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ABSTRACT 

Heat generation by point-like structures is an appealing concept for its implications in 

nanotechnology and biomedicine. The way to pump energy that excites heat locally and the 

synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-

frequency alternate magnetic or near-infrared optical fields are used to induce heat in iron oxide 

nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, 

the temperature determination around a single iron oxide nanoparticle remains a challenge. We 

study the heat released from iron oxide nanostructures under near-infrared illumination on a one-

by-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity 

changes around the trapped particle as a function of the illuminating power, thus avoiding the use 

of thermal probes. Our results help interpreting temperature, a statistic parameter, in the 

nanoscale and the concept of heat production by nanoparticles under thermal agitation. 
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The use of nanoparticles (NPs) that generate heat under external stimuli is the subject of 

extensive research because they promote engineering at the nanoscale and enable several 

physical-chemical activities compatible with life.1 In biomedicine, especial attention is devoted to 

NPs whose hyperthermia capacity can be controlled non-invasively and remotely by optical and 

magnetic fields, killing tumor cells by increasing their temperature.2-3 

Among other materials, iron oxide-based magnetic NPs (IONPs) commonly display low 

toxicity and their magnetic properties are useful for contrast enhancement in magnetic resonance 

imaging. They release heat under appropriate alternating (AC) magnetic fields4-5 and, as a matter 

of fact, a fair number of clinical trials have been or are being conducted.6-9 In recent years, the 

optical absorption shown by magnetic nanostructures and subsequent heat production has come 

into play as an alternative method to perform hyperthermia with IONPs. In particular, the use of 

near infrared (NIR) irradiation and its potential to treat tumors through the heat generated at the 

IONPs have been demonstrated.10-20 This method is gaining interest due the low absorption and 

dispersion of physiological tissues at NIR wavelengths.21-22 AC magnetic fields are more 

advantageous than NIR irradiation from the point of view of tissue penetration, but a NIR laser is 

a more affordable technology than an AC magnetic field generator and requires lower doses than 

those for magnetic hyperthermia.23 For these reasons, both optical and magnetic hyperthermia 

complement each other in thermal ablation clinical applications.11 

Knowledge of the temperature rise produced by a single NP at its vicinity is a crucial step 

forward in the understanding of the local heating caused by remotely activated NPs. However, in 

spite of the large efforts dedicated to hyperthermia treatments to date, the quantification of the 

heat released from IONPs is routinely performed through bulk temperature measurements on 

samples typically containing 1012-1015 NPs.24-26 Exceptional studies on temperature increment 
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determination at the single particle level have only been performed on Au NPs with the use of 

calibrated probes in contact with the heating nanostructures.27-28 

In this work, iron oxide nanocrystals (IONPs) were encapsulated in silica to yield near-

spherical stratified silica-coated iron oxide (IONP@SiO2) nanostructures (Supporting 

Information). The silica shell facilitates their dispersion in water and enhances gradient forces in 

the optical trap; in fact, tridimensional optical trapping of bare IONPs was not possible under our 

experimental conditions, as detailed in our previous work.29 TEM examination before and after 

encapsulation (Supporting Information and Fig. S1) revealed mean ± SD sizes of 11 ± 1 nm and 

99 ± 3 nm, respectively. 

The Fe3O4 core is an excellent candidate for optical heating because magnetite immersed in 

water approaches the absorption behavior of a black body in the visible and NIR spectral ranges.30 

The complex refractive index, 𝑛 = 𝑛! + 𝑖𝑛′′, of Fe3O4
31 relative to water (𝑛′ ≳ 1.6) enables 

transparency and a moderate refracting power, in contrast to gold (𝑛!~10!!),32 which mostly 

reflects and scatters light at off-plasmon resonance conditions.33 The imaginary part (relative to 

water), 𝑛′′ ≳ 0.4, is low but not negligible, which allows a high wave penetration depth in the 

magnetic material while enhancing energy absorption. This is in sharp contrast to gold, 𝑛′′ ≳

1.5, in which light energy hardly crosses the surface (off-resonance conditions). 

These behaviors exhibited by magnetite are not strongly dependent on the wavelength in the 

visible and NIR ranges. This is reflected in the absorption cross section, which tends to be flat 

with the wavelength and does not present Mie resonances. The theoretical absorption (𝜎!"#), 

scattering (𝜎!") and extinction (𝜎!"# = 𝜎!"# + 𝜎!") cross sections of a single IONP@SiO2 

nanostructure in water are shown in Fig. 1, along with the absorption cross section for the bare 

IONP in air. Simulations have been generated by using exact calculations based on the extension 
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of Mie theory for stratified spheres.34-36 As expected, the extinction cross section profile of 

IONP@SiO2 nanostructures shows good agreement with the bulk attenuance measurement (Fig. 

1). 

