartToFirstSymbol "input" dash; and Solution (3): take 2
"input".

A high number of different domains can appear in any data science project

related to data manipulation problems. In order to test the system and as other
data wrangling tools have already done [148][161][31], we have selected some of
the most used domains [161] and their most common problems [148] to work
with. In this sense, for each domain we have a different background knowledge
with a set of possible transformations. As we are working with MagicHaskeller,
they are represented as Haskell functions. These are independent text files,
editable by the user, which can be included as a parameter when MagicHaskeller
is invoked. The DSBK files are:

Dates (23 domain-specific functions 4+ 139 default/freetext functions):
extracting days from a substring, extending to a 4-digit full format, etc.

Emails (23 domain-specific functions + 139 default/freetext functions):
getting all after the ‘Q" symbol, append the ‘@’ symbol, etc.

Names (9 domain-specific functions + 93 default/freetext functions):
getting the initials of a name, creating a user login, etc.

Phones (12 domain-specific functions + 104 default/freetext functions):
setting the prefix by country, detecting a phone in a text, etc.

Times (5 domain-specific functions + 124 default/freetext functions):
change between 24/12h format, changing time zone, etc.

Units (24 domain-specific functions + 124 default/freetext functions):
convert units of length, mass, time, temperature, etc.

In total we have used 374 different functions. Figure 4.2 shows a summary of the

51

4. Domain-specific Induction

different background knowledge created. Although we are considering only six
domains besides the basic string manipulation functions, it should be noted that
many other domains can be created, and it is also easy to build domains that
are defined as the union between two existing domains. Also, MagicHaskeller
can be called with a small d,,,, parameter for one domain to get results quickly
and, if unsuccessful, try with a larger d,,q, or another domain. In this way, the
search effort can be better handled, depending on the knowledge of the domain
and the expected size of the solution.

Background Knowledge

-) ‘
DEFAULT SSindude>> operext | s<indude>> | Ssindude>> o OBl

DOMAINS

Figure 4.2. The hierarchy of background knowledge’s generated.

4.3 Experiments

The aim of our experiments is to analyse the extended capabilities of an
IP learning system as a data wrangler. Besides, the experiments explore
the improvement when selecting the right DSBK in front of using a general
background knowledge or an inappropriate DSBK. Also, and more importantly,
we want to compare with other data wrangling systems on a range of data
wrangling problems.

To perform the experiments we have followed a trained/test evaluation
procedure, similar to [6, 41, 59, 156, 157]. We have used a set of datasets
with different data wrangling problems (explained in the following subsection)
including inputs and expected outputs. For each of these datasets, we use only
the first example as the input predicate for the IP system. Then, we feed the
system with this first input/output example using, for each dataset, all the
different DSBK. The result is a function f that is applied to the rest of the
outputs. The accuracy in each case is the result of comparing the transformed
outputs with the real expected outputs.

For replicability reasons, the source code (scripts, domain files, primitive files
of MagicHaskeller, etc.) of these experiments is available online”.

4.3.1 Data Wrangling Benchmark

Unfortunately, at the beginning of this work there was no general benchmark or
public dataset repository accessible in reusable formats to analyse the quality
of new data wrangling tools (for instance, in [41] the Ellis and Gulwani use

2Domain-Specific Induction repository: https://github.com/liconoc/
DataWrangling-DSI

52

https://github.com/liconoc/DataWrangling-DSI
https://github.com/liconoc/DataWrangling-DSI

Experiments

a dataset with hundreds of data manipulation problems, but the benchmark
is not public). In order to overcome this limitation, we collected most of the
datasets tested previously in other tools for data manipulation (such as FlashFill
or Wrangler) and presented in the literature [6, 41, 59, 156, 157]. In addition,
we generated new datasets based on problems from these papers.

id Domain #Ex. Description of the problem to solve

1 Freetext 12 Complete brackets (From [11])

2 Freetext 12 Extract the first character (From [25])

3 Freetext 24 Delete punctuation (From [11])

4 Freetext 18 Extract the capital letters (From [41])

5 Freetext 12 Extract a substring (From [145])

6 Dates 26 Change the punctuation of a date (From [157])

7 Dates 26 Extract the day from a date (Generated)

8 Dates 12 Extract the day from a date in ordinal format (Generated)
9 Dates 12 Extract the month from dates (Generated)

10 Dates 12 Extract the name of the month from dates (From [115])

11 Dates 9 Add punctuation to a date (From [145])

12 Dates 25 Change date format and punctuation (Generated)

13 Dates 12 Add punctuation and change the format of a date (From [115])
14 Emails 24 Extract words after Q" (From [145])

15 Emails 18 Join words with ’@’ (From [6])

16 Names 12 Generate a login from a name (Generated)

17 Names 12 Reduce name from one input (From [59])

18 Names 12 Reduce name from two inputs (From [59])

19 Names 12 Extract the honorific forms (From [59])

20 Phones 12 Add phone prefix by country name (From PROSE)

21 Phones 12 Add phone prefix by country name and '+’ symbol (Generated)
22 Phones 12 Add a given phone prefix (From [145])

23 Phones 12 Extract a phone number from a string (From [145])

24 Phones 12 Add punctuation to a phone number (Generated)

25 Times 12 Extract the time from a string (Generated)

26 Times 12 Append a specific given time (minutes or seconds) (Generated)
27 Times 12 Increase the hour by a given value (Generated)

28 Times 12 Convert the time to 24h format (Generated)

29 Times 12 Convert time by a given time zone (Generated)

30 Units 12 Extract the units of a value (From [25])

31 Units 12 Detect the system units by the units of a value (Generated)
32 Units 12 Convert a value to a different unit (Generated)

Table 4.6. Datasets included in the new data wrangling repository
offered for the data science research community. #FEz. shows cardinality.
Freetext represents the functions created for solving general string
manipulation problems.

Overall, we have collected or generated 32 datasets and we have published
them on the first data wrangling dataset repository®. Table 4.6 shows a summary
of the datasets in this new repository.

3The Data Wranglig Dataset repository is online and available at: http://dmip.webs.upv.
es/datawrangling/

53

http://dmip.webs.upv.es/datawrangling/
http://dmip.webs.upv.es/datawrangling/

4. Domain-specific Induction

4.3.2 Results

With a focus on our system, Table 4.7 shows the results (accuracy) for
all the datasets, using just one example (the first one of each dataset),
when MagicHaskeller is run without extra DSBK (default), adding the string
manipulation functions (freetext), with a particular DSBK (dates, emails, names,
phones, times, units) and with all DSBKs together (a unique set of primitives
with all the functions together). In each case, MagicHaskeller returns a potential
solution (or nothing if the problem cannot be solved) which is applied to the
rest of input examples to see whether the obtained output matches the expected
one. Time execution is limited to 120s with d,,q. = 4.

id Domain default freetext dates emails names phones times units all
1 freetext 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00
2 freetext 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
3 freetext 0.48 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
4 freetext 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00
5 freetext 0.00 0.55 0.18 0.55 0.55 0.55 0.55 0.55 0.00
6 dates 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
7 dates 0.60 0.60 1.00 0.28 0.60 0.60 0.60 0.60 0.00
8 dates 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.00
9 dates 0.00 0.00 1.00 0.00 0.27 0.00 0.00 0.00 0.00

10 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 dates 0.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00

12 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 dates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 emails 0.00 0.04 0.04 1.00 0.04 0.04 0.04 0.04 0.00

15 emails 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

16 names 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00

17 names 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00

18 names 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

19 names 0.45 0.73 0.45 0.73 1.00 0.73 0.73 0.73 0.00

20 phones 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

21 phones 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22 phones 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

23 phones 0.00 0.27 0.00 0.27 0.27 1.00 0.27 0.27 0.00

24 phones 0.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00

25 times 0.36 0.91 0.91 0.91 0.91 0.91 1.00 0.91 0.00

26 times 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

27 times 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

28 times 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

29 times 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 units 0.64 0.18 0.18 0.73 0.18 0.18 0.18 1.00 0.00

31 units 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

32 units 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.7. Accuracy obtained per dataset by the DSI approach in
each dataset depending on the set of primitives (DSBK) used to train
MagicHaskeller. The results are obtained with dye..=4, n = 1 and a max-
imum execution time of 120s. Maximum accuracy values in bold, where
the accuracy is the average of correct__examples/(total__examples — n)
where n = 1.

The results are much better when the right domain is chosen for the problem.

54

Conclusions

Note that putting all domains together (all) implies such big a value of b that
MagicHaskeller was not able to solve many problems within the maximum time
period. In the same way, some specific problems (datasets #10, #12, #13, #21,
#27, #29 and #32) cannot be solved using a d,,.,=4 because they need a higher
value in order to find the correct solution. It has to be noticed that since all the
DSBKs contain some functions for string manipulation, many of them can solve
problems related to basic string problems (freetext domain). Some problems
related to specific domains can also be solved by using basic string manipulation
functions, therefore, in this case, any DSBK containing these functions is able
to solve the problem. For instance, dataset #6 (dates domain) can be solved by
using constants and the freetext function change PunctuationString, as we have
seen in section 4.2. Since these functions are included in other domains, not only
dates has the best accuracy, but also freetext, emails, phones, times and units.

We have also compared the performance of our DSI approach using
MagicHaskeller with other data wrangling tools, concretely, FlashFill [59].
Flashfill works in the same way as our approach, namely, it uses one or more
input instances to try to induce a potential solution, which is then applied to the
rest of examples. If no solution is found or the problem at hand is not solvable
by FlashFill, it returns, respectively, a void function or an error.

Table 4.8 shows some illustrative outcomes obtained for each dataset and
tool as well as the accuracy values for each dataset. The first instance (in italic)
for each dataset (input column) is the one used for inducing the solution in the
different tools. Here, we can see some strength and weakness in each tool. For
instance, Flashfill works fine with emails and some basic string transformations,
but it fails when it has to deal with titles or honorific forms in people names,
with problems related to phones prefixes or times and when it has to work with
dates in different formats. For its part, DSI using MagicHaskeller is able to
find the correct solution for the problem at hand, even with only one example,
although it still has problems with unexpected punctuation marks (for instance
in dataset #17). In summary, the results show that our approach is able to
overcome other tools when dealing with data wrangling problems.

4.4 Conclusions

In this chapter we have adapted a general IP tool to deal with a range of data
wrangling problems by using domain-specific background knowledge. Given the
impact that the size of the library (b) and the size of the solution (d) have when
solving a data manipulation problem, we found a trade-off that produces positive
solutions for many datasets. Finding this trade-off and making it work is novel
in the context of inductive programming applied for manipulation problems.
All this is achieved without the need of increasing the number of examples or
using feedback from the user, other than the domain. Users can also edit and
create the domain files in a general-purpose functional programming language,
making the system more powerful and able to deal with more and more domains.
This contrasts with mainstream approaches based on DSLs, where a change

55

4. Domain-specific Induction

of the DSL aiming at covering other domains cannot be done by the user and
might require a redesign of the system. Furthermore, the experiments show that
our DSI-based approach gets better results than DSL-based approaches, such
as FlashFill, mainly due to its adaptability to the problem domain by using
domain-specific background knowledge (DSBK).

This shows that for these repetitive snippets of code that are necessary for
data manipulation problems, we can replace some of the tedious programming
effort by the selection of libraries or the definitions of proper functions to handle
existing or new domains. Functional programming languages, as we have seen,
are particularly appropriate for this. In the end, these data wrangling systems
over functional programming languages can actually have the effect of truly
incorporating automated programming and program synthesis as a toolbox, even
if at the level of the generation of small snippets, for these kinds of applications.

Finally, we provide what might be considered as the first public repository of
datasets for testing data wrangling tools. Although there are several approaches
and systems in the literature dealing with the issue under consideration here,
none of them provide public access, nor a complete description of the datasets
used for their evaluation. In this way, the evaluation procedures are not replicable
and neither is the data reusable. We have collected different problems from the
literature and related software, together with a few freshly-generated ones. With
all these data, we have generated a variety of datasets for six different domains
covering different specific problems in each of them. This repository is open and
freely available, and it is already being extended with more types of problems
and domains.

In the following chapter, we will show how to automate the detection of the
domain at hand by using machine learning techniques. The idea is to learn a
meta-model that is able to automatically select (or suggest) the appropriate
DSBK from the features of the problem.

56

Conclusions

id input expected output FlashFill DSI
1-452-789-4567 145278945677
3 1-406-789-1562 14067891562 14067891562 14067891562
1-4565 14565 14565 14565
Etiam dapibus. Etiamdapibus Etiamdapibus
Accuracy:] 0.48 1
International Business Machines IBM
4 Principles Of Programming Languages POPL POPL POPL
International Conference on Data Mining series ICDM ICDM ICDM
Association of Computational Linguistics ACL ACL ACL
Accuracy: | 1 1
3/29/86 29th
3 10 12 69 10th 12th 10th
04/05/99 0dth 05th 04th
27/07/2007 27th 07th 27th
Accuracy: [0 1
2 of September of 2010, Monday September
9 13 November 2008 November 2008 November
, September 16, 1986 September September September
February 4, 2008 February 2008 February
Accuracy: | 0.36 1
Nancy. FreeHafer@fourthcoffee.com fourthcoffee.com
14 iabetrae@yahoo.es yahoo.es yahoo.es yahoo.es
Sb.edhxo.sk8@hotmail.com hotmail.com hotmail.com hotmail.com
dala_aguera_m500@hotmail.com hotmail.com hotmail.com hotmail.com
Accuracy: | 1T 1
Sophia € domain Sophia@domain.com
15 elizabeth & gmail elizabeth@gmail.com elizabeth@gmail.com elizabeth@gmail.com
0 joypao & hotmail joypao@hotmail.com joypao@hotmail.com joypao@hotmail.com
casper & canall3 casper@canall3.com casper@canall3.com casper@canall3.com
Accuracy: | 1 1
Damian Gobbee D.Gobbee
17 Antonio Hege A.Hege A.Hege A.Hege
Damancio Hivser-Kleiner D.Hivser-Kleiner D .Kleiner D.Hivser-Kleiner
Prof. Edward Davis E.Davis P.Davis E.Davis
Accuracy:] 0.63 0.91
Dr. B. Schdur Dr.
19 Prof. H. Huifen Prof. Prof. Prof.
“ Louis Johnson, PhD PhD Lou PhD
Robert Mills Rob
Accuracy: [0.72 1
235-7654 & Taiwan (886) 235-765%
20 17-455-81-39 & Spain (34) 17-455-81-39 (886) 17-455-81-39
618-4390 & Panama (507) 618-4390 (886) 618-4390
25-613-24-50 & Chile (56) 25-613-24-50 (886) 25-613-24-50
Accuracy: [0 1
23/11/18]25-785-4210 425-785-4210
23 425-613-2450 000-000 425-613-2450 2450 000-000
© [TS]865-000-0000 - 06-23-09 865-000-0000
17:58-19:29, 425-743-1650 425-743-1650
Accuracy: |
08:55 PM CET 08:55
25 20:15:00 20:15:00 20:15:00
10:05:00 AM 10:05:00 10:05:00
UTC 21:20 21:20 UTC 21:20
Accuracy:] 0.91
01:34:00 & 5 06:34:00
9 0155 &5 06:55 06:55 06:55
16:15:12 & 5 21:15:12 06:15:12 21:15:12
21:20 & 5 02:20 06:20 02:20
Accuracy: [0.10 1
56.77cl cl
30 84Kg Kg Kg Kg
39.88 A A \ \
1lnm nm nm nm
Accuracy: | 1 1
50.77cl Volume
31 84Kg Mass Volume Mass
39.88 A Electricity Volume Electricity
Inm Length Volume Length
Accuracy: | 0.10 1

Table 4.8. Example of results obtained with DSI (using MagicHaskeller
as IP core) compared with FlashFill. Output is the expected output.
The first row of each dataset (id) is the example given to FlashFill and
MagicHaskeller to learn. Green and Red colours mean, respectively,
correct and incorrect results. The accuracy is the percentage of correct

examples.

57

Dynamic Background Knowledge

In the previous chapter we have adapted a general IP tool to deal with
some data wrangling problems by using domain-specific background knowledge.
However, the approach presented gets a semi-automatic system for data feature
transformation since the user still needs to select the appropriate background
knowledge. In this chapter we help alleviate this problem by using the inductive
programming system presented in the previous chapter, updated with a dynamic
background knowledge (BK) fuelled by a machine learning meta-model that
automatically selects the domain, the primitives, or both from several descriptive
features of the data wrangling problem. We illustrate these new alternatives for
the automation of data format transformation, which we evaluate on an extended
benchmark for data wrangling, that we share publicly for the community.
The main contributions of this chapter are:

e A method to describe the domains and the problems by extracting meta-
features from the examples.

e A domain-classifier and a function-ranking able to use the meta-features
to detect the domain of the data and the particular problem to solve (the
functions needed).

e The definition of a dynamic background knowledge, able to adapt the
background knowledge depending on the input examples, their domain
and the problem to solve.

e An update of the system presented in the previous chapter, BK-ADAPT,
that uses dynamic background knowledge to correctly solve data wrangling
problems independently of their domain.

This chapter is organised as follows. Section 5.1 addresses the problem of selecting
the domain to be passed to an IP system and section 5.2 summarises the changes
compared with the previous version. Section 5.3 describes the new approach for
handling the background knowledge. The experimental evaluation is included
in section 5.4. Finally, section 5.5 closes the chapter with the conclusions and
future work.

Parts of this chapter have been published in: [17, 21, 22].

5.1 Introduction

Data science must integrate data from very different data sources (e.g., databases,
repositories, webs, spreadsheets, documents, etc.). Rarely does these data come
in a clean, consistent and well-structured way, imposing a non-negligible manual

59

5. Dynamic Background Knowledge

effort. As we have seen in the previous chapter, Inductive Programming can be
successfully applied to data wrangling problems using declarative background
knowledge. But if this set of primitives becomes too large then the search for
a suitable combination becomes huge. As usual, bias makes learning of some
hypotheses easier (or possible) at the cost of other hypotheses. In order to
automate this process, the system (1) must recognise without human help that
it is handling names, dates or any other domain and (2) must have a sufficiently
rich set of functions to deal with that particular domain, while (3) keeping the
depth (d), and especially the breath (b), at very low levels.

We have seen that we can adapt a general IP tool to deal with data wrangling
problems by using domain-specific background knowledge. With the system
created in the previous chapter we can make some tasks easier and faster just
by selecting the right domain of the data and incorporating automated program
synthesis for these kinds of applications. Even so, in the version presented in
the previous chapter, we need the user to provide the right domain of the data,
making the system semi-automatic.

In this chapter, we propose to automate data feature transformation in
such a way the user is no longer required to provide the domain of the data,
while controlling the depth and breadth of the inductive inference problem by
using dynamic background knowledge for each problem. We do this in three
different ways. First, we structure the background knowledge into specific subsets
(domains) and select the most appropriate one (using the domains of the previous
chapter, but automating the process of domain selection). Second, we build a
ranker that selects the most appropriate primitives depending on the problem.
In both cases we use off-the-shelf Machine Learning (ML) techniques applied
to a set of meta-features based on the syntax of the inputs to be processed.
Finally, we perform a combination of both approaches. As we will see, these
approaches find a good trade-off between knowledge breadth and the solution
depth. As a result, we solve effectively and efficiently a wide range of data
wrangling manipulation problems, with the user just providing one example.
For assessing the approaches, we introduce new datasets to the data wrangling
benchmark.

5.2 Upgraded Approach

As we have presented in the previous chapter, we propose to use a general-
purpose IP system provided with a suitable set of primitives as background
knowledge. In this case, the selection of this background knowledge will be done
automatically by the system. Hence, in this upgraded approach, the automation
of data manipulation tasks is done as follows:

o We take one example which is used to automatically select the appropriate
domain and/or the set of primitives that form the dynamic background
knowledge automatically.

¢ One or more examples are sent to an IP system.

60

Method

o Using the selected background knowledge and the examples, the IP system
learns a function f (if exists) that correctly transforms the input of the
examples to the given outputs.

o The function f is applied to the rest of the inputs, obtaining the new values
for the output column automatically.

We use the term global for the set of all primitives, including default, freetext and
all the domain functions. Of course, using this massive background knowledge
the system would not work, so one simple idea is to have the user choosing the
appropriate domain in order to use the DSBK associated with the domain, an
idea already explored in the previous chapter. However, in the long term, this
is giving too much responsibility to the user. In the next section, we explore
a new approach for automatically selecting a dynamic set of primitives for the
background knowledge.

5.3 Method

If we want to automatically detect the domain of a problem as humans do, we need
a way to identify the characteristics that distinguish the domains. For instance,
we can see that the ‘Q’ symbol is very distinctive for emails, while dates in
numeric format usually come with some specific punctuation for separating days,
months and years. Following this idea, we have defined some descriptive meta-
features that can be extracted automatically and describe different characteristics
of the inputs, such as how the string starts (e.g., start_upper, start_digit,
etc.), how it ends (e.g., end_lower, end_ digit, etc.), which kind of symbols it
contains (e.g., has_numbers, has_dots, etc.) and what structure they have (e.g.,
is_onlyNumeric, is_onlyPunctuation, etc.). We defined n = 54 meta-features in
total, extracted by using regular expressions. Figure 5.1 shows an example of
some of these characteristics extracted from dates and emails.

Input Data Expected Output Input Data Expected Output
23 03986 —>29 lic niledu — > uniledu
s | I [e | O [e | i
hasPunctuation isNumeric hasDot hasDot
~——> hasDigits hasAt startLower
—> startWithDigit startLower

Figure 5.1. An example of meta-features that can be extracted from
the examples of different domains (dates and emails in the figure).

The idea of identifying domains was inspired by what a user would do to
organise a large library of functions. But do we really need the notion of domain?
Can we just do the selection of primitives by a ranking approach over the whole
background knowledge? As explained in the following paragraphs and illustrated

61

5. Dynamic Background Knowledge

in Figure 5.2, the information extracted from the input examples is going to be
used in different ways:

1. Domain identification for the appropriate DSBK (Inferred Do-

main). As we want to automate the process, the domain can no longer be
provided by the user, so we need to find a way to select the right domain
for each problem. To do this, we train a domain classifier from a dataset
composed of meta-features of m examples with correctly labelled domains.
So, we have n + 1 columns (meta-features and domain) and m rows. The
classifier is learned off-line with a pool of examples.

. Building dynamic background knowledge by ranking the primi-

tives from global (Ranking). For this, we use the descriptive features for
each example as input variables and the primitives that are used in the
solution of the example as labels. We generate a primitive estimator, with
the probability that a primitive may be needed for a particular problem.
Since global has many primitives (374 primitives), we actually have a
set of binary classifiers, one for each primitive, determining whether the
primitives are required or not.

. Building dynamic background knowledge by ranking the primi-

tives from the identified domain (Inferred Domain +Ranking). We
also explore a combination of the two previous approaches. Namely, given
a new problem, we first use the domain classifier to identify the most
convenient domain according to the extracted features. Then we rank all
primitives using the primitive estimator but, in this case, only the functions
included in the DSBK identified are taken into account.

Input Output _/} (1) Extract metafeatures
6-10-1620:35 | 7 7° 2016 : l

:'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_"":::::::::::I Domain
103/10/201 1 00:25:45 :_ 2011 . (2) Detect domain Specific
io...1995.1225 . L1995 L ' l EX
(6) Fill the outputs
(5) Apply to the (3) Pre-select a subset of
rest of inputs transformations (ranking)
transformLongYear ¢ P (__/
(getYear (getDate Input)) System Dynamic BK

62

(4) Infer a solution

Figure 5.2. Automating data wrangling with IP: process example. The
first row (Input and Output) is used as an input example for the IP
system. The function returned is applied to the rest of the instances to
obtain the outputs.

Experiments

5.4 Experiments

In addition to the benchmark presented at the previous chapter, we generated
95 new examples for all the domains (with 6 instances each) with different
data wrangling problems including names, phones, emails, times and unit
transformations. All the datasets are published at the first data wrangling
dataset repository presented in the previous chapter' and are summarised in

Table 5.1.
id Description Expected Output

1,2 Add punctuation The date split by a punctuation sign
3...5 Change format The date in one particular format

6,7 Change Punctuation The date in one particular format

8...10 Get Day The day in numeric format

11,12 Get Day Ordinal The day in numeric ordinal format
13, 14 Get Month Name The name of the month
15,16 Get Week Day The name of the weekday
17, 18 Reduce Month Name The name of the month reduced to three letters
19, 20 Set Format The date split in DMY format

21 ...23 Generate Email An email created with name and domain

24 ...27 Get After At Everything after the at symbol
28,29 Get Domain The domain before the dot

30 Before At Everything before the at symbol
31,32 Add Title The name with a title
33, 34 Get Title The title attached to the name, if exists
35, 36 Generate Login A login generated using the name

37 ...45 Reduce name The name reduced before the surname(s)

46 ...50 Add Prefix by Country Phone numbers with the prefix of the countries
51, 52 Delete Parentheses The list of phone numbers without parentheses
53, 54 Get Number A phone number presented in the string, if exists

55 ...59 Set Prefix The list of phone numbers with the prefix
60, 61 Set Punctuation A phone number split by a punctuation sign
62, 63 Add Time The time increasing the hour by the integer
64, 65 Append o’clock Time The time appending an o’clock time
66, 67 Append Time The time appending the integer as new component
68, 69 Convert Time The time formatted to 24 hours format
70, 71 Convert Time The time formatted to a given format
72, 73 Convert Time The time formatted to 12 hours format

74 ...77 Convert Time The time changed using time zone
78,79 Delete Time The time deleting the last component
80, 81 Get Hour The hour component
82, 83 Get Minutes The minutes component
84,85 Get Time A time presented in the string

86 ...89 Convert Units The value transformed to a different magnitude
90, 91 Get System The system represented by the magnitude
92, 93 Get Units The units of the system
94, 95 Get Value The numeric value without any magnitude

Table 5.1. Datasets included in the new data wrangling repository

offered for the research community.

