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ABSTRACT9

This paper is addressed to give a generalization of the classical Markov methodology10

allowing the treatment of the entries of the transition matrix and initial condition11

as random variables instead of deterministic values lying in the interval [0, 1]. This12

permits the computation of the first probability density function (1-PDF) of the so-13

lution stochastic process taking advantage of the so-called Random Variable Trans-14

formation technique. From the 1-PDF relevant probabilistic information about the15

evolution of Markov models can be calculated including all one-dimensional statisti-16

cal moments. We are also interested in determining the computation of distribution17

of some important quantities related to randomized Markov chains (steady state,18

hitting times, etc.). All theoretical results are established under general assumptions19

and they are illustrated by modelling the spread of a technology using real data.20
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1. Introduction24

A stochastic process (SP) is a mathematical representation that permits to describe25

how evolves a phenomenon over time in a probabilistic manner. Discrete Markov mod-26

els, also referred to as Markov chains, are a fundamental class of SP where the outcome27

of an experiment depends only on the outcome of the previous experiment [2, 14]; this28

is known as Markov property. This property allows for a considerable reduction of29

parameters necessary to represent the evolution of a system modelled by such a pro-30

cess. Markov chains are very important and widely used to solve problems in a large31

number of domains such as operational research, computer science and distributed32

systems, communication networks, biology, physics, chemistry, economics, finance and33

social sciences, and medical decision making, for instance. They are often chosen as34

a suitable tools for modelling very different phenomena because Markov chains are35

fairly general and adaptable to many contexts [12, 14]. Moreover, excellent numerical36

techniques exist for computing statistics associated with them.37

This contribution is addressed to give a generalization of classical Markov chains38

by randomizing the entries of the transition matrix and the initial conditions. To the39
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best of our knowledge, this problem has not been considered in the extant literature40

yet, but randomizing parameters of a model is a technique used in another contexts.41

For example, the application of differential equations requires setting their inputs42

(coefficients, source term, initial and boundary conditions) using sampled data, thus43

containing uncertainty stemming from measurement errors. It leads to the area of44

random differential equations [5, 9, 10, 15]. An important key to obtain accurate45

results is to construct good estimations to model parameters [4, 11]. As a first step,46

we here will concentrate on the simplest type of Markov chains, usually referred to as47

binary Markov chains, which have two states.48

Let {xn = (x1
n, x

2
n)>, n = 0, 1, . . .} be a Markov chain, where n, denotes the cycle49

or period. Components x1
n and x2

n lie in the interval ]0, 1[ and are usually interpreted50

as percentages or probabilities. Moreover, they satisfy x1
n + x2

n = 1 for every n. In a51

Markov chain, the state xn is determined by the initial condition {x0 = (x1
0, x

2
0)> and52

the transition matrix while its asymptotic behaviour only depends on the transition53

matrix. This matrix is a constant matrix whose entries represent the probabilities to54

change either from one state to another or to remain in the same state between to55

consecutive cycles. Although in practice these entries are usually assumed determin-56

istic, in this contribution we generalize this feature by considering that the entries of57

the transition matrix are random variables (RVs) instead of deterministic constants.58

Obviously, these RVs are assumed to lie in the interval [0, 1] because they must repre-59

sent probabilities. In Figure 1, we show the flow diagram with the transitions between60

states.61

21 q

1-q

p

1-p

Figure 1. Flow diagram to a binary Markov chain.

In the classical context, a Markov binary chain is described as follows62

xn+1 = axn, n = 0, 1, 2, . . . , a =

(
p 1− q

1− p q

)
, (1)

where a is the transition matrix and x0 = (x1
0, x

2
0)> = (x1

0, 1 − x1
0)> is the initial63

condition, i.e., the initial percentage of individuals in each group.64

As indicated above, we will consider the entries of the transition matrix, p and q,65

as well as the initial condition, x0, as RVs. To distinguish RVs from deterministic66

variables, hereinafter RVs will be written using capital letters. So, the randomized67

binary Markov chain is written as68

Xn+1 = AXn, n = 0, 1, 2, . . . , A =

(
P 1−Q

1− P Q

)
,

X0 = (X1
0 , 1−X1

0 )>,
(2)

where X1
0 , P and Q are assumed to be absolutely continuous RVs defined on a common69

complete probability space (Ω,F ,P).70

A main difference with respect to classical Markov chains is that when they are71

randomized, apart from obtaining their solution discrete SP, Xn = (X1
n, X

2
n)> =72
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(X1
n, 1−X1

n)>, it is also important to compute its mean, E [Xn] and its variance, V [Xn],73

