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Abstract

The Close-Enough Arc Routing Problem, also called Generalized Directed Rural Postman
Problem, is an arc routing problem with interesting real-life applications, such as routing
for meter reading. In this application, a vehicle with a receiver travels through a series of
neighborhoods. If the vehicle gets within a certain distance of a meter, the receiver is able
to record the gas, water, or electricity consumption. Therefore, the vehicle does not need to
traverse every street, but only a few, in order to be close enough to each meter. In this paper
we deal with an extension of this problem, the Distance-Constrained Generalized Directed
Rural Postman Problem or Distance-Constrained Close Enough Arc Routing Problem, in which
a fleet of vehicles is available. The vehicles have to leave from and return to a common vertex,
the depot, and the length of their routes must not exceed a maximum distance (or time). For
solving this problem we propose a matheuristic that incorporates an effective exact procedure
to optimize the routes obtained. Extensive computational experiments have been performed on
a set of benchmark instances and the results are compared with those obtained with an exact
procedure proposed in the Literature.

Keywords: Close-Enough Arc Routing Problem, Generalized Directed Rural Postman Problem,
distance constraints, matheuristic, multi-start.

1 Introduction

Arc routing problems consist basically of finding one or several routes traversing a fixed set of arcs
or edges that must be served. An exhaustive recent annotated bibliography of this area can be
found in Mourao and Pinto [11], while Corberan and Laporte [5] summarizes the state of the art of
this family of problems and its applications. Some examples of real-life applications include routing
for meter readings corresponding to electricity, water or gas. While traditionally these readings
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had to be performed door to door and thus the vehicles had to traverse all the streets in which
such meters where located, new technologies allow companies to remotely collect the data by using
radio frequency receivers installed in vehicles that can collect the information sent by the metering
devices. Therefore, it will be enough for a vehicle to traverse any street within a certain distance
of the meter.

This type of application was first studied for a single vehicle by Shuttleworth et al. [13], who
called this problem the Close-Enough Traveling Salesman Problem since they considered it a node
routing one. The same problem was studied by Ha et al. [10], who called it the Close-Enough
Arc Routing Problem (CEARP) since they realized it is an arc routing one. These authors define
the problem as follows. “Consider a set of customers that must be covered. These customers
can be located anywhere in the area covered by the network, not only in the network itself. The
CEARP consists in finding a minimum-cost tour, which begins and ends at the depot, such that
every customer is covered by the tour, that is, lies within a distance r of an arc of the tour”. Since
each customer has associated a subset of arcs, of which at least one has to be traversed in order
the customer being serviced, this problem can also be considered a Generalized Directed Rural
Postman Problem (GDRPP). This problem was introduced by Drexl ([7], [8]).

Drexl ([7], [8]) proved that the GDRPP is N P-hard by noting that the Directed Rural Postman
Problem (DRPP) reduces to a GDRPP in which each customer can be served from a single arc. He
also proposed a formulation and a branch-and-cut algorithm producing good computational results.
Ha et al. [10] proposed a new formulation for the CEARP/GDRPP and a branch-and-cut algo-
rithm providing very good computational results on large-size instances. Two new mathematical
formulations and a polyhedral study were presented in Avila et al. [2], as well as a branch-and-cut
algorithm using several families of new inequalities. The paper includes a comparison of the perfor-
mance of this algorithm with that by Ha et al. [10]. More recently, Cerrone et al. [4] have proposed
some techniques to reduce the size of the graph and a new flow-based formulation. The compu-
tational results obtained with this new formulation on a first set of instances proposed in [10] are
better than those of Ha et al. and slightly worse than the ones reported in [2] although obtained in
marginally shorter computing times. Moreover, the Stochastic CEARP has been studied in Renaud
et al. [12]. The stochasticity lies in the uncertainty of collecting data due to failed transmissions.
Authors assume that it is possible that the remote reading of the meter fails. Then, they introduce
the probability of reading a meter as a function of the distance of the customer from the route
taken by the operator. For this problem, authors propose a mathematical formulation, give some
preprocessing properties, and propose a cutting-plane algorithm and several heuristics for its solu-
tion. Ardoz et al. [1] study the Generalized Arc Routing Problem (GARP) on an undirected graph.
This problem is a special case of the GDRPP in which the customers are associated with clusters
of edges that are pairwise-disjoint connected subgraphs. For this problem, authors present some
facets and valid inequalities and propose a branch-and-cut algorithm. Similar problems have also
been studied for node routing problems and are known as covering tour problems (see Gendreau
et al. [9] for details).