1The repository is available at: http://dmip.webs.upv.es/datawrangling/index.html

63

http://dmip.webs.upv.es/datawrangling/index.html

5. Dynamic Background Knowledge

In this section, we present a summary of the results obtained by applying
our system and other related systems on this repository?.

5.4.1 Strategies of employing BK functions

First, we want to determine which is the best strategy for selecting the BK to
be used in data wrangling problems in such a way that the overall system is
accurate and fast at the same time.

To build the domain classifier and the primitive estimator, we used the
54 descriptive meta-features and one off-the-shelf machine learning method:
random forest (the learning method that obtained the best results). We applied
a leave-one-out cross validation approach using the 95 datasets, such that, for
each fold, 94 datasets are used for training both classifiers and the remaining
dataset is used for testing. As evaluation metrics we used accuracy and kappa
for the domain classifier, and AUC (the Area under the ROC curve) for the
primitive estimator. For each domain classifier and primitive estimator trained,
we also applied a leave-one-out cross validation to the induction problem, such
that, for each fold from the six examples that the test dataset contains, only
one random example is given to the IP system which, jointly with the domain
classifier and the primitive estimator, infers a pattern that is applied to the five
remaining examples.

The results obtained for the domain classifier showed that the descriptive
meta-features are useful to express the information about the domain since the
classifier is able to predict the domain correctly 88.6% of the times (see Table
5.2). Analogously, the experiments performed with the primitive estimator (see
Appendix D.3 for more details) obtained an average AUC=0.97, showing that it
can predict accurately the functions needed to solve the problems.

Method | Acc. | Kappa
C5.0 Tree 0.822 0.786
Neural Network | 0.741 0.689
Naive Bayes 0.458 0.350

Random Forest | 0.886 | 0.847
Table 5.2. Results for the domain detection using the meta-features

with different machine learning methods. The best results are highlighted
in bold.

The different strategies to configure the BK we experimentally analysed are:

1. Default: we use the default BK included in MagicHaskeller.
2. Freetext: we use the freetext BK (basic string transformation functions).

3. Global: we provide a BK composed by all the functions.

2The complete results of these experiments can be found in Appendix D.3 and the code is
available at: https://github.com/liconoc/DataWrangling-DSI

64

https://github.com/liconoc/DataWrangling-DSI

Experiments

4. User Domain: We know (or the user gives) the correct domain (DSBK) for
the problem (as we do in our previous approach presented in Chapter 4).

5. Inferred Domain: we identify the domain of the problem automatically
using the domain classifier and we select its associated DSBK.

6. Ranking: we rank all the functions of the global BK using the primitive
estimator.

7. Inferred Domain + Ranking: we apply the primitive estimator to obtain
the ranking of functions in the BK identified by the domain classifier.

We consider strategies default, freetext and global as baselines since they do not
constitute any improvement in the handling of the BK. Strategy user domain is
included just as a human-assisted (semi-automated) reference, since it requires
the manual recommendation of the appropriate DSBK. The experiments try to
show whether our proposals (strategies inferred domain, ranking and inferred
domain + ranking introduced in section 5.3) are able to be on a par in accuracy
with a human reference and improve the performance over the baselines in time
by reducing the hypothesis space. Accuracy is computed as the ratio of correctly
covered examples by the induced pattern.

In the case of the strategies using the ranking of functions, we order the
functions included in the global library (in the case of the ranking strategy) or
in the DSBK corresponding to the detected domain (in the case of the inferred
domain + ranking strategy), by the probabilities returned by the primitive
estimator. Then, we create the dynamic background knowledge by adding one
function at a time, starting from the most probable one, until a result is found or
all the functions in the library are added. We call b,,,4, the size of the dynamic
background knowledge generated (the final number of functions included).

Figure 5.3 shows the average time for the seven strategies, that includes
the duration of the whole process: from the extraction of the first example
to the automatic transformation of the rest of the outputs (as described in
Figure 5.2). Concretely, we have measured: (1) time for detecting the domain
(strategies inferred domain and inferred domain + ranking); (2) time for ranking
the functions (strategies ranking and inferred Domain + ranking); and (3) time
of running the IP system (all strategies). Considering the running times, we can
conclude that the proposed strategies are able to speed up the whole process,
even when they need to detect the domain and rank the functions.

If we consider accuracy, Figure 5.4 shows the average for the seven strategies.
We can see that the baseline approaches are poor since they do not have the
appropriate functions in the BK (default and freetext strategies), or there are
too many functions to explore (global strategy). Strategies ranking and inferred
domain + ranking are on the same level as strategy user Domain, which requires
a human. This means that we are able to automate the process obtaining the
result just as a human can obtain it, but reducing the time needed to do it. We
state that the results using the ranking strategy lead to significant results and, to

65

5. Dynamic Background Knowledge

150-

t_mean

100-

50-

' ' ' ' ' ' '
default freetext global infer-domain infer + rank ranking user—-domain
strategy

Figure 5.3. Average of time needed to find the solution depending on
the strategy used.

prove it, we have run a significance [69]%. The absolute value of the test statistic
for our results, 1.1005, is lower than the critical value of 1.6528, so we reject the
null hypothesis and conclude that the results using the ranking of functions are
better at the 0.05 significance level.

In the case of the inferred Domain strategy the difference in the results
compared to the user-domain strategy, is the misclassification of the emails
domain, which means the strategy is using an incorrect domain and the right
solution is not obtained in this case.

Figure 5.5 illustrates the size of the dynamic background knowledge,
comparing the strategies using the ranking (ranking and inferred domain +
ranking), depending on the domain of the problems. Here we can see that
ranking only the functions included in the detected domain reduces significantly
the background knowledge to an average of eight functions. Notice that, as we
have seen in chapter 4, the number of functions included in each DSBK is: 162
for dates; 162 for emails; 102 for names; 116 for phones; 129 for times; 148 for
units; and 124 for freetext. Besides, global includes all the functions together. So,
we can see that, in general, the ranking of functions is able to drastically reduce

3We have used the implementation of the Two-Sample t-Test from the stats package from
the R language.

66

Experiments

1.00- | ——

0.75-

acc_mean
>
o
o

0.00- | E

' ' ' ' ' ' '
default freetext global infer-domain infer + rank ranking user-domain
strategy

Figure 5.4. Average of accuracy obtained by each strategy.

the number of functions needed, adapting the background knowledge according
to the problem to solve.

5.4.2 Comparison with related systems

We have also compared the performance of our Dynamic BK selection approach
using the ranking strategy with other data wrangling tools, specifically FlashFill,
Trifacta Wrangler and TDE (Transform Data by Exzample).

FlashFill works in a similar way as our approach, namely, it uses one, two or
more input instances to try to infer a potential solution which is then applied to
the rest of examples. TDE also works similarly except that it needs at least two
instances for learning. However, Trifacta Wrangler works in a slightly different
fashion: it tries to discover patterns and perform actions in the entire dataset.
Each of these actions can involve one change (e.g., merge two columns) and
they are saved in a final recipe. As we have used a d,,q, value equal to 12 in
MagicHaskeller, in order to make a fair comparison with Trifacta Wrangler, we
limit the maximum number of actions in each Wrangler recipe to 12. Additionally,
although some tools are able to generate more than one solution, if they exist
(as TDE and MagicHaskeller do), for the experiments we have only considered
the first solution offered by the systems.

67

5. Dynamic Background Knowledge

dates emails names
15-
10- I
| I . l I .
0-
3
EI phones times units

10- I I I
| l . .
0-

' ' ' ' ' '
ranking dom_ranking ranking dom_ranking ranking dom_ranking

Figure 5.5. Average of size of the dynamic background knowledge
using the ranking of functions and the ranking with the inferred domain,
for the six domains analysed in this chapter. We omit here the other
strategies since the number of functions in their BKs is always the same.

Table 5.3 shows some illustrative outcomes obtained by the analysed systems
for some datasets as well as their accuracy values. The first instance (in italics) for
each dataset (input column) is the one used for inferring the solution (except for
TDE that, as mentioned above, needs the two first instances for learning). The
complete results of this comparison between systems can be found in Appendix
D.3.

Flashfill works well with emails and some basic string transformations, but
it fails when it has to deal with people’s names, problems related to phones
or times, and dates in different formats. Something similar is observed in the
TDE results: inconsistent data formats cause that TDE finds incorrect solutions
because it is not able to detect the domain or the problem at hand. On the
other hand, Trifacta Wrangler is able to detect some data types or domains,
for instance: ‘url’, ‘time’, ‘phone’ since it has some predefined formats for each
domain. In this way the tool is capable of solving very domain-specific problems

68

Experiments

(e.g., getting the month or the day in a date, detect an email or extract the
hour of a time stamp), although with some limitations (e.g., it cannot deal with
inconsistent or different formats in the same set of input data). The last problem
of Trifacta Wrangler is that the user needs to know the language behind the tool
or some regular expressions in order to solve more complex examples. On the
contrary our system is able to solve most of the problems using only one example
given by the user in the same way one can fill data in a spreadsheet, having into
account that the user does not need to know any technical knowledge related to
the system or the language behind it.

The authors of TDE have also created a benchmark of stackoverflow-related
questions® that can also be used in order to test data transformation systems.

4TDE Benchmark: https://github.com/Yeye-He/Transform-Data-by-Example

input output FlashFill Wrangler TDE DBK

03/29/86 29

74-03-31 31 03 03 31 31

99/12/13 13 12 12 1 13

11.02.96 11 02 1 11

31/05/17 31 05 05 31 31

25-08-85 25 08 08 25 25
Accuracy: 0 0 0.5 1

Dr. Eran Yahav Yahav, E.

Prof. Kath S. Fish Fish, K. Fish, Kath S. S, K. Fish, K. Fish, K.

Bill Gates, Sr. Gates, B. Sr., G. Sr, G. Sr. Gates, B.

George Ciprian Nec Nec, G. Nec, C. Nec, C. Nec Nec, G.

Ken McMillan, II McMillan, K. 11, M. [T, M. I1 McMillan, K.

Mr. David Jones Jones, D. Jones, D. Jones, D. Jones, D. Jones, D.
Accuracy: 0.2 0.2 0.25 1

1:34:00 PM CST 1:84:00

01:55 01:55 01:55 01:55 01:55 01:55

3:40 AM 3:40 3:40 3:40 h3:40 A:00 3:40

07:05:59 07:05:59 07:05:59 07:05:59 h7:05:5:59 07:05:59

08:40 UTC 08:40 08:40 08:40 r8:40 U 08:40

16:15:12 16:15:12 16:15:12 16:15:12 h6:15:1:12 16:15:12
Accuracy: 1 1 0 1

1441.8mg — g 1.4418001

84kg — ¢ 84000.0 8.4418001 84000.0 84000.0

14300ms — s 8700000.0 1.4418001 s 14.3

87 s — ns 8700000.0 8.4418001 ns 8700000.0

12.20dg — mg 1220.0 1.4418001 mg 1220.0

1854 dam — dm 185400.0 1.4418001 dm 185400.0
Accuracy: 0 0 0 1

Table 5.3. Results obtained by FlashFill, Trifacta Wrangler, TDE
and our approach (Dynamic BK with ranking strategy), on a sample of
datasets of six different domains. Output is the expected output. The
first row of each dataset is the example given to FlashFill, MagicHaskeller
and Trifacta Wrangler to generate the solution. For TDFE the two first
examples are used. Green colour means correct result; Red colour means
incorrect result.

69

https://github.com/Yeye-He/Transform-Data-by-Example

5. Dynamic Background Knowledge

We have tested our system with the 225 datasets of this benchmark in the same
conditions as our system, i.e., using the first instance of each dataset as the
input example for our system. In this way, our system solves 35.1% of these
datasets, using the functions that we have defined. We have to consider that
this benchmarck includes domains not defined in our system and some specific
problems that need ad-hoc functions in order to be solved. Having in mind the
examples not solved, we can include new functions in our system, for instance,
new unit conversions or the extraction of plain text from languages such as
HTML.

Finally, we can also compare our system with the Neuro-Symbolic Program
Synthesis system of [138], at least conceptually, as it cannot be applied directly
to the data wrangling repository. As we already discussed in the related work
section, Parisotto et al. describe some problems that their system is not able to
solve since they require four or more Concat operations. One of these problems
is transforming phone numbers into a consistent format. For instance, given the
input “(425) 221 6767" the expected output would be “425-221-6767", and given
the input “206.225.1298” the expected output would be “206-225-1298". In this
case, our system is able to solve this problem by using three basic primitives of
the freetext domain. Besides this example, our system is able to solve some other
examples that this kind of system does not solve since input and output have
nothing in common. For instance, given the input “2pm” the expected output
would be “14:00”. This example implies knowledge of times and, in this case,
our system is also able to solve the problem.

The comparisons above may look non-systematic, but all these approaches
use different settings and additional data, apart from a very different number
of examples, which makes the results not really comparable. This is one of the
reasons why the presented benchmark and the minimum requirements of our
method can be set as a baseline to be beaten by future variants of these and
other approaches.

5.5 Conclusions

Most data science applications require the manipulation of data that are in
different formats. One key issue that humans rely on is their domain knowledge,
which allows them to use primitives that are specific to the domain, when coding
transformations. However, if a large number of primitives is included in the
background knowledge to cover a variety of situations we get an intractable
problem, as we have too many to choose from. In this chapter, we have proposed
different strategies that try to reduce the size of the background knowledge,
based on an automated selection of the domain and/or a ranking of primitives to
build the BK dynamically for each example. We have illustrated all this in the
real problem of formatting data of very different domains from just one example.

To properly evaluate our system (and other existing and future data wrangling
systems), we have introduced 95 new data wrangling datasets, which we make
available for the community. We have performed experiments over this benchmark

70

Conclusions

to illustrate the several strategies to the dynamic selection or construction of
background knowledge, showing that they greatly improve accuracy and reduce
time, especially strategy 6, the ranking approach.

Summing up, we have presented a data wrangling system that (1) uses off-the-
shelf (and open) inductive programming and machine learning techniques, (2)
learns from one example, (3) is automated and does not require the user’s input
for the domain selection, and (4) covers a wide range of string manipulation
problems, with results well above other approaches.

71

Part IV

AUTOMATI[R]IX: Automating
Matrix Transformations

Learning Simple Matrix Pipelines

In the previous part we saw how to automate the transformation of strings
based on the characteristics of the problem. As said in the Section 1.1 one
process repeated in many data-related projects that is difficult to automate is
programming. In this chapter, we present AUTOMAT [R]IX that, as far as we
know, is the first system able to automatically synthesise programs in R given
an input data matrix, a partial output matrix filled by the user representing
the expected solution and, optionally, a brief description in natural language
of the desired result or the operation to perform. The goal of this approach
is dual: first, we want to extend the range of automated data transformation,
not only to strings, but also to complex structures, such as matrices; and
second, we want to automate the generation of programming code related to
data science. We assume that there is a set of functions in R that can be
applied to a matrix in order to obtain the result, and there is a user that needs
some assistance to generate the code automatically only using a few examples
from the result. The learning algorithm is able to induce the correct matrix
pipeline transformation by composing primitives from a background knowledge.
Because of the combinatorics of primitives and operations for generating possible
transformations —exponential on the size of the library and the number of
primitives to be combined—, we need to use the characteristics of the input and
output matrices, and the primitives themselves, in the form of constraints to
speed up the process. After that, a probabilistic model estimates the probability
of each sequence of primitives from primitive use frequencies and documentation
and completes the output matrix, automatically producing the R code, ready to
be inserted into the data science pipeline.
The main contributions of this chapter are:

e A new probabilistic algorithm that dynamically adapts the background
knowledge based on prior information about the use of the functions by
the programming community and tips provided by the user in natural
language describing the problem to solve.

o The first IP system able to induce R functions based on examples of
partially-filled matrices and tips from the user.

This chapter is organised as follows. Section 6.1 presents the problem that
programming can imply to many data scientists and how can be automated.
Section 6.2 defines the problem that we address in this thesis. Section 6.3
gives details of our approach and how it leverages novel and traditional ideas
in artificial intelligence to solve this new problem effectively and efficiently,

Ihttps://www.r-project.org/

75

https://www.r-project.org/

6. Learning Simple Matrix Pipelines

including the algorithm that is constrained by the matrix dimensions and uses
probabilities estimated from the textual hints. Section 6.4 includes experiments
with artificial and real data. Finally, section 6.5 closes the chapter with the
applicability of the system and the future work.

These results have been published in: [19, 20].

6.1 Introduction

Many areas in artificial intelligence, from data pre-processing to optimisation
algorithms, from image transformation to the visualisation of tables and results,
require common operations using matrices. This is especially the case in machine
learning and data science, where programming languages, such as R or Python,
are the most used languages to manipulate data [27]. While libraries and hand-
crafted algorithms usually capture the core data pipelines, there is an extensive
use of glue code, small snippets that perform simple transformation between
the output of one module to the input of the following one. Sometimes, these
transformations must be done by experts without a profound programming
knowledge, with frustrating results [35].

Matrices are a very common way of working with data. Data-frames, tables,
spreadsheets, bi-dimensional arrays and tensors are similar structures that can
be assimilated to matrices. Matrix algebra can be applied to transform data or
extract a variety of useful information. It is a common strategy for programmers,
AT experts and data scientists to use an example of a problem and use it to solve
the desired transformation or detect where it fails. A few examples are used to
‘verify” whether the matrix snippet is doing the right processing, before applying
the transformation to other examples.

For instance, consider an Al expert or a data scientist who wants to extract
the positions of the non-empty values in the data matrix shown in Figure 6.1a.
She may just figure out the output she is expecting as a result of the desired
transformation (represented in Table 6.1b), which may also be used to check the
snippet once it is written. Interestingly, as happens with humans, having both
the input and output matrices could be sufficient for an automated system to
learn this transformation smoothly. This is what we do in this chapter.

NA 030 050 NA NA NA NA
NA NA NA 090 NA NA 040
NA NA NA NA NA NA NA
NA NA NA NA 060 NA NA
NA NA NA NA NA NA NA

N =N ==
~N Ut = W N

(2) Matrix A with some NA values. (},) pogition (row, column) of non-NA

values in A.
Figure 6.1. Example of data transformation using matrices. The

snippet must transform the matrix on the left into the matrix on the
right. Can you code it?

76

Introduction

Common strategies to solve this problem by hand would be to program a
snippet using a traditional loop, think of a more algebraic function that avoids
the loop or simply check Stack Overflow? to find an elegant transformation.
Instead, we could rely on a system that takes Tables 6.1a and 6.1b as inputs,
and generate an elegant code snippet in the programming language R such
as which(!is.na(A), arr.ind=TRUE)? Note that in this example there is
no similarity whatsoever between input and output. The input contains real
numbers and NAs, and the output only has integer numbers, none of them in
common with the input. Also, the dimension of the input matrix is 5 x 7, while
the output matrix has dimension 5 x 2, where the same number of rows is just
a coincidence. Is this problem solvable at all? And, to make it more challenging
and realistic, what if we only give some of the rows (or even a few cells) of the
solution?

As we have seen in chapter 2, generating code from input-output pairs falls
under the area of programming by example (PbE) in program synthesis, and
more generally inductive programming [62]. From the perspective of inductive
programming, matrix transformation has several characteristics that make
it more feasible than other problems: only one data structure is considered
(matrices), we can use the matrix dimension as a constraint to restrict the search,
and functional programming (with higher-order functions such as apply) is
particularly appropriate here. A first key insight to tackle our problem is that
very interesting and complex transformations can be obtained by composing
very few primitives. A second observation is that the primitives used in matrix
pipelines usually have very low arity, with many of them having just one argument.
A third consideration is that the input and output matrices represent just one

—albeit rich— example: the information to exclude the infinitely-many alternative
transformations must come from the (partial) content of the matrices and a
strong simplicity prior. This makes other approaches that require significant
amounts of data unfeasible and suggests a learning approach that is based on a
compositional search.

In this chapter, we present a system that is able to learn simple matrix
pipelines from: (1) one input data matrix, (2) one partial output matrix filled
by the user representing the desired transformation, and (3) optionally, a short
description or hint in natural language of the desired transformation. The
system works with a library of b primitives to combine into a snippet of at most
d primitives. Because the combinatorics of primitives and operations is in the
order of b% as we discussed in chapter 2, we use several strategies to reduce the
search space. First, we use the characteristics of the input and output matrices,
and the primitives themselves, in the form of constraints. Basically, our system
checks that the sequence of compositions is consistent with the dimensions.
Second, we estimate the a priori probabilities of the primitives according to
how frequent they are used on Github. Third, when available, we can use small
hints in natural language given by the user, such as a short text of the form:
“positions of non-empty values” (see Figure 6.1). This helps us estimate the

2https://stackoverflow.com/

77

https://stackoverflow.com/

6. Learning Simple Matrix Pipelines

conditional probabilities for primitive sequences. We use all this information for
a tree-search procedure that re-estimates branching candidates dynamically.

6.2 Problem Definition

We assume there is a set of operations that can be combined and applied to a
matrix A in order to obtain a result S. The operations are primitives or functions
in some specific language (in our case, R) and a human needs some assistance
to generate the code from a single example. This is the setting that serves as
problem formulation:

1. We are given an input matrix A: a finite real matrix of size mxn (m,n > 0).

2. We are given a partially filled matrix B: a finite real matrix of size m’ x n’
(m/,n’ > 0) where only some elements are filled and the rest are empty
(we will use the notation ‘).

3. Optionally, we are given some textual hint or short description 7" in natural
language: this is provided by the user, describing the problem to solve.

4. We look for a function f such that f (A) = S, where S is a finite real matrix
of size m’ x n’, such that for every non-empty b;; € B the corresponding
s;; € S matches, i.e., bj; = s4;.

5. We produce the function f , expressed as a composition of matrix operations
in a given programming language.

As additional criterion we will consider that the representation of f in the
programming language should be as short as possible in number of functions
combined , and we will also allow for some precision error € (so that we relax
item 4 above with |b;; — s;;| < €, instead of b;; = s;;). We use the notation
f(A) Ec B to represent this, and say that the transformation covers B.

As a basic example, consider the matrices A and B:

135
A=14 2 6
3.8 7
B=1[8 13

where A is the input matrix and B the partially-filled output. We try to find f
such that f(A) = B. In this case the function colSums in R, which adds the
values columnwise, gives the following matrix S that covers B.

S=[s 13 18]

Note that we look for a system that: (1) works with only one input matrix and
only one partially-filled output matrix, and nothing more (the textual hint is

78

Method

optional), (2) automatically synthesises the composition of primitives in the
base programming language that solves the above problem, and (3) returns the
complete transformed matrix and the synthesised code.

As far as we know from the related work seen in the previous section, no
other approach is able to solve this problem using only one or few cells of the
solution matrix.

6.3 Method

We emphasise a series of characteristics of this problem: (1) the combination
of a few functional primitives can achieve very complex transformations, (2)
the arity of the primitives is usually low (one in many cases), so the snippet
becomes a pipeline, where the output of one primitive becomes the input of
the next one, (3) we work from one example and (4) we want the shortest
transformation with the given primitives, as built-in primitives usually lead
to more efficient transformations. All these characteristics suggest that the
problem can be addressed by exploring all combinations of primitive sequences,
by using a strong simplicity bias (the number of primitives used). This strategy
is common in other inductive programming scenarios [92, 119, 120, 123] but it
must always be coupled with some constraints (e.g., types, schemata, etc.) or
strong heuristics. In our case, we will use the dimensions of the matrices as the
main constraint for reducing the combinatorial explosion, as well as some priors
about the frequency of each primitive and, optionally, some posteriors using text
hints in order to guide a tree-based search where each combination of functions
will be sorted and selected based on its assigned probability.