for each cycle n. A more general goal is the computation of its first probability density74

function (1-PDF), f1(x;n). This function provides a full probabilistic description of75

the solution SP in every cycle n. From the 1-PDF, a number of statistical properties of76

the solution SP, such as the mean, the variance, the quartiles, confidence intervals, etc.,77

can be straightforwardly determined. The aim of this paper is to determine the 1-PDF78

of the solution SP to randomized binary Markov chains under general conditions. We79

are also interested in determining the computation of distribution of some important80

quantities related to Markov chains that are very useful in practice. To reach this81

objective, we will apply the Random Variable Transformation (RVT) method. This is82

a powerful technique that has been recently used by the authors to construct random83

phase portrait for planar linear discrete systems [7] and to model the stroke disease84

[8]. This technique has been also applied in another contexts [10, 13].85

This paper is organized as follows. In Section 2 some auxiliary results will be intro-86

duced. Section 3 is devoted to obtain the 1-PDF of the solution of a binary Markov87

chain and its stationary state. Some distributions of interesting quantities of Markov88

chains will be calculated in Section 4. In the last section, our findings will be applied89

to model the spread of a technology using real data by a binary Markov chain.90

2. Preliminary results91

In this section we present some results that will used throughout the paper. The RVT92

technique permits to compute the PDF of a RV which results from mapping of another93

RV whose PDF is known. The multidimensional version of the RVT technique is stated94

in Theorem 2.1.95

Theorem 2.1. (Multidimensional version, [15, pp. 24–25]). Let U = (U1, . . . , Un)>96

and V = (V1, . . . , Vn)> be two n-dimensional absolutely continuous random vectors.97

Let r : Rn → Rn be a one-to-one deterministic transformation of U into V, i.e.,98

V = r(U). Assume that r is continuous in U and has continuous partial derivatives99

with respect to U. Then, if fU(u) denotes the joint probability density function of vector100

U, and s = r−1 = (s1(v1, . . . , vn), . . . , sn(v1, . . . , vn))> represents the inverse mapping101

of r = (r1(u1, . . . , un), . . . , rn(u1, . . . , un))>, the joint probability density function of102

vector V is given by103

fV(v) = fU (s(v)) |J | , (3)

where |J | is the absolute value of the Jacobian, which is defined by104

J = det

(
∂s>

∂v

)
= det


∂s1(v1, . . . , vn)

∂v1
· · · ∂sn(v1, . . . , vn)

∂v1
...

. . .
...

∂s1(v1, . . . , vn)

∂vn
· · · ∂sn(v1, . . . , vn)

∂vn

 . (4)

As the two states X1
n and X2

n of a binary Markov chain make up a closed system,105

X1
n + X2

n = 1, we shall see that once the 1-PDF of one of the two states has been106

computed, the 1-PDF of the other state can be straightforwardly determined taking107

advantage of the following key lemma.108

3



Lemma 2.2. Let X and Y be two absolutely continuous random variables, such as109

Y = 1 −X. Let fX(x) denote the probability density function of random variable X,110

then the probability density function of random variable Y is given by111

fY (y) = fX (1− y) . (5)

This result can be derived as direct application of Theorem 2.1.112

3. Solving the randomized binary Markov chain113

This section is divided in two parts. In the first subsection we will compute the 1-114

PDF of the solution to the randomized binary Markov chain (2) under very general115

assumptions. The second subsection is addressed to determine the PDF of its steady116

state. These goals will be achieved by applying RVT technique.117

In order to obtain the PDF of the solution to the randomized binary Markov chain,118

we need the solution of problem (2), that is given by119

Xn = AnX0 =


−1 +Q+ (−1 + P +Q)n

(
1−Q+ (−2 + P +Q)X1

0

)
−2 + P +Q

−1 + P + (−1 + P +Q)n
(
−1 +Q− (−2 + P +Q)X1

0

)
−2 + P +Q

 , n = 0, 1, . . .

(6)
As P and Q are absolutely continuous RVs, then P [{ω ∈ Ω : P (ω) +Q(ω)− 2 = 0}] =120

0, for all event ω ∈ Ω. As a consequence, the denominator of both components of (6)121

is well-defined.122

3.1. First Probability Density Function of Xn123

As previously indicated, in this subsection we will obtain the 1-PDF of discrete SP,124

Xn, given by (6), using the RVT method. Since Xn is an SP and RVT method applies125

to RVs, first we fix the cycle n and we define the following mapping r126

y1 = r1

(
x1

0, p, q
)

=
−1 + q + (−1 + p+ q)n

(
1− q + (−2 + p+ q)x1

0

)
−2 + p+ q

,

y2 = r2

(
x1

0, p, q
)

= p,

y3 = r3

(
x1

0, p, q
)

= q.