All the previously mentioned papers deal with a single vehicle. As far as we know, the only
article considering a fleet of vehicles is the one by Avila et al. [3]. This work considers the problem
of finding a set of K routes leaving from and entering at the depot and serving all the customers,
such that the length (in distance or time) of each route does not exceed a certain value Tj,qz.
The objective is to minimize the total length traversed. They noted that the problem is NP-Hard,
since it generalizes the CEARP. For this problem, several formulations and exact algorithms were
proposed and compared on a set of instances with up to five vehicles, 196 vertices, 450 arcs, and
150 customers.



In this paper we study this latter problem, called the Distance-Constrained Close-Enough Arc
Routing Problem (DC-CEARP), for which we propose a multi-start matheuristic that incorporates
an effective branch-and-cut method for the CEARP in order to optimize the routes obtained. In
Section 2 we define formally the DC-CEARP and introduce the notation used. Moreover, the most
promising formulation of the problem, according to [3], is given. The matheuristic is presented in
Section 3 and the computational experiments are described in Section 4. Finally, some conclusions
and future lines of research are given in Section 5.

2 Problem definition and notation

The DC-CEARP is defined on a strongly connected directed graph G = (V, A), where V' denotes
the set of vertices and A the set of arcs. Vertex 1 is the depot, and, for each arc (i,7) € A, there
are a cost ¢;; and a distance or time ¢;; associated with its traversal. There is a set of L customers,
each customer m having an associated set of arcs H,, C A from which it can be served. Let us call
H = {Hi,..., Hp} the family of these sets. We assume there is a fleet of K identical vehicles based
at the depot. The duration or length of the routes of these vehicles must not exceed a maximum
travel time or distance denoted by Tpn.q-. The objective of the DC-CEARP is to find a set of K
routes, starting and ending at the depot, with minimum total cost and such that at least one arc
form each H,,, m =1,..., L, is traversed by the routes.

In what follows, K = {1,..., K} will represent the set of vehicles and Agp = H1 UHyU...UH[,
the set of required arcs. The arcs in the set Aygr = A\ Agr are called non-required arcs. Given a
set S C V, wedefine 67 (S)={(i,j) € A:i €S, jeV\SHLI(S)={(i,j)eA:ieV\S, jeS}
and A(S) = {(i,5) € A:i,j € S}. Finally, given a set F of arcs, z¥(F) = > (i.j)eF xfj

In the paper by Avila et al. [3] four different formulations for the DC-CEARP were presented.
The formulation that provided the best computational results was called F,, and is presented in
what follows. Let us define the variables:

xfj = number of times that the vehicle k traverses arc (i,j) € A,

o { 1, if the customer m is served by vehicle k

zy = .
m 0, otherwise.

The problem can be formulated as

Minimize E g Cij X35

keK (i,5)€A



s.t.:
2H(0F (@) =207 () VieV, VkeK (1)
2 (61(8)) > 2k — a2 (H,nAV\S) VScV\{l}, ¥m=1,...,L, Vke€K (2)
dah=1 V¥m=1,..,L (3)

keK
Z xsz,zsz Ym=1,...,L, Vk € K (4)
(1,5)€EHm
> tijal < Tpee  VkeK (5)
(1,5)€A
xfj >0 and integer  V(i,j) € 4, Vk € K (6)
2k e{0,1} Vm=1,...,L, VkeK (7)

Inequalities (1) are the symmetry conditions on the vertices. Constraints (2) ensure the con-
nectivity of the routes. Note that, if vehicle k£ does not serve customer m, zfn = 0, or it serves
customer m by traversing an arc in H,, N A(V '\ S), then the inequality is trivially satisfied. On
the other hand, if vehicle k serves customer m by traversing an arc not in H,, N A(V \ ), it has
to traverse the cutset §(S). The mandatory service of the customers is established in inequalities
(3), and inequalities (4) link the two sets of variables. Finally, constraints (5) limit the duration of

the routes and (6) and (7) are the non-negativity and integrality constraints.