6.3.1 Dimensional constraints

We consider the background knowledge as a set of primitives G. This number
of primitives |G| taken into account for the search is known as the breadth (b)
of the problem, while the minimum number of such primitives that have to be
combined in one solution is known as depth (d). Clearly, both depth and breadth
highly influence the hardness of the problem, in a way that is usually exponential,
O(b?) [45] affecting the time and resources needed to find the right solution.
This expression is exact if we consider unary primitives, so that solutions become
matrix operation pipelines, i.e., a string of primitive ¢ = g192 ... gq-

The first optimisation to this search comes from the constraints about the
dimensions of the primitives and the input/output matrices. For each matrix
primitive g we take into account the dimension of the input and output at
any point of the composition, and also some other constraints about minimum
dimension (for instance, calculating correlations, function cor, requires at least
two rows, i.e., m > 1). More formally, for each primitive g we define a tuple
(Munin, Nmin, T) where my,ip, and 1y, are the minimum number of rows and
columns (respectively) for the input (by default 1, = 1 and n,,, = 1), and
7:N? = N? is a type function, which maps the dimension of the input matrix

79

6. Learning Simple Matrix Pipelines

to the dimension of the output matrix. For instance, for ¢ =colSums, m,,;, = 1
and n,,;, = 1 as you need at least one column and row for the primitive to work.
7(m,n) = (1,n), because g takes a matrix of size m x n and returns a matrix of
size 1 X n. Similarly, for g =cor, My, = 2 and ny,,;, = 1, as we need at least
two rows to calculate a correlation. 7(m,n) = (n,n), because g takes a matrix
of size m x n and returns a matrix of size n x n.

6.3.2 Probabilistic model

Now, during exploration we can consider that not all primitives, and consistent
sequences of primitives, are equally likely. Given our inputs: the hint text 7', an
input matrix A and partially filled output matrix B, we estimate the probability
of a sequence of primitives, as follows:

d
P19z 94T, A, B) = [[pl9ilgi-19i2 .91, T, A, B) (6.1)

=1

The expression on the right can be used partially as we include candidates for
primitives during the search procedure.

In order to estimate this probability we consider the a priori probability p(g)
for each g, which we can derive from the frequency of use of the primitives in the
library, as we will see in the following section. When T is available, we will use
a frequency model that compares TF-IDF values (frequency of words appearing
in the text) [152] of the primitive using the text from its R help documentation
and the TF-IDF values from the text provided in 7. This model produces the
conditional probability po(g|T) Vg, T. We combine these probabilities as follows:

p(9|T, A, B) = vp(g) + (1 = v)po(g|T) (6.2)

with v € [0,1]. Clearly, if T is not available v = 1. Basically, v gauges how
much relevance we give to the primitive prior (valid for all problems) over the
relevance of the hint given by the user.

Finally, we have the intuition that the probability of a primitive may depend
on the previous primitives. In this chapter, we explore a very simple model for
sequential dependencies, by limiting the effect to trigrams and exploring whether
the same primitive is repeated in any of the three previous operations. We use
a parameter 5 € [0, 1], where high 5 values imply that repetitions are more
penalised. More formally,

p(9i|gi—1 ... 91, T7 A) B) - Bp(g|T7 A7 B) + (1 - 6)p(gi|gi—lgi—29i—37 T7 A7 B)(63)

And the repetition part is simply:

P(9il9i-19i—29i-3,T, A, B) = 0 ifg; € {gi-1,9i-2,9i-1}
=p(g|T, A,B) otherwise

80

Method

which means that if the primitive is repeated in the three previous operations,
then the value is 0, becoming more relevant the lower g is. We will explore
whether this repetition intuition has an important effect on the results.

6.3.3 Algorithm

With Eq. 6.1 using the expansion of Eq. 6.3, we can recalculate the probability
after any primitive is introduced in a tree-based search. Note that every
combination of primitives whose sizes do not match have probability 0 and
are ruled out. However, for those that are valid, can we use extra heuristics to
determine whether we are getting closer to the solution? One idea is to check
whether we are approaching the final size of matrix. For instance, if the result
has size (m, 1) and an operation takes the dimension to exactly that, it may be
more promising than another that leads to a size (2m,n3) (which would require
further operations to be reduced, at least in size).

In particular, each node in the tree where functions gigs ...gq have been
introduced will be assigned with the following priority™:

d
p*(9192-.-94) = (1 +am) Hp(gi|giflgi72 .1, T,A,B) (6.4)
i=1

Where m = 1 if the final dimension match the size of the output matrix B, i.e.,
Ta(Ta—1 (-« - T (Minputs Ninput) - - -)) = (Moutputs Noutput), and m = 0 otherwise.
For those ongoing transformations where the output size matches (even if the
values are not yet equal) the priority will be higher than if the dimensions do
not match. In other words, it is just an estimate of whether “we may already be
there”. The parameter a € [0, 1] simply gives weight to this. If « = 1 then the
priority of a situation with the final size is doubled over another situation where
the final size does not match. For o = 0 the priority is not affected by the final
size matching or not.

Now we can use Eq. 6.4 in the tree-based search. The search algorithm works
as follows (see Algorithm 1):

1. The system can be configured to use a set of primitive functions (G),
for each of them including the minimum values for the size of the input
(Mumin,Nmin) and the type function .

2. For each particular problem to solve, we take the input matrix A and the
partially filled matrix B. Optionally, we take a text hint T describing the
problem to solve.

3. Being d,,4, the maximum number of functions allowed in the solution, the
procedure evaluates sequences of primitives g1 9 ... gq, with 0 < d < dppas

3This is an unnormalised value of the expectation that a partial primitive sequence could
lead to the final solution, as used in a tree-based search. Because of the a correction, it may
even be greater than 1, so it is not a probability.

81

6. Learning Simple Matrix Pipelines

where each g; € G. The parameter s,,,, determines the maximum number
of solutions (when reached, the algorithm stops).

4. We start with a set of candidate solutions C' = G.

5. We extract ¢ = g192 ... gq4 € C such that p*(c) is highest. We use 7 on A
and all primitives in ¢ to see if the combination is feasible according to the
dimension constraints and, in that case, we calculate the output size. If
the dimension of any composition in ¢ does not match, we delete the node
from C'. If the dimension of the output matches the dimension of B, we
effectively execute the combination on A4, i.e., ¢(A), and check whether the
result covers S, as defined in the previous section. In the positive case, we
add c as a solution, and we delete it from C. In any other case, if d < dpqz
we expand c into ¢ gqy1 with all gg11 € G. We calculate p* for each of
them and add them to C. We remove ¢ from C.

6. We repeat the procedure in 5 above until s,,,4. is reached or C' is exhausted.

As mentioned in the problem formulation we allow for some small precision error
€ between the cells in S (generated by f) and the cells that are present in B
(and are generated by f).

6.3.4 Use of Text Hints

In some cases the user may provide a few words describing what she wants to
do. This can be very helpful to give more relevance to those primitives that
may be involved in the solution. For instance, if we consider a problem like
“compute the correlation of a matrix”, the primitive cor will probably appear in
the solution. In our model, this is what we denoted py(g|T"). We now explain
how we estimate this value.

First, we consider the set of primitives G and, for each of them, we download
the text description from the corresponding R package help documentation. For
instance help("det") gives the description for the function det as follows: “det
calculates the determinant of a matriz. determinant is a generic function that
returns separately the modulus of the determinant, optionally on the logarithm
scale, and the sign of the determinant”. In the same way, the description of
diag is: “Extract or replace the diagonal of a matriz, or construct a diagonal
matriz”. Each of these help texts H is converted into an array by applying a
bag-of-words transformation, after removing the useless words (included in a list
of stop words) and performing a stemming conversion (reducing inflected words
to their word stem).

Secondly, given a short description T of the task we want to solve, we also
apply the bag-of-words transformation, remove the stop words and do stemming,.
Now we have the processed text chunks H, for each g € G and the processed
text chunk T'. We extract the vocabulary V from all these text chunks.

Thirdly, we apply the TF-IDF conversion [152] to all vectors Hy and T" using
the same vocabulary V. TF-IDF gives more relevance to more informative words.

82

Method

Algorithm 1
AUTOMAT[R]IX : Selecting matrix operations by example

Require: A[m X n] // Input matriz
Require: B[m’ x n’] // Output matriz partially filled
Require: G // Primitives, defined as tuples (g, Mupin, Mmin, T)
Require: dpax // Maz primitives allowed in each solution
Require: s;ax // Number of solutions allowed
Ensure: Find a matrix S |=. B
R+ 0 // Initialise set of solutions
C+ G // Initialise candidate set C with list of functions
while |R| < $y,40 and C # 0 do
¢ < argmazccc p*(c) // Select the element ¢ with the highest priority p*
d <+ |c| // Number of functions in c

valid < True
(Minput, Ninput) < T(m, n)
for i < 1,d do
(gs Mmin, Nmin, T) < c[i] // Extract the primitive and its type function
if Minput < Mmin O Ninput < Nmin then
valid < False

C + C\c // Remowe ¢ from the set C
break
end if
<minput7 n'input) — T(minputy ninput) // Apply the type function T to Minput; Ninput
end for
if valid and Mminput = m’ and Ninput = n’ then
S < apply(c, A) // Run the sequence of functions in ¢ over A
if S |=c B then // Solution found
R+ RUc // Add c to the set of solutions
else
if d < dypar then // Exzpand C
for g € G do
C<+cog // Create new combination and add it to C
end for
end if
end if
C < C\c // Remove ¢ from the set C
end if
end while
return R

This leads to a word vector h, for each g € G and a word vector {. As an
example, in Figure E.7 we can see the frequent terms for these two functions, as
represented by their TF-IDF values. For instance, for the function det, it is clear
that when the word determinant (and its steammed form determin) appears in
a text hint, the function must have a higher probability of being required for
the solution compared with other functions, such as the diag function.

Finally, for each g we calculate the cosine similarity s(H,,T) between h, and
t. We normalise the |G| similarities to sum up to one as follows:

s(H,, T)

P = S o, T)

(6.5)

This estimate is used for Eq. 6.2.

83

6. Learning Simple Matrix Pipelines

6.4 Experiments

We have implemented AUTOMAT [R]IX for R, a language and environment for
statistical computing, data science and graphical representations. R operates on
named data structures (vectors, matrices, data frames, etc.). In our case, we
work with those functions such that input and output are data-related structures
(matrices, vectors, etc.). These include primitives that extract characteristics of
a matrix, such as number of rows or maximum value, or apply operations to the
values, for instance bind columns, calculate the mean or compute a correlation
matrix. More specifically, we take 34 R functions related to matrices from the
base*, stats® and Matriz® packages included in R. The experiments shown in
this section aim to answer the following questions:

Q1 How much impact on success do the a priori probabilities have?

Q2 Are both o and key to obtain better and faster results? How much?

Q3 Is the user text helpful and how much relevance () should we give to
it?

In order to answer these questions, in this section we describe how we obtain
p(g), the a priori distribution for the primitives, and how much impact has in
the results; we describe the text models that lead to po(g|T'), we perform an

4https://stat.ethz.ch/R-manual/R-devel/library/base
Shttps://stat.ethz.ch/R-manual/R-devel/library/stats
Shttps://stat.ethz.ch/R-manual/R-devel/library/Matrix

det(A) diag(A)
diagonal -
calculate - -
cal‘:UIateS] - matrix] _
X construct =
logarithm -
modulus - - .
diagonals -
optionally - -
Scale] - o -
separately = -
replace -
' ' ' ' ' ' '
0.00 0.25 0.50 0.75 0.0 0.2 0.4
tf_idf

Figure 6.2. TF-IDF values for two R primitives extracted from the R
help documentation.

84

https://stat.ethz.ch/R-manual/R-devel/library/base
https://stat.ethz.ch/R-manual/R-devel/library/stats
https://stat.ethz.ch/R-manual/R-devel/library/Matrix

Experiments

ablation study to obtain the best values for parameters «, 5 and v and then, we
evaluate the algorithm with real problems taken from Stack Overflow”.

6.4.0.1 A priori Probabilities: p(g)

To answer question Q1 and calculate the a priori distribution we use the frequency
of use of the functions to give different prior probabilities to each of them. To do
this, we use the “Top 2000 most used R functions on GitHub” dataset, available
for download on GitHub®, containing an ordered list of the most frequently
used functions by the programming community on Github. We reduce the 2000
functions to a subset containing only the functions included in our library G.
When a function is duplicated in different packages we take one of them following
this package order: base, stats, Matriz. Table 6.1 shows the six most used R
functions from those functions included in G¥.

function p(g)
1 1length 0.327975648
2 nrow 0.088785612
3 is.na 0.082437026
4 max 0.055495595
5 mean 0.046439995
6 cbind 0.045872954

Table 6.1. Top six R functions most used on GitHub.

Being ng the absolute frequency of use for the function g, we calculate the a
priori probability as follows:
Ng

p(9) = 27

geG g

Benchmark: We will test whether the use of p(g) as a very straightforward a
priori probability is already useful in order to reduce the search time and space.
For this, we first have tested the system with synthetic data. We have generated
10 random real matrices of different dimensions m x n where m, n € (2,10). These
matrices are filled with numeric values following a uniform distribution between 0
and 100. For each of these 10 matrices A we generate 10 transformations of depth
d = 1..4 each using the functions from G according to their a priori probability
(explained in section 6.4.0.2). Finally, for each of the 10 x 10 x 4 = 400 matrices S
we generate a matrix B where we replace a percentage uniformly chosen between
60% and 80% of the cells by empty values. In total we have 400 pairs of matrices
A, B to test the algorithm with different numbers of operations.

"For replicability and to encourage future research, all the matrix transformations
used here (the MATRANSF repository) and the code for AUTOMAT[R]IX are published on:
https://github.com/liconoc/ProgramSynthesis-Matrix.

8Top 2000 R functions: shorturl.at/pDFRZ

9The complete list of the most used functions related to matrices can be found at Appendix
E.2

85

https://github.com/liconoc/ProgramSynthesis-Matrix
shorturl.at/pDFRZ

6. Learning Simple Matrix Pipelines

Results: As we work with artificial examples with no text hints we cannot use
po(g|T') for these experiments. So, in this case we have tested the strategy using
the a priori probabilities for p(g) compared with a uniform baseline, assuming
p(g) uniform (so it is actually a breadth-first strategy). In both cases, we use
vy=1,a=8=0, dnax =4, Smaz = 1 (we only need to find one solution) and a

timeout of 60 seconds'’.

strategy accuracy generated explored time
Uniform 0.47 + 0.51 5610 + 3543 168 4+ 104 59.54 + 46.78
Prior 0.65 £ 0.49 790 £ 1266 24 + 38 3.69 + 7.01

Table 6.2. Results for the synthetic examples. Average of generated and
explored nodes, accuracy (percentage of correct solutions) and time in
seconds, for the uniform and prior strategies. Experiments are performed
with dmaee = 4 and Smaz = 1. The timeout is set to 60s. Best results are
highlighted in bold.

Table 6.2 shows the results in accuracy (percentage of correct solutions found,
ie., f (A) = 5), average of the number of nodes generated and actually explored,
and time in seconds. From these results we can clearly see that the use of
probabilities following the real use of the functions from GitHub has a great
impact on the size of the space explored, reducing drastically the time needed
to find one solution while improving the accuracy obtained. We state that the
results using the prior strategy leads to significant results and, to prove it, we
have run a significance test[69]'! The absolute value of the test statistic for our
results, 1.022, is lower than the critical value of 1.694, so we reject the null
hypothesis at the 0.05 significance level and accept the alternate mentioned,
stating that the prior probability can help with obtaining better results by
reducing the space of search.

6.4.0.2 Including Text Hints: py(g|T)

Benchmark: Now, we want to test the algorithm also including po(g|T),
i.e., using text hints provided by the user. To do this we need to find real
matrix transformation problems. In this case, we have used questions and
answers collected with the Stack Overflow API using the following parameters:
tagged="R", title="matrix" and is_accepted_answer=1. With these
parameters we guarantee that (1) the posts received are answered and the
answer is accepted by the creator of the post, (2) they are related to R and (3)
they contain the term “Matrix" in the title. In total we collected 20 questions and
answers of R problems dealing with matrix transformations. Just as example,

10Note that as B is partial, each problem can be consistent with many transformations, so
the first solution may not be what the user expects (in our case the one we used to generate
the example), i.e., f(A) = B, while f(A) # S. In those cases more non-empty cells would be
required to disambiguate the right solution, which may need more primitives.

HWe have used the implementation of the Two Sample t-Test from the stats package from
the R language.

86

Experiments

some of the questions used are: “How to reverse a matriz”, “Get positions for
NA in a matriz”, “Rotate a Matriz in R” or “How to get the sum of each four
rows of a matriz in R”. Each example includes an input matrix A, an output
matrix B, a text T (the title) and a solution. The solution is not used in the
process, but just to generate B.

Computation Time and Parameter Settings: In order to answer questions
Q2 and Q3, we have performed an ablation study to determine the good ranges
for the parameters «, S and . As said in the previous section, higher « increases
the weight for those (partial) solutions that match the dimension of the output
matrix, whereas higher 5 increases the penalisation for those solutions including
repeated functions. Finally, higher values of v give more weight to the prior
probability over the text hint. In our ablation study, we consider all the possible
permutations including values from 0 to 1 with increments of 0.25 each time.

Explored nodes
100

o
Q®
0.75- . . . [] (]

®-
® -

]
§050- . . o o
©
beta
1.00
0.75
025- @ ° ° [] []
0.50
0.25
0.00
. . ‘ ‘ . .
0.00 0.25 0.50 0.75 1.00
gamma

Figure 6.3. Average of the number of nodes that need to be explored
to find the solution, depending on the value of «, 8 and = parameters.
Results using the MATRANSF data, dyae = 4 and smaez = 1.

Figure 6.3 shows the average number of explored nodes for the real problems
when using different values for the parameters. Here, we can see that alpha = 0
increases drastically the nodes needed to find the right solution. In this case,
the number of nodes is reduced considerably when o > 0.75 (i.e., we give more
relevance to the dimensions of the output matrix when building a partial solution
during the search) and for values of v < 0.75 (not giving all the relevance to the
prior probabilty). We can see that, in this case, 8 seems to have no relevance in
the number of nodes explored.

If fewer nodes have to be explored, the time needed can be reduced. Figure
6.4 shows the average of time needed for the experiments to find the solution
depending on different values of o, 8 and v. We can see clearly again that « is

87

6. Learning Simple Matrix Pipelines

very relevant to decrease the time needed to find the solution. The best times
are obtained when v = 0.5 and o = 1. We can also see again that § seems to
be not very useful in this study. However, although the g value on the figures
seems completely flat, there are values that do differ, yet slightly, with times and
number of nodes in ranges which are insignificant in comparison with the other
two parameters. It seems that penalising (or not) the use of repeated primitives
in a matrix pipeline does not have a visible effect on the results. The reason for
this is that the examples extracted from StackOverflow do not have repeated
functions in their solutions (since the solutions proposed in this forum tend to be
short and efficient), in such a way that there is not a big difference in the results
using (. In general, elegant solutions rarely have repeated primitives, except
when these primitives are constants (e.g., “the element in the third row and
the third column”, using “3” in the solution as a repeated constant). However,
we have not included constants in our list of functions because we would need
to cherry pick a few small or frequent constants. This could be solved by a
further study on how to include constants in the solutions without the use of
explicit functions, by considering all constants in the algorithm itself but with
an increasing cost for higher constants (lower probability). This would make
the use and study of the beta parameter more insightful, with a controlled use
of repetitions in the solutions. For now, we are assuming that 5 is no longer
needed so we remove it from the experiments (i.e., 5 = 0).

100- @ . ° ° ()
Time
® :°3
5.0
075- ® . ° Q o .
X
°-
[
Sos0- @ ® [) . o
[

beta
1.00
075
025- @ o . . . I 050
- @ ® ® o ®

' 0
0.00 0.25 0.50 0.75 1.00
gamma

Figure 6.4. Average of the time needed to find the solution, depending
on the value of «, f and 7 parameters. Results using the MATRANSF
data, dmar = 4 and Smaz = 1.

With the ablation study, we see that most ranges of the parameters are safe,
but some of the refinements we introduced are relevant (except the primitive
repetition). We can decide the parameters and run the experiments using the best
settings. Assuming that [is no longer needed we remove it from the experiments
(i.e., B = 0). For the real-world datasets we have tested the strategy using

88

Experiments

the a priori probabilities including the text hint and the calculated parameters
(Prior+Text). We have compared this strategy with two baselines: the uniform
and the a priori (without text hint) probabilities as they are explained in section
6.4.0.1. Concretely, we have tested the following strategies:

1. Uniform (baseline): as said in section 6.4.0.1, we consider p(g) uniform
with v =1 and a = 0.

2. Prior (baseline): p(g) is estimated with the a priori probabilities with
vy=1and o =0.

3. Prior+Text: we use p(g) as in the Prior strategy and p(g|T) calculated
using the text hint, with v = 0.5 and o = 1 (i.e., favouring solutions
matching the dimension of B).

For each strategy we run the experiments with d,,q; = 4 and s,,4, = 1. We give
a time-out of 120 seconds'?.

Results: We now analyse whether the new strategy is able to reduce the
search space significantly. Table 6.3 shows the accuracy, nodes that generated
and explored and running time for the new strategy compared with the uniform
distribution (without hints or priors) and the a priori distribution. We can see
that using a text hint, even when the hint can be really short (for instance,
“Rotate a Matrix in R”), it helps to reduce the search space and the time needed,
achieving higher accuracy. We can see these results better in Figure 6.5. Note
that we are not introducing a new natural language for programming, we are just
helping users to program certain matrix transformations simply by expressing
what they need, as they might tell a human programmer. We need to keep in
mind that in the case of R, the documentation of some functions is relatively
short (and sometimes including more than one function per documentation) and
therefore the description used contains very few words. It would be very useful
to find larger texts that describe the functions in order to expand the range of
words to better relate the text provided by the user with the functions of the
background knowledge. Even so, we see that the search space is considerably
reduced when the text hint is considered and « is higher. Using a uniform
distribution the generated tree has (on average) almost 3500 nodes and in order
to find the correct solution approximately 25% of the tree has to be explored.
On the contrary, taking the text into account, the search tree is reduced to less
than 500 nodes on average and we only need to explore 2% of this tree.

The obvious difference between these two strategies (Uniform and Prior+ Text)
derives from the fact that, with a uniform distribution, the search is performed
depending on the order in which the functions have been included in the
background knowledge. However, our strategy using the text no longer depends
on the order of the background knowledge, since the search is reordered using

12 A complete list of events produced during the execution of the algorithm for a simple
example can be seen in Appendix E.5.

89

6. Learning Simple Matrix Pipelines

strategy accuracy generated explored time
Uniform 0.60 £ 0.50 3414 + 3511 867 = 549 57.91 £ 52.36
Prior 0.65 £+ 0.49 1065 £ 201 620 4+ 362 39.84 + 43.73

Prior+Text 1.00 & 0.00 477 + 429 14 + 12 1.26 £ 1.18

Table 6.3. Results for the examples from StackOverflow. Average and
standard deviation for accuracy, number of generated and explored nodes,
and time in seconds, broken down by the three strategies and smaz = 1.
The timeout is set to 120s and dmaz = 4. Best results are highlighted in
bold.

1.0-

Q
% 0.5-

0.0~

' ' '
prior prior_text uniform
strategy

Figure 6.5. Average accuracy obtained using the different strategies.

the calculated probabilities, making the most probable solutions the first to be
tested. Of course, the reduction of the search space has another consequence: a
significant reduction in the computation time, causing that in some cases the
problem is solved in less than a second. We can see these results better in Figure
6.6.

We can see the results in a different way in Figure 6.7. This plot shows on
the y-axis the percentage of cases that are solved in less than the time expressed
on the z-axis, which is the timeout (maximum time limit). Each of the treads
shown in this Figure represents the average of time spent by each strategy to
solve a different problem. Here, we can see clearly that the use of our strategy
including priors and text hints, reduces the time needed to solve the problemsk,
in such a way the system is able to solve all of them in less time that the time
needed by the other strategies to solve the first of the problems.

Finally, Table 6.4 shows that the number of solutions over the pruned
hypothesis given by the type function is a huge improvement over the initial 34%
space. We can see that the average number of solutions found when running
the experiments using dya: = 4 and S0, = 00 (trying to find all the possible
solutions), with a time-out of 120 seconds is 9.4, even when the average on the

90

Experiments

125-

100-

75-

50-

25-

8

' ' '
prior prior_text uniform
strategy

Figure 6.6. Average of time needed to solve the problems depending
on the strategy used.

