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Abstract: The design of reinforced earth retaining walls is a combinatorial optimization problem
of interest due to practical applications regarding the cost savings involved in the design and
the optimization in the amount of CO2 emissions generated in its construction. On the other
hand, this problem presents important challenges in computational complexity since it involves
32 design variables; therefore we have in the order of 1020 possible combinations. In this article,
we propose a hybrid algorithm in which the particle swarm optimization method is integrated that
solves optimization problems in continuous spaces with the db-scan clustering technique, with the
aim of addressing the combinatorial problem of the design of reinforced earth retaining walls.
This algorithm optimizes two objective functions: the carbon emissions embedded and the economic
cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization
process, a random operator was designed. The best solutions, the averages, and the interquartile
ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a
hybrid version that uses k-means as the discretization method and with a discrete implementation of
the harmony search algorithm. The results indicate that the db-scan operator significantly improves
the quality of the solutions and that the proposed metaheuristic shows competitive results with
respect to the harmony search algorithm.

Keywords: CO2 emission; earth-retaining walls; optimization; db-scan; particle swarm optimization

1. Introduction

Retaining walls are structures widely used in engineering for supporting soil laterally. The design
of these walls is a problem of interaction between the soil and the structure to retain a material
safely and economically. When the height of a cantilever wall becomes important, the volume of
concrete required begins to be considerable. From a height of 8–10 m, buttressed walls economize
its design. The design of these structures is mainly carried out following rules very much linked to
the experience of structural engineers [1]. If the initial design dimensions or material qualities are
inadequate, the structure is redefined. With this procedure of trial and error, the different designs
obtained do not go beyond a few tests. This process leads to a safe, but not necessarily economic,
design [2]. Structural optimization methods have clear advantages over experience-based design.

Presently, the optimum design of reinforced concrete (RC) structures constitutes a relevant line of
research. In practical structural optimization problems, the variables used must be discrete, so they are
combinatorial optimization problems. However, combinatorial problems are found in a large number
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of real problems such as allocation resources [3,4], logistics [5], transport [6], routing problems [7,8],
scheduling problems [6,9], and engineering design projects [10,11], among others. These problems
present a space of solutions that grows exponentially with the variables used, so the metaheuristics,
which were inspired by natural phenomena for continuous spaces, are a good approach to obtain
optimum solutions to engineering problems. However, two important characteristics of metaheuristics,
intensification and diversification, must be preserved to design discrete versions of these algorithms.

While structural optimization began by minimizing the weight or cost of structures [12,13],
other objective functions related to the social, Reference [14] and environmental sustainability of
structures [15] throughout their entire life cycle have subsequently been incorporated. Reducing the
carbon footprint of RC structures is currently investigated as an optimization target. In
particular, a hybrid multistart optimization strategic method based on a variable neighborhood search
threshold acceptance strategy [16] was used to reduce the cost and carbon-emissions in cantilever
retaining walls. A hybrid harmony search together with a threshold acceptance strategy [17,18],
the black hole algorithm [17] and a hybrid k-means cuckoo search algorithms [10] were applied to
minimize both the economic cost and the CO2 emissions in counterfort retaining walls. A CO2 and cost
analysis in precast–prestressed concrete road bridges was developed in [15]. In [14] , the importance of
the criteria that define social sustainability was analyzed. These criteria considered the complete life of
infrastructure. The social sustainability of infrastructure projects was tackled in [14] using Bayesian
methods. In recent works [19,20], different meta-heuristics algorithms were used for optimal design of
RC retaining walls. The life cycle assessment of earth-retaining walls was analyzed in [21,22].

A strategy that reinforces the results obtained by the metaheuristics has been the hybridization
with techniques that deeply modify their way of working. Hybridization is carried out in different
ways, the most important of which are: (i) mathematics, integrating mathematical programming and
metaheuristics [23], (ii) hybrid heuristics, combining different metaheuristics [24], (iii) symmetrical
heuristics, where simulation and metaheuristics are combined [25], and (iv) hybridization between
metaheuristics and machine learning.

In this article, we used an emerging line of research that integrates the areas of machine learning
and metaheuristic algorithms with the goal of tackle the design of reinforced earth retaining walls
problem. This problem presents important challenges in computational complexity since it involves
32 design variables, therefore we have on the order of 1020 possible combinations. Therefore, it is
interesting to understand how these types of hybrid techniques perform in this problem, in addition to
comparing these ones with the state-of-the-art solutions that addressed the design of this type of walls.

The proposed hybrid algorithm uses a machine learning algorithm in a discrete operator
that allows continuous metaheuristics to tackle combinatorial optimization problems. In this
way, a combinatorial optimization problem, such as the buttressed wall design, can be addressed.
The contributions of this work are as follows:

• A hybrid Particle Swarm Optimization (PSO) based on a db-scan clustering technique is proposed.
The db-scan is very effective in binary combinatorial problems [6,10]. PSO is often used to solve
continuous optimization problems and its tuning is very simple.

• The contribution of the db-scan in the discretization process was studied through a random
operator. In addition, the discretization performed by db-scan was compared with methods using
k-means [5,26].

• The proposed algorithm is applied to obtain low-carbon, low-cost counterfort wall designs.
This hybrid algorithm is compared with an efficient algorithm adapted from the harmony search
(HS) proposed in [18].