The inverse mapping s of r and its Jacobian are given by127

x1
0 = s1 (y1, y2, y3) =

y1 (−2 + y2 + y3) + (−1 + y3) (−1 + (−1 + y2 + y3)n)

(−1 + y2 + y3)n (−2 + y2 + y3)
,

p = s2 (y1, y2, y3) = y2,

q = s3 (y1, y2, y3) = y3,

and128

|J | =
∣∣∣∣∂s1

∂y1

∣∣∣∣ =

∣∣∣∣ 1

(−1 + y2 + y3)n

∣∣∣∣ 6= 0.
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Therefore, according to Theorem 2.1 the PDF of random vector (Y1, Y2, Y3), is129

fy1,y2,y3 (y1, y2, y3) = fX1
0 ,P,Q

(
y1(−2+y2+y3)+(−1+y3)(−1+(−1+y2+y3)n)

(−1+y2+y3)n(−2+y2+y3) , y2, y3

)
×

∣∣∣ 1
(−1+y2+y3)n

∣∣∣ .
Finally, marginalizing this expression with respect to P and Q and letting n arbitrary,130

we obtain the 1-PDF of X1
n131

fX
1

1 (x;n) =
∫∫
D(P,Q) fX1

0 ,P,Q

(
x(−2+p+q)+(−1+q)(−1+(−1+p+q)n)

(−1+p+q)n(−2+p+q) , p, q
)

×
∣∣∣ 1

(−1+p+q)n

∣∣∣ dq dp,

(7)

where D(P,Q) stands for the domain of random vector (P,Q).132

Now, taking into account that X2
n = 1−X1

n for every n, and applying Lemma 2.2,133

the 1-PDF of X2
n is given by134

fX
2

1 (x;n) = fX
1

1 (1− x;n) =

=
∫∫
D(P,Q) fx1

0,P,Q

(
(1−x)(−2+p+q)+(−1+q)(−1+(−1+p+q)n)

(−1+p+q)n(−2+p+q) , p, q
) ∣∣∣ 1

(−1+p+q)n

∣∣∣ dq dp.
(8)

One of the most useful applications of these explicit expressions obtained to 1-PDFs135

fX
i

1 (x;n), i = 1, 2, is the direct computation of all one-dimensional statistical moments136

of Xi
n,137

E
[(
Xi
n

)k]
=

∫
R
xkfX

i

1 (x;n) dx, k = 1, 2, . . .

Observe that if k = 1 one obtains the mean of Xi
n while the variance can be computed138

using the above moments for k = 1, 2, since V
[
Xi
n

]
= E

[(
Xi
n

)2]− (E [Xi
n

])2
.139

3.2. First probability density function of the steady state140

An important issue in dealing with Markov chains is to determine the steady state.141

From deterministic theory one infers the steady state to randomized Markov chain (2)142

is given by143

X∞ =


1−Q

2− P −Q
1− P

2− P −Q

 . (9)

Notice that X∞ is well-defined because P and Q are absolutely continuous RVs, then144

P [{ω ∈ Ω : P (ω) +Q(ω)− 2 = 0}] = 0, for all event ω ∈ Ω.145

Now, we will obtain the PDF of X∞. We will apply Theorem 2.1 by defining the146
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following mapping, r, based on expression (9)147

y1 = r1 (p, q) =
1− q

2− p− q
,

y2 = r2 (p, q) = q.

The inverse mapping, s, of r is given by148

p = s1 (y1, y2) =
−1− y1 (−2 + y2) + y2

y1
,

q = s2 (y1, y2) = y2,

and the jacobian of s is149

|J | =
∣∣∣∣∂s1

∂y1

∣∣∣∣ =

∣∣∣∣1− y2

y2
1

∣∣∣∣ 6= 0.