1 —uniform
— prior
— prior+text

0.8

i

0.4

Acc

0.2

0 20 40 60 80 100 120
Time

Figure 6.7. Percentage of cases (y-axis) that are solved in less than the
time (seconds) on the z-axis depending on the strategy used. Results
using dmaz = 4 and Spmaz = 1.

number of explored nodes is 275. Note that with 34 primitives there are 34%max
nodes to explore as a maximum. For example, with d,;,q, = 4 this is 1,363,336
nodes. How can we get only an average of 867 explored with the uniform strategy,
which is breadth-first? The answer is given by the combinations that are pruned
because the type function does not match, and all the further reduction is given

91

6. Learning Simple Matrix Pipelines

by the use of probabilities in the other strategies. Here we can conclude that
the pruning by the type function is the main reason for the reduction of the
search space, and the reason is obvious: we are not testing the functions one
by one until we find the correct one. First of all, we do not waste time actually
trying all the combinations. Instead, the type function checks (without actually
applying the functions) and based on the size of the input matrix and the size of
the output matrix, whether, in case of applying the functions, the size of the
resulting matrix would match the one we are looking for. Only in that case,
the function (or combination of functions) will actually be applied to the input
matrix to check if the result covers the output matrix.

example Nsols Nexplored Nereated

1 1 267 9078
2 4 273 9180
3 16 285 9145
4 1 272 9282
5 2 273 9214
6 3 275 9235
7 3 268 8987
8 6 273 9050
9 1 270 9173
10 3 275 9224
11 2 268 9078
12 2 262 8874
13 2 265 8976
14 8 267 8806
15 32 292 8874
16 36 295 8806
17 28 286 8783
18 33 290 8747
19 2 272 9202
20 3 268 9078

Table 6.4. Number of solutions found for each example using d.az = 4
and Smar = 00, with a timeout = 120s. nsos represents the number of
different solutions found; neazpiored is the total number of explored nodes;
Nereated TEPresents the total number of created nodes.

92

Conclusions

6.5 Conclusions

The process of generating code automatically can help data scientists when
dealing with matrices (or data frames), the most common representation of
information in data science, artificial intelligence and many other areas. In our
vision, users would easily produce an example of the input matrix and a few
cells of the output matrix, and the system will generate the code for them.

We have presented AUTOMAT [R]IX, a new system that is able to solve
this very common problem of matrix transformation successfully. The system is
based on a breadth-search approach pruned by the consistency of the types given
by the dimensions of the matrices and the intermediate results. Besides, the
system is guided by a strategy based on dynamic probabilities from a prior value
depending on the frequency of the use of primitives on Github and, optionally,
the relevance (TF-IDF) values of the terms in the text hints provided by the
user compared with the terms in the R help documentation of the primitives.

We have tested the two baseline approaches with a synthetic dataset of 400
matrices and 34 different transformations in R. We have also compared several
baselines compared with our algorithm using real examples of 20 problems
extracted from Stack Overflow. The results show that the AUTOMAT[R]IX
system is able to give the correct result for all of them in a very short time.
In this case, using the strategy Prior+Text , which uses the text hints giving
more importance to those solutions that match the dimension of the output
matrix, AUTOMAT[R]IX can achieve 100% accuracy, reducing significantly the
time spent to find the solution. Both datasets, with synthetic pipelines and real
examples from Stack Overflow, are available as MATRANSF.

The type function used in our algorithm is clearly a perfect mechanism to
reduce the time required to find the solution, while the use of probabilities
based on the priors and the text provided by the user, is enormously useful to
considerably reduce the search space. The combination of both strategies results
in a system capable of finding the necessary functions to transform matrices in a
fast and efficient way, reducing the size of the background knowledge, according
to the restrictions of each of the functions included in it and the examples
provided by the user.

93

Part V

Conclusions

Conclusions and Future Work

In this chapter, we summarise the main contributions of this thesis, some lessons
learnt and we identify some further work and recommendations.

7.1 Conclusions

7.1.1 Vision and starting point

Due to the high diversity of data sources, most data-related projects require
the integration of data that are in different formats and/or in different data
structures. This turns out to be a real problem as the current applications are
not capable of dealing with raw data in inconsistent formats. Data scientists
find themselves wasting their time cleaning, transforming and organising all
these messy data. Data wrangling is the process inside data science that usually
occupies more than the 80% of the time spent on the projects. The solution
to avoid this tremendous amount of manual work relies on automating data
wrangling.

We have seen that there are many data wrangling tasks. However, some of
them can require more manual effort and/or domain knowledge than others. For
instance, data introduced in free-text fields included in any survey or spreadsheet
tend to be messy and include very different formats. For instance, this happens
with dates in different standard or non-standard formats or with names having
one or two surnames. Perhaps, the fastest solution to transform all of these data
to a unified format relies on simply applying some functions in some programming
language to the data, but here we need to assume that the user not only has
knowledge about the domain of the data but also programming skills.

Inductive programming has been seen in recent years as an approach for data
wrangling automation. Nevertheless, since the success of inductive programming
strongly depends on having the right primitives in its background knowledge,
one key issue of automating data wrangling is background knowledge. However,
systems using inductive programming approaches suffer a real bottleneck when
many primitives are included in the background knowledge, because they have
too many of them to choose from. Automating (or semi-automating) data
wrangling process requires to keep the size of the background knowledge at a
very low level without affecting the effectiveness of the system for finding the
right solution. This thesis states that the answer for this problem relies on the
creation of a dynamic background knowledge that can change depending on the
problem to solve.

97

7. Conclusions and Future Work

7.1.2 Scientific insights and take-aways

As we saw in section 1.2, we set some objectives that could help us achieve
the goal of successfully create a dynamic background knowledge. We have
accomplished those objectives as follows:

o We have analysed the trajectories of data science projects and defined
the role of data wrangling and its automation. We have seen that data
wrangling not only happens at the beginning, but at many other points of
the data science process.

¢ We have studied which data domains are normally used in data cleansing
tools and what characteristics they have. We have realised that problems
belonging to the same domain tend to have similar syntactical characteris-
tics. With this premise we have created the set of meta-features that are
useful to differentiate one domain from the others. We believe that this is
a simple way to detect differences between domains, and the results are
promising.

e We have collected or generated examples of common problems related to
the transformation of data in different scenarios: (1) personal data; and
(2) matrix transformations. Through the collection of the data we have
realised that, although most projects require a lot of time to fix the data
before use, data scientists do not document the process they go through to
fix these data. Moreover, only the clean datasets are published.

e We have generated a domain-specific background knowledge for each
domain, including a large set of functions in each of them. We have
organised them into predefined domains the user can create, and modified,
and we have also explored the option of using rankings of primitives.

o We have generated algorithms to dynamically handle the background
knowledge. We have tested several strategies to select or construct the
appropriate background knowledge based on the characteristics of the data
wrangling problems. The use of meta-features, as well as the use of
tips in natural language, are strategies that aim to reduce the size of the
background knowledge for any particular problem.

o We have provided two systems based on inductive programming, which use
the algorithms and the generated background knowledge, in order to solve
the collected problems, using as input as few examples as possible.

The algorithms proposed in this thesis considerably reduce the background
knowledge dynamically, allowing us to solve most of the problems we have
tested. We have shown that data wrangling automation is possible through a
dynamically-selected background knowledge. We believe it can be helpful for the
reduction of the inductive bias in any kind of area.

We have shown that fully automated systems for data wrangling could be
possible if the background knowledge has enough information about the domain
and the context of the problems. However, when this is not possible, we have
learnt that user action is required in the form of prior information before the
process. In this thesis we have seen that a few input/output examples or tips are

98

Conclusions

enough for a semi-automatic system. Likewise, at the beginning we considered
that the expert’s feedback (after the transformations) would also be important,
since in problems related to data wrangling, the domain expert usually performs
fine-grained checks at the end. However, after our experiments we have also
learnt that feedback is not always required to obtain the best results, but it can be
a useful help when a problem cannot be fully automated or the system is not able
to find a right solution (the detected domain is not the correct one).

Based on our experiments, the work can be replicated and expanded to other
areas where programming in R (or other languages) is required, or even to help
people who are starting to learn how to program from scratch (for instance, on
fields like bioinformatics, where biologists, doctors, chemists, and other specialists
try to start working with R or python).

Beyond the application to data wrangling, we see that the effective
combination of background knowledge and hypothesis-driven’ learning is a
particularly promising niche where other areas inside or outside Al, or machine
learning alone, are having more difficulties, especially when only few examples
are available. For instance, learning how to generate new handwritten characters
given a few examples, by combining small parts or pieces of them. We hope
the ideas presented in this thesis could be useful and could be applied for many
other areas and extended by further researches.

7.1.3 Scientific Contributions

Overall, this thesis contains several contributions:

o Identification of most common data domains in data wrangling:
we study the current tools for data wrangling as well as help forums to
detect which are the most usual problems, domains and data formats when
dealing with data wrangling problems.

o« New data wrangling dataset repository: we provide a set of datasets
as an extended open benchmark specifically designed for the evaluation
of data wrangling tools focusing on column transformation problems, for
further progress, replicability and comparison in this area. We also provide
a collection of matrix pipeline transformations, MATRANSF, some of them
with textual hints, organised as a benchmark repository for the community.

e Better understanding of the trade-off between breadth and
depth as inductive bias: we analyse how the breadth, depth and
number of instances affect the efficiency, showing that we can achieve a
trade-off between breadth and depth, and still solve many problems using
only one example.

¢« New strategies for dynamically handling background knowledge:
We propose several strategies to dynamically select or construct the

LGenerating new data for an existing hypothesis.

99

7. Conclusions and Future Work

7.2

appropriate background knowledge automatically following the idea of
detecting the best specialised functions according to the context of the
particular problem to solve. First, we adapt the search space according to
the domain of the data, generating different DSBKs. Second, we reduce the
background knowledge by a ranking of functions based on meta-features of
the examples. Third, we also include the combination of both approaches
to reduce the search space only to the most probable functions included in
the DSBK. Finally, we present an algorithm able to order and reduce the
search space of primitives by using constraints of the problems, some prior
probabilities and text hints provided by the user in natural language.

Two new data wrangling systems, BK-ADAPT and AU-
TOMATI[R]IIX: BK-ADAPTis a system to guide the search through
the background knowledge by extracting several meta-features from the
examples. AUTOMAT[R]IXis a learning algorithm guided by a tree-based
search that uses the dimensions of the examples, prior primitive proba-
bilities and textual hints to learn the transformations needed efficiently.
With BK-ADAPT and AUTOMAT[R]IX, we show that these generic
and semi-automatic approaches, combining inductive programming with
appropriate operators to define and reduce the necessary background
knowledge, are able to improve the results of other state-of-the-art —and
more specific— data wrangling approaches.

Future Work

There are still many questions and problems that need to be addressed, but we
hope that, for future researches, this manuscript proposes new directions for
task automation. By now, we can see several interesting future lines of research.
Let us enumerate some of them:

¢ Improve understanding of domains: the domain detection mechanism

should be improved. One way to better address this problem would be
to explore ways to automatically learn about the characteristics of the
domain or context of the data to work with. In the case that there is
no knowledge about that domain, we would need to be able to learn
automatically from it to generate new knowledge that can be used in future
problems of the same domain or similar domains. For example, it would
be very useful for the machine to be able to incrementally learn each of
these domains, that is, to be able to read examples of data, recognise
their main characteristics (syntactic and semantic) and classify and store
them by “similar domains” (as Google Photos? face detection does with
new photos). With this classification, a grammar could be created and
dynamically updated and re-organised in an incremental way as new data
arrived.

2Google Photos: https://photos.google.com/

100

https://photos.google.com/

Future Work

« Data scientist’s competences, skills and actions: we have seen
that, in the case of data wrangling, there is limited documentation or
public data to better understand the process. In this sense, two ways to
help improve and expand the existing knowledge about the data wrangling
process would be: (1) study the skills or abilities that are necessary to
carry out the process (presented in Appendix B), so that we can investigate
in what way it is possible to automate them or make them simpler; and
(2) share or monitor the actions that users who work with data take when
they have to deal with problems related to data wrangling (presented in
Appendix C). Collecting and studying these two types of information could
be very useful in future research to automate the data science process, and
data wrangling in particular.

e BK-ADAPT: in the particular case of the first system created for this
thesis, it could be useful to consider other ways of solving the ranking of
functions to avoid a fixed value of the maximum functions to combine. For
instance, using a dynamic threshold based on the probabilities returned
by the primitive estimator. Besides, it could be useful to have more than
one input to generate the output (for instance a user name and a domain
as inputs and an email as output). Of course, we have only seen a small
number of domains and many more should be studied and incorporated in
BK-ADAPT to make it useful for many more people.

e AUTOMATI[R]IX: in the case of AUTOMAT[R]IX, we consider to add
new constraints over the data dimensionality, or over the values (positive
values only). We can also explore more efficient algorithms in such a way we
can add constants (arguments for the functions) or multiple pairs of input-
output matrices. Of course, the approach can be replicated to synthesise
functions with other languages such as Python. Besides, generating an
R package for AUTOMAT[R]IX would be tremendously useful to help
people who get stuck because they do not know how to program.

e Application in other areas: we would like to extend the use of the
algorithms and the research done for this thesis, and apply them to other
problems from different fields. Concretely, we are primarily interested in
some areas of bioinformatics, such as functional genomics (field that tries
to understand how the molecular components of living organisms interact
together to form living organisms), where inductive programming and a
dynamic background knowledge could be useful.

As a final observation, in this thesis we have seen that the automation of the
data science process, and data wrangling in particular, has been improved in
recent years but it is still a very immature field that has a long way to go. We
hope the approaches, findings and benchmarks generated for this thesis will be
useful for the future research in the area.

101

Bibliography

8 Skills You Need to Be a Data Scientist. en-US. Nov. 2014. URL: https:
//blog.udacity.com/2014/11/data-science-job-skills.html.

Wil van der Aalst. Process Mining: Data Science in Action. Springer,
2016.

David H Autor and David Dorn. “The growth of low-skill service jobs
and the polarization of the US labor market”. In: American FEconomic
Review 103.5 (2013), pp. 1553-97.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin,
and Daniel Tarlow. “Deepcoder: Learning to write programs”. In: arXiv
preprint arXiv:1611.01989 (2016).

Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn.
“FlashRelate: extracting relational data from semi-structured spreadsheets
using examples”. In: ACM SIGPLAN Notices. Vol. 50. 6. ACM. 2015,
pp. 218-228.

Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. “Deep API Programmer: Learning to Program with
APIs”. In: arXiv preprint arXiv:1704.04327 (2017).

Alan W Biermann. “The inference of regular LISP programs from
examples”. In: IEEFE transactions on Systems, Man, and Cybernetics

8.8 (1978), pp. 585-600.

Alan W Biermann, Gérard Guiho, and Yves Kodratoff. Automatic program
construction techniques. Macmillan New York, 1984.

Svetla Boytcheva. “Overview of ILP Systems”. In: Journal of Cybernetics
and Information Technologies (2002).

Martin Braschler, Thilo Stadelmann, and Kurt Stockinger. Applied Data
Science. Springer, 2019.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
Classification and regression trees. CRC press, 1984.

Afroz Chakure. Random Forest Regression: Along with its implementation
in Python. 2019.

Wo L Chang, Nancy Grady, et al. NIST Big Data Interoperability
Framework: Volume 1, Big Data Definitions. Tech. rep. 2015.

Pete Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas
Reinartz, Colin Shearer, and Rudiger Wirth. “CRISP-DM 1.0 Step-by-step
data mining guide”. In: (2000).

103

https://blog.udacity.com/2014/11/data-science-job-skills.html
https://blog.udacity.com/2014/11/data-science-job-skills.html

Bibliography

[15]

[16]

[17]

[21]

[22]

104

Roger Chua. Supervised Learning. May 2019. URL: https : / /
becominghuman.ai/a- simple - way - to- explain - how- machines -
learn-7d9155ac8bed.

Comisién Europea and Direccién General de Educaciéon y Cultura. The
european qualifications framework for lifelong learning (EFQ). en. OCLC:
630826756. Luxembourg: Office for Official Publications of the European
Communities, 2008. ISBN: 978-92-79-08474-4.

Lidia Contreras-Ochando. “Automated Data Transformation with Induc-
tive Programming and Dynamic Background Knowledge”. In: Approaches
and Applications of Inductive Programming (Dagstuhl Seminar 19202).
Ed. by Luc De Raedt, Richard Evans, Stephen H. Muggleton, and Ute
Schmid. Vol. 9. 5. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019, pp. 70-71. po1: 10.4230/DagRep.9.5.58. URL:
http://drops.dagstuhl.de/opus/volltexte/2019/11381.

Lidia Contreras-Ochando. “Domain Specific Induction for Data Wrangling
Automation”. In: Approaches and Applications of Inductive Programming
(Dagstuhl Seminar 17382). Ed. by Ute Schmid, Stephen H. Muggleton, and
Rishabh Singh. Vol. 7. 9. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2018, pp. 94-95. Do1: 10.4230/DagRep.7.9.86.
URL: http://drops.dagstuhl.de/opus/volltexte/2018/8590.

Lidia Contreras-Ochando, César Ferri, and José Hernandez-Orallo.
“AUTOMAT[R]IX: Learning Simple Matrix Pipelines”. In: Machine
Learning (to appear). 2020.

Lidia Contreras-Ochando, Cesar Ferri, and José Hernandez-Orallo.
“Automating Common Data Science Matrix Transformations”. In: Joint
FEuropean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer. 2019, pp. 17-27.

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo, Fernando
Martinez-Plumed, Maria José Ramirez-Quintana, and Susumu Katayama.
“Automated Data Transformation with Inductive Programming and
Dynamic Background Knowledge”. In: Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases,
ECML PKDD 2019. ECML-PKDD ’19. Germany, 2019.

Lidia Contreras-Ochando, César Ferri, José Herndndez-Orallo, Fernando
Martinez-Plumed, Maria José Ramirez-Quintana, and Susumu Katayama.
“BK-ADAPT: Dynamic Background Knowledge for Automating Data
Transformation”. In: Joint Furopean Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2019, pp. 755-759.

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo, Fernando
Martinez-Plumed, Maria José Ramirez-Quintana, and Susumu Katayama.
“Domain specific induction for data wrangling automation”. In: AutoML@
ICML, Sydney, Australia (2017).

https://becominghuman.ai/a-simple-way-to-explain-how-machines-learn-7d9155ac8bed
https://becominghuman.ai/a-simple-way-to-explain-how-machines-learn-7d9155ac8bed
https://becominghuman.ai/a-simple-way-to-explain-how-machines-learn-7d9155ac8bed
https://doi.org/10.4230/DagRep.9.5.58
http://drops.dagstuhl.de/opus/volltexte/2019/11381
https://doi.org/10.4230/DagRep.7.9.86
http://drops.dagstuhl.de/opus/volltexte/2018/8590

Bibliography

[24]

[26]

[27]

[28]

[29]

Lidia Contreras-Ochando, César Ferri, José Hernandez-Orallo, Fernando
Martinez-Plumed, Maria José Ramirez-Quintana, and Susumu Katayama.
“General-purpose Declarative Inductive Programming with Domain-
Specific Background Knowledge for Data Wrangling Automation”. In:
arXiv preprint arXiv:1809.10054 (2018).

Lidia Contreras-Ochando, Fernando Martinez-Plumed, Cesar Ferri, José
Hernandez-Orallo, and Maria José Ramirez-Quintana. “General-Purpose
Inductive Programming for Data Wrangling Automation”. In: AL} DataSci
@ NIPS 2016 (2016).

Lidia Contreras-Ochando, Fernando Martinez-Plumed, Cesar Ferri,
José Hernandez-Orallo, and Maria José Ramirez-Quintana. “Logging
Data Scientists: Collecting Evidence for Data Science Automation”. In:
Al}DataSci @ NIPS 2016 (2016).

Claire D. Costa. Top Programming Languages for Data Science in 2020.
2020.

Andrew Cropper. “Forgetting to learn logic programs”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. 04. 2020,
pp. 3676-3683.

Andrew Cropper, Alireza Tamaddoni, and Stephen H Muggleton. “Meta-
interpretive learning of data transformation programs”. In: Inductive
Logic Programming. 2015, pp. 46-59.

Tamraparni Dasu and Theodore Johnson. Ezploratory data mining and
data cleaning. Vol. 479. John Wiley & Sons, 2003.

Data types in Data Models - Microsoft Excel Documentation. en-US. URL:
https://support.office.com/en-us/article/data- types-in-
data-models-e2388f62-6122-4e2b-bcad-053e3da9ba90.

Tijl De Bie, Luc De Raedt, Holger H. Hoos, and Padhraic Smyth.
“Automating Data Science (Dagstuhl Seminar 18401)”. In: Dagstuhl
Reports 8.9 (2019). Ed. by Tijl De Bie, Luc De Raedt, Holger H. Hoos, and
Padhraic Smyth, pp. 154-181. 1SSN: 2192-5283. DO1: 10.4230/DagRep.
8.9.154. URL: http://drops.dagstuhl.de/opus/volltexte/2019/
10344.

Eyal Dechter, Jonathan Malmaud, Ryan Prescott Adams, and Joshua
B Tenenbaum. “Bootstrap learning via modular concept discovery”. In:
Proceedings of the International Joint Conference on Artificial Intelligence.
AAAT Press/International Joint Conferences on Artificial Intelligence.
2013.

Yuri Demchenko, Adam Belloum, and Tomasz Wiktorski. “The second
machine age”. In: Education for Data Intensive Science to Open New
science frontiers (2017).

105

https://support.office.com/en-us/article/data-types-in-data-models-e2388f62-6122-4e2b-bcad-053e3da9ba90
https://support.office.com/en-us/article/data-types-in-data-models-e2388f62-6122-4e2b-bcad-053e3da9ba90
https://doi.org/10.4230/DagRep.8.9.154
https://doi.org/10.4230/DagRep.8.9.154
http://drops.dagstuhl.de/opus/volltexte/2019/10344
http://drops.dagstuhl.de/opus/volltexte/2019/10344

Bibliography

[35]

106

Li Deng and Dong Yu. Deep Learning: Methods and Applications. Tech. rep.
MSR-TR-2014-21. Microsoft, May 2014. URL: https://www.microsoft.
com/en-us/research/publication/deep- learning-methods-and-
applications/.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and
Pushmeet Kohli. “Neural Program Meta-Induction”. In: NIPS. 2017,
pp. 2077-2085.

Vasant Dhar. “Data science and prediction”. In: Communications of the
ACM 56.12 (2013), pp. 64-73.

Sebastijan Dumancic and Andrew Cropper. Knowledge Refactoring for
Program Induction. 2020. arXiv: 2004.09931 [cs.AL].

Organisation for Economic Co-operation and Development (OECD).
Automation and independent work in a digital economy: policy brief
on the future of work. 2016. URL: https://www.oecd.org/els/emp/
Policy%5C%20brief%5C%20 - %5C%20Automation%5C%20and%5C%
20Independent%5C%20Work%s5C%20in%5C%20a%5C%20Digital%s5C%
20Economy. pdf.

Organisation for Economic Co-operation and Development (OECD).
Putting faces to the jobs at risk of automation. 2018. URL: https://www.
oecd.org/employment/Automation-policy-brief-2018.pdf.

Kevin Ellis and Sumit Gulwani. “Learning to learn programs from
examples: Going beyond program structure”. In: International Joint
Conference on Artifical Intelligence (IJCAI). 2017.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama,
and Josh Tenenbaum. “Learning libraries of subroutines for neurally—
guided bayesian program induction”. In: Advances in Neural Information
Processing Systems. 2018, pp. 7805-7815.

European e-Competence Framework. en-US. URL: http : / / www .
ecompetences.eu/.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. “From
data mining to knowledge discovery in databases”. In: AT magazine 17.3
(1996), p. 37.

César Ferri-Ramirez, José Herndndez-Orallo, and Maria José Ramirez-
Quintana. “Incremental learning of functional logic programs”. In:
International Symposium on Functional and Logic Programming. Springer.
2001, pp. 233-247.

Peter Flach. Machine learning: the art and science of algorithms that
make sense of data. Cambridge University Press, 2012.

Pierre Flener. “Achievements and prospects of program synthesis”. In:
Computational logic: logic programming and beyond. Springer, 2002,
pp. 310-346.

https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/
https://arxiv.org/abs/2004.09931
https://www.oecd.org/els/emp/Policy%5C%20brief%5C%20-%5C%20Automation%5C%20and%5C%20Independent%5C%20Work%5C%20in%5C%20a%5C%20Digital%5C%20Economy.pdf
https://www.oecd.org/els/emp/Policy%5C%20brief%5C%20-%5C%20Automation%5C%20and%5C%20Independent%5C%20Work%5C%20in%5C%20a%5C%20Digital%5C%20Economy.pdf
https://www.oecd.org/els/emp/Policy%5C%20brief%5C%20-%5C%20Automation%5C%20and%5C%20Independent%5C%20Work%5C%20in%5C%20a%5C%20Digital%5C%20Economy.pdf
https://www.oecd.org/els/emp/Policy%5C%20brief%5C%20-%5C%20Automation%5C%20and%5C%20Independent%5C%20Work%5C%20in%5C%20a%5C%20Digital%5C%20Economy.pdf
https://www.oecd.org/employment/Automation-policy-brief-2018.pdf
https://www.oecd.org/employment/Automation-policy-brief-2018.pdf
http://www.ecompetences.eu/
http://www.ecompetences.eu/

Bibliography

[54]

[55]

Pierre Flener. “Inductive logic program synthesis with DIALOGS”. In:
International Conference on Inductive Logic Programming. Springer. 1996,
pp. 175-198.