The rest of this paper is structured as follows: in Section 2 we develop a state-of-the-art of
hybridizing metaheuristics with machine learning; in Section 3 we define the optimization problem,
the variables involved, and the restrictions; then in Section 4 we detail the discrete db-scan algorithm;
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we move on with the experiments and results obtained in Section 5; and conclude with Section 6 in
which we summarize the conclusions and new lines of research.

2. Hybridizing Metaheuristics with Machine Learning

Metaheuristics is a broad collection of incomplete optimization techniques inspired by some
real-world phenomenon in nature or in the behavior of living beings [27,28]. The objective is to solve
problems of high computational complexity in a reasonable execution time so that its optimization
mechanism is not significantly affected when the problem to be solved is altered. Then again, the set
of techniques capable of learning from a database are the so-called machine learning algorithms [29].
Depending on the learning mode, these techniques are divided into learning by reinforcement,
supervised learning, and unsupervised learning. It is common for these algorithms to be used in a
wide range of problems such as regression, dimensionality reduction, transformation, classification,
time series or anomaly detection and computer vision problems.

The integration of the machine learning techniques with the metaheuristic algorithms can be
done basically with two approaches [30]. Either machine learning techniques are used to increase the
quality of the solutions and the convergence rates obtained by metaheuristics, or metaheuristic are
used to enhance the performance of machine learning techniques [30]. However, metaheuristics often
improves the efficiency of an optimization problem concerning machine learning. Based on the work
of [30], we propose an extension of the scheme of techniques in which metaheuristics and machine
learning are combined (Figure 1).

Figure 1. General scheme: Combining Machine Learning and Metaheuristics [10].

Machine learning can be used as a metamodel to determine from a set of metaheuristics the best
one for each instance. In addition, specific machine learning operators can also be embedded into a
metaheuristic, resulting in three different groups of techniques: hyper-heuristics, algorithm selection,
and cooperative strategies [30].

If we automate the design and tuning of metaheuristics to solve a large number of problems,
we obtain the so-called hyper-heuristics. The aim of the cooperation strategies is to obtain methods
that are more robust by combining the algorithms in a parallel or sequential way. The cooperation
mechanism can share the whole solution, or only a part of it. In [31], a multi-objective optimization
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of an aerogel glazing system through a surrogate model driven by the cross-entropy function was
developed with the implementation of the supervised machine-learning method. In [32] the multilevel
thresholding image segmentation-based hyperheuristic method was addressed. Finally, in [33] an
agent-based distributed framework was proposed to solve the problem of permutation flow stores,
and in which each agent is implementing a different metaheuristic.

On the other hand, there are operators that allow enhancing the performance of a metaheuristic
integrating machine learning operators. Initialization, population management, solution disruption,
binaryization, local search operators and parameter setting and are examples of such operators [30].
Binary operators using unsupervised learning techniques can be integrated into metaheuristics
that operate in continuous spaces to perform the binarization process [6]. In [34], a percentile
transition-ranking algorithm was proposed as a mechanism to binarize continuous metaheuristics.
In [9], the application of Big Data techniques was applied to improve a cuckoo search binary algorithm.
The tuning of the parameters of metaheuristics is another line of research of interest. In [35], a tuning
method was applied on different sized problem sets for the real-world integration and test order
problem. In [36] a semi-automatic approach designs the fuzzy logic rule base to obtain instance-specific
parameter values using decision trees. The use of machine learning techniques improves the initiation
of solutions, without the need to start it randomly. A cluster-based population initialization framework
was proposed in [37] and applied to differential evolution algorithms. In [38] a case-based reasoning
technique was applied to initiate a genetic algorithm in a weighted circle design problem. To solve
an economic dispatch problem, Hopfield neural networks were used to start solutions of a genetic
algorithm [39].

Metaheuristics improve the machine learning algorithms in problems such as feature selection,
grouping, classification, feature extraction, among others. Image analysis to identify breast cancer
can be enhanced by a genetic algorithm [40] that improves the performance of the Support Vector
Machine (SVM). The medical diagnoses and prognoses were tackled in [41] combining swarm
intelligence metaheuristics with the probabilistic search models of estimation of distribution algorithms.
In [42], the authors used swarm intelligence metaheuristics for the convolution neural network
hyper-parameters tuning. In [32], a multiverse optimizer algorithm was used for text documents
clustering. An improved normalized mutual information variable selection algorithm for soft
sensors in [43] was used to perform the variable selection and validate error information of artificial
neural networks. A dropout regularization method for convolutional neural networks was tackled
in [44] through the use of metaheuristic algorithms. In [45], a firefly algorithm was combined with
the least-squares support vector machine technique to address geotechnical engineering problems.
Metaheuristics contributed to the problems of regression, as is the case with the prediction of
the strength of high strength concretes in [46]. Another example is the integration of artificial
neural networks and metaheuristics for improved stock price prediction [47]. In [48], proposes a
sliding-window metaheuristic optimization for predicting the share price of construction companies in
Taiwan. In [49] , the least squares support vector machine hybridizing a fruit fly algorithms is applied
to simulate the nonlinear system of a MEL time series. Metaheuristics also apply to unsupervised
learning techniques, such as clustering techniques. For example, in [50] a metaheuristic optimization
was used for a clustering system for dynamic data streams. Metaheuristics have also been integrated
into clustering techniques in the search for the centroids that best group the data under a certain metric.
A bee colony metaheuristic was used for energy efficient clustering in wireless sensor networks [51].
In [52], a clustering search metaheuristic was applied for the capacitated helicopter routing problem.
In [53], a hybrid-encoding scheme was used to find the optimal number of hidden neurons and
connection weights in neutral networks. Four metaheuristic-driven techniques were used in [44] to
determine the dropout probability in convolutional neural networks. In [54] the bat algorithm and
cuckoo search were used to adjust the weights of neural networks. An algorithm was proposed using
simulated annealing, differential evolution, and harmony search to optimize convolutional neural
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networks was proposed in [55]. In [56] long-term short memory trained with metaheuristics were
applied in healthcare analysis.