Then, by applying Theorem 2.1, the PDF corresponding to the first component of150

the steady state, X1
∞, is151

fX1
∞

(x) =

∫
D(Q)

fP,Q

(
−1− x(2 + q) + q

x
, q

) ∣∣∣∣1− qx2

∣∣∣∣ dq. (10)

To compute the PDF corresponding to the second component of the steady state,152

X2
∞, we will apply Lemma 2.2, taking into account that X2

∞ = 1−X1
∞, obtaining153

fX2
∞

(x) = fX1
∞

(1− x) =

=

∫
D(Q)

fP,Q

(
−1− (1− x)(2 + q) + q

1− x
, q

) ∣∣∣∣ 1− q
(1− x)2

∣∣∣∣ dq. (11)

4. Relevant probability distributions associated to randomized Markov154

chains155

In this section the PDF of some useful quantities dealing with randomized discrete156

Markov chains will be obtained. These quantities are the time until a given proportion157

of the subpopulation is reached, the probability of first passage and the mean first158

passage time. In our analysis these quantities extent their deterministic counterpart159

to the random scenario.160

4.1. Distribution of time until a given proportion of a subpopulation is161

reached162

It is useful to know when the percentage of a group in the population will attain163

a certain level. This motivates the computation of the distribution of the time, Ni,164

i = 1, 2, until a given proportion, ρi, of the population of state i is reached. Now, we165

concentrate on the computation of N1 corresponding to the first subpopulation. Then,166
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let us consider the following relation obtained from the first component of equation (6)167

ρ1 =
−1 + q + (−1 + p+ q)n

1

(1− q + (−2 + p+ q)x1
0)

−2 + p+ q
. (12)

In order to obtain the 1-PDF, fN1
(n), we first isolate n1 from equation (12) and then168

we use the capital letter notation for random inputs X1
0 , P and Q. This yields169

N1 =
log
(

1−Q+(−2+P+Q)ρ1
1−Q+(−2+P+Q)X1

0

)
log(−1 + P +Q)

. (13)

This RV represents the time until a percentage ρ1 of the subpopulation 1 has been170

reached, so N1 must be positive. As P [{ω ∈ Ω : 0 < P (ω) +Q(ω)− 1 < 1}] = 1, then171

P
[
{ω ∈ Ω : 0 < 1−Q+(−2+P+Q)ρ1

1−Q+(−2+P+Q)X1
0
< 1}

]
= 1 must hold in order to guarantee the pos-172

itiveness of N1. From this condition we can deduce the conditions under which N1 can173

be calculated:174

P
[{
ω ∈ Ω : X1

0 (ω) < ρ1 <
1−Q(ω)

2− P (ω)−Q(ω)

}]
= 1, (14)

or175

P
[{
ω ∈ Ω :

1−Q(ω)

2− P (ω)−Q(ω)
< ρ1 < X1

0 (ω)

}]
= 1. (15)

These conditions are very intuitive. Indeed, it is easy to check that X1
n given by176

(6) is monotone respect to n. If it is a monotonically increasing (respect. decreasing)177

sequence, then condition (14) (respect. (15)) applies because the proportion ρ1 will178

vary in the interval [X1
0 (ω), X1

∞] (respect. [X1
∞, X

1
0 (ω)]) determined by the initial179

condition and the steady state (9).180

Using the RVT technique with an appropriate mapping r inspired in (13),181

y1 = r1

(
x1

0, p, q
)

=
log
(

1−q+(−2+p+q)ρ1
1−q+(−2+p+q)x1

0

)
log(−1 + p+ q)

,

y2 = r2

(
x1

0, p, q
)

= p,

y3 = r3

(
x1

0, p, q
)

= q,

it can be proved that the 1-PDF of the time until a percentage, ρ1, of the subpopula-182

tion 1 has been reached is given by183

fN1
(n) =

∫∫
R2 fX1

0 ,P,Q

(
(−1+p+q)−n(1−q+(−1+q)(−1+p+q)n+ρ1(−2+p+q))

−2+p+q , p, q
)

×
∣∣∣ (−1+p+q)−n(−1+q−ρ1(−2+p+q)) log(−1+p+q)

−2+p+q

∣∣∣ dp dq.

(16)

Observe that, for the sake of simplicity the domain of the integral (16) has not been184

specified but in practice this domain must be determined taking into account condi-185

tions (14) or (15) depending upon X1
n is an increasing or decreasing sequence, respec-186

tively.187
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In an analogous way, one can compute the 1-PDF of the time, N2, until a given188

proportion, ρ2, of subpopulation 2 is reached. This 1-PDF is given by189

fN2
(n) =

∫∫
R2 fX1

0 ,P,Q

(
(−1+p+q)−n(−1+p+(−1+q)(−1+p+q)n−ρ2(−2+p+q))

−2+p+q , p, q
)

×
∣∣∣ (−1+p+q)−n(1−p+ρ2(−2+p+q)) log(−1+p+q)

−2+p+q

∣∣∣ dp dq.