Pierre Flener and Ute Schmid. “An introduction to inductive program-
ming”. In: Artificial Intelligence Review 29.1 (2008), pp. 45-62.

Pierre Flener and Serap Yiilmaz. “Inductive synthesis of recursive
logic programs: Achievements and prospects”. In: The Journal of Logic
Programming 41.2-3 (1999), pp. 141-195.

Jake Frankenfield. Artificial Intelligence (AI). 2020.

Carl Benedikt Frey and Michael A Osborne. “The future of employment:
How susceptible are jobs to computerisation?” In: Technological forecasting
and social change 114 (2017), pp. 254-280.

Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon.
“AJAX: An Extensible Data Cleaning Tool”. In: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’00. Dallas, Texas, USA: ACM, 2000, pp. 590—. 1SBN: 1-58113-
217-4. DOI: 10.1145/342009.336568. URL: http://doi.acm.org/10.
1145/342009.336568.

Alison Gopnik. “Making AT more human”. In: Scientific American 316.6
(2017), pp. 60-65.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. “On the complexity
of some inductive logic programming problems”. In: International
Conference on Inductive Logic Programming. Springer. 1997, pp. 17—
32.

Laura A Granka, Thorsten Joachims, and Geri Gay. “Eye-tracking
analysis of user behavior in WWW search”. In: Proceedings of the 27th
annual international ACM SIGIR conference on Research and development
in information retrieval. ACM. 2004, pp. 478-479.

David Guest. “The hunt is on for the Renaissance Man of computing”.
In: The Independent 17.09 (1991).

Sumit Gulwani. “Applications of Inductive Programming in Data
Wrangling”. In: Talks at Dagstuhl seminar on Approaches and Applications
of Inductive Programming. Oct. 2015.

Sumit Gulwani. “Automating String Processing in Spreadsheets Using
Input-output Examples”. In: Proc. 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’11. Austin,
Texas, USA: ACM, 2011, pp. 317-330.

Sumit Gulwani. “Programming by Examples”. In: Dependable Software
Systems Engineering 45 (2016), p. 137.

Sumit Gulwani, William R Harris, and Rishabh Singh. “Spreadsheet data
manipulation using examples”. In: Communications of the ACM 55.8
(2012), pp. 97-105.

107

https://doi.org/10.1145/342009.336568
http://doi.acm.org/10.1145/342009.336568
http://doi.acm.org/10.1145/342009.336568

Bibliography

[62]

[63]

[64]

108

Sumit Gulwani, José Hernandez-Orallo, Emanuel Kitzelmann, Stephen
Muggleton, Ute Schmid, and Benjamin Zorn. “Inductive programming
meets the real world”. In: Communications of the ACM 58.11 (2015),
pp- 90-99.

Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer.
“Proactive wrangling: mixed-initiative end-user programming of data
transformation scripts”. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology. ACM. 2011, pp. 65—
74.

Isabelle Guyon, Imad Chaabane, Hugo Jair Escalante, Sergio Escalera,
Damir Jajetic, James Robert Lloyd, Nuria Macia, Bisakha Ray, Lukasz
Romaszko, Michele Sebag, et al. “A Brief Review of the Chal.earn AutoML
Challenge: Any-time Any-dataset Learning Without Human Intervention”.
In: Workshop on Automatic Machine Learning. 2016, pp. 21-30.

Kelli Ham. “OpenRefine (version 2.5). http://openrefine. org.” In: Journal
of the Medical Library Association: JMLA 101.3 (2013), p. 233.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011.

Xin He, Kaiyong Zhao, and Xiaowen Chu. AutoML: A Survey of the
State-of-the-Art. 2020. arXiv: 1908.00709 [cs.LG].

Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and
Surajit Chaudhuri. “Transform-data-by-example (TDE): an extensible
search engine for data transformations”. In: Proceedings of the VLDB
Endowment 11.10 (2018), pp. 1165-1177.

Nathanael A. Heckert, James J. Filliben, C M. Croarkin, B Hembree,
William F. Guthrie, P Tobias, and J Prinz. NIST/SEMATECH e-
Handbook of Statistical Methods. 2012.

Jeffrey Heer, Joseph M. Hellerstein, and Sean Kandel. “Data Wrangling”.
In: Encyclopedia of Big Data Technologies. Ed. by Sherif Sakr and Albert
Zomaya. Cham: Springer International Publishing, 2018, pp. 1-8. ISBN:
978-3-319-63962-8. por: 10.1007/978-3-319-63962-8 9- 1. URL:
https://doi.org/10.1007/978-3-319-63962-8_9-1.

Robert Henderson. “Incremental learning in inductive programming”.
In: International Workshop on Approaches and Applications of Inductive
Programming. Springer. 2009, pp. 74-92.

José Hernandez-Orallo and Maria José Ramirez-Quintana. “Inverse
narrowing for the inductive inference of functional logic programs”. In:
Proceedings of the 1998 Joint Conference of Declarative Programming,
APPIA-GULP-PRODE. Vol. 98. Citeseer. 2011.

https://arxiv.org/abs/1908.00709
https://doi.org/10.1007/978-3-319-63962-8_9-1
https://doi.org/10.1007/978-3-319-63962-8_9-1

Bibliography

[76]

[81]

José Hernandez-Orallo. “Deep knowledge: Inductive programming as
an answer”. In: Approaches and Applications of Inductive Programming
(Dagstuhl Seminar 13502). Ed. by Sumit Gulwani, Emanuel Kitzelmann,
and Ute Schmid. Vol. 3. 12. Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014, pp. 43-66. DOI: 10.4230/DagRep.3.12.
43. URL: http://drops.dagstuhl.de/opus/volltexte/2014/4507.

Jose Hernandez-Orallo. Measuring Intelligence Incrementally: Search,
Demonstration and Transmission. 2020.

José Herndndez-Orallo, Stephen H Muggleton, Ute Schmid, and Benjamin
Zorn. “Approaches and applications of inductive programming (Dagstuhl
seminar 15442)”. In: Dagstuhl Reports. Vol. 5. 10. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2016.

José Hernandez-Orallo and Maria José Ramirez-Quintana. “A strong
complete schema for inductive functional logic programming”. In:
International Conference on Inductive Logic Programming. Springer. 1999,
pp. 116-127.

José Herndndez-Orallo and Marfa José Ramirez-Quintana. “Inverse
Narrowing for the Induction of Functional Logic Programs.” In: APPIA-
GULP-PRODE. Citeseer. 1998, pp. 379-392.

Alan Hevner and Samir Chatterjee. “Design science research in informa-
tion systems”. In: Design research in information systems. Springer, 2010,
pp- 9-22.

Martin Hilbert and Priscila Lopez. “The world’s technological capacity
to store, communicate, and compute information”. In: science 332.6025
(2011), pp. 60-65.

Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid. “A unifying
framework for analysis and evaluation of inductive programming systems”.
In: Proceedings of the 2nd Conference on Artificiel General Intelligence
(2009). Atlantis Press. 2009.

Gretchen Huizinga and Sumit Gulwani. Program synthesis and the art
of programming by intent with Dr. Sumit Gulwani. Nov. 2019. URL:
https://www.microsoft.com/en-us/research/podcast/program-
synthesis-and-the-art-of-programming- by-intent-with-dr-
sumit-gulwani/.

Earl B Hunt, Janet Marin, and Philip J Stone. Experiments in induction.
Academic press, 1966.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine
learning: methods, systems, challenges. Springer Nature, 2019.

Laura Igual and Santi Segui. “Introduction to Data Science”. In:
Introduction to Data Science. Springer, 2017, pp. 1-4.

Tony Jenkins. “On the difficulty of learning to program”. In: Proceedings
of the 3rd Annual Conference of the LTSN Centre for Information and
Computer Sciences. Vol. 4. 2002. Citeseer. 2002, pp. 53-58.

109

https://doi.org/10.4230/DagRep.3.12.43
https://doi.org/10.4230/DagRep.3.12.43
http://drops.dagstuhl.de/opus/volltexte/2014/4507
https://www.microsoft.com/en-us/research/podcast/program-synthesis-and-the-art-of-programming-by-intent-with-dr-sumit-gulwani/
https://www.microsoft.com/en-us/research/podcast/program-synthesis-and-the-art-of-programming-by-intent-with-dr-sumit-gulwani/
https://www.microsoft.com/en-us/research/podcast/program-synthesis-and-the-art-of-programming-by-intent-with-dr-sumit-gulwani/

Bibliography

[86]

[87]

[88]

[89]

[90]

110

Cecily Josten and Grace Lordan. “Robots at Work: Automatable and
non-automatable Jobs”. In: Handbook of Labor, Human Resources and
Population Economics (2020), pp. 1-24.

Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank
van Ham, Nathalie Henry Riche, Chris Weaver, Bongshin Lee, Dominique
Brodbeck, and Paolo Buono. “Research directions in data wrangling:
Visualizations and transformations for usable and credible data”. In: Inf.
Visualization 10.4 (2011), pp. 271-288.

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer.
“Wrangler: Interactive visual specification of data transformation scripts”.
In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 2011, pp. 3363-3372.

Gordon V Kass. “An exploratory technique for investigating large
quantities of categorical data”. In: Journal of the Royal Statistical Society:
Series C (Applied Statistics) 29.2 (1980), pp. 119-127.

Susumu Katayama. “An analytical inductive functional programming
system that avoids unintended programs”. In: Proceedings of the ACM
SIGPLAN 2012 workshop on Partial evaluation and program manipulation.
2012, pp. 43-52.

Susumu Katayama. “Systematic search for lambda expressions”. In: In
Proceedings Sixth Symposium on Trends in Functional Programming
(TFP2005. 2005.

Susumu Katayama. “Systematic search for lambda expressions.” In:
Trends in functional programming 6 (2005), pp. 111-126.

Key Features of RapidMiner Studio. URL: https://rapidminer.com/
products/studio/feature-list/.

Jun H Kim, Daniel V Gunn, Eric Schuh, Bruce Phillips, Randy J
Pagulayan, and Dennis Wixon. “Tracking real-time user experience
(TRUE): a comprehensive instrumentation solution for complex systems”.
In: Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM. 2008, pp. 443-452.

Emanuel Kitzelmann. “Data-driven induction of recursive functions from
input/output-examples”. In: Proceedings of the ECML/PKDD 2007
Workshop on Approaches and Applications of Inductive Programming
(AAIP’07). 2007, pp. 15-26.

Emanuel Kitzelmann. “Inductive programming: A survey of program
synthesis techniques”. In: International workshop on approaches and
applications of inductive programming. Springer. 2009, pp. 50-73.

Emanuel Kitzelmann and Ute Schmid. “Inductive synthesis of functional
programs: An explanation based generalization approach”. In: Journal of
Machine Learning Research 7.Feb (2006), pp. 429-454.

https://rapidminer.com/products/studio/feature-list/
https://rapidminer.com/products/studio/feature-list/

Bibliography

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]
[108]
[109]

[110]

Martin Koehler, Edward Abel, Alex Bogatu, Cristina Civili, Lacramioara
Mazilu, Nikolaos Konstantinou, Alvaro Fernandes, John Keane, Leonid
Libkin, and Norman W Paton. “Incorporating Data Context to Cost-
Effectively Automate End-to-End Data Wrangling”. In: IEEE Computer
Architecture Letters 01 (2019), pp. 1-1.

Janez Kranjc, Vid Podpecan, and Nada Lavrac. “Clowdflows: a cloud
based scientific workflow platform”. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer. 2012,
pp. 816-819.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.
“Human-level concept learning through probabilistic program induction”.
In: Science 350.6266 (2015), pp. 1332-1338.

Vu Le and Sumit Gulwani. “FlashExtract: A Framework for Data
Extraction by Examples”. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
"14. Edinburgh, United Kingdom: ACM, 2014, pp. 542-553. 1SBN: 978-1-
4503-2784-8. DOI: 10.1145/2594291.2594333. URL: http://doi.acm.
org/10.1145/2594291.2594333.

Yann LeCun. Facebook’s ’Deep Learning’ Guru Reveals the Future of Al
Dec. 2013. URL: https://www.wired.com/2013/12/facebook-yann-
lecun-qga/.

Jorge Leonel. A simple way to explain how machines learn in the Al
world. June 2018. URL: https://becominghuman.ai/a-simple-way -
to-explain-how-machines-learn-7d9155ac8bed.

Henry Lieberman. Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

James Robert Lloyd, David K Duvenaud, Roger B Grosse, Joshua B
Tenenbaum, and Zoubin Ghahramani. “Automatic Construction and
Natural-Language Description of Nonparametric Regression Models.” In:
AAAL 2014, pp. 1242-1250.

John Wylie Lloyd. Foundations of Logic Programming. 2nd. Springer-
Verlag New York, Inc., 1993. 1sBN: 0387181997.

Steve Lohr. “For big-data scientists,‘janitor work’is key hurdle to insights”.
In: New York Times 17 (2014), B4.

Mike Loukides. What Is Data Science? en. "O’Reilly Media, Inc.", Apr.
2011. 1SBN: 978-1-4493-3609-7.

Michael R Lowry and Robert D McCartney. “ Automating software design”.
In: American Association for Artificial Intelligence. 1991.

Zohar Manna and Richard Waldinger. Fundamentals of deductive program
synthesis. Tech. rep. Stanford University CA, Department of Computer
Science, 1992.

111

https://doi.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
http://doi.acm.org/10.1145/2594291.2594333
https://www.wired.com/2013/12/facebook-yann-lecun-qa/
https://www.wired.com/2013/12/facebook-yann-lecun-qa/
https://becominghuman.ai/a-simple-way-to-explain-how-machines-learn-7d9155ac8bed
https://becominghuman.ai/a-simple-way-to-explain-how-machines-learn-7d9155ac8bed

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]
[122]

[123]

112

Oscar Marbéan, Javier Segovia, Ernestina Menasalvas, and Covadonga
Fernandez-Baizan. “Toward data mining engineering: A software engi-
neering approach”. In: Information systems 34.1 (2009), pp. 87-107.

Fernando Martfnez-Plumed, Lidia Contreras Ochando, César Ferri, Peter
A. Flach, José Hernandez-Orallo, Meelis Kull, Nicolas Lachiche, and Marfa
José Ramfrez—Quintana. “CASP-DM: Context Aware Standard Process
for Data Mining”. In: CoRR abs/1709.09003 (2017). arXiv: 1709.09003.
URL: http://arxiv.org/abs/1709.09003.

Henar Martin, Ana M Bernardos, Josué Iglesias, and José R Casar.
“Activity logging using lightweight classification techniques in mobile
devices”. In: Personal and ubiquitous computing 17.4 (2013), pp. 675-695.

Fernando Martinez-Plumed, Lidia Contreras-Ochando, César Ferri,
José Hernandez Orallo, Meelis Kull, Nicolas Lachiche, Maréa José
Ramirez Quintana, and Peter A Flach. “CRISP-DM Twenty Years Later:
From Data Mining Processes to Data Science Trajectories”. In: IEEE
Transactions on Knowledge and Data Engineering (2019).

Fernando Martinez-Plumed, César Ferri, José Hernandez-Orallo, and
Marfa José Ramirez-Quintana. “Knowledge acquisition with forgetting:
an incremental and developmental setting”. In: Adaptive Behavior 23.5
(2015), pp. 283-299.

Fernando Martinez-Plumed, César Ferri, José Herndndez-Orallo, and
Maria José Ramirez-Quintana. “Learning with configurable operators
and rl-based heuristics”. In: International Workshop on New Frontiers in
Mining Complex Patterns. Springer. 2012, pp. 1-16.

Andrew McAfee and Erik Brynjolfsson. “EDISON Data Science Frame-
work: Part 1. Data Science Competence Framework (CF-DS) Release 2”.
In: Wie die ndichste digitale (2014).

Luigi Federico Menabrea and Ada Lovelace. Sketch of the analytical engine
invented by Charles Babbage. 1842.

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam
Kalai. “A machine learning framework for programming by example”. In:
ICML. 2013, pp. 187-195.

Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bo
Yang, Justin Betteridge, Andrew Carlson, B Dalvi, Matt Gardner, Bryan
Kisiel, et al. “Never-ending learning”. In: Communications of the ACM
61.5 (2018), pp. 103-115.

Tom M Mitchell. “Machine Learning”. In: Mcgraw hill science, 1997, p. 27.

Tom M Mitchell. The need for biases in learning generalizations. Rutgers
Univ. New Jersey, 1980.

Tom M Mitchell, John Allen, Prasad Chalasani, John Cheng, Oren Etzioni,
Marc Ringuette, and Jeffrey C Schlimmer. “Theo: A framework for self-

improving systems”. In: Architectures for intelligence (1991), pp. 323—
355.

https://arxiv.org/abs/1709.09003
http://arxiv.org/abs/1709.09003

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

Carlos Monserrat, Jose Hernandez-Orallo, Jose-Francisco Dolz, Maria-
Jose Ruperez, and Peter Flach. “Knowledge Acquisition by Abduction
for Skills Monitoring: Application to Surgical Skills”. In: Inductive Logic
Programming. Springer. 2016.

Michael zur Muehlen and Robert Shapiro. “Business process analytics”.
In: Handbook on Business Process Management 2. Springer, 2010, pp. 137—
157.

Florian Mueller and Andrea Lockerd. “Cheese: tracking mouse movement
activity on websites, a tool for user modeling”. In: CHI'01 extended
abstracts on Human factors in computing systems. ACM. 2001, pp. 279—
280.

Stephen Muggleton. Inductive logic programming. 38. Morgan Kaufmann,
1992.

Stephen Muggleton. “Inverse entailment and Progol”. In: New generation
computing 13.3-4 (1995), pp. 245-286.

Stephen Muggleton and Luc De Raedt. “Inductive logic programming:
Theory and methods”. In: The Journal of Logic Programming 19 (1994),
pp. 629-679.

Stephen Muggleton, Cao Feng, et al. “Efficient induction of logic
programs”. In: Inductive logic programming 38 (1992), pp. 281-298.

Stephen Muggleton, Dianhuan Lin, and Alireza Tamaddoni-Nezhad.
“Meta-interpretive learning of higher-order dyadic datalog: Predicate
invention revisited”. In: Machine Learning 100.1 (2015), pp. 49-73.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

Alfredo Nazabal, Christopher KI Williams, Giovanni Colavizza, Camila
Rangel Smith, and Angus Williams. “Data Engineering for Data Analytics:
A Classification of the Issues, and Case Studies”. In: arXiv preprint
arXi:2004.12929 (2020).

Kan Nishida. 7 Most Practically Useful Operations When Wrangling with
Text Data in R. Sept. 2016. URL: https://blog.exploratory.io/7-
most - practically - useful - operations - when - wrangling - with -
text-data-in-r-7654bd9dla0c.

Louis Oliphant and Jude Shavlik. “Using Bayesian networks to direct
stochastic search in inductive logic programming”. In: International
Conference on Inductive Logic Programming. Springer. 2007, pp. 191-199.

Roland Olsson. “Inductive functional programming using incremental
program transformation”. In: Artificial intelligence 74.1 (1995), pp. 55-81.

José Hernandez Orallo, Maria José Ramirez Quintana, and César Ferri
Ramirez. Introduccion a la Mineria de Datos. Pearson Educacién, 2004.

113

https://blog.exploratory.io/7-most-practically-useful-operations-when-wrangling-with-text-data-in-r-7654bd9d1a0c
https://blog.exploratory.io/7-most-practically-useful-operations-when-wrangling-with-text-data-in-r-7654bd9d1a0c
https://blog.exploratory.io/7-most-practically-useful-operations-when-wrangling-with-text-data-in-r-7654bd9d1a0c

Bibliography

[138]

[139]
[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]
[152]

114

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong
Li, Dengyong Zhou, and Pushmeet Kohli. “Neuro-symbolic program
synthesis”. In: arXiv preprint arXiv:1611.01855 (2016).

D.J. Patil and T. Davenport. “Data scientist: The sexiest job of the 21st
century”. In: Harvard business review 90.10 (2012), pp. 70-76.

Norman W Paton. “Automating Data Preparation: Can We? Should We?
Must We?” In: CEUR Proceedings (2019).

Simon Peyton-Jones. “Compiling Haskell by program transformation:
A report from the trenches”. In: Programming Languages and Systems,
ESOP96 (1996), pp. 18-44.

Simon Peyton-Jones, ed. Haskell 98 Language and Libraries: The Revised
Report. http://haskell.org/, Sept. 2002, p. 277. URL: http://haskell.
org/definition/haskell98- report.pdf.

Michael Polanyi. The tacit dimension. University of Chicago press, 2009.

Oleksandr Polozov and Sumit Gulwani. “Flashmeta: A framework for
inductive program synthesis”. In: ACM SIGPLAN Notices 50.10 (2015),
pp. 107-126.

Oleksandr Polozov and Sumit Gulwani. “Program synthesis in the
industrial world: Inductive, incremental, interactive”. In: 5th Workshop
on Synthesis (SYNT). 2016.

Gil Press. “Cleaning big data: Most time-consuming, least enjoyable data
science task, survey says”. In: Forbes, March 23 (2016), p. 15.

J Ross Quinlan. “Learning efficient classification procedures and their
application to chess end games”. In: Machine learning. Springer, 1983,
pp. 463-482.

Vijayshankar Raman and Joseph M. Hellerstein. “Potter’s Wheel:
An Interactive Data Cleaning System”. In: Proceedings of the 27th
International Conference on Very Large Data Bases. VLDB ’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 381—
390.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. “Program-
ming by example using least general generalizations”. In: Twenty-Fighth
AAAI Conference on Artificial Intelligence. 2014.

Emre Rengberoglu. Fundamental Techniques of Feature Engineering for
Machine Learning. 2019.

Alan Said and Viceng Torra. Data Science in Practice. Springer, 2019.

Gerard Salton and Christopher Buckley. “Term-weighting approaches in
automatic text retrieval”. In: Information Processing ‘1€’ Management
24.5 (1988), pp. 513-523. 1SSN: 0306-4573.

http://haskell.org/definition/haskell98-report.pdf
http://haskell.org/definition/haskell98-report.pdf

Bibliography

[153)]

[154]
[155]

[156]

[157]

[158]

159

[160]

[161]
[162]
[163]
[164]
[165]
[166]

[167]

Jirgen Schmidhuber. “Deep learning in neural networks: An overview”.
In: Neural Networks 61 (Jan. 2015), pp. 85-117. 1SsN: 0893-6080. DOI:
10.1016/j .neunet.2014.09.003. URL: http://dx.doi.org/10.
1016/j.neunet.2014.09.003.

Sara J Shettleworth. Cognition, evolution, and behavior. Oxford university
press, 2009.

Chengxun Shu and Hongyu Zhang. “Neural Programming by Example.
In: AAAL 2017, pp. 1539-1545.

Rishabh Singh and Sumit Gulwani. “Predicting a correct program in
programming by example”. In: International Conference on Computer
Aided Verification. Springer. 2015, pp. 398-414.

Rishabh Singh and Sumit Gulwani. “Transforming Spreadsheet Data
Types Using Examples”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’16. St. Petersburg, FL., USA: ACM, 2016, pp. 343-356. 1SBN: 978-
1-4503-3549-2. por: 10.1145/2837614.2837668. URL: http://doi.acm.
org/10.1145/2837614.2837668.

Ashwin Srinivasan, Ross D King, and Michael E Bain. “An empirical
study of the use of relevance information in inductive logic programming”.
In: JMLR 4.Jul (2003), pp. 369-383.

European Committee for standarization. “European ICT professionals
role profiles - Part 1: 30 ICT profiles”. In: (2018).

Phillip D. Summers. “A Methodology for LISP Program Construction
from Examples”. In: J. ACM 24.1 (Jan. 1977), pp. 161-175. 1sSN: 0004-
5411. por: 10.1145/321992 . 322002. URL: https://doi.org/10.
1145/321992.322002.

Supported Data Types - Trifacta Wrangler - Trifacta Documentation. URL:
https://docs.trifacta.com/display/PE/Supported+Data+Types.

SYNTH Project. URL: http://synth.cs.kuleuven.be/.

Eindhoven University of Technology. “Process Mining: Data science in
Action”. In: (2020). URL: https://www.classcentral.com/course/
procmin-2445.

”

Wayne Thompson, Hui Li, and Alison Bolen. Artificial intelligence,
machine learning, deep learning and beyond. 2020.

Alan Turing. “Computing machinery and intelligence”. In: Mind 59.236
(1950), p. 433.