Using this formulation, Avila et al. [3] implemented a branch-and-cut algorithm capable of
solving instances with up to five vehicles, 196 vertices, 450 arcs, and 150 customers. Nevertheless,
the algorithm could not find the optimal solution in 30 out of the 251 instances and in seven of
these 30 was not even able to produce a feasible solution after one hour of computing time. This,
and the need of solving larger instances, as well as to provide good upper bounds that can help the
exact algorithm, motivated us to develop a heuristic algorithm for the DC-CEARP.

3 Matheuristic

The proposed algorithm is a multi-start matheuristic. In each iteration of the algorithm, the
routes are first generated using a heuristic construction algorithm and they are then improved by
two local search procedures. Finally, each route is optimized by means of an exact procedure. The
algorithm stops when a certain number of iterations with no improvement is reached or a maximum
computation time is exceeded.

Before applying this algorithm, we first remove those customers m; such that there is another
customer my for which H,,, C H,,,.

3.1 Constructive algorithm

In this section we describe how to construct feasible solutions for the DC-CEARP by iteratively
assigning each customer to a route. Since the total duration of the routes could be improved in later
phases of the algorithm, we allow the duration of the constructed routes to exceed the time limit by
a certain amount given by a parameter Marg varying between 0 and 0.2. Let 77, = (14Marg) X Tnax
be the maximum duration allowed for the routes in this phase of the algorithm.



A route for vehicle ¢ will be represented as the sequence R; of required arcs traversed by vehicle
i. We assume that, in order to travel from the end of a required arc to the beginning of the
following one, the vehicle uses the shortest path. Associated with each route i, we have a vector
M; containing the customers which are served from the required arcs in R;.

The constructive algorithm consists of two phases: the first one initializes the routes, and the
second one completes them by iteratively allocating the customers not yet assigned to any route.
We have implemented six variants of the constructive method, resulting from the combination of
three different initialization procedures with two completion methods that are described in what
follows.

3.1.1 Initialization procedures

We define the service time of a customer m, and denote it st,,, as the shortest time needed for
traveling from the depot to an arc in H,,, traversing it, and returning to the depot. Based on this
service time, we have considered different ways of introducing the first arc in each route.

o Random Initialization
To initialize a route 7, we randomly select a customer m among those that have not been
assigned to any route yet. Among all the arcs in H,,, we select the arc a,, associated with
the minimum service time st,,. Likewise, a,, is introduced in R;, and both m and the rest of
unassigned customers that can be served by a,, are included in M;.

e Random Selection among the Best Applicants
We define BA (Best Applicants) as the set formed by the min{10, £} unassigned customers
with the highest st,, values.

To initialize the route i, we randomly select a customer m € BA and its corresponding arc
am € Hp, with minimum service time st,, is inserted in R;. Customer m, together with all
the other unassigned customers that can be served by arc a,,, is added to M;.

o Weighted Selection among the Best Applicants
A customer m is randomly chosen from the set BA defined above using probabilities

St
Pm==,"-
" ZiGBA st;

Customer m € BA is introduced in M; and the arc a,, € H,, associated with st,, is included
in R;. Again, all the unassigned customers that can be served by a,, are included in M;.

Note that inserting an arc in an empty route implies traveling from the depot to this arc and
returning back using shortest paths. These shortest paths are studied to check if they traverse
any arcs from which unassigned customers could be served. If this is the case, these customers are
added to the corresponding route and marked as assigned, and the arcs from which they are served
are marked as required and added to the route in the corresponding position.

3.1.2 Route completion procedures

Once the routes have been initialized using one of the variants explained above, a deterministic
completion procedure is used to introduce the remaining customers in the routes by iteratively



adding arcs to the partial routes. Note that an arc that is inserted in a route ¢ may also serve
other unassigned customers. These customers are also added to M;. Likewise, inserting an arc in
a route may result in changing the shortest paths traversed between required arcs. If these new
shortest paths traverse any required arc that can serve unassigned customers, these customers are
also added to M;, and the corresponding required arc is included in R;.

Two different completion methods are used: one completing all the routes simultaneously and
another one working in a sequential way, completing each route before moving to the next one.

e Parallel Completion
Once all the routes have been initialized, we start by allocating the unassigned customers
m with |H,,| = 1, since these are the customers with less flexibility to be inserted in the
routes. For each of these customers we check all the possible positions and routes in which
its corresponding arc can be inserted, and choose the one that produces a minimum increase
of the route duration.