(17)

4.2. Distribution of the probability of the first passage190

In this subsection the 1-PDF of the probability of the first passage, f
(n)
i,j , is obtained.191

f
(n)
i,j is the probability starting from i, that the first visit to state j occurs at time n,192

[14]. If i = j, f
(n)
i,i is called probability of first return. In addition, from f

(n)
i,j , fi,j can193

be calculated, that is, the probability, starting from i, that the first visit to state j194

occurs in a finite time. Probabilities f
(n)
i,j and fi,j are defined by [14]195

f
(n)
i,j =


Pi,j , if n = 1,∑
l∈S\{j}

Pi,lf
(n−1)
l,j , if n ≥ 2,

(18)

and196

fi,j = Pi,j +
∑

l∈S\{j}

Pi,lfl,j =

∞∑
n=1

f
(n)
i,j , (19)

where S is the state space and Pi,j is the probability of moving from state i to state197

j at the next step.198

In this work, discrete Markov chains with two states are studied, and then expression199

(18) for each pair (i, j)∈ S × S is given by200

f
(n)
1,1 =

{
P, if n = 1,
(1− P )Qn−2(1−Q), if n ≥ 2,

f
(n)
1,2 = Pn−1(1− P ), n ≥ 1,

f
(n)
2,2 =

{
Q, if n = 1,
(1−Q)Pn−2(1− P ), if n ≥ 2,

f
(n)
2,1 = Qn−1(1−Q), n ≥ 1.

(20)

With regard to the expression (19), for all pair (i, j) ∈ S×S, fi,j = 1. Therefore all201

states are recurrent and then the Markov chain is also recurrent.202

Now, we will obtain the 1-PDF of each expression in (20) to each cycle n. The PDF203

of f
(n)
1,1 with n = 1 is the PDF of the RV P , it is204

f
f1,1
1 (x; 1) = fP (p).

In order to obtain the 1-PDF of f
(n)
1,1 , ∀n ≥ 2, the RVT technique will be applied.205

8



Fixed n ≥ 2, the following transformation, r, is considered:206

x = r1(p, q) = (1− p)qn−2(1− q),
y = r2(p, q) = q.

Then, its inverse transformation, s, is given by207

p = s1(x, y) = 1 + xy2−n

−1+y ,

q = s2(x, y) = y,

and the jacobian is |J | = | y
2−n

−1+y |. Therefore, applying Theorem 2.1, the PDF of the208

random vector (X,Y ) is209

fX,Y (x, y) = fP,Q

(
1 +

xy2−n

−1 + y
, y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ .
Finally, taking n ≥ 2 arbitrary, the 1-PDF of f

(n)
1,1 is given by210

f
f1,1
1 (x;n) =

∫
D(Q)

fP,Q

(
1 +

xy2−n

−1 + y
, y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ dy. (21)

Following the same argument, it is easy to check that the 1-PDF of f
(n)
2,2 is given by211

f
f2,2
1 (x;n) =


fQ(q), if n = 1,∫
D(Q)

fP,Q

(
y, 1 +

xy2−n

−1 + y

) ∣∣∣∣ y2−n

−1 + y

∣∣∣∣ dy, if n ≥ 2.

In the case of the 1-PDF of f
(n)
2,1 we can not obtain analytically the inverse mapping212

of the function qn−1(1−q) for each n ≥ 1. So, we have to obtain the inverse numerically,213

using for example the Lagrange-Bürman theorem [1, 3]. To determine the 1-PDF of214

f
(n)
1,2 we proceed analogously.215

4.3. Distribution of the mean first passage time216

For all i, j ∈ S, it can be defined the expected hitting time of state j, starting from217

state i, mi,j , using the probability of first passage. That is, as we are studying a discrete218

Markov chain, the expectation of the probabilities f
(n)
i,j is given by219

mi,j =

∞∑
n=1

nf
(n)
i,j .

As it is well-Known in the literature [14], mi,j can be obtained from the following220

linear system of equations221

mi,j = 1 +
∑

k∈S\{j}

Pi,kmk,j . (22)
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Then, in our case, as we have two possibles states the different expected times are222

the following223

m1,1 =
2− P −Q

1−Q
, m1,2 =

1

1− P
,

m2,2 =
2− P −Q

1− P
, m2,1 =

1

1−Q
.