Wil MP Van der Aalst. “Data scientist: The engineer of the future”. In:
Enterprise Interoperability VI. Springer, 2014, pp. 13-26.

Alta Van der Merwe, Aurona Gerber, and Hanlie Smuts. “Guidelines for
Conducting Design Science Research in Information Systems”. In: Annual

Conference of the Southern African Computer Lecturers’ Association.
Springer. 2019, pp. 163-178.

115

https://doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/2837614.2837668
http://doi.acm.org/10.1145/2837614.2837668
http://doi.acm.org/10.1145/2837614.2837668
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://doi.org/10.1145/321992.322002
https://docs.trifacta.com/display/PE/Supported+Data+Types
http://synth.cs.kuleuven.be/
https://www.classcentral.com/course/procmin-2445
https://www.classcentral.com/course/procmin-2445

Bibliography

[168]

[169]

[170]

[171]

[172]

116

Alejandro Vera-Baquero, Ricardo Colomo-Palacios, and Owen Molloy.
“Business process analytics using a big data approach”. In: IT Professional
15.6 (2013), pp. 29-35.

Ruben Verborgh and Max De Wilde. Using OpenRefine. Packt Publishing
Ltd, 2013.

Analytics Vidhya. 19 Data Science Tools for people who aren’t so good
at Programming. May 2016. URL: https://www.analyticsvidhya.
com/blog/2016/05/19-data-science- tools- for- people-dont-
understand-coding/.

Xinyu Wang, Isil Dillig, and Rishabh Singh. “Program synthesis using
abstraction refinement”. In: Proceedings of the ACM on Programming
Languages 2.POPL (2017), p. 63.

Wrangle Language - Trifacta Wrangler - Trifacta Documentation. URL:
https://docs.trifacta.com/display/PE/Wrangle+Language.

https://www.analyticsvidhya.com/blog/2016/05/19-data-science-tools-for-people-dont-understand-coding/
https://www.analyticsvidhya.com/blog/2016/05/19-data-science-tools-for-people-dont-understand-coding/
https://www.analyticsvidhya.com/blog/2016/05/19-data-science-tools-for-people-dont-understand-coding/
https://docs.trifacta.com/display/PE/Wrangle+Language

Appendices

Data Collection

A.1 Survey to collect personal data

Automating the data cleansing process

Hi! My name is Lidia and I'm a PhD student at the Universitat Politecnica
de Valéncia (Spain). My research is focused on the data cleansing automation.
However, achieving this goal requires a lot of data. Can you help me?

The purpose of this form is to collect personal data (names, dates, emails,
addresses, etc.). They don’t have to be real, we just need the correct format
(having a '@’ if it is an email, for example). You can fill it as many times as
you want.

By submitting this form you are indicating that you have read the description
of the study, are over the age of 18, and that you agree to the terms as described.

Thank you! :)

® psicdmip

POLITECNICA DEPARTAMENT DE SISTEMES
DE VALENCIA INFORMATICS | COMPUTACIO

1. I agree to participate in the research study. I understand
the purpose and nature of this study and I am participating
voluntarily. T understand that I can withdraw from the study at
any time, without any penalty or consequences.

e Yes
« No

2. Name
It can be a composed name.

3. Surname
It can be a composed surname.

119

A. Data Collection

4. Title
Title prefizing the person’s name (e.g. Miss, Ms, Mr, etc.).

5. Gender
o Man
o Woman
o Other

6. Email
An email address containing at least an '@’ and a dot. It can contain other
symbols (e.g. my-email@my-email.com).

7. Address
Use the style you would normally use.

8. Phone number
Use the style you would normally use.

9. Date
Use the style you would normally use.

10. Date (standard)
Same date as above with a provided calendar.

11. Hour Use the style you would normally use.

12. Hour (standard)
Same hour as above with a provided (digital) clock.

13. Comments
Do you want to leave a comment?

14. Country
Where are you from? (Your real country).

120

Data Wrangling: Competences and
Skills

Data scientist has been classified as “the sexiest job of the 21st century” [139].
However, as we have seen in the previous sections, data science is a process that
follows several and very different phases and, each of them, requires different
competences and skills to be done properly. So, being a data scientist implies to
be able to apply techniques from very different fields. Overall, data scientists
should have a T-shaped profile [57], that is, they need deep expertise in the
field and, at the same time, very different interdisciplinary skills and abilities
to collaborate with others in different areas. This means not only possessing
deep, technical skills, but also having broader attributes such as empathy or
communication skills.

In a data science project one or more data scientists can take part. When
working alone, a data scientist needs a list competences in order to achieve its
goals. When one or more data scientists are working in a data science team each
of them can be a specialist in one or more phases of the process and, therefore,
has only or more developed the necessary competences for that particular phase.
Some competences have been identified as necessary for any data scientists in
several studies, including both technical and non-technical skills [1, 37, 108]. The
European e-Competence Framework (e-CF) [13] provides a standard reference for
skills and competences related with Information and Communication Technology
(ICT). According to this standard a competence is a “demonstrated ability to
apply knowledge, skills and attitudes for achieving observable results”. e-CF
classify the competences in five different proficiency levels according to five main
ICT areas (Plan, Build, Run, Enable and Manage) and related to the European
Qualifications Framework (EQF) [16]. However, as Figure B.1 shows, in order to
reach these competences several skills are required including technical knowledge
for ‘hard-skills’ and personal attitudes for ‘soft-skills’.

The e-CF standard [34] report on data science profile competences describes
a data scientist as the person that: (1) leads the process of applying data
analytics; (2) delivers insights from data presenting visual data representations,
and (3) finds, manages and merges multiple data sources and ensures consistency
of datasets. Identifies the mathematical models, selects and optimises the
algorithms to deliver business value through insights. Communicates patterns
and recommends ways of applying data”. For this job, the report identifies five
main competence groups: (1) technology and trend monitoring; (2) innovating;
(3) information and knowledge management; (4) needs identification; and (5)
forecast development [159].

121

B. Data Wrangling: Competences and Skills

Data Science
Process

Goal
Exploration

Data
Preparation

Competence
Groups

o e -

Hard-skills

Data Value
Exploration

Data Source
Exploration

Soft-skills

Technical
Knowledge

Personal
Attitudes

Figure B.1. General schema of competence groups and skills. The
diagram is just an example on how the competences can be organised.

B.1 List of Data Wrangling Competences

Here we extend the competence groups to identify the main competences and
skills required in data wrangling process. Table B.1 shows the competences
identified for this data science step.

Competence Description

C-DPO01 Data integration from multiples sources and structures combining by merging
two data sets with similar records but different attributes or appending two or
more data sets with similar attributes but different records.

C-DP02 Clean data and fix errors (outliers, missing values, etc.).

C-DP03 Define meta-data using common standards and practices.

C-DP04 Use transformations in datasets to get the identified relevant attributes.

C-DP05 Select data with feature extraction, resolution change and dimensionality
reduction techniques to define possible attribute sets for modelling activities.

C-DP06 Generate new attributes by derived attributes or entire new records, or
transformed values for existing attributes.

C-DPO7 Make syntactic changes in data to satisfy the requirements of the specific

modelling tool/project.

Table B.1. Competences required for a data scientists doing data
preparation/wrangling.

B.2 List of Data Wrangling Hard Skills

Hard skills are abilities that can be learnt through training, evaluated and
accredited. Some typical hard skills are languages or programming. Hard-
skills need technical knowledge and can be probed by certificates and provable
professional experience. Table B.2 shows some of the hard-skills identified as
necessary for data wrangling and Table B.3 the necessary technical knowledge
according to this skills.

122

List of Data Wrangling Soft Skills

B.3 List of Data Wrangling Soft Skills

Finally, soft skills or personal attitudes are the cognitive and relational capacity
of human-beings [43]. Unlike hard-skills that can be learned, soft skills require
personal attitudes inherent to them and characterise how people interact with
the environment and with other people. Table B.4 shows some of the soft skills
identified as necessary for data wrangling and B.5 their associated personal
attitudes.

Automating the whole data wrangling process would require a system to
be able to simulate and carry on all the competences, learning the hard skills
and, somehow, acquiring the soft skills and the data scientist behaviour. While
full automation seems improbable right now since some of the skills are not
automatable, semi-automation or the automation of some of the data wrangling
phases could be easier.

Skill Description

HSO01 Data Mining: text mining, anomaly detection, time series, feature selection, etc.
HS02 Qualitative analytics.

HS03 Natural language processing.

HS04 Data preparation and pre-processing.

HS05 Data anonymisation.

HS06 Information systems, collaborative systems.

HS07 Data architecture, data types and data formats.

HS08 Data curation and data quality, data integration and interoperability.
HS09 Metadata, data registries, data factories.

HS10 Data collection and data quality evaluation.

HS11 Emerging technologies.

HS12 Relevant sources of information.

HS13 Applied research programme approaches.

HS14 Habits, trends and needs.

HS15 Innovation processes techniques.

Table B.2. Hard skills identified in data wrangling process

Knowledge Description

TKO1 Statistical computing and languages (R, Python, SAS, Julia, WEKA, KNIME,
ete.).

TKO02 Matlab data analytics.

TKO03 Analytics tools (RStudio, Anaconda, SPSS, Matlab, etc.).

TK04 Data mining tools (RapidMiner, Orange, etc.).

TK5 Data curation platform, metadata management (ETL, Curato’s Workbench,

DataUp, etc.).

Table B.3. Technical knowledge identified to carry on the hard skills
on data wrangling.

123

B. Data Wrangling: Competences and Skills

Skill Description

SK01 Make decisions.

SKO02 Understand results.

SKO03 Recognise patterns.

SK04 Making inferences.

SKO05 Communication and understanding natural language.

SK06 Create/design.

SK07 Keeping a to-do list.

SK08 Online learning.

SK09 Continuous learning/improvement.

SK10 Collaboration with other team members, other roles (multidisciplinary team),
other teams (Universities, companies, etc.).

SK11 Domain fundamentals (knowledge, iterative development, goal).

SK12 Know limitations of technology.

SK13 Understand visualisations.

SK14 Know when something fails.

SK15 Communication with experts/non-experts in the domain.

SK16 Ability to answer/ask technical/domain questions.

SK17 Acquire/improve knowledge about the domain.

SK18 Technical problem-solution.

SK19 Use professional networks and online communities to learn/ask.

SK20 Search/read/learn from online domain resources (papers, news, wikipedia, etc.).

SK21 Accept/fix fails in problem-domain.

SK22 Adaptation to technology changes and updates.

SK23 Innovate.

SK24 Invent.

SK25 Think out of the box.

SK26 Identify appropriate resources.

Table B.4. Soft skills identified in data wrangling process.

Attitude Description

PAO1 Critical thinking.

PA02 Natural language (writing/speaking/reading/understanding).
PA0O3 Creativity.

PAO4 Planning & organising (time management).

PAO5 Dynamic (self) re-skilling.
PA0O6 Ability to collaborate.

Table B.5. Personal attitudes identified to carry on the soft skills on
data wrangling.

124

Logging Data Scientists

If we really want to automate data science, and data wrangling in particular, we
need to know how data scientists behave. In other words, we have to apply data
science to data scientists (these ideas have been published at [26]). However, it
seems very difficult to track all the activities a data scientist (or a data science
team) is doing. Indeed, apart from a few surveys (about the tools and times they
devote to every stage of the whole process), there is a lack of evidence about
what data scientists really do and the decisions and actions they take, especially
at a high granularity level. The introduction of data mining tools in the past two
decades, such as SPSS Clementine (then IBM Modeler), Weka KnowledgeFlow,
SAS Enterprise Miner, RapidMiner and many others that followed, made it
possible, for the first time, to incorporate most of a data science process into
the same tool. However, logging the actions of the users had to be done locally,
with the difficulty of obtaining a relative good number of expert experiences.
Collaborative or competitive platforms such as Kaggle or Github can also be a
source of data, but it is difficult to extract information about sequential workflow
or the particular actions that have to be taken for all the stages of a data science
project. This is aggravated by the recent “back to programming” trend, where
the products of data scientists in these platforms are programs (usually in R or
python), and not a sequence of actions over a structured set of possibilities. In
fact, some tools that try to automate the process are based on the “knowledge,
experience and best practices” of data scientists, such as DataRobot, but not
based on the evidence of real logs at a high granularity level.

Things are different for cloud data science tools, and many old platforms
are migrating or are native there, such as BigML', DataRobot?, Azure ML?,
ClowdFlows® and others [170]. In these platforms we can log the activity of
data scientists and use that activity to recommend actions according to the
interactions of many data scientists on the same platforms for similar situations.

Many scientists working on data wrangling, story telling or visualisation, may
not be experts or even comfortable with computer programming. In order to
simplify these tasks and to make them easy to the maximum number of people,
there exist some tools that reduce the data science process into a few visual steps,
that can be done with not many clicks and without any kind of programming.

In order to automate each part of the data science process (including data
wrangling), the study of the use of this kind of tools can be very useful, since
platforms can store all the workflows created and in some of them we can also

Thttps://bigml.com/

2https://www.datarobot.com/
3https://azure.microsoft.com/en-us/services/machine-learning/
4http://www.clowdflows.org/

125

https://bigml.com/
https://www.datarobot.com/
https://azure.microsoft.com/en-us/services/machine-learning/
http://www.clowdflows.org/

C. Logging Data Scientists

look over the steps followed in the process, from the upload of datasets until the
obtained results (including data cleaning process).

Tracking user behaviour through software interaction is a common topic in
areas such as web usability (by the use of technologies involving mouse or eye
tracking) [56, 126] and business intelligence (using behavioural analytics) [125,
168], even including some extra context data of users (such as demographic data)
[94]. Activity logging is also common in ambient intelligence from fixed sensors
or from mobile devices [113]. Nevertheless, the goal of tracking and exploiting
non-trivial operational processes is represented by the area of process mining
[2]. Process mining seeks to process “event logs” (information about business
processes stored by information systems) so as to discover, monitor and improve
processes (i.e., check the conformance of processes, detect bottlenecks or predict
execution problems) by means of process analytics. However, to our knowledge,
process mining has not been applied to the data science process itself.

Process mining bridges the gap between traditional model-based process
analysis (e.g., simulation and other business process management techniques)
and data-centric analysis techniques such as machine learning and data mining.
Process mining seeks the confrontation between event data (i.e., observed
behaviour) and process models (hand-made or discovered automatically). This
technology has become available only recently, but it can be applied to any type of
operational processes (organisations and systems). Example applications include:
analysing treatment processes in hospitals, improving customer service processes
in a multinational, understanding the browsing behaviour of customers using
booking site, analysing failures of a baggage handling system, and improving the
user interface of an X-ray machine. All of these applications have in common
that dynamic behaviour needs to be related to process models. Hence, we refer
to this as “data science in action” [163].

The first thing we can analyse is what to log and how to represent the events
in data science tools such that we are able to track the full data science process.
It is important that we distinguish the data or knowledge flow, as represented
by many graphical data science tools (see Figure C.1, bottom) from the log of
actions and events (the process) that led to that flow. It is especially important
that we can track mistakes, trials and other attempted actions that are not finally
represented by the flow, and this can only be done from the log. Figure C.1
(top) shows the procedure of extracting the events from Clowdflows (a visual
data science tool, [99]) including fixed attributes (timestamp, user, resource,
transaction type, etc.) and event-specific ones (node identifiers, parameters,
ports, inputs, outputs, etc.).

Events refer to actions and properties performed by a data scientist in an
specific data science tool which can be traced back to generate the complete
workflow. Events may have any number of attribute, including standard
(timestamp, user, resource, transaction type, etc.) and action-specific ones
(node/s identifier/s, parameters, ports, inputs, outputs, etc.). Although
timestamps could be used to align events in the horizontal dimension, it could
be also possible to align events based on the activities performed, so it is easy to
identify common behaviours and deviations.

126

Events
<event timestanpt="2016-11-01 13:36:30" id="288" user="Enjuto" transaction type="Create node'>

ClondFlons Log <widget id="wd"" name="Load file""/></event>
<2016-11-01 13:36:30> Widget “Load file" added <event timestanpt ="2016-11-01 13:36:45" id ="289" user="Enjuto™ transaction type ="Create node'>
successfully. o <wudget id="W2"" name="arff_to_weka_instances'/></event>

<2016-11-01 13:36:45> Widget
“arff_to_weka_instances" added successfully.

id =290 user="Enjuto” transaction type ="Add conn'>
<connection id="cl" frunlD:wL fronPort="fil"" tolD="W2"* Toport="arf"'/></event>

<2016-11-01 13:36:49> Connection added. <event timestanpt ="2016-11-01 13:36:59" id ="291" user="Enjuto” transaction type ="Create node'>

<2016-11-01 13:36:59> Widget "'J48" added — 1> <widget id="W3" name="148">

successfully. <parameters><setUnpruned>True</setUnpruned>
<setUselaplace>True</setUselaplace></paraneters></widget></event>

QOl&].‘l—Ol 13:38:25> Execute Flow. \ .

<2016-11-01 13:38:26> Error occurred when > <event timestanpt=""2016-11-01 13:38:25" id =""298"" user="Enjuto’" transaction_type ="Execute Widget'*>

trying to execute widget arffto_weka_instances: <execute id="W6" RunFlon="True" RunOnlyThis="False"/></event>

<class "pysinplesoap.client.SoapFault™> SOAP-—— <event timestaipt="2016-11-01 13:38:: id ="299" user="Enjuto" transaction type ="Error'>

B\W:Server: Processing Failure <ervor type="Processing Failure”
<2016-11-01 13:39:50> Connection deleted. ———p<event timestanpt="2016-11-01 13:39:50"
<2016-11-01 13:40:21> Widget "File to string™ <connection id=""c1""/></event>
added successfully. T <event timestanpt=""2016-11-01 13:40:21"" id ='301"" user="Enjuto" transaction type =Create node'>
<widget id="W7"' name="File to string"/></event>

dget="2"" message="Error occurred .. *"/></event>
id =300 user="Enjuto" transaction_type ="Delete conn'>

<2016-11-01 13:43:27> Execute Flow.:

» <event timestanpt="2016-11-01 13:43:27" id =""304"" user="Enjuto" transaction_type="Execute node'>
<exectute id="W6" RunFloa="True"" RunOnlyThis="False"/></event>

Fy
e lea ‘Eb cla = tre {‘,‘g, tre = str | g2
ins . : s
. fil 6l s = @ e print_tree Display String
o 4 build_classifier
Load file File to string arff_to_weka_instances

Figure C.1. Top: example of a log using Clowdflows and its formatting
into events. Bottom: the corresponding data-to-knowledge flow finally
completed by the data scientist.

The second issue to consider is how to analyse the data from the formatted
events and the flow. As the tracked events are at a very low-level (e.g., connect
a node X with Y, execute node Y), we have to use abstraction in order to
match series of them with more high-level events (e.g., perform feature selection).
There are several approaches to activity recognition in the literature, but we are
considering two different approaches: a logical approach using event calculus,
as done by [124], where processes can be matched with given instructions (e.g.,
an exercise given to a student or a data scientist), and a reinforcement learning
approach, where the set of possible actions at each point is limited by the use of
contextual information, where repetitive tasks can be spotted.

The extent and possibilities of this analysis and the use of other AT tools
depend on the particular application, what parts of the pipeline are to be
analysed and the understandability of the insight. As we can gather data science
processing information from the use of Clowdflows (and perhaps in the future
from some other tools, such as BigML), we are encouraging expert data scientists,
practitioners and students to be logged, so that we can use all this information for
a better understanding of the data science process, common mistakes and recipes
for success. In terms of automation, the introduction of assistants in the same
tools can be a first step, but we envisage some other possibilities along the lines
of some of the ongoing initiatives for the automation of data science: Chalearn’s
AutoML [64], the Automatic Statistician [105] and the SYNTH project [162].

Overall, the generation of this logged information as open source data can be
very useful for the data science community in general, but especially useful for
the application of Al to data science and ultimately for the (semi-)automation
of data science (and hence, data wrangling) in a more holistic way.

127

BK-ADAPT: Supplementary
Material

D.1 Background Knowledge: List of Functions

D.1.1 Default BK: MagicHaskeller’s library
By default, MagicHaskeller includes a list of 189 basic Haskell functions:

id Function
001 0 :: Int
002 1 : Int
003 (++) :: forall a . (->) ([a]) ([a] -> [a]
004 filter :: forall a . (a -> Bool) -> [a] -> [a]
005 negate :: Ratio Int -> Ratio Int
006 abs :: Ratio Int -> Ratio Int
007 sum :: (->) ([Ratio Int]) (Ratio Int)
008 product :: (->) ([Ratio Int]) (Ratio Int)
009 (+) :: Ratio Int -> Ratio Int -> Ratio Int
010 (-) :: Ratio Int -> Ratio Int -> Ratio Int
011 (*) :: Ratio Int -> Ratio Int -> Ratio Int
012 (/) :: Ratio Int -> Ratio Int -> Ratio Int
013 fromlIntegral :: Int -> Ratio Int
014 properFraction :: (->) (Ratio Int) ((Int, Ratio Int))
015 round :: (->) (Ratio Int) Int
016 floor :: (->) (Ratio Int) Int
017 ceiling :: (->) (Ratio Int) Int
018 (i :: Ratio Int -> Int -> Ratio Int
019 (%) :: Int -> Int -> Ratio Int
020 numerator :: (->) (Ratio Int) Int
021 denominator :: (->) (Ratio Int) Int
022 [:: forall a . [a]
023 (:) = foralla . a-> [a] -> [a]
024 foldr:: (a->b->b)->b->[a]->b
025 drop 1 : Int -> [a] -> [a]
026 (+) :: Int -> Int
027 nx f-> iterate f x !! (n::Int)
028 Nothing :: forall a . Maybe a
029 Just :: forall a . a -> Maybe a

continued on next page

129

D. BK-ADAPT: Supplementary Material

130

continued from previous page

id
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

Function

maybe :: a-> (b ->a)-> Maybe b -> a
True :: Bool

False :: Bool

iF :: forall a . (->) Bool (a-> a -> a)
(+) :: (->) Int ((->) Int Int)

(&&) :: (->) Bool ((->) Bool Bool)

(I]) == (->) Bool ((->) Bool Bool)

not :: (->) Bool Bool

(-) = Int -> Int -> Int

(*) :: Int -> Int -> Int

map :: (a->b) -> [a] -> [b]

concatMap :: (a -> [b]) -> [a] -> [b]
length :: forall a . (->) ([a]) Int

replicate :: forall a . Int -> a -> [a]

take :: forall a . Int -> [a] -> [a]

drop :: forall a . Int -> [a] -> [a]
takeWhile :: forall a . (a -> Bool) -> [a] -> [a]
dropWhile :: forall a . (a -> Bool) -> [a] -> [a]
reverse :: forall a . [a] -> [a]

and :: (->) ([Bool]) Bool

or :: (->) ([Bool]) Bool

any :: (a-> Bool) -> [a] -> Bool
all

zipWith

null :: forall a . (->) ([a]) Bool
abs :: (->) Int Int

foldl

total head

total last

total init

enumFromTo :: Int -> Int -> [Int]
enumFromTo :: Char -> Char -> [Char]
fmap :: foralla b . (a -> b) -> (->) (Maybe a) (Maybe b)
either

ged @ Int -> Int -> Int

lem :: Int -> Int -> Int

sum :: (->) ([Int]) Int

product :: (->) ([Int]) Int

(==)

(/=)

compare

(<=)

continued on next page

Background Knowledge: List of Functions

continued from previous page

id
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113

Function

(<)

max

min

sortBy :: forall a . (a -> a -> Ordering) -> [a] -> [a]
nubBy :: forall a . (a -> a-> Bool) -> [a] -> [a]
deleteBy :: forall a . (a-> a -> Bool) -> a -> [a] -> [a]
dropWhileEnd :: forall a . (a -> Bool) -> [a] -> [a]
transpose :: forall a . [[a]] -> [[a]]

toUpper :: (->) Char Char

toLower :: (->) Char Char

ord :: Char -> Int

isControl :: (->) Char Bool

isSpace :: (->) Char Bool
isLower :: (->) Char Bool
isUpper :: (->) Char Bool
isAlpha :: (->) Char Bool

isAlphaNum :: (->) Char Bool
isDigit :: (->) Char Bool
isSymbol :: (->) Char Bool
isPunctuation :: (->) Char Bool
isPrint :: (->) Char Bool