For each arc a of the remaining unassigned customers, we calculate how much the duration
of the route increases for all the possible positions and all the possible routes in which we
can insert a. The minimum of these values is called the insertion cost of a. Note that an
insertion in a route is considered possible if the resulting route time does not exceed T7,. For
each unassigned customer m, let a’, be the arc in H,, with minimum insertion cost. Then,
we choose the customer m* with the maximum insertion cost ay,.. Arc ay,. is inserted in the
best possible position and route, say R;, and m* is added to M;.

o Sequential Completion
In this case, after a route i is initialized, it is completed until no more customers can be
allocated to it without exceeding T7..

For each unassigned customer, we obtain the arc and the position in which it should be
introduced so that the increase of the duration of the route is minimum. This process is
repeated until no customer can be inserted in the route without exceeding 77, i.e, the current
route has been completed. If there are some customers that are not allocated yet to any route
and there is an empty route, a new route is initialized.

3.2 Local search

The solutions obtained in the construction phase are improved using two local search procedures.
The methods 2-FEzchange, based on the exchange of two arcs from different routes, and destroy and
repair, where some arcs and their corresponding customers are removed from the solution and then
reintroduced, are described.

3.2.1 2-Exchange

The 2-FEzchange procedure consists of swapping two arcs of different routes. Note that when two
arcs of different routes are exchanged, the customers associated with each arc must be exchanged
too. As it is explained below, this exchange is applied following the first improvement strategy.

The routes are sorted randomly and the first two routes R; and R; are selected. Then, an
arc a; from R; and an arc a; from R; are deleted and the customers served from a; and aj are
removed from M; and Mj, respectively. Arc a;? is placed in the best possible position of the route

i, and arc a; in the best possible position of the route j. The customers served from the arc a;



are included now in M;, and those served from a; are included in M;. If the obtained solution
improves the current one and 77, is not exceeded, the movement is accepted and another pair of
routes is selected. Otherwise, the movement is discarded and another pair of arcs of R; and R; is
chosen until an improving movement is found or all the possible exchanges for this pair of routes
have been tried.

3.2.2 Destroy and repair

This method consists of two phases: in the first one, some arcs are removed from the current
solution, while in the second one of the customers that cannot be served due to the removed arcs
are reallocated.

In the destruction phase of the algorithm, d arcs are removed from the solution but always
keeping at least one arc in any route. Specifically, an arc is randomly selected and, if it is not the
only arc in its route, it is removed. Let a; be an arc removed from R; and m a customer served
from this arc. If there is another arc in R; from which customer m can be served, m does not need
to be reallocated. If this is not the case but there is an arc in another route R; from which m can
be served, m is reassigned to route R; without modifying the routes. Otherwise, customer m will
be marked as unassigned in order to be reallocated by the repair phase.

Once the destruction phase is finished, all the unassigned customers must be reallocated. This
is done using the parallel completion procedure described in Section 3.1.2. If the resulting solution
does not improve the original one, all the changes made in this phase are discarded.

This procedure is repeated for each value of d € {1,2,5} until 100 iterations without an im-
provement are performed.

3.3 Optimization of the routes

Finally, we optimize each single route by solving a single-vehicle CEARP problem using the exact
branch-and-cut algorithm developed in [2].

Given a route i, we define a CEARP instance on graph G with the set of customers M;. Each
customer m € M; has the same associated set of required arcs H,, as in the original DC-CEARP
instance. This CEARP instance is then solved optimally. If the duration of the optimal route is
greater than T},,., the route is not feasible and the current solution is discarded.

If the obtained route is feasible, it may now traverse some required arcs that serve customers
which are currently assigned to other routes. If we can now serve a new customer m that belongs
to another route j that has not been optimized yet, we add m to M; and remove it from M;.
Since the order of selecting the routes to be optimized can have an effect in the optimization of the
remaining routes, the selection is made at random.