In this paper, the study proposes a hybrid algorithm in which the unsupervised db-scan learning
technique to obtain binary versions of the PSO optimization algorithm. This hybrid algorithm was used
to obtain a sustainable design buttressed walls. Recently, the db-scan binarization algorithm obtained
versions of continuous metaheuristics that have been used to solve the set covering problem [6] and
the multidimensional knapsack problem [10] which are NP-hard problems.

3. Problem Definition

This Section describes the optimization problem. First, the equations to be optimized are defined.
The variables that define the structure and the parameters applied to solve the problem are described
below. In addition, finally, the restrictions and the calculation method applied to verify the structure
are summarized.

3.1. Optimization Problem

The goal is to minimize the objective functions Fi for a width of 1 m of a buttress wall.
The economic cost in euros will be valued for F1, and for F2 the CO2 equivalent emissions in kg
produced in the execution of all parts of the structure. The evaluation of both functions is carried
out with precision, and depends on the r construction units used, such as formwork, concrete, steel,
excavation and fillings. The values of the units applied to this problem were obtained from [2,18],
and were reflected in Table 1. The prices were provided by local Valencian road construction contractors
and CO2 emissions from the BEDEC PR / PCT ITeC (Institute of Construction Technology of Catalonia)
database [57]. The objective functions are represented in the following Equation (1). The formula
represented values both the cost and the emissions produced during the construction of the wall. It is
calculated as the sum of the cost or emissions of each construction unit, being for each unit the product
of the unit cost or the unit’s emission by its quantity.

Fi(x) =
r

∑
j=1

aijxj (1)

Table 1. Values per unit of cost and emissions [2,18].

Construction Unit Cost (e) a1j (CO2-eq) a2j

Steel (kg)
B400 0.56 2.82
B500 0.58 3.02

Concrete in stem (m3)
C25/30 56.66 224.34
C30/37 60.80 224.94
C35/45 65.32 265.28
C40/50 70.41 265.28
C45/55 75.22 265.91
C50/60 80.03 265.95

Stem formwork (m2) 21.61 1.92
Backfill (m3) 5.56 28.79

Concrete in foundation (m3)
C25/30 50.65 224.34
C30/37 54.79 224.94
C35/45 59.31 265.28
C40/50 64.40 265.28
C45/55 69.21 265.91
C50/60 74.02 265.95
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Being aij the unit value taken from Table 1, for i = 1 in cost and i = 2 in emissions, corresponding
to the measurement of the construction units xj. The evaluation of Equation (1), in addition to the
group of variables, depends on a set of parameters that remain constant throughout the optimization,
and as long as the restrictions of the ultimate and service limit states (ULS and SLS) are met.

3.2. Problem Design Variables

Design variables allow defining the structure. These variables are discrete and modified by
the solution search algorithm during the optimization process. There are 3 groups of variables:
geometric, material qualities and reinforcing steels. In total there are 32 variables. The definition,
arrangement and characteristics of the variables are defined in [58].

Of the set of variables, 24 are shown in Figures 2–4. Figures 2 and 3 represent the configuration
of the reinforcement (A1–12), with the diameter and number of steel bars. Three flexural reinforcing
bars defined as A1, A2 and A3 contribute to the main bending of the stem. A4 represents the vertical
reinforcement of the base at the rear of the stem. The secondary longitudinal reinforcement is provided
by A5 for shrinkage and thermal effects on the stem. A6 represents the longitudinal reinforcement of
the buttress. The area of the reinforcing bracket from the bottom of the buttress is provided by A7 and
A8. A9 and A11 define the upper and lower heel reinforcements and A12, the shear reinforcement in
the footing. Finally, the longitudinal effects on the toe are defined by A10. Figure 4 represents most of
the geometric variables.These variables are the thickness of the stem (b), the thickness of the footing
(cz), the thickness of the buttresses (ec), the length of the heel (lt), the length of the toe (lp), the distance
between the buttresses (d), two classes of steel B500S and B400S, and six classes of concrete between
C25/30 and C50/60 by discrete intervals of 5 MPa. Table 2 details the set of discrete variables with the
ranges of the values they can take. The possible combinations constitute the space solutions of the
problem. For the case of a 12 m high wall, the solution space is of the order of 1020.

Figure 2. Reinforcement variables for the design of earth-retaining walls [58].
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Figure 3. Earth-retaining buttressed wall. Floor cross-section [58].

Figure 4. Problem design parameters [58].

Table 2. Design variables.