(23)

We can also apply RVT technique, using appropriate mappings, in order to obtain224

the PDF of RVs given in (23). Below, we summarize the obtained results225

• PDF of m1,1:226

fm1,1
(x) =

∫
D(Q)

fP,Q(2 + x(−1 + q)− q, q)| − 1 + q|dq. (24)

• PDF of m1,2:227

fm1,2
(x) = fP

(
x− 1

x

)
1

x2
. (25)

• PDF of m2,1:228

fm2,1
(x) = fQ

(
x− 1

x

)
1

x2
. (26)

• PDF of m2,2:229

fm2,2
(x) =

∫
D(P )

fP,Q(p, 2 + p(−1 + x)− x)| − 1 + p|dp. (27)

5. An application to model the spread of a technology230

In this section an application of the previous theoretical results using real data will be231

shown. In this example we consider the number of mobile lines per type of contract in232

Spain, it is, postpaid or prepaid. We assume that this situation can be modelled by233

a binary Markov chain (2). For this proposal we consider data provided by ’Comisión234

Nacional de los Mercados y la Competencia’ [6]. In Table 1, the number of mobile lines235

per type of contract (postpaid and prepaid) and the total of number of mobile lines236

during the period 2001–2015 in Spain are collected.237

As there are two types of contract, postpaid and prepaid, the state space is S =238

{1, 2}, and we assign the value 1 to postpaid lines and 2 to prepaid lines. As it is239

assumed that 0 < X1
n, X

2
n < 1, the first step is to transform data given in Table 1 in240

proportions. We denote these quantities by Y k
j , where k ∈ S denotes the corresponding241

state space and j ∈ J = {0, 1, . . . , 14}, corresponds to years 2001, 2002, . . . , 2015,242

respectively.243

To obtain the solution, first we need to know the distributions of inputs, so, it is244

necessary to choose specific probability distributions to random model parameters X1
0 ,245

P and Q. With this aim, in a second step, data collected in Table 1 (in percentage)246
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Year 2001 2002 2003 2004 2005
Postpaid 10 384 261 12 657 346 15 592 659 18 555 948 21 980 367
Prepaid 19 271 468 20 872 651 21 627 180 20 066 634 20 713 465
Total 29 655 729 33 530 997 37 219 839 38 622 582 42 693 832

Year 2006 2007 2008 2009 2010
Postpaid 24 794 696 27 657 855 29 310 320 30 187 230 31 420 525
Prepaid 20 880 959 20 764 615 20 313 019 20 865 463 19 968 892
Total 45 675 855 48 422 470 49 623 339 51 052 693 51 389 417

Year 2011 2012 2013 2014 2015
Postpaid 32 220 636 32 850 295 34 409 470 36 199 911 37 618 054
Prepaid 20 369 871 17 814 804 15 749 219 14 606 340 13 449 515
Total 52 590 507 50 665 099 50 158 689 50 806 251 51 067 569

Table 1. Number of mobile lines per type of contract (postpaid and prepaid) and the total of mobile lines

during the period 2001–2015 in Spain. Source CNMC [6].

are used in order to assign a reliable probabilistic distributions to random inputs, P ,247

Q and X1
0 , which hereinafter will be assumed independent RV’s.248

On the one hand, as X1
0 represents the initial proportion of people that has a249

postpaid mobile line, we have made the decision of assuming that X1
0 has a Uniform250

distribution with parameters 0 ≤ a, b ≤ 1. On the other hand, P and Q are probabil-251

ities and then they lie between 0 and 1. Therefore we consider that both have Beta252

distributions with parameters a1, a2 > 0 and b1, b2 > 0, respectively.253

As X2
n = 1 − X1

n, we concentrate our attention on the first component of the254

solution SP, X1
n. In order to determine the positive parameters a, b, a1, a2, b1 and b2,255

we will minimize the mean square error between data {Y 1
j }j∈J and the expectation256

of the solution SP, {X1
j }j∈J , which can be obtained from the 1-PDF given in (7). All257

the computations have been carried out using the software Mathematica R© [16]. More258

specifically, we have used the command NMinimize to calculate259

min
0 < a, b < 1

a1, a2, b1, b2 > 0

∑
j∈J

(Y 1
j − E[X1

j (a, b, a1, a2, b1, b2)])2. (28)

Introducing the probability distributions260

X1
0 ≡ U(a, b), 0 ≤ a < b ≤ 1,

P ≡ Be(a1, a2), a1, a2 > 0,
Q ≡ Be(b1, b2), b1, b2 > 0,

in (28), the following adjusted parameters are obtained261

a = 0.334388, b = 0.361633,
a1 = 199.218, a2 = 2.01382,
b1 = 444.913, b2 = 34.0011.