3.4 Overall algorithm

The multi-start matheuristic consists basically of generating solutions using the different construc-
tive algorithms presented above and applying the local-search procedures and the exact optimiza-
tion to the individual routes. This procedure is repeated until a certain stopping criterium is met.
Specifically, the matheuristic (Algorithm 1) is initialized by creating a solution with one of the six
constructive algorithms proposed. Note that, since this solution is built using a time or distance



limit for the routes Ty, = (14+Marg) X Tiaz, if Marg > 0, the duration of some routes may exceed
Trnaz and thus the solution may not be feasible. The obtained solution is improved by means
of the local-search algorithm and then each route is optimized using the procedure described in
Section 3.3. This construction and improvement phase is repeated for all the different constructive
algorithms. If the best feasible solution (if any) obtained in this way is better than the current best
solution, it is stored as the new best solution. This procedure is repeated until a maximum com-
puting time time_limit is exceeded or a certain number of iterations iter_max without updating
the best known solution is reached.

The overall algorithm (Algorithm 2) applies the multi-start procedure with values Marg =
0,0.05,0.1 and a maximum number of iterations without improvement of iter_max1. If no feasible
solution has been found, the multi-start procedure is used again with maximum number of iterations
iter_max2 and increasing the value of Marg by 0.02 iteratively. The procedure stops when a feasible
solution is found, Marg > 0.2, or the computing time time_limit is exceeded, whatever happens
first.

Input: G, H, Tyqz, Marg, iter_max, time_limit
Output: Spes
1 T, « (1+Marg) X Thax;
2 iter < 0;
3 Sbest — Q;
4 while time_limit is not reached AND iter < iter_maz do
5 Siter Q);
6 for each Constructive algorithm do
7 S < Constructive algorithm (7%, );
8 S; < Local-Search(S,, Tr.);
9 S, < Routes optimization(S;, Trnaz);
10 if S, is feasible and better than Sj;., then
11 ‘ Siter < So;
12 if Sjer is feasible and better than Sy then
13 Shest < Siter;
14 iter < 0;
15 else
16 iter < iter + 1;
Algorithm 1: Multi-start
Input: G, H, T4z, iter-mazxl, iter_max2, time_limit
Output: Spes
1 Marg < 0;
2 Sbest — @;
3 while time_limit is not reached AND Marg < 0.1 do
4 Shest < Multi-start(G, H, Tnaq, Marg, iter_maxl, time_limit);
5 Marg < Marg +0.05;
6 if Spesr = 0 then
7 while Sp.s; = 0 AND time_limit is not reached AND Marg < 0.2 do
8 Spest < Multi-start(G, H, Tinaz, Marg, iter_max2, time_limit);
9 Marg < Marg+0.02;

Algorithm 2: Overall



4 Computational experiments

In this section we study the performance of the proposed algorithm. The instances tried and
the computational results obtained are described in the following sections. The procedures have
been coded in C++ and all the computational experiments have been executed on a single thread
of an Intel Core i7 at 3.4GHz with 32GB RAM running Windows 10 Enterprise 64 bits. The
branch-and-cut algorithm for the single-vehicle CEARP used for optimizing the routes (see Section
3.3), developed in [2], was also implemented in C++ using CPLEX 12.4 MIP Solver with Concert
Technology 2.9. Although this exact procedure is able to solve large-sized GDRPP instances, it
can be quite time consuming. Therefore, we have limited its execution time to 10 seconds.

4.1 Instances

The algorithm has been tested on the four sets of instances proposed in Avila et al. [3]. The
instances of the two first sets, called Random50 and Random75, were generated randomly in a
1000 x 1000 square, with |[V| € {50,75}. The other two sets of instances, called Albaida and
Madrigueras are based on the street networks of these two Spanish towns. There is a total of 251
instances whose characteristics are shown in Table 1. All the data, including the values of Tuqz
and the number of vehicles, as well as the detailed results described in Section 4.2, can be found
in [6].

| AR| |ANR| L
V] |A| Min  Max Min  Max Min  Max
Random50 50 300 105 292 7 193 10 100
Random75 75 450 143 438 10 305 15 150
Albaida 116 174 83 99 75 91 19 34
Madrigueras | 196 316 152 181 135 164 23 48