Variables Lower Bound Upper Bound Increment

c H/20 H/6 1 cm
d H/4 H/2 1 cm
b 20 cm 219 1 cm
p 20 cm 610 1 cm
t 20 cm 619 1 cm
ec 20 cm 219 1 cm
fck 25, 30, 35, 40, 45, 50 Mpa
fyk 400, 500 Mpa

A1 to A10 Φ 6, 8, 10, 12, 16, 20, 25, 32 mm
n 1 12 1 rebar

A11 to A12 Φ 6, 8, 10, 12, 16, 20, 25, 32 mm
n 4 10 1 rebar
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3.3. Problem Design Parameters

All the cases analyzed in this study are completely defined by constant contour values called
problem parameters. These parameters are described in [58] and are represented in Table 3.

Table 3. Problem design parameters values.

Parameter Type Parameter Considered Value

Geometric:
Foundation depth, H2 2 m

Geotechnical and relative to the load:
Bearing capacity 0.3 MPa

Fill slope 0
Base-friction coefficient, µ tg 30◦

Wall-fill friction angle, δ 0◦

Uniform load on top of the fill, γ 10 kN/m2

Safety coefficient:
Against sliding, γ f s 1.5

Against overturning, γ f o 1.8
For loading (EHE) Normal
Of concrete (ULS) 1.5

Of steel (ULS) 1.15
Ambient exposure (EHE) IIa

3.4. Problem Constrains

The viability of the structure is verified as described in [58], in accordance with the Spanish
technical standards defined in [59] and the detailed recommendations for foundations in road
works [60]. The bending and shear limit states, and the cracking limit state are verified. The structure
is checked according to the stem stress distribution [61] for non-cohesive granular materials.
The rectangular distribution of soil stresses in the foundations is considered according to the criteria
in [62]. The structural hyperstatic model assumes that the top of the stem functions as a cantilever,
while the bottom of the stem is embedded between the footing and the lower part of the buttress.

The bending stress verified in the horizontal T-shaped cross section is performed taking into
account the effective width, in accordance with [63]. The checking of the mechanical shear and the
flexural capacity is carried out considering the equations expressed in [62] and with the verifications
in [59]. To assess the controls against overturning and sliding, and the limit of soil stresses, the effect
of buttresses is included [58]. It is taken into account that the favorable overturning moments are
sufficiently greater than the unfavorable overturning moments with a safety coefficient for frequent
events. A slip safety coefficient and a coefficient of base-friction foundation against sliding are
also considered.

4. The db-Scan Discrete Algorithm

As a first step, the algorithm generates a set of valid solutions. These solutions are randomly
generated. In this procedure, first, it is validated if the solution variables are started. In the case that
they are not all started, the variables are started randomly. Once all the variables are generated, the next
step is to verify if the solution obtained is valid. In the event that it is not valid, all variables are removed
and regenerated. The detail of the initiation procedure is shown in Figure 5. Subsequently, PSO is used
to produce a new solution in the continuous space. The PSO algorithm will be described in Section 4.1.
Subsequently, the db-scan operator is applied to the continuous solution in order to transform
continuous movements into groups associates to transition probabilities. The db-scan operator will be
detailed in Section 4.2. After the db-scan operator generates the groups, the discretization operator
applies the corresponding transition probability to each group, generating a new discrete solution.
The discretization operator is detailed in Section 4.3. Finally, the new solution is validated and, in case
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it meets the restrictions, it is compared with the best solution obtained. If the new value is higher,
it replaces the current one. The detailed flow chart of the hybrid algorithm is shown in Figure 6.

Are all variables 
started?

Begin

End

no

yesIs it a feasible
solution?

Random start of
variables.

Clean the
variables..

yes

no

Figure 5. Solution initiation procedure [10].

End

Begin Generates de initial
solution

Is It a valid 
solution?

Yes

No

Execute the PSO 
algorithm. 

Execute the db-scan
operator

Execute the
discretization operator

Is the iteration 
criteria met?

Yes

No

Replace the 
optimal solution?

Is It a valid 
solution?

Yes

No

Figure 6. The discrete db-scan algorithm flow chart.

4.1. Particle Swarm Optimization

For the proper functioning of the PSO algorithm, the concepts of population that are usually
called a swarm, and each of these solutions is called a particle. The essence of the algorithm is
that each particle is guided by a combination of the best value particle obtained so far in the search
space (maximum global) together with the best result obtained by the particle (local maximum).
The optimization process is iterative until some termination condition is met.

Formally let f : Rn → R corresponds to the fitness function to be optimized. This function
considers a candidate solution that is represented by a vector in Rn and generates a real value as
output. This obtained value, represents the value of the objective function for the given candidate
solution. The goal is to find a solution for which f (a) ≤ f (b) for all b in the search space, which would
mean that a is the global minimum. The algorithm pseudo-code is shown in Procedure 1.
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Algorithm 1 Particle swarm optimization algorithm

1: Objective function f(s)
2: Generate initial solutions of n particles.
3: Get the particle’s best known position to its initial position: pi ← si.
4: if f (pi) < f (g) then

5: Update the swarm’s best known position: g← pi
6: end if
7: Initialize the particle’s velocity: vi
8: while stop criterion are meet do

9: for each particle and dimension do

10: Pick random numbers: rp, rg
11: Update the particle’s velocity: vi,d ← ωvi,d + φprp(pi,d − si,d) + φgrg(gd − si,d)
12: Update the particle’s position: si ← si + vi
13: end for
14: if f (si) < f (pi) then

15: Update the particle’s best known position: pi ← si.
16: if f (pi) < f (g) then

17: Update the swarm’s best known position: pi ← si.
18: end if
19: end if
20: end while

4.2. db-Scan Operator

The solutions resulting from the execution of the PSO algorithm are grouped by the db-scan
operator. We should note that the db-scan operator can be applied to any swarm intelligence continuous
metaheuristics. The spatial clustering technique based on noise density of applications (db-scan),
requires for the clustering, a set of points S within a vector space, and a metric, usually, the metric is
the Euclidean. Db-scan groups the points of S that meet a minimum density criterion. The rest of the
points are considered outliers. As input parameters db-scan requires a radius ε and the minimum
number of neighbors δ. The main steps of the algorithm are shown below:

• Find the points in the ε neighborhood of every point and identify the core points with more than
δ neighbors.