Once random inputs are determined, we can calculate the 1-PDF of the solution of262

each state and other useful quantities as it has been described in Sections 3 and 4.263

At this point, it is important to highlight that our approach permits to predict the264

spread of mobile lines per type of contract using both punctual predictions (mean)265
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and probabilistic predictions (confidence intervals). This is a main difference against266

the classical approach where only punctual predictions are provided. This distinctive267

feature is possible because the randomization of probabilities of transition matrix and268

initial conditions. Naturally, this turns out to be a more realistic prediction since269

sampled data usually contain uncertainty as has been pointed out earlier.270

In Figure 2, proportion of postpaid mobile lines in Spain in period 2001–2015,271

{Y 1
j }j∈J , obtained from Table 1 is represented in blue points. The expectation of272

{X1
j }j∈J is represented in a solid line. We can observe a good fit between {Y 1

j }j∈J273

and the expected values {E[X1
j ]}j∈J . Also, the 75% and 95% confidence intervals are274

plotted. These confidence intervals have been computed as follows. Let us fix a cycle275

value n̂ ≥ 1 and α ∈ (0, 1), and secondly determine z1 = z1(n̂) and z2 = z2(n̂) such276

that277 ∫ z1

0
fX

1

1 (x; n̂) dx =
z

2
=

∫ 1

z2

fX
1

1 (x; n̂) dx .

Then, (1− α)× 100%-confidence interval is specified by278

1− α = P
({
ω ∈ Ω : X1

n̂(ω) ∈ [z1, z2)]
})

=

∫ z2

z1

fX
1

1 (x; n̂) dx .

real data

Expectation

75 % Confidence Interval

95 % Confidence Interval

2 4 6 8 10 12 14
n

0.2

0.4

0.6

0.8

X
1

Figure 2. Expectation of postpaid mobile lines (solid line) and 75-95% confidence intervals (dotted lines).
Points represent real data.

For each n ∈ N fixed, the 1-PDF of X1
n, fX

1

1 (x;n), is determined by (7) using279

the distributions of the input RVs, say, fX1
0
(x1

0), fP (p) and fQ(q). As X1
0 , P and280

Q are assumed independent RVs, we have fX1
0 ,P,Q

(x1
0, p, q) = fX1

0
(x1

0)fP (p)fQ(q). In281

Figure 3-left, are plotted the 1-PDF of X1
n at different fixed cycles: n = 1, in blue,282

n = 6 in red, n = 11 in gray, etc. We can observe that these 1-PDFs, as n→∞, tend283

to the PDF of the steady state, fX1
∞

(x), calculated by expression (10) and represented284

in black colour. Figure 3-left shows that fX
1

1 (x; 70) practically match with fX1
∞

(x).285

The 1-PDF of X2
n is calculated using the transformation from fX

1

1 (x;n) given by (8).286
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The analogous transformation (11) applied to fX1
∞

(x) is used to determine de PDF287

for the steady state of X2
n, fX2

∞
(x). Results related to prepaid lines are showed in288

Figure 3-right. As it is expected, we can observe the symmetry of the results in both289

subfigures.290

f
x∞
1 (x) f1

x1 (x;1)

f1
x1 (x;6) f1

x1 (x;11)

f1
x1 (x;16) f1

x1 (x;21)

f1
x1 (x;36) f1

x1 (x;70)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x0

10

20

30

40 f
x∞
2 (x) f1

x2 (x;1)

f1
x2 (x;6) f1

x2 (x;11)

f1
x2 (x;16) f1

x2 (x;21)

f1
x2 (x;36) f1

x2 (x;70)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x0

10

20

30

40

Figure 3. Left: Plot of fX
1

1 (x;n) given by (7) for several cycles and fX1
∞

(x) given by (10). Right: Plot of

fX
2

1 (x;n) given by (8) for several cycles and fX2
∞

(x) given by (11).

Figure 4 shows the distribution of time until a given proportion of the population,291

ρ1, possesses postpaid line mobile. This PDF is determined by equation (16) and it is292

represented for different values of these proportions, ρ1. As is it expected, when the293

value of ρ1 increases, the maximum of the corresponding PDFs moves to the right.294

In Table 2, the mean and the standard deviation of fN1
(n) at several values of ρ1 are295

given. For example, from Figure 4, the distribution of time until a 40% of population296

has a postpaid mobile line reaches its maximum near 1 and it is narrow. Notice that297

the expectation and standard deviation in Table 2 for ρ1 = 0.4 is in agreement with298

the representation of the corresponding PDF in Figure 4. We can observe, for each ρ1299

fixed, that PDF representations in Figure 4 are also in agreement with corresponding300

values of Table 2.301

ρ1=0.4 ρ1=0.45

ρ1=0.5 ρ1=0.55

ρ1=0.6 ρ1=0.65

ρ1=0.7 ρ1=0.75

ρ1=0.8

2 4 6 8 10 12 14
n

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fN1

Figure 4. Plot of fN1 (n) given by (16) for several values of ρ1.
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ρ1 0.4 0.45 0.5 0.55 0.6

E[fN1
] 1.275 2.648 4.207 6.0127 8.149

σ[fN1
] 0.332 0.629 1.044 1.638 2.506

Table 2. Expectation and standard deviation of fN1 (n) (given by (16)) for several values of ρ1.