Table 1: Characteristics of the instances

4.2 Computational results

The results obtained with two versions of the matheuristic are compared to those obtained with
the branch-and-cut in Avila et al. [3]. Table 2 summarizes the results obtained with a version
of the algorithm with iter_mazl = 5, iter_maxz2 = 20, and time_limit = 100 (seconds), which
will be called Matheuristic 1 (MH1). The goal of Matheuristic 1 is to obtain good solutions in
low computing times. Table 2 shows the results obtained only for the instances for which the
branch-and-cut obtained an optimal solution. Columns 1 and 2 contain the name of the instance
set and the number of vehicles. Column 3 reports the number of instances with known optimal
solution. Column 4 shows the number of instances for which Matheuristic I reached the known
optimal solution, while Column 5 shows the number of instances for which the algorithm found
feasible but not optimal solutions. For the instances reported in Column 5, we have computed
the gap between the cost of the solution provided by Matheuristic 1 and the optimal value. The
average gap values are shown in Column 6. The number of instances for which the algorithm was
not even capable of finding a feasible solution is given in Column 7. The last two columns report
the average time in seconds taken by Matheuristic 1 and the branch-and-cut, respectively, for all
the instances. Note that the times reported for Matheuristic 1 are lower than time_limit = 100.



This is due to the values used for parameters iter_mazl and iter_max2 limiting the running time
of the algorithm.

Globally, the algorithm Matheuristic 1 has been capable of reaching the optimal solution on 115
out of 221 instances, in 22.91 seconds on average. The average gap from the optimal value in the 101
instances for which a feasible solution was found is 3.93%. However, there are 5 instances for which
Matheuristic 1 has not been able to find a feasible solution with the given number of vehicles. This
may be explained by the fact that the values of T;,4, limiting the length of the routes are very tight.
As expected, the Random75 instances are more difficult to solve to optimality than the Random&0
ones because of their larger sizes. Something similar happens with the Madrigueras instances with
respect to the Albaida ones, although, perhaps due to the structure of their underlying graphs, the
number of instances for which no feasible solution has been found is greater in the Albaida set than
in the Madrigueras set.

Time (s)
#Veh #Inst #Opt #No Opt Gap(%) #No Sol MH1 B&C
2 12 8 4 3,76 0 1,97 45,90
3 11 6 5) 4,67 0 3,16 83,00
Random50 4 9 4 ) 4,76 0 4,33 179,30
5 P 0 P 4,01 0 12,31 456,40
34 18 16 4,39 0 3,59 117,40
2 12 6 6 4,30 0 2,65 388,5
3 12 5) 7 4,40 0 6,61 603,1
Random75 4 10 3 7 3,94 0 13,27 771,1
5 4 P P 3,82 0 562 1301,1
38 16 22 4,17 0 7,01 654,28
2 24 21 3 0,76 0 14,89 34
3 24 18 6 5,90 0 21,03 89,9
Albaida 4 21 9 12 3,17 0 22,87 338,7
9 17 10 3 3,43 4 40,07 316,1
86 59 25 3,59 4 2353 182,1
2 24 11 13 2.82 0 39,00 2241
3 21 6 15 3,96 0 43,09 894,1
Madrigueras 4 13 4 9 5,20 0 39,85 1625,2
5 5 P P 3,08 1 58,64 24472
63 23 39 3,82 1 42,09 9129
Total 221 115 101 3,93 5 22,91 462,95

Table 2: Results of Matheuristic 1 for the instances with known optimal solution

In order to obtain better solutions, we have tried another version of the algorithm, called
Matheuristic 2, with the following values of the parameters: iter_mazl = iter_maz2 = 200 and
time_limit = 600 (seconds). The obtained results are shown in Table 3. The reader can observe the
different behavior of Matheuristic 2 against Matheuristic 1. Now, the number of optimal solutions
found is 161 out of 221 versus 115 of the faster version. Also, the average gap for the instances
that were not solved optimally is 2.41% against 3.93% of Matheuristic 1. Finally, only in 2 out of
the 221 instances was Matheuristic 2 not capable of finding a feasible solution with the specified
number of vehicles. Of course, all these better results have been obtained at the expense of a
greater computational effort (151 seconds on average versus 22 seconds of Matheuristic 1).