• Find the connected components of core points on the neighbor graph, ignoring all non-core points.
• Assign each non-core point to a nearby cluster if the cluster is an ε neighbor; otherwise, assign it

to noise.

In the db-scan (dbscanOp) operator, the db-scan grouping technique is used to make groups
of points to which we will assign a probability of transition. This probability of transition will
subsequently allow the discretization operator to discretize continuous solutions. The grouping
proposal uses the movements obtained by PSO in each dimension for all the particles. Suppose s(t) is
a solution in iteration t, then ∆i(s(t)) represents the magnitude of the offset ∆(s(t)) in the i-th position,
considering the iterations t and t+ 1. After all the displacements were obtained, the grouping is carried
out. To obtain the groups, the displacement module will be used, which is denoted by |∆i(s(t))|. This
grouping is done using the db-scan technique. Finally, a generic function Ptr is used, which is shown
in Equation (2) with the objective of assigning a probability of transition to each group and therefore to
each displacement.

Then using the function Ptr, a probability is assigned to each group obtained from the clustering
process. In this article, we use the linear function given in Equation (2), where Clust (xi) indicates
the location of the group to which ∆i(s) belongs. The coefficient α represents the initial transition
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coefficient and β models the transition separation for the different groups. Both parameters must be
estimated. The pseudo-code of the discretization procedure is shown in Algorithm 2.

Ptr(x) = α + γx (2)

where x represents the value of Clust(si). Also, because si ∈ Clust(si), each element of Clust(si),
is assigned the same value Ptr. That is, Ptr(si) = Ptr(Clust(si)). On the other hand, γ = α ∗ β are
constants that will be determined in the tuning of parameters, where α corresponds to the initial
transition coefficient and β represents the transition probability coefficient.

Algorithm 2 db-scan operator

1: Function dbscanOp(ls(t),ls(t + 1))
2: Input s(t), s(t + 1)
3: Output lTransitionProbability(t + 1)
4: l∆i(s(t + 1))← getDelta(ls(t), ls(t + 1))
5: Clust← getClusters(l∆i(s(t)))
6: lTransitionProbability(t + 1)← getTranProb(Clust, ls(t))–Equation (2)
7: return (lTransitionProbability(t + 1))

4.3. Discretization Operator

The discretization operator receives the list lTransitionProbability (t + 1). This list contains
the values of the transition probabilities which were the result delivered by the db-scan operator.
Then given a solution s(t) ∈ ls(t), we select each of its components si(t) and we proceed to determine
through the transition probability if this component should be modified. In the case of large transition
probabilities, there is a greater possibility of modification. Then a random number is obtained at [0, 1]
and this number is compared with the value of the transition probability assigned to the component.
In cases where the modification condition is satisfied, it can increase the value by 1 or decrease it by 1.
Finally, the selected value is compared with the best value obtained by the algorithm and remains with
the minimum of both. The pseudocode of the discrete procedure is shown in Algorithm 3.

Algorithm 3 Discretization operator.

1: Function DiscOperator(lTransitionProbability(t + 1), ls(t))
2: Input lTransitionProbability(t + 1)
3: Output s(t + 1)–where s(t + 1) is discrete.
4: movement = 0
5: for si ∈ s(t) ∈ ls(t) do

6: if r1 > 0.5 then

7: movement = 1
8: else

9: movement = −1
10: end if
11: si = max(1,min(si

best,s
i+movement))

12: end for

5. Results and Discussion

The experiments developed with the objective of determining the performance of our hybrid
algorithm applied to the counterfort retaining wall problem will be detailed in this section.
In Section 5.1, we will explain the strategy used to perform the tuning of the parameters. Then, in the
first experiment detailed in Section 5.2, we will study the contribution of the db-scan operator to
the discretization process. This study will be carried out through a comparison with a random
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operator. Subsequently, in the second experiment, the db-scan technique will be compared with the
k-means clustering technique. This comparison is detailed in Section 5.3. Finally, in Section 5.4 our
db-scan PSO proposal will be compared with another algorithm in the literature that solved the same
problem. Regarding the scenario of the experiments, each problem will be run 30 times. The value 30
is the minimum number appropriate to be able to obtain statistical conclusions on a population [64],
in addition, the signed-rank Wilcoxon test [65] will be incorporated to determine if the difference
between the results is statistically significant. For this test, the p-value used was 0.05. The software
was built in Python 3.6 and run on a computer with the following configuration: Intel Core i7-4770
CPU and 16 GB of RAM.