10 :: Int

20 :: Int

30 :: Int

40 :: Int

>’ :: Char

1 :: Double
10 :: Double
100 :: Double

1000 :: Double

succ :: Double -> Double

negate :: Double -> Double

abs :: Double -> Double

signum :: Double -> Double

recip :: Double -> Double

sum :: (->) ([Double]) Double

product :: (->) ([Double]) Double

(+) :: Double -> Double -> Double

(=) :: Double -> Double -> Double

(*) :: Double -> Double -> Double

(/) :: Double -> Double -> Double

fromlIntegral :: Int -> Double
continued on next page

131

D. BK-ADAPT: Supplementary Material

132

continued from previous page

id
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Function

properFraction :: (->) Double ((Int, Double))
round :: (->) Double Int

floor :: (->) Double Int

ceiling :: (->) Double Int

truncate :: (->) Double Int

(i :: Double -> Int -> Double

pi :: Double

lines :: [Char] -> [[Char]]

words :: [Char] -> [[Char]]

unlines :: [[Char]] -> [Char]
unwords :: [[Char]] -> [Char]

scanl :: forallab. (a->b->a)->a

scanr :: forallab . (a->b->Db)->b-> [a] -> [b]

scanl: foralla . (a->a->a)-> [a] -> [a]

scanr: forall a. (a->a->a)-> [a] -> [a]

show :: Int -> [Char]

(,) = forallab . a->b-> (a, b)

uncurry

elem

nub

find :: forall a . (a -> Bool) -> [a] -> Maybe a

findIndex

findIndices

deleteFirstsBy :: forall a . (a -> a -> Bool) -> [a] -> [a] -> [a]
unionBy :: forall a . (a -> a -> Bool) -> (->) ([a]) ([a] -> [a])
intersectBy :: forall a . (a -> a -> Bool) -> (->) ([a]) ([a] -> [a])
insertBy :: forall a . (a -> a -> Ordering) -> a -> [a] -> [a]

isOctDigit :: (->) Char Bool
isHexDigit :: (->) Char Bool
catMaybes :: forall a . [Maybe a] -> [a]
listToMaybe :: forall a . (->) ([a]) (Maybe a)
maybeToList :: forall a . (->) (Maybe a) ([a])
exp :: Double -> Double
log :: Double -> Double
sqrt :: Double -> Double
(**) :: Double -> Double -> Double
logBase :: Double -> Double -> Double
sin :: Double -> Double
cos :: Double -> Double
tan :: Double -> Double
asin :: Double -> Double
acos :: Double -> Double
continued on next page

Background Knowledge: List of Functions

continued from previous page

id Function
156 atan :: Double -> Double
157 sinh :: Double -> Double
158 cosh :: Double -> Double
159 tanh :: Double -> Double
160 asinh :: Double -> Double
161 acosh :: Double -> Double
162 atanh :: Double -> Double
163 floatDigits :: Double -> Int
164 exponent :: Double -> Int
165 significand :: Double -> Double
166 scaleFloat :: Int -> Double -> Double
167 atan2 :: Double -> Double -> Double
168 (,) :: forallabc.a->b->c-> (a, b, ¢)
169 Left :: forall a b . a -> Either a b
170 Right :: forall b a . b -> Either a b
171 zip =z foralla b . (->) ([a]) ((->) ([b]) ([(a, b)]))
172 7ip3 = forall a b e . (->) ([a]) ((->) (b)) (->) (c]) ([(a, b, <)])))
173 unzip = foralla b . (->) ([(a, b)]) (([a], [b]))
174 unzip3 :: foralla b ¢ . (->) ([(a, b, ¢)]) (([a], [b], [c]))
175 odd :: Int -> Bool
176 even :: Int -> Bool
177 isPrefixOf
178 isSuffixOf
179 isInfixOf
180 stripPrefix
181 lookup
182 sort
183 intersperse :: forall a . a -> [a] -> [a]
184 subsequences : forall a . [a] -> [[a]]
185 permutations :: forall a . [a] -> [[a]]
186 inits :: forall a . [a] -> [[a]]
187 tails :: forall a . [a] -> [[a]]
188 mapAccumlL
189 mapAccumR
Table D.1. Functions included by default in MagiccHaskeller.
D.1.2 Freetext: Basic string manipulation functions
id Function
001 2 :: Int
002 3 :: Int

continued on next page

133

D. BK-ADAPT: Supplementary Material

continued from previous page
id Function

003 4 :: Int

004 :: Int

005 :: Int

006 :: Int

007 :: Int

008 9 :: Int

009 11::Int

010 12::Int

011 13::Int

012 14::Int

013 15:Int

014 16::Int

015 17:Int

016 18::Int

017 19::Int

018 21:Int

019 22:Int

020 23::Int

021 24:Int

022 25:Int

023 26::Int

024 27:Int

025 28:Int

026 29::Int

027 31:Int

028 1900::Int

029 2000::Int

030 dash :: [Char]

031 slash :: [Char]

032 dot :: [Char]

033 comma :: [Char]

034 colon :: [Char]

035 1Bracket :: [Char]

036 rBracket :: [Char]

037 at :: [Char]

038 hash :: [Char]

039 Iparentheses :: [Char]

040 rparentheses :: [Char]

041 space :: [Char]

042 zero :: [Char]

043 nineteen :: [Char]

044 twenty :: [Char]

co N O Ot

continued on next page

134

Background Knowledge: List of Functions

continued from previous page

id
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074

075
076
077
078
079
080
081
082
083

Function

firstElement :: [Char]

middleElement :: [Char]

lastElement :: [Char]

addPunctuationString :: [Char] -> [Char] -> [[Char]]
splitStringWithoutPunctuation :: [Char] -> [[Char]]
setPunctuationArray :: [[Char]] -> [Char| -> [[Char]]
changePunctuationArray :: [[Char|] -> [Char] -> [[Char]]
changePunctuationString :: [Char] -> [Char] -> [Char]
deletePunctuationArray :: [[Char]] -> [[Char]]|
deletePunctuationString :: [Char] -> [Char]
deleteSomePunctuationString :: [Char] -> [Char] -> [Char]
splitStringByPunctuation :: [Char] -> [Char| -> [[Char]]
splitStringWithPunctuation :: [Char] -> [[Char]]
splitStringTakeOffPunctuation :: [Char] -> [[Char]]
swapElementsString :: Int -> Int -> [Char| -> [Char]
swapElementsArray :: Int -> Int -> [[Char]] -> [[Char]]
appendPositionArray :: [[Char]] -> [Char] -> Int -> [[Char]]
appendPositionString :: [Char] -> [Char] -> Int -> [Char]
appendNextToLast :: [[Char]] -> [Char] -> [[Char]]
append :: [Char] -> [Char] -> [Char]

append_ first :: [[Char]] -> [Char] -> [[Char]]
append_middle :: [[Char]] -> [Char] -> [[Char]]

append_ last :: [[Char]] -> [Char] -> [[Char]]

prepend :: [Char] -> [Char] -> [Char]

prepend_first :: [[Char]] -> [Char] -> [[Char]]
prepend__middle :: [[Char]] -> [Char] -> [[Char]]
prepend_last :: [[Char]] -> [Char] -> [[Char]]
replacePositionArray :: [[Char]] -> [Char| -> Int -> [[Char]]
replacePositionString :: [Char] -> [Char] -> Int -> [Char]
replacePositionArrayFixedSize :: [[Char]] -> [Char] -> [Char] ->
[Char]

replaceAll :: [Char] -> [Char] -> [Char] -> [Char]
replaceNextToLast :: [[Char]] -> [Char]| -> [[Char]]
toLowString :: [Char] -> [Char]

toUpperString :: [Char] -> [Char]

reduceWord :: [Char| -> Int -> [Char]

takeOneOfArray :: [[Char]] -> Int -> [Char]
takeOneOfFixedSizeArray :: [[Char]] -> [Char| -> [Char]
takeOneOfFixedSizeString :: [Char] -> [Char] -> [Char]
joinStringsWithPunctuation :: [Char] -> [Char| -> [Char] ->
[Char]

continued on next page

135

D. BK-ADAPT: Supplementary Material

continued from previous page

id Function
084 getOneWordByPosition :: [Char| -> Int -> [Char]
085 getFirstWord :: [Char| -> [Char]
086 getLastWord :: [Char] -> [Char]
087 getOneCharacterByPosition :: [Char| -> Int -> [Char]
088 getFirstCharacter :: [Char| -> [Char]
089 getLastCharacter :: [Char] -> [Char]
090 getStartToFirstSymbolOccurrence :: [Char| -> [Char] -> [Char]
091 getStartToLastSymbolOccurrence :: [Char] -> [Char] -> [Char]
092 getLastSymbolOccurrenceToEnd :: [Char] -> [Char]| -> [Char]
093 getFirstSymbolOccurrenceToEnd :: [Char| -> [Char]| -> [Char]
094 joinArrayWithPunctuation :: [[Char]] -> [Char] -> [Char]
095 joinStringsWithoutPunctuation :: [Char] -> [Char| -> [Char]
096 setParentheses :: [Char] -> [Char]
097 getCaps :: [Char] -> [Char]
098 reduceSpaces :: [Char] -> [Char]
099 setBrackets :: [Char] -> [Char]
100 completeBrackets :: [Char| -> [Char]
101 completeParentheses :: [Char] -> [Char]
102 getFirstDigitToEnd :: [Char] -> [Char]
103 getStartToFirstDigit :: [Char] -> [Char]
104 insert_first :: [[Char]] -> [Char] -> [[Char]]
105 insert_last :: [[Char]] -> [Char] -> [[Char]]
106 deleteParentheses :: [Char] -> [Char]
107 changeSomePunctuationString :: [Char| -> [Char] -> [Char] ->
[Char]
108 removeWords :: [Char] -> [[Char]] -> [Char]
Table D.2. Functions generated for the Freetert domain.
D.1.3 Domain Functions
D.1.3.1 Dates
id Function
01 getDayCardinalString::[Char]->[Char]

02
03
04
05
06
07
08

136

getDayCardinal Array::[[Char]]->[Char]
getDayOrdinal::[Char]->[Char]
getWeekDay Array::[[Char]]->[Char]
getWeekDayString::[Char]->[Char]
getMonthNameString::[Char]->[Char]
getMonthNameArray::[[Char]]->[Char]
convertMonth::[Char]->[Char]

continued on next page

Background Knowledge: List of Functions

continued from previous page

id Function
09 getYearString::[Char]->[Char]
10 getYearArray::[[Char]]->[Char]
11 convertMonthToNumeric::[Char|->[Char]
12 convertMonthToString::[Char]->[Char]
13 takeTwoOfThreeArray::[[Char|]->Int->Int->[[Char]]|
14 getMonthArray::[[Char]]->[Char]
15 getMonthString::[Char]->[Char]
16 convertMonthToNumericWithinArray::[[Char]|]->[[Char]]
17 convertMonthToStringWithinArray::[[Char]|]->[[Char]]|
18 reduceMonthWithinArray::[[Char]]->[[Char]]
19 changeDateFormat::[Char]->[Char]->[[Char]]
20 convertDayOrdinalWithinArray::[[Char|]->[[Char]]
21 reduceYear::[Char]->[Char]
22 reduceYearWithinArray::[[Char|]->[[Char]]
23 reduceMonth::[Char]->[Char]
Table D.3. Functions generated for the Dates domain.
D.1.3.2 Emails
id Function
1 getWordsBeforeAt :: [Char| -> [Char]
2 getWordsAfterAt :: [Char| -> [Char]
3 getWordsBeforeDot :: [Char] -> [Char]
4 getWordsAfterDot :: [Char| -> [Char]
5 getWordsBetweenAtAndDot :: [Char] -> [Char]
6 appendAt :: [Char] -> [Char]
7 prependAt :: [Char] -> [Char]
8 joinStringsWithAt :: [Char] -> [Char] -> [Char]
9 dotcom :: [Char]

Table D.4. Functions generated for the Emails domain.

D.1.3.3 Names
id Function
01 addMaleNomenclature :: [Char] -> Int -> [Char]
02 addFemaleNomenclature :: [Char] -> Int -> [Char]
03 deleteNomenclature :: [Char] -> [Char]
04 getNomenclature :: [Char] -> [Char]
05 reduceNameSecondWord :: [Char] -> [Char] -> [Char]
06 getGenderByNomenclature :: [Char] -> [Char]
07 deleteNomenclatureAndPunctuation :: [Char] -> [Char]

continued on next page

137

D. BK-ADAPT: Supplementary Material

continued from previous page

id Function
08 reduceNamesFirstPlace :: [Char| -> [Char]
09 reduceNameFirstPlace :: [Char] -> [Char]
10 reduceNameWithSurnameSecondPlace :: [Char] -> [Char]
11 reduceNameWithSurnamesSecondPlace :: [Char] -> [Char]
12 initialsNameFirstPlace :: [Char| -> [Char]
Table D.5. Functions generated for the Names domain.
D.1.3.4 Phones
id Function
1 addPhonePrefix :: [Char] -> Int -> [Char]
2 addPhonePrefixByCountry :: [Char] -> [Char] -> [Char]
3 addPhonePrefixByCountryCode :: [Char] -> [Char| -> [Char]
4 addPlusInPrefix :: [Char] -> [Char]
5 getPhoneNumber :: [Char| -> [Char]
Table D.6. Functions generated for the Phones domain.
D.1.3.5 Times
id Function
01 integerToTime :: Int -> [Char]
02 appendTimeElement :: [Char] -> Int -> [Char]
03 convertTimeByTimeZone :: [Char] -> [Char] -> [Char] -> [Char]
04 getTime :: [Char] -> [Char]
05 getHour :: [Char] -> [Char]
06 getMinutes :: [Char] -> [Char]
07 getSeconds :: [Char] -> [Char]
08 appendOclockTime :: [Char] -> [Char]
09 appendSomeTime :: [Char] -> Int -> [Char]
10 changeHour :: [Char] -> Int -> [Char]
11 changeMinutes :: [Char| -> Int -> [Char]
12 changeSeconds :: [Char| -> Int -> [Char]
13 deleteLastTimePosition :: [Char| -> [Char]
14 increaseHour :: [Char| -> Int -> [Char]
15 decreaseHour :: [Char] -> Int -> [Char]
16 increaseMinutes :: [Char] -> Int -> [Char]
17 decreaseMinutes :: [Char] -> Int -> [Char]
18 increaseSeconds :: [Char] -> Int -> [Char]
19 decreaseSeconds :: [Char] -> Int -> [Char]
20 convertTimeTo24hoursFormat :: [Char] -> [Char]
21 convertTimeTol2hoursFormat :: [Char] -> [Char]

138

continued on next page

Background Knowledge: List of Functions

continued from previous page

id Function

22 convertTimeFormat :: [Char] -> [Char] -> [Char]
23 getl2hoursFormatAuxiliar :: [Char] -> [Char]

24 deletel2hoursFormatAuxiliar :: [Char] -> [Char]

Table D.7. Functions generated for the Times domain.

D.1.3.6 Units

id Function

unitsConversion :: Float -> [Char] -> [Char] -> Float
getUnits :: [Char] -> [Char]

getSystem :: [Char] -> [Char]

setUnits :: Float -> [Char| -> [Char]

W N =

Table D.8. Functions generated for the Units domain.

139

D. BK-ADAPT: Supplementary Material

D.2 Data: List of Meta-features

In order to describe different characteristics of the inputs and use them with the
domain classifier and function ranker, we have defined the following descriptive
meta-features that can be extracted automatically:

id Meta-feature

01 end_ digit

02 end dotAndWord
03 end lower

04 end upper

05 has lat

06 has lcomma

07 has_2blank

08 has 2colon

09 has 2dash

10 has_2digits

11 has 2dot

12 has 2slash

13 has_ 4digits

14 has 6digits

15 has_ 8digits

16 has_90rMoredigits
17 has at

18 has blanks

19 has_capitalAndDot
20 has colon

21 has_ courtesyTitles

22 has dash
23 has_ dayName
24 has_ dot

25 has_ hourStructure

26 has hoursWords

27 has_lettersAndDot

28 has lowers

29 has_monthName

30 has numbers

31 has numberslnsideParenthesis
32 has_onlylWord

33 has_ only2Words

34 has_only3Words

35 has_onlyNumbersAndSymbols
36 has ordinalNumbers

37 has_plus

continued on next page

140

Data: List of Meta-features

continued from previous page
id Meta-feature

38 has_ punctuation

39 has slash

40 has_unitsSystem

41 has_uppers

42 has wordAndComma
43 has_ wordsJointByDash
44 is emailStructure

45 is_empty
46 is_ LongDateStructure
47 is NA

48 is_onlyAlphabetic

49 is_ onlyNumeric

50 is_ onlyPunctuation

51 is_shortDateStructure
52 start_ digit

53 start_lower

54 start_ upper

Table D.9. Meta-features generated to characterise the problems from
the different domains.

141

D. BK-ADAPT: Supplementary Material

D.3 Experiments: Extended Results

D.3.1 Primitive Estimator

domain auc

dates 0.92
emails 0.96
names 1
phones 0.97
times 1
units 1

Table 1D.10. Results for the primitive estimator.

D.3.2 Function Comparison

We have compared the performance of our approach using the ranking strategy
with other DSL data wrangling tools, concretely Trifacta Wrangler and FlashFill.
Flashfill works in the same way as our approach, namely, it uses one or more
input instances to try to induce a potential solution which is then applied to
the rest of examples. If no solution is found or the problem at hand is not
solvable by Flashfill, it returns, respectively, a void function or an error. On
the other hand, Trifacta Wrangler works in a slightly different fashion: it tries
to discover patterns and perform actions in the entire dataset. Each of these
actions can involve one change (e.g.: merge two columns) and they are saved in
a final ‘recipe’.

It should be noted that, as we have used a d,,.. value equal to 4 in
MagicHaskeller, the obtained solutions can concatenate up to 4 functions or
constants. Since we want to compare the results in similar conditions, we assume
that the number of actions which can be used by Trifacta Wrangler to obtain
a solution is similar to the d,,q, value in MagicHaskeller. Therefore, we limit
the maximum number of actions in each Wrangler recipe to 4. Since Trifacta
Wrangler uses all the elements in the column, the solution presented here tries
to solve, at least, the first example.

In Table D.11 we first compare the results (in terms of ‘depth’) of the dynamic
BK and Trifacta Wrangler. Note that, in both approaches, the actual number
of functions or actions needed to solve the problem (d) can be smaller than
dmaz- We can see that Trifacta Wrangler is able to detect some data types or
domains, for instance: ‘url’, ‘time’, ‘phone’. With this predefined formats the
tool is capable of solve very domain-specific problems such as get the name of
the month or the day in a date, detect an email or extract the hour of a time.
Although Trifacta Wrangler allows the user to select the type of data used and
then it solves input problems according on it, there are some limitations when
dealing with different formats. For instance, when using the dataset #8 from
Table 4.6, the type of the data is ‘dates’, but each instance is written in a different

142

Experiments: Extended Results

format: Trifacta Wrangler is not able to detect that they are all dates and throws
an “invalid types” error. On the contrary, the dynamic background knowledge
is able to use the functions adapted to this domain, regardless of their written
format. Another problem here is that Trifacta Wrangler is unable to introduce
new characters or constants (such as ‘Q’, ‘th’, “:00’, etc.), the user can introduce

id Trifacta Wrangler d Dy ic backg dk led d

extractpatterns type: custom col: inputl on: ‘digit2*
1 extractpatterns type: custom col: inputl on: ‘c 2¢ limit: 2 4 joinArrayWithPunctuation 3
extractpatterns type: custom col: inputl on: ‘digit2‘ limit: 3 (splitStringWithoutPunctuation a) dash
merge col: input5,input6,input? with: '-” as: "columnl’
extractpatterns type: custom col: column2 on: ‘dd*
3 extractpatterns type: custom col: column:Z on: ‘mm°‘ limit: 2 4 concat (addPunctuationString a dash) 3
extractpatterns type: custom col: column2 on:
merge col: columnl,column5,column? with: ”
6 replacepatterns col: column2 with: *-” on: ‘delim‘ global: true 1 changePunctuationString a dash 2
8 extractpatterns type: custom col: column2 on: ‘dd‘ limit: 2 1 getDayCardinalString a 1
extractpatterns type: custom col: column2 on: ‘dd* .

u textfonlnat col: cbﬁlllll}l type: suffix text: ‘th’ 2 getDayOrdinal a 1

13 extractpatterns type: custom col: column2 on: ‘month* 1 getMonthNameString a 1

15 extractpatterns type: custom col: column2 on: ‘dayofweek’ 1 getWeekDayString a 1

17 - reduceMonth (convertMonth (getMonthString a)) 3

19 - joinArrayWithPunctuation (changeDateFormat a mdy) slash 4
merge col: column2,column3 with: "column1’

21 textformat col: columnl type: “f“ﬂi’f. e eom 4 joinStringsWithAt a (append dotcom b) 3
replacepatterns col: columnl with: ” o global: true
textformat col: columnl type: removewhitespa

24 extractpatterns type: custom col: column2 on: ‘url* start: ‘@° end: 1 getWordsAfterAt a 1

28 extractpatterns type: custom col inputl on /["@‘]‘f[']/ 2 getWordsBeforeDot (getWordsAfterAt a) 2
extractpatterns type: custom col: input2 on: ‘alpha-+

30 extractpatterns type: custom col: column2 on: ‘url* start: " end: 1 getWordsBeforeAt a 1
‘@

31 - addNomenclature a b 1

33 extractpatterns type: custom col: column2 on: ‘url® start: "“ end: 1 getNomenclature a 1
extractpatterns type: custom col: column2 on: ‘alpha2*

35 ext{aotpattems type: custom col: column2 on: ‘alpha2‘ start: 1 loginByNameString a 1
‘delim end: ‘lower+* ’
textformat col: column5,columnl type: lowercase
merge col: columnl,column5 as: "column6’
extractpatterns type: custom col: column2 on: ‘alpha+* limit: 3

37 extractpatterns typ.c: custom C«.)l: of)l\ﬁxmnv')‘ on: "upp’cr‘ 4 reduceNameWithSurname a 1
merge col: column6,column? with: 7, 7 a lumng
textformat col: column8 type: suffix te:

46 - addPhonePrefixByCountry a b 1

51 replacepatterns col: column2 w?th: on: (global: true 9 deleteParentheses a 1
replacepatterns col: column2 with: ” on: ‘)* global: true

53 extractpatterns type: custom col: column2 on: ‘phone’ 1 getPhoneNumber a 1

55 merge col: input2,inputl with) K ,olu‘m‘nl' 9 addPhonePrefix a b 1
replacepatterns col: columnl with on:
extractpatterns type: custom col: mputl on: “digit3"

60 extractpatterns type: custom col: inputl on: ‘digit3* limit: 2 joinArrayWithPunctuation 3
extractpatterns type: custom col: inputl on: ‘digit4‘ start: ‘digit6* (splitStringWithoutPunctuation a) dash “
end: ‘end’
merge col: input2,inputd,input5 with: -’ as: ‘column1’

62 - increaseHour a b 1

64 textformat col: column2 type: suffix text: ":00” 1 appendOclockTime a 1

67 merge col: inputl,input2 with; as: “columnl’ 1 appendSomeTime a b 1

68 - convertTimeTo24hoursFormat a 1

70 convertTimeFormat a b 1

72 - convertTimeTol2hoursFormat a 1

74 - convertTimeByTimeZone a b ¢ 1

78 replacepatterns col: column2 with: ” on: ‘:digit2end* 1 deleteLast TimePosition a 1

80 extractpatterns t g column2 on: ‘digit+" 1 getHour a 1

g2 CXUTactpatterns typer custom col: imputl on: “digit-+ lmit: 2 3 getMimutes a 1
drop col: input2 action: Drop

84 extractpatterns type: custom col: column2 on: ‘time* 1 getTime a 1

86 - unitsConversion (getValue a) (getUnits a) b 3

90 - getSystem a 1

92 extractpatterns type: custom col: column?2 on: ‘lower4* 1 getUnits a 1

94 extractpatterns type: custom col: column2 on: ‘digit2.digit2* 1 getValue a 1

Table D.11. Functions obtained by our approach (Dynamic background
knowledge) compared with ‘recipe’ expressions of Trifacta Wrangler. d
is the ‘depth’ of the solution obtained with a dyae = 4.

143

D. BK-ADAPT: Supplementary Material

them and prefixes or suffixes and this implies the need of more than four actions
to deal with some examples. Furthermore, it also uses very strict predefined
formats for different types of data (such as dates or times) which lead to errors
when small variations in the input formats occur. On the contrary, our approach
faces this sort of problems in a different way by considering constants (such as
‘@) as functions, although it needs a higher number of them when there are more
than one input. The last and most important problem related to Trifacta is that
the user needs to know the language behind the tool or some regular expressions
in order to solve more complex examples. In order to overcome this problem,
our system is able to solve most of the problems using only one example given
by the user, without the need of having any technical knowledge.

D.3.3 Accuracy

Tables D.12, D.13, D.14, D.15, D.16, D.17 show some illustrative outcomes
obtained for some datasets as well as the accuracy values for each dataset. The
first instance (in italics) for each dataset (input column) is the one used for
inferring the solution for each tool. For each dataset only the three first instances
are shown.