Table 4 shows the computational results obtained on the instances of the Randomb0, Random75,
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Time (s)
#Veh #Inst #Opt #No Opt Gap(%) #No Sol MH2 B&C

2 12 9 3 4,48 0 13,48 45,90

3 11 9 2 0,42 0 26,90 83,00

Random50 4 9 5 4 2,08 0 21,07 179,30
5 2 1 1 0,57 0 35,23 456,40

34 24 10 2,32 0 21,11 117,40

2 12 8 4 2,67 0 22,09 388,5

3 12 6 6 3,20 0 26,20 603,1

Random?75 4 10 5 5 3,41 0 36,08 771,1
5 4 2 2 2,57 0 34,81 1301,1

38 21 17 3,06 0 28,41 654,28

2 24 21 3 0,32 0 117,19 34

3 24 22 2 1,15 0 152,33 89,9

Albaida 4 21 18 3 1,23 0 159,47 338,7
5 17 11 4 0,96 2 187,88 316,1

86 72 12 0,96 2 151,30  182,1

2 24 18 6 1,20 0 323,19 2241

3 21 13 8 3,23 0 32785 894,1

Madrigueras 4 13 9 4 4,19 0 251,76 16252
5 5 4 1 3,47 0 172,04 24472

63 44 19 2,80 0 298,01 912,9

Total 221 161 58 2,41 2 151,04 462,95

Table 3: Results of Matheuristic 2 for the instances with known optimal solution

and Madrigueras sets with unknown (or unproven) optimal solutions. In fact, for some of these
instances, the branch-and-cut algorithm described in [3] was not capable of finding even a feasible
solution in one hour of computing time, which gives an idea of the difficulty of these instances.
Columns 1 and 2 of Table 4 report the instance name and the number of vehicles. Column 3
shows the value of the best solution found (if any) by the exact algorithm, while column 4 reports
the corresponding optimality gap. The values of the solutions provided by Matheuristic 1 and
Matheuristic 2 and the computing times in seconds can be seen in the following four columns of
the table. The last three columns present the gap obtained by the three algorithms with respect to
the best solution found. Note that our algorithm Matheuristic 2, not only improves the solutions
provided by the branch-and-cut method in many instances, but also finds a feasible solution in all
of them.

Table 5 summarizes the results shown in Table 4 obtained by the branch-and-cut and Matheuris-
tic 2 algorithms for the 30 instances not solved to optimality. It can be seen in the first row that
Matheuristic 2 was able to find a feasible solution for all the 30 instances while the branch-and-cut
algorithm was only able to find it for 23 of them. The average UB and the average time (second
and fourth rows, respectively) refer only to these 23 instances. The number of instances for which
Matheuristic 2 obtained a better solution, 17, includes the 7 instances where the branch-and-bound
did not obtain a feasible solution. As can be seen, in these 30 instances, Matheuristic 2 clearly
outperforms the branch-and-cut algorithm.
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Instances 4% Veh B&C MH 1 MH 2 Gap Best Sol (%)
UB Gap UB  Time UB  Time B&C MH1 MH2
M3103_gdrpp 3 9052 0,05 9348 100 9237 600 0 0,03 0,02
M3105_gdrpp 3 9454 0,12 9086 100 9086 600 0,04 0 0
M3201_gdrpp 3 9795 0,04 10612 56,83 10131 600 0 0,08 0,03
LCGDRPP_75.3_20_1 4 9952 0,07 - 100 9910 11,21 0,01 - 0
LCGDRPP_75.3.20_2 4 10684 0,09 11119 4,14 10976 21,30 0 0,04 0,03
M3101_gdrpp 4 - - 9369 78,01 9307 600 - 0,01 0
M3103_gdrpp 4 9628 0,11 9954 100 9709 600 0 0,03 0,01
M3105_gdrpp 4 - - 9211 100 9211 600 - 0 0
M3111_gdrpp 4 30660 0,12 29639 9,91 29637 600 0,03 0 0
M3201_gdrpp 4 10451 0,08 11386 100 10829 600 0 0,09 0,04
M3203_gdrpp 4 10145 0,07 10959 100 10344 600 0 0,08 0,02
M3205_gdrpp 4 11526 0,19 10824 100 10768 600 0,07 0,01 0
M3211_gdrpp 4 38869 0,11 - 100 38992 600 0 - 0,01
M5209_gdrpp 4 8834 0,01 8943 38,83 8834 297 0 0,01 0
LCGDRPP_50_3.20_3 5 9648 0,08 9903 2,15 9807 51,33 0 0,03 0,02
LCGDRPP_75.3.10_3 5 9858 0,14 10094 4,70 9978 31,51 0 0,02 0,01
LCGDRPP_75.3.20_1 5 10615 0,15 10640 2,53 10826 17,88 0 0 0,02
LCGDRPP_75.3.20_2 5 11728 0,17 12001 15,29 11871 7,44 0 0,02 0,01
LCGDRPP_75.3.20_3 5 - - 8847 61,45 8916 61,92 - 0 0
M3101_gdrpp 5 - - 10374 100 10374 600 - 0 0
M3103_gdrpp 5 - - 11477 100 11139 600 - 0,03 0
M3105_gdrpp 5 - - 9461 65,17 9343 436 - 0,01 0
M3107_gdrpp 5 5368 0,10 5604 14 5234 214 0,03 0,07 0
M3109_gdrpp 5 10794 0,09 11272 21,61 10973 465 0 0,04 0,02
M3111_gdrpp 5 29686 0,09 30044 41,69 29686 600 0 0,01 0
M3201_gdrpp 5 12224 0,26 11947 100 11394 600 0,07 0,05 0
M3203_gdrpp 5 13536 0,42 11566 100 11041 600 0,23 0,05 0
M3205_gdrpp 5 - - 11220 100 10638 600 - 0,05 0
M3209_gdrpp 5 11933 0,03 - 100 12453 75,51 0 - 0,04
M3211_gdrpp 5 40744 0,26 41837 65,49 39787 600 0,02 0,05 0