5.1. Parameter Settings

In the methodology used to perform the adjustment of the algorithm parameters, heights of 8 and
12 m were considered. The selection of these heights was motivated by their difference in complexity.
8 represents walls of small size and 12 represents walls of a greater size where the satisfaction of
stability restrictions has a greater difficulty. After defining the instances to use, each of the defined
configurations was resolved 5 times for each height. The set of configurations used are detailed in
Table 4. The value 5 was chosen with the intention of being able to execute all the combinations
in a limited time. The range column in Table 4 represents the scanned values to perform the PSO
adjustment. Obtaining these ranges was based on previous studies where the db-scan technique was
applied to other combinatorial problems. For more details on the method, see the reference [26].

In order to find the best configuration, the method proposes using four measurements. The best
solution (bs), the worst solution (ws), the average solution (as) and the convergence time (ct).
These measures are defined in Equations (3)–(6). The best global value (bgv) corresponds to the best
value obtained in all the configurations executed. Furthermore, the best local value (blv) represents the
best value obtained by a particular configuration. The worst local value (wlv) represents the worst
moment obtained for a given configuration. The average local value (alv) is the average value obtained
by a configuration. The minimum global time (mgt) accounts for the minimum convergence time
resulting from all evaluated configurations and the convergence local time (clt) the minimum time for
a particular configuration. The minimum global time (mgt) corresponds to the best value getting for
all configuration. Finally, the worst global value (wgv) accounts for the worst value obtained by all the
configurations. Each of the measures defined, the closer to 1, the better performance that indicator
has. On the other hand, the closer to 0, the worse performance. Since there are 4 measurements to be
able to carry out the evaluation, we incorporate them into a radar graph and calculate their area. As a
consequence of the measurement definition, the largest area corresponds to the configuration that has
the best performance considering the 4 defined measurements.

Definition 1 ([10,26]). Measure definitions:

1. The deviation of the best local value obtained in five executions compared with the best global value:

bs = 1− bgv− blv
bgv

(3)

2. The deviation of the worst value obtained in five executions compared with the best global value:

ws = 1− bgv− wlv
bgv

(4)

3. The deviation of the average value obtained in five executions compared with the best global value:

as = 1− bgv− alv
bgv

(5)
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4. The convergence time for the average value in each experiment is normalized according to Equation (6).

ct = 1− clt−mgt
wgv−mgt

(6)

For PSO, the coefficients c1 and c2 are set to 2. The parameter ω linearly decreases from 0.9 to 0.4.
For the parameters used by db-scan, the minimum number of neighbors (minPts) is estimated as a
percentage of the number of particles (N). The parameter settings are shown in Table 4 . In the table,
the column labeled “Value” represents the selected value, and the column labeled “Range” corresponds
to the set of scanned values.

Table 4. Parameter setting for the PSO algorithm.

Parameters Description Value Range

α Initial transition coefficient 0.1 [0.08, 0.1, 0.12]
β Transition probability coefficient 0.4 [0.3, 0.4, 0.5]
N Number of particles 20 [10, 20, 30]
ε ε db-scan parameter 0.25 [0.2, 0.25, 0.3]

minPts Point db-scan parameter 10% [10, 12, 14]
Iteration Number Maximum iterations 900 [800, 900, 1000]

5.2. db-Scan and Random Operators Comparison

In this first experiment, the contribution of the db-scan operator in optimizing costs and emissions
for the design of the wall will be studied. To properly determine the contribution of the db-scan
operator, a random operator was designed to replace the discretization performed by db-scan.
In particular, the execution of the db-scan operator in Figure 6 is replaced by a random operator.
This random operator assigns a fixed probability of 0.5 instead of assigning probabilities per group.
Different heights of the wall were considered, starting at 6 (m) and ending at 14 (m) with increments
of one meter. For a proper statistical comparison, 30 runs are executed for each height and operator.
The results are then documented in tables and boxplots. Finally, the Wilcoxon signed-rank test is used
to determine the significance of the results.

Table 5, Figures 7 and 8 detail the results obtained in experiment 1. When comparing the values
in Figure 7, in the case of the best value indicator, the operator that uses db-scan was Superior at all
heights for both cost and emissions. Additionally, we observe the difference between the operators
increases as the height increases. In the case of 6 and 7 m in the case of cost, the difference is 2.2% and
4.6% respectively. In the case of heights of 13 and 14 m, this difference is 30.0% and 34.5% respectively.
When carrying out this same analysis for the emissions of CO2, we find that for the heights of 6 and
7 the differences are 3.0% and 1.2% respectively and at the heights of 13 and 14 we obtain 15.9%
and 14.2% respectively. In the comparison of the average indicator, we see a very similar result to
that reported in the best value analysis. The average indicator of the db-scan operator is higher for
all heights than the random operator in both optimizations. Like the best value case, the difference
increases as the height increases. In the case of averages, because the number of values is greater
than in the case of the best value, we apply the Wilcoxon significance test. The result indicates that
the difference is statistically significant in both cases, costs, and emissions. In Figure 7 we show the
boxplots for the cost optimization results. In both cases, db-scan and random it is observed that the
dispersion and the Inter-quartile range of the values obtained in the optimization increases as the
height increases. However, from height 9 onwards this dispersion is more noticeable in the case of
the random operator. When analyzing the results of the optimization of CO2, emissions, which are
shown in Figure 8, the behavior is very similar to that of cost. In the case of emissions, the increase in
dispersion and in the inter-quartile range is more noticeable in the random operator from the height
of 11 m.
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Table 5. Comparison between random and db-scan operators in cost and emission optimization.