 

Figure 1. Optical cross sections. Absorption (𝜎!"#, blue), scattering (𝜎!", green) and 

extinction (𝜎!"#, black) cross section of a single IONP@SiO2 nanostructure in water and 𝜎!"# of a 

single uncoated IONP (dash blue) in air, as calculated from Mie theory. The experimental bulk 

attenuance (A) of an ensemble of IONP@SiO2 nanostructure in water is shown in pink in optical 

density units. 

The absorption cross section of IONP@SiO2 nanostructures in water is near 8 times greater 

than that of similar Au@SiO2 nanostructures of equal stratified sizes in water. It is also 

remarkable that the absorption cross section of the bare IONP core nearly doubles after silica 

encapsulation and water immersion, being 𝜎!"# = 4.0 nm2 at the trapping laser wavelength 

𝜆 = 808 nm for IONP@SiO2 nanostructures in water. The absorption cross section of the bare 

IONP in water is 3.6 nm2, still smaller than the whole nanostructure. The thick, highly curved 

silica shell thus has the effect of a lens that concentrates light onto the magnetic core. 
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Radiative effects were negligible in our optical configuration and for the particles used in our 

experiments (Supporting Information and Fig. S2) and, therefore, light absorption by the NPs in 

the trap was assumed to be ultimately released via thermal dissipation. 

The stochastic dynamics of single silica-coated magnetic NPs in the trap was stationary, within 

a harmonic potential well, as characterized in Fig. S3 (a) by the power spectral density of 

fluctuations,29, 33, 37-41 and stable for minutes. The limiting frequency at which the NP explores the 

focal region, the so called corner frequency, increases with the laser power, Fig. S3 (b), a 

consequence of both increasing trap stiffness with power and decreasing viscosity of the 

surrounding water with power due to heating from the magnetic NP. 

Since there are no additional energy dissipation mechanisms, the heat generation from the 

particle equals the absorbed power: 

𝑞 = 𝑃!"# .                                                                (1) 

The temperature increase around the magnetic core is calculated by solving Fourier’s law for 

heat conduction (as detailed in the Supporting Information, including Fig. S4): 

Δ𝑇 𝑟 = 𝑇 𝑟 − 𝑇! =

𝑃!"#
4𝜋𝐶!𝑟

  ,                                                           𝑟 ≥ 𝑎             (2a)

𝑃!"#
4𝜋𝐶!"𝑟

+
𝑃!"#
4𝜋𝑎

1
𝐶!

−
1
𝐶!"

 ,             𝑎! ≤ 𝑟 ≤ 𝑎             (2b)
 

where 𝑇 is the absolute temperature (𝑟, the radial coordinate from the center of the NP) and 𝑇! is 

the absolute room temperature; 𝑎! and 𝑎 are the radius of the core IONP and the whole 

IONP@SiO2 nanostructure, respectively; and 𝐶!" and 𝐶!  are the thermal conductivities of silica 

and water, respectively. The power absorbed by the nanostructure, 𝑃!"#, requires of a particular 

treatment since the particle is much smaller than the focal region and not static in the trap 

(Supporting Information, including Figs. S5 and S6): 
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𝑃!"# = 𝑃!"#$
𝜅! 2𝜅!𝜎!"#

𝜋!𝑘!𝑇
𝑑𝑧

exp − 𝜅!𝑧!
2𝑘!𝑇

𝜅!𝑊!! 1+ 𝑧 𝑧! ! + 4𝑘!𝑇

!!

!!
 .                 (3) 

We calculated the increase in temperature around an IONP@SiO2 nanostructure at different 

laser powers (Fig. S6). The thermal conductivity of the shell does not affect the temperature 

outside the NP, Eq. (2a), although, as explained in the previous section, the power absorbed by 

the magnetic core does depend on the lens effect produced by the silica shell. 

For many materials and phototherapies, laser-induced effects only depend linearly on the laser 

power. For optical hyperthermia treatment designs, which often differ in the laser power used, 

the heating coefficient is a very convenient parameter to compare, across light-based 

methodologies, the temperature rise per watt in a nanostructure. This parameter depends on the 

shape and composition of the nanostructure, and modifies in the presence of nearby 

nanostructures, but its value affords predictions on the heating behavior of particles. In the 

following, we experimentally define and measure the laser-heating coefficient of the magnetic 

NPs, with which comparisons between theory and experiment will be established. IONP@SiO2 

nanostructures were flowed in a microfluidics chamber (Supporting Information) showing good 

colloidal stability and dispersion in water. Optical confinement of both single IONP@SiO2 

nanostructures and groups of a small number of NPs bunched in the optical trap (IONP@SiO2 

clusters from now on39) were performed as described in our previous work.29 The particle 

concentration was sufficiently low to prevent interference signals from successive trapping 

events. 

In order to measure heat generation in single IONP@SiO2 nanostructures, we studied the 

viscosity change in the surrounding water as the trapping power was varied (Supporting 

Information). We performed Stokes’ law assays for powers ranging from 60 to 120 mW,29, 39-40 
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obtaining the drag coefficient, 𝛾, as a function of the power in the trap. Representative results 