Table 4: Results for the 30 instances with unknown optimal solution

B&C Matheuristic 2
# of feasible solutions 23/30 30/30
Average UB 14573.22 14413.17
# of best solutions 15/30 17/30
Average time 3600 405.34

Table 5: Overall results for the unsolved instances

In order to assess the contribution of the different constructive algorithms, we have studied the
number of times each algorithm has been able to produce the best solution. Table 6 reports this
information for all the six variants of the constructive algorithms in all the 251 instances used. It
presents the percentage of best solutions found both when the route optimization is used and when
it is deactivated. It can be seen that heuristics working in a parallel way perform better than those
that use sequential completion. Moreover, this behavior remains true whether the optimization
phase is executed or not.
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Parallel completion Sequential completion

RI RSBA WSBA RI RSBA WSBA
Without optimization 20.92 39.04  33.07 13.94 10.56 13.55
With optimization 23.51 38.25  31.08 16.14 13.35 12.75

Table 6: Percentage of best solutions found with each constructive algorithm with and without the exact
route optimization phase

#Opt  #No Opt Gap(%) #No Sol Time (s) Topt

With optimization MH1 115 101 3,93 5 2291 95,97%
P MH2 161 58 2,41 2 151,04 91,74%
. o MH1 72 138 3,05 11 22,97 -
Without optimization M 29 198 9.29 4 151,55 B

Table 7: Impact of the exact route optimization phase on the instances with known optimal solution

Finally, in order to study the impact of the exact route optimization phase on the performance
of the matheuristic, we have run a variant of MH1 and MH2 in which we have deactivated the
optimization phase. These variants have been executed during the same running time used by the
original versions of MH1 and MH2. Table 7 shows the obtained results. Last column reports the
percentage of time used by the exact optimization procedure with respect to the total computing
time. Although the time used in the optimization phase may seem high, if we compare, for example,
the number of instances in which the optimum has been obtained or the number of those in which
no solution has been found, we can conclude that the optimization of the routes plays an important
role in the performance of the matheuristic.

5 Conclusions and future work

In this paper we have addressed the generalization of the Close-Enough Arc Routing Problem to
the case with several vehicles and maximum distance (or time) constraints. For this problem,
we have proposed a matheuristic. This procedure incorporates the exact algorithm for the single
vehicle case presented in [2] in order to optimize the routes obtained. We have performed extensive
computational experiments on a set of benchmark instances and the results have been compared
with those obtained with the exact procedure proposed by Avila et al. [3]. The proposed algorithm
has been able to solve to optimality 117 out of 221 instances in short computing times.

In a future work, we plan to use the upper bounds provided by this algorithm in the design of
an exact algorithm capable of solving instances of a larger size than those currently solved by the
algorithm in [3].
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