In Table D.12 we can see the problem of having different formats in the data
of one column. The datasets related with dates have very differents types of
dates as examples. Our system is able to detect the different formats and deal
with them. On the contrary, Flashfill and Trifacta Wrangler are incapable of
detect the different types of dates to work with them or types of dates different
that their predefined ones. For instance, FlashFill can not detect ‘11.02.96’ as a
date. On the other side, D.14 shows how FlashFill and Trifacta Wrangler fail
when they has to deal with people’s names.

In Table D.13 we observe that the three approaches work well with emails.
Our approach and Trifacta Wrangler are able to detect emails. FlashFill for its
part is able to work with basic string manipulation functions to deal very well
with email problems.

In Tables D.15, D.16 and D.17 we can see that although FlashFill is not
able to detect many types of data, is capable of solving some examples by using
its DSL based on basic string manipulation problems. Here, we can see some
strength and weakness in each tool. It is clear that a DSL is not enough to deal
with a high range of problems when they become into a domain-related problems.
In the same way, even when Trifacta Wrangler is able to solve more problems
than FlashFill detecting the domains, it is important to notice that the user
needs a high degree of knowledge about the problem to solve, and the language
of the tool. In summary, the results show that our approach is autonomous as it
recognises the domain and it is more effective in terms of results.

144

Experiments: Extended Results

id input output FlashFill Trifacta Wrangler Dynamic BK
20040717 17-07-2004
3 20021015 15-10-2002 17/10/2002 15-10-2002
09292015 29-09-2015 17/20/0929 29-09-2015
Accuracy: 0 0 1
29/03/86 29-03-86
6 11.02.96 11-02-96 11.02.96 11-02-96 11-02-96
12/10/99 12-10-99 12-10-99 12-10-99 12-10-99
Accuracy: 0.6 1 1
03/29/86 29
8 74-03-31 31 3 03 31
25-08-85 25 8 08 25
Accuracy: 0 0 1
3/29/86 29th
11 12/99/13 13th 99th th 13th
10 12 69 10th 12th 12th 10th
Accuracy: 0 0 1
2 of September of 2010, Monday September
13 13 November 2008 November 2008 November November
June 23, 2007 June 2007 June June
Accuracy: 0.2 1 1
Sunday, 9 November 201/ Sunday
15 2 of September of 2010, Monday ~ Monday 2 of September of 2010 Monday Monday
Wednesday, 15 October 2003 Wednesday — Wednesday Wednesday Wednesday
Accuracy: 0.8 1 1
15/02/84 Feb
17 11/30/2017 Nov Feb Nov
28/12/2004 Dec Feb Dec
Accuracy: 0 0 1
Table D.12. Example of the results of our approach (Dynamic
background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of dates. Output is the expected output. The first row of
each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means
correct result; Red colour means incorrect result.
id input output FlashFill Trifacta Wrangler Dynamic BK
Sophia & domain Sophia@domain.com
21 Logan & domain an@domain.com Logan@domain.com Logan@domain.com Logan@domain.cof
Lucas & domain idomain.com Lucas@domain.com Lucas@domain.con Lucas@domain.com
Accuracy: 1 1 1
Nancy.FreeHafer@fourthcoffee.com fourthcoffee.com
24 Andrew.Cenc: northwind-traders.com northwind-traders.com northwind-traders.com northwind-traders.com northwind-traders.con
Jan. Kotas@lit: inc.com litwareinc.com litwareinc.com litwareinc.com litwareinc.com
Accuracy: 1 1 1
Nancy. FreeHafer@fourthcoffee.com fourthcoffee
28 Andrew. northwind-traders.com northwind-traders northwind-traders northwind-traders northwind-traders
Jan Kotas@litwareinc.com litwareinc litwareinc litwareinc litwareinc
Accuracy: 1 1 1
Nancy. FreeHafer@Jourthcofjee. com Nancy. FreeHafer
28 Andrew.Cenci northwind-traders.com Andrew.Cencici Andrew.Cencici Andrew.Cencici Andrew.Cencici
Jan Kotas@litwareinc.com Jan Kotas Jan.Kotas Jan Kotas Jan Kotas
Accuracy: 1 1 1

Table D.13.

Example of the results of our approach (Dynamic

background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of emails. Output is the expected output. The first row
of each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means

correct result; Red colour means incorrect result.

145

D. BK-ADAPT: Supplementary Material

id input output FlashFill Trifacta Wrangler Dynamic BK
Dr. Mark Sipser Dr.
33 Louis Johnson, PhD PhD Lou PhD
Robert Mills Rob
Accuracy: 0.4 0.4 1
Guillermo Filiepatos gufi
35 Federico A. Fithsakampf fefi fe fefi fefi
Carmen Funcsrentano cafu cafuncs cafu cafu
Accuracy: 0 0.6 1
Dr. Eran Yahav Yahav, E.
37 Prof. Kathleen S. Fisher Fisher, K. Fisher, Kathleen S. S, K Fisher, K.
Ken McMillan, 1T McMillan, K. 11, M. IT, M. McMillan, K.
Accuracy: 0 0.2 1
Table D.14. Example of the results of our approach (Dynamic
background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of names. Output is the expected output. The first row
of each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means
correct result; Red colour means incorrect result.
id input output FlashFill Trifacta Wrangler Dynamic BK
235-7654 & Taiwan
46 17-455-81-39 & Spain (88¢ 7-455-81-39
25-437-96-20 & South Korea (88 (82) 25-437-96-20
Accuracy: 0 0 1
785-4210 & MDG (261) 785-4210
48 352-7960 & KWT (34) 17-455-81-39 (26 7 39 (34) 17-455-81-39
846-2730 & AND (376) 846-2730 (2 8 (376) 846-2730
Accuracy: 0 0 1
(693)-785-4210 693-785-1210
51 (481)-352-7960 5. 568-734-2190 81-352-7960
(568)-734-2190 568-734-2190 568-734-2190 568-734-2190
Accuracy: 1 1 1
725-457-2130, DJs flock ... 18:95 125-]57-2130
53 John DOE 3 Data [TS]|865-000-0000 ... 865-000-0000 John DOE 3 Data [TS]865-000-0000 865-000-0000
17:58-19:29, 425-743-1650 425-743-1650 17:58-19:29 125-743-1650 25-743-1650
Accuracy: 0 0.8 1
235 1654 6 425 125-235-7657
55 T45-8139 & 425 425-745-8139 ! 25-745-8139
437-9620 & 425 425-437-9620 125-437-9620 2, 125-437-9620
Accuracy: 1 1 1
3237087700 323-708-7700
60 1635879240 87-9240 163-587-9240 163-587-9240
1854379620 185-437-9620 185-437-9620 185-437-9620
Accuracy: 1 1 1
Table D.15. Example of the results of our approach (Dynamic

146

background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of phones. Output is the expected output. The first row
of each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means
correct result; Red colour means incorrect result.

Experiments: Extended Results

id input output FlashFill Trifacta Wrangler Dynamic BK
01:84:00 + 5 06:34:00
62 01:55 + 5 06:55 6:55:00 06:55
16:15:12 + 5 21:15:12 6:15:00 21:15:12
Accuracy: 0 0 1
01:34 01:34:00
64 07:05 07:05:00 07:05:00 07:05:00 07:05:00
16:15:12 16:15:12 16:15:12:00 16:15:12:00 16:15:12
Accuracy: 0.8 0.8 1
01:34 + 30 01:34:30
66 01:55 + 30 01:55:30 01:55:30 16:15:12 01:55:30
16:15:12 + 30 16:15:12 16:15:12:30 16:15:12:30 16:15:12
Accuracy: 0.6 0.8 1
1:34:00 PM CST 13:34:00
68 3:40 AM 03:40 10:40:00 3:40 03:40
07:05:59 07:05:59 22:05:59 07:05:59 07:05:59
Accuracy: 0 0.6 0.8
01:34:00 01:34
78 01:55 01 0:00 01 01
16:15:12 16:15 16:15 16:15 16:15
Accuracy: 0.2 1 1
01:55 01
80 03:40 AM 03 03 03 03
08:40 UTC 08 03 08 08
Accuracy: 1 1 1
1:34:00 PM CST 3]
82 3:40 AM 40 10 10 10
07:05:59 05 05 05 05
Accuracy: 1 1 1
1:34:00 PM CST 1:34:00
84 3:40 AM 3:40 3:40:00 3:40 3:40
07:05:59 07:05:59 07:05:59 07:05:59 07:05:59
Accuracy: 0.4 1 1

Table D.16. Example of the results of our approach (Dynamic
background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of times. Output is the expected output. The first row of
each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means
correct result; Red colour means incorrect result.

147

D. BK-ADAPT: Supplementary Material

id input output FlashFill Trifacta Wrangler Dynamic BK
1441.8mg — g 1.4418001
86 87s —ns 8700000.0 87418001 8700000.0
1854 dam — dm 185400.0 18418001 185400.0
Accuracy: 0 0 1
56.77cl Volume
90 84kg Mass Volume Mass
1854 dam Length Volume Length
Accuracy: 0 0 1
56.77cl cl
92 84kg kg kg g kg
1854 dam dam dam dam dam
Accuracy: 1 0.8 1
56.77cl 56.77
94 84kg 84 84 84
1854 dam 1854 1854 1854
Accuracy: 1 0.4 1
Table D.17. Example of the results of our approach (Dynamic

148

background knowledge) compared with FlashFill and Trifacta Wrangler
using datasets of units. Output is the expected output. The first row of
each dataset is the example given to FlashFill and MagicHaskeller to
learn, and used in Wrangler to generate the results. Green colour means
correct result; Red colour means incorrect result.

Tool: System Overview

D.4 Tool: System Overview

This description of the system has been published in [22, 23].

BK-ADAPT uses MagicHaskeller [90] as the underlying IP system. BK-
ADAPT works as follows: (1) one output example is filled (See Figure D.1) and
used to detect the appropriate domain (See Figure D.2) and set of primitives that
form the dynamic background knowledge ; (2) using the background knowledge
and the example, MagicHaskeller learns a function f that correctly transforms
the input of the example to the given output (See Figure D.3); and (3) the
function f is applied to the rest of the inputs, obtaining the new values for the
output column automatically (See Figure D.4).

Dynamic Background Knowledge

Fill the inputs and some outputs or use a demo dataset:
times-getHour j
Input Output
[2002186 12:30:00 AM csT | [1200
[Prace: 03:40 Am
[or-05:50 (Tuesday)
[o:a0utc
Options Detect domain

oo JLoom]

Figure D.1. Interface of BK-ADAPTwith a form where the user can
select a dataset and fill one or more outputs.

The background knowledge is composed of basic string manipulation functions
and functions that can be useful for the specific problems of each domain as well.
The list of domains for this demo is: dates, emails, names, phones, times and
units. However, this list can be increased and/or include different domains. More
concretely, the background knowledge to be used for MagicHaskeller to solve
one given example is dynamically generated in two different ways: (1 Inferred
Domain) The domain is automatically detected and the correct background
knowledge is used; (2 Dynamic background knowledge by primitive ranking).
The background knowledge is formed by those primitives that are more likely
to be needed for solving the example. To this end, the BK-ADAPT system
uses two learning modules trained using the descriptive meta-features previously
extracted from the examples: a domain classifier, that predicts the domain an
example belongs to, and a primitive estimator that estimates the probability of
each primitive to be used for solving the example. The background knowledge is

149

D. BK-ADAPT: Supplementary Material

= Before the ranking

Metafeatures Domain

= After the ranking

Functions Solution

1. getDayCardinal String

Figure D.2. BK-ADAPTIs able to recognise the domain and it is shown
to the user.

dynamically generated depending on the problem to solve' 2.

D.4.1 System Architecture and User Interface

BK-ADAPT has been developed as a user-friendly PHP-based web application
(see Figure D.5) which main interface simulates a spreadsheet or table with
input/output text fields. In this interface, the input field is used as a way to
provide the original value for the attribute we want to transform, and the output
field is the result the user wants to obtain. The goal of the system is, given
just one (or very few) input/output example(s), try to fill the outputs of the
rest of instances whose output fields have not been filled. For this, the user can
fill as many output text field as they like (from 1 to n — 1) in order to show
the system how the output data should look like, (i.e., which is the desired
data transformation). The transformation process is completely automatic and
transparent for the user: no need to reload the website as the system works
dynamically through AJAX requests (jQuery framework). *

IThe complete description of the approach can be found in section X and [21]

2The code is available at: https://github.com/liconoc/DataWrangling-DST

3The functionality of our system can be seen on: https://www.youtube.com/watch?v=
wxFhXYyonOw

150

https://github.com/liconoc/DataWrangling-DSI
https://www.youtube.com/watch?v=wxFhXYyonOw
https://www.youtube.com/watch?v=wxFhXYyonOw

Tool: System Overview

= Before the ranking

Metafeatures Domain

end_dotAndWerd inputl
end_lower_inputl

has_lat inputl
has_2dot_inputl
has_at_inputl
has_dot_inputl
has_lettersAndDot_inputl

has_lowers_inputl

= After the ranking

Functions Solution

1. getWords AfterAt
2. getWordsBeforeAt

3. getWordsAfterDot

Figure D.3. The system shows to the user the list of meta-features
extracted from the examples and the background knowledge generated.

As we have seen, data wrangling is widely reported as an intense manual
process for data scientists which manual involvement affects the time needed to
finish a project or data analysis. BK-ADAPT allows the user to use the time in
other and more important tasks by three reasons: (1) do not do things by hand;
(2) do not write code; and (3) use a tool that does the task automatically.

151

D. BK-ADAPT: Supplementary Material

Dynamic Background Knowledge

Fill the inputs and some outputs or use a demo dataset:

times-getHour :I
Input Output

| 291086 12:34:00 AM ST | | 1200 |

| Piace: 03:40 AM | | o=00 |

| o7-05:59 (Tuesday) | | omo0 |

| o8:40 uTC | | o800 |
Options S Detect domain

Figure D.4. Once the process is ended, BK-ADAPT fills automatically
the rest of the output.

php . .. —
¢ MagicHaskeller

Background
Apache Server Knowledge
IS Hastet

: \
@mﬂ

Figure D.5. : system architecture.

®
T B

152

AUTOMATI[R]IX : Supplementary

Material

E.1

Background Knowledge: List of Functions

id f mi ni mo no m_min n_min
01 rowSums(A) m n 1 m 2 NA
02 colSums(A) m n 1 n 2 NA
03 rowMeans(A) m n m 1 NA NA
04 colMeans(A) m n 1 n 2 NA
05 nrow(A) m n 1 1 2 NA
06 ncol(A) m n 1 1 2 NA
07 cor(A) m n n n 2 NA
08 det(A) m m 1 1 2 NA
09 diag(A) m n 1 n 2 NA
10 t(A) m n n m NA NA
11 is.na(A) m n m n NA NA
12 lisna(A) m n m n NA NA
13 A==0 m n m n NA NA
14 A!=0 m n m n NA NA
15 A<=0 m n m n NA NA
16 A>=0 m n m n NA NA
17 A<O m n m n NA NA
18 A>0 m n m n NA NA
19 A==1 m n m n NA NA
20 Al=1 m n m n NA NA
21 A<=1 m n m n NA NA
22 A>=1 m n m n NA NA
23 A<l m n m n NA NA
24 A>1 m n m n NA NA
25 A*A m n m n NA NA
26 apply(A,l,rev) m n m n 2 NA
27 apply(A,2,rev) m n m n 2 NA
28 as.table(A) m n m m NA NA
29 chind(A,A) m n m n*2 NA NA
29 rbind(A,A) m n m*2 n NA NA
30 length(A) m n 1 1 NA NA
31 max(A) m n 1 1 NA NA

continued on next page

153

E. AUTOMAT[R]IX : Supplementary Material

154

continued from previous page

id f mi ni mo no m_min n_min
32 min(A) m n 1 1 NA NA
33 mean(A) m n 1 1 NA NA

Table E.1. List of functions from the R language included in the
background knowledge of AUTOMAT [R]IX. m;xn; represents the size
of the input, while m,xn, represents the size of the output once the
function is applied. Mmin and Nmin are the minimum number of rows
and columns that the input matrix needs to accomplish.

Prior Probabilities: List of Top Functions in GitHub

E.2 Prior Probabilities: List of Top Functions in GitHub

library content count
base length 634503
base Nrow 171765
base is.na 159483
base which 154866
base colnames 151345
base max 107362
base unique 92035
base mean 89843
base cbind 88746
base dim 85965
base ncol 83110
base t 76742
base min 72586
base rbind 71891
base class 63129
base order 44862
base sort 31890
base diag 26276
base rowSums 15053
base colSums 11226
base sin 10286
base duplicated 9914
base solve 9693
base isSTRUE 9314
base colMeans 8740
base cos 8366
base rowMeans 7443
base which.max 6743
base which.min 5556
base det 1783
base upper.tri 1739
Matrix solve 988
base as.table 725

Table E.2. List of the R functions most used in GitHub. This table
only contains those functions related to matrices. It includes the library
where the function is included and the absolute number of uses (count).

155

E. AUTOMAT[R]IX : Supplementary Material

E.3 Text Hints: Frequent Terms from Function’s
Documentation

rowSums(A)

form-

means-

row-

sums-

column-

arrays-

frames-

data-

numeric-

o
=)
=}
i
=)
IN)
o
w

tf_idf

Figure E.1. TF-IDF values for the R primitives rowSums, colSums,
rowMeans and colMeans extracted from the R help documentation.

nrow(A)

ncol-
nrow-
number-
rows-
columns-
present-
return-
same-

treating-

o
=)
=}
S
o
)
o
w

tf_idf

Figure E.2. TF-IDF values for the R primitives nrow and ncol
extracted from the R help documentation.

156

Text Hints: Frequent Terms from Function’s Documentation

cor(A)

correlation-
covariance-
cor-

cov-
variance-
matrices-
columns-
between-
compute-
computed-
correlations-
corresponding-
covariances-
efficiently-

scales-

S}
o
N
o
N
o
w
o
IS

tf_idf

Figure E.3. TF-IDF values for the R primitive cor extracted from the
R help documentation.

t(A)

transpose-

frame-
given-
matrix-
returns-
data-
0.4
tf_idf

Figure E.4. TF-IDF values for the R primitive t extracted from the R
help documentation.

157

E. AUTOMAT[R]IX : Supplementary Material

is.na(A)

. na-
missing-
generic-
function-

any-
elements-

anyna-
available-
constant-
constants-
contains-
especially-
except-

_ faster-
implements-
indicates-
indicator-
language-
na_character_-
na_complex_-
na_integer_-
na_real_-
na<-

not-
possibly-
raw-
reserved-
setst—
support-
?}?ere—

o-

PR
way-
words-

o
o
IS
o
o
a
o
o
S)
o
i
o
o
N
S

t

g
=3

Figure E.5. TF-IDF values for the R primitive is.na and !is.na
extracted from the R help documentation.

A==(

operators-

allow-

comparison-

relational-

binary-

atomic-

values-

vectors-

which-

o
el
o

0 0.05 0.10
tf_idf

o
o

Figure E.6. TF-IDF values for the R primitives related to operators,
like A==0, extracted from the R help documentation.

158

Text Hints: Frequent Terms from Function’s Documentation

apply(A, 1 rev)
marginsr _

applyr _

one _

IiStr _

ObtainEd | _

o _
funCtionsr _

0.0 0.1 0.2 0.3
tf_idf

Figure E.7. TF-IDF values for the R primitives related to Apply
extracted from the R help documentation.

159

E. AUTOMAT[R]IX : Supplementary Material

E.4 Data: List of Examples

example text

01 How to reverse a matrix

02 replace 0’s with 1’s

03 Get positions for NA

04 rowsums accross specific row in a matrix

05 How to get the sum of each four rows of a matrix in R
06 Extract diagonal of a matrix in R

07 Rotate a Matrix in R

08 Concatenating matrices by row in r

09 Concatenating matrices by column in r

10 Convert a matrix in r into a upper triangular matrix
11 Multiply a matrix by another matrix

12 How can I create a correlation matrix in R?

13 which elements are greather than one

14 which elements are negative numbers

15 What is the best way to transpose a matrix in R

16 How to get the mean over a entire matrix

17 How to get the max over a entire matrix

18 How to get the min over a entire matrix

19 Elegant way to report the number of missing values in a matrix
20 Na’s in a diagonal matrix

Table 1.3. Description of the problems (questions from users) used for
learning matrix transformations. The text is used as a hint in natural
language provided by the user.

160

Pipeline of events for a simple example

E.5 Pipeline of events for a simple example

TRUE FALSE

NA T NA 1 (b) Matrix B with TRUE TALSE TRUE FALSE
1 NA NA 2 Boolean values repre- FALSE TRUE TRUE FALSE
NA 2 NA 3 TRUE FALSE TRUE FALSE

senting whether a cell
(a) Matrix A with some contains a NA or not. Only (¢) Matrix S, the com-
NA values. two cells are completed. pleted version of B.

Iteration: 1
background knowledge (ordered by the probabilities):

1 length(A) 0.239125

2 lisma(A) 0.1178071

3 is.na(A) 0.1178071

4 apply(A,l,rev) 0.05579061

5 apply(A,2,rev) 0.05579061
Variables:

g + length(A)
found + FALSE
explored <— FALSE
Number of explored nodes: 1
Number of created nodes: 68
Iteration: 2
background knowledge (ordered by the probabilities):

1 lis.na(A) 0.1178071
2 isna(A) 0.1178071
3 length(length(A)) 0.05718077
4 apply(A,1rev) 0.05579061
5 apply(A,2,rev) 0.05579061
Variables:
g + lis.na(A)

found + FALSE
explored < FALSE
Number of explored nodes: 2
Number of created nodes: 34
Iteration: 3
background knowledge (ordered by the probabilities):

1 is.na(A) 0.1178071
2 length(length(A)) 0.05718077
3 apply(A,lrev) 0.05579061
4 apply(A,2rev) 0.05579061
5 nrow(A) 0.05569636
Variables:
g + is.na(A)

found <+~ TRUE

explored < FALSE

Number of explored nodes: 3

Number of created nodes: 0
Time: 0.033s

Figure E.8. Short example of the pipeline of events for a simple problem:
marking the positions with NA.

161

E. AUTOMAT[R]IX : Supplementary Material

Figure E.8 shows an example of a pipeline of events when running the algorithm.
In this example, the goal is to learn a function that given an input matrix,
returns an output matrix where each cell contains a Boolean value indicating if
the corresponding position in the input matrix is NA. In the top of the figure, we
include: matrix A (input), matrix B (partial output) and matrix S (complete
output). The text used as a hint is: “Get positions for NA”. In the figure we
show the three iterations of the algorithm. BK represents the five functions
with highest probability for each iteration. Variables shows the function selected,
whether the solution has been found or the three has been completely explored,
the total number of nodes explored at the moment and the number of nodes
created in this iteration. Note that in Iteration 2 we explore the branch of
the tree that falls under length(A). One of the compositions in that branch
is precisely length(length(A)), i.e., apply the function again, which, because
the a priori probability of length alone is so high, still gets sufficient probability
to appear in the top 5 in the figure.

162

	Abstract
	Resumen
	Resum
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	I Introduction
	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Objectives
	1.3 Research Methodology
	1.4 Thesis Outline

	II Background
	2 Inductive Programming
	2.1 Introduction
	2.2 Learning programs
	2.3 Inductive Bias
	2.4 General Purpose Inductive Programming Systems

	3 Data Science Automation
	3.1 Introduction
	3.2 Data Science Trajectories
	3.3 Data Wrangling
	3.4 Data Wrangling Automation

	III BK-ADAPT: Automating Data Format Standardisation
	4 Domain-specific Induction
	4.1 Introduction
	4.2 Problem Definition
	4.3 Experiments
	4.4 Conclusions

	5 Dynamic Background Knowledge
	5.1 Introduction
	5.2 Upgraded Approach
	5.3 Method
	5.4 Experiments
	5.5 Conclusions

	IV AUTOMAT[R]IX: Automating Matrix Transformations
	6 Learning Simple Matrix Pipelines
	6.1 Introduction
	6.2 Problem Definition
	6.3 Method
	6.4 Experiments
	6.5 Conclusions

	V Conclusions
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendices
	A Data Collection
	A.1 Survey to collect personal data

	B Data Wrangling: Competences and Skills
	B.1 List of Data Wrangling Competences
	B.2 List of Data Wrangling Hard Skills
	B.3 List of Data Wrangling Soft Skills

	C Logging Data Scientists
	D BK-ADAPT: Supplementary Material
	D.1 Background Knowledge: List of Functions
	D.2 Data: List of Meta-features
	D.3 Experiments: Extended Results
	D.4 Tool: System Overview

	E AUTOMAT[R]IX : Supplementary Material
	E.1 Background Knowledge: List of Functions
	E.2 Prior Probabilities: List of Top Functions in GitHub
	E.3 Text Hints: Frequent Terms from Function's Documentation
	E.4 Data: List of Examples
	E.5 Pipeline of events for a simple example

	Página en blanco
	Página en blanco