The 1-PDF of the probability of first return f
(n)
1,1 given by (21) at cycle n = 1, it is,302

the probability of remaining at state 1, at cycle 1, starting from state 1 is represented303

in Figure 5. From representation of 1-PDF f
f1,1
1 (x; 1), we can conclude that if you304

have a postpaid line now, you will probably have a postpaid line next year. This is in305

agreement with the expected value of P , E[P ] = 0.98.306

0.2 0.4 0.6 0.8 1.0

20

40

60

f1
f1,1 (x;1)

Figure 5. 1-PDF of the probability of first return f
(n)
1,1 given by (21) at n = 1.

In Figure 6-left, 1-PDF of the probability of first passage f
(n)
1,1 at the rest of cycles,307

n ≥ 2, is plotted. The results are in agreement with Figure 5 because a little pro-308

portion of population change from postpaid line to prepaid line. In Figure 6-right the309

expectation plus/minus the standard deviation for n ≥ 2 are plotted.310

As it is indicated in Section 4.2, 1-PDF of first passage f
(n)
2,1 is calculated numerically311

using Lagrange-Bürman Theorem. Results for the 1-PDF of the probability of first312

passage f
(n)
2,1 are showed in the upper part of Figure 7 (top). Due to scale in vertical313

axis, for the sake of clarity in the presentation, it has been split in two plots. In Figure 7314

(bottom), the expectation plus/minus the standard deviation for n ≥ 2 are plotted.315

Finally, in Figure 8 we show the results for the PDF of the mean first passage time316

between two states, mi,j , given by (24)–(27). In Table 8 the expectation and standard317

deviation of each mi,j are provided. In both, figure and table, we observe the expected318

mean time passage m2,1 is approximately 14. The expected mean time passage m1,1319

is approximately 1, in accordance with previous comments.320
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[f1,1
(n) ]

[f1,1
(n) ]±σ[f1,1

(n) ]

5 10 15 20
n

0.0005

0.0010

0.0015

0.0020

Figure 6. Left: 1-PDF of the probability of first return f
(n)
1,1 given by (21) at cycles n = 2, 4, . . . , 20. Right:

Expectation of f
(n)
1,1 plus/minus the standard deviation for n ≥ 2.

[f2,1
(n) ]

[f2,1
(n) ]±σ[f2,1

(n) ]

5 10 15 20
n

0.02

0.04

0.06

0.08

Figure 7. Top-left: 1-PDF of the probability of first return f
(n)
2,1 at cycles n = 2, 3, . . . , 20. Top-right: Zoom of

1-PDF of the probability of first return f
(n)
2,1 at cycles n = 2, 3, . . . , 9. Bottom: Expectation of f

(n)
2,1 plus/minus

the standard deviation for n ≥ 2.

m1,1 m1,2 m2,1 m2,2

E[·] 1.14493 197.325 14.4818 14.9909
σ[·] 0.105755 447.492 2.47 29.5575

Table 3. Expectation and standard deviation of the expected hitting time of state j starting from state i,

mi,j .

6. Conclusions321

In this paper we have provided a full probabilistic description of the solution of a ran-322

dom binary Markov chain under very general assumptions on random inputs. These323

random inputs are the probabilities of the transition matrix and the initial condition.324
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Figure 8. PDF of the expected hitting time of state j starting from state i, mi,j , given by (24)–(27).

By means of the randomization of these probabilities, our approach provides a gen-325

eralization of relevant results to classical binary Markov chains. The aforementioned326

full probabilistic description has been made through the first probability density func-327

tion of the discrete solution stochastic process and the probability density function328

associated to the steady state. Furthermore, the probability density function of a key329

time having specific interpretation in practice has been determined. Other quantities330

of great interest in the deterministic context of Markov chains, like the probability of331

first passage time and the mean first passage time have been randomized using our332

approach. Then a full probabilistic description of these quantities have been estab-333

lished. A key mathematical tool to conduct our analysis has been the application of334

the Random Variable Transformation technique.335

Finally we have illustrated our findings to model the percentage of mobile lines per336

contract type (postpaid and prepaid) in Spain using real data. This data are well-337

modelled through a random binary Markov chain.338
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