Height Best Cost Avg Cost Best Emissions Avg Best Cost Avg Cost Best Emissions Avg
(m) Value db-Scan Value Emissions Value Random Value Emissions

db-Scan db-Scan db-Scan Random Random Random

6 595 598.38 1249 1254.24 608 622.64 1287 1302.92
7 680 691.53 1452 1460.05 711 735.21 1470 1498.69
8 780 793.57 1662 1679.95 791 827.26 1717 1783.61
9 920 937.40 1997 2069.05 1022 1094.61 2190 2215.22

10 1095 1126.22 2462 2546.37 1188 1300.18 3050 3131.50
11 1302 1363.15 3061 3148.37 1526 1694.54 3614 3816.46
12 1528 1581.43 3715 3900.52 1870 1994.33 4299 4547.35
13 1780 1864.57 4470 4643.26 2315 2401.84 5180 5473.56
14 2049 2245.28 5294 5502.76 2756 3032.15 6048 6468.52

Wilcoxon 4.31× 10−6 1.87× 10−5
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Figure 7. Cost box-plots, comparison between db-scan and random operators.
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Figure 8. Emission box-plots, comparison between db-scan and random operators.

The convergence diagrams for heights 6, 9, 12 and 14 are shown in Figure 9a,b. These diagrams
correspond to the results obtained in cost optimization using the random and db-scan operators.
From the db-scan convergence chart, we see that height 6 has the best convergence, followed closely
by 9. On the other hand, heights 12 and 14 have a similar convergence, being slower than the case of 6
and 9. At higher wall heights, complying with constraints becomes more complicated and therefore
the optimization problem is more difficult to solve. In the case of the random operator, it shows a
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correspondence between the height and the speed of convergence. The lower the height, the better
its convergence. On the other hand, we see that for the random case, already in the 500 iterations
the slope tends to stabilize unlike in the db-scan case where for the most difficult problems the slope
stabilizes after the 600 iterations.
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(a) db-scan convergence.
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(b) Random convergence.

Figure 9. Cost optimization convergence plots for db-scan and random operators.

5.3. db-Scan and k-Means Operators Comparison

This second experiment aims to compare the performance of the algorithm that uses db-scan,
with another algorithm that uses k-means as a discretization method. This experiment is inspired
by the fact that both techniques correspond to unsupervised learning algorithms that aim to cluster
points. In the case of k-means, unlike db-scan, the number of clusters must be defined a priori. In this
experiment, suggested by the articles [10,26], k was configured with the value 5. The Equation (2) was
used to set the values of the probability of transition for each cluster. As in experiment 1, the db-scan
module in Figure 6 is replaced in this case by k-means leaving the rest of the modules unchanged.

The results of this experiment are shown in Table 6 and Figures 10 and 11. When analyzing the
results of the best value indicator shown in Table 6, we observed in the case of cost optimization,
the results are similar, with k-means being higher in 5 of the 9 heights. In the case of optimization
of CO2 emissions, something similar occurs, with very close values between the two algorithms.
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In the last case, k-means was higher in 3 cases, db-scan in 1, and in 4 heights their values coincided.
When analyzing the average indicator, in the case of optimizing the cost of the wall, we observe
that for small heights very close values are obtained in both algorithms, being k-means higher than
db-scan. Particularly in the case of heights 6, 7, 8 the difference in percentage was 0.34%, 1.16%,
and 1.83% respectively. On the other hand, when we analyze the values obtained in the highest walls,
we find that db-scan is superior to k-means. Particularly for heights 12, 13, and 14, we have that the
difference is 3.63%, 5.04%, and 3.46% respectively. Wilcoxon’s statistical test when analyzing the total
population indicates that the difference between both algorithms is not significant. In the case of
emission optimization, the behavior of the average indicator is different from that of cost optimization.
The db-scan algorithm is superior in 6 of the 9 heights in this indicator. Heights 13 and 14 stand out,
achieving differences of 3.3% and 5.78% respectively. When analyzing the total distribution of points,
the Wilcoxon test indicates that the difference is significant in favor of db-scan.Finally, when analyzing
Figures 10 and 11 both algorithms have a similar behavior between heights 6 and 11. From height 12
onwards, the increase in dispersion and in the Inter-quartile range becomes much more notorious in
the case of k-means. This last result shows that for more difficult problems, db-scan behaves more
robust than k-means.

Table 6. Comparison between db-scan and k-means operators in cost and emission optimization.

Height Best Cost Avg Cost Best Emissions Avg Best Cost Avg Cost Best Emissions Avg
(m) Value db-Scan Value Emissions Value k-Means Value Emissions

db-Scan db-Scan db-Scan k-Means k-Means k-Means

6 595 598.38 1249 1254.24 591 596.35 1242 1284.92
7 680 691.53 1452 1460.05 678 683.62 1440 1465.52
8 780 793.57 1662 1679.95 775 779.34 1659 1685.83
9 920 937.40 1997 2069.05 911 938.24 1997 2046.26
10 1095 1126.22 2462 2546.37 1095 1107.80 2470 2523.35
11 1302 1363.15 3061 3148.37 1302 1327.16 3061 3139.20
12 1528 1581.43 3715 3900.52 1528 1638.84 3715 3902.61
13 1780 1864.57 4470 4643.26 1775 1958.62 4470 4798.79
14 2049 2245.28 5294 5502.76 2049 2322.87 5294 5821.08

Wilcoxon 0.42 4.08× 10−4
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Figure 10. Cost box-plots, comparison between db-scan and k-means operators.



Mathematics 2020, 8, 862 17 of 22

(K-
mea

ns,
 6.

0)

(K-
mea

ns,
 7.

0)

(K-
mea

ns,
 8.

0)

(K-
mea

ns,
 9.

0)

(K-
mea

ns,
 10

.0)

(K-
mea

ns,
 11

.0)

(K-
mea

ns,
 12

.0)

(K-
mea

ns,
 13

.0)

(K-
mea

ns,
 14

.0)

(db
-sc

an
, 6

.0)

(db
-sc

an
, 7

.0)

(db
-sc

an
, 8

.0)

(db
-sc

an
, 9

.0)

(db
-sc

an
, 1

0.0
)

(db
-sc

an
, 1

1.0
)

(db
-sc

an
, 1

2.0
)

(db
-sc

an
, 1

3.0
)

(db
-sc

an
, 1

4.0
)

Height (m)

1000

2000

3000

4000

5000

6000

Em
iss

io
ns

 (k
g 

CO
2 

eq
.) 

Figure 11. Emission box-plots, comparison between db-scan and k-means operators.

5.4. db-Scan PSO and HS Comparison

The third experiment aims to compare the hybrid db-scan PSO algorithm with results published
in the literature. We particularly consider the results published in [18,58]. In these articles, a variant
of the HS algorithm for the optimization of buttress retaining walls was developed. To carry out the
evaluation, the same procedure as the previous experiments will be followed, i.e., through the best
value and average indicators supplemented with boxplots and the Wilcoxon test for the statistical
significance of the results.

The comparison of both algorithms is documented in Table 7 and in Figures 12 and 13.
When analyzing the best value indicator, the db-scan PSO algorithm is superior in 8 of the 9 instances to
HS. In optimizing emissions of CO2, in 9 of the 9 instances, db-scan performs better. When evaluating
the average indicator, the situation is similar to reported by the best value indicator. In 8 of 9 heights of
the wall, db-scan PSO has better performance for cost optimization and in the 9 heights, it is superior
for emissions. Wilcoxon’s test indicates that in both cases the difference is significant. When analyzing
the Figures 12 and 13 we observe that from height 12 onwards, the dispersion and the inter-quartile
range of HS solutions grow significantly concerning db-scan PSO.

Table 7. Comparison between db-scan PSO and HS algorithms in cost and emission optimization.

Height Best Cost Avg Cost Best Emissions Avg Best Cost Avg Cost Best Emissions Avg
(m) Value db-Scan Value Emissions Value HS Value Emissions

db-Scan db-Scan db-Scan HS HS HS

6 595 598.38 1249 1254.24 595 600.15 1250 1289.14
7 680 691.53 1452 1460.05 689 694.98 1478 1511.53
8 780 793.57 1662 1679.95 784 788.38 1699 1731.54
9 920 937.40 1997 2069.05 934 941.29 2050 2097.45

10 1095 1126.22 2462 2546.37 1130 1143.64 2560 2617.81
11 1302 1363.15 3061 3148.37 1354 1381.50 3124 3201.45
12 1528 1581.43 3715 3900.52 1590 1707.24 3865 4046.95
13 1780 1864.57 4470 4643.26 1840 2067.37 4650 4955.95
14 2049 2245.28 5294 5502.76 2154 2348.71 5550 6241.00

Wilcoxon 4.17× 10−7 2.24× 10−8

p-value
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Figure 12. Cost box-plots, comparison between db-scan PSO and HS algorithms.
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Figure 13. Emission box-plots, comparison between db-scan PSO and HS algorithms.

6. Conclusions

To address the buttressed walls problem, a hybrid algorithm based on the db-scan clustering
technique and the PSO optimization algorithm was proposed in this article. This hybridization was
necessary because PSO works naturally in continuous spaces and the problem studied is combinatorial.
A Db-scan was used as a discretization mechanism. The optimization functions considered were cost
and emission of CO2. To measure the robustness of our proposal, three experiments were designed.
The first evaluates the performance of the hybrid algorithm with respect to a random operator. Later
in the second experiment, the performance was compared with respect to the k-means clustering
technique. Finally, in the last experiment, we studied the performance of the hybrid algorithm when
compared to an HS adaptation described in the literature. The first experiment concludes that the
db-scan operator contributes to the quality of the solutions, obtaining better values than the random
operator, in addition to reducing the dispersion of these. In comparison with k-means mixed results
are obtained, in some cases, k-means is superior to db-scan and in other db-scan improves the solutions
obtained by k-means. Regarding the dispersion in the different instances, we observed that from
height 12 onwards db-scan obtained much smaller dispersions than k-means. Lastly, in comparison
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with HS, in general, db-scan surpass HS obtaining better results, especially in the instances where the
height was over 12 m.

From the results obtained in this study, several lines of research emerge. The first line is related to
population management. In the present work, the population was a static parameter. By analyzing
the results generated by the algorithm as it iterates, it is possible to identify regions where search
needs to be intensified or regions where further exploration is needed. This would allow for dynamic
population management. Another interesting research line is related to the parameters used by the
algorithm. According to what is detailed in Section 5.1, a robust method was used to get the most
suitable configuration. However, this configuration is a static one and is not necessarily the best
configuration throughout all execution. Proposing a framework that allows adapting the parameters
based on the results obtained by the algorithm as it is executed, would allow generating even more
robust methods than the current one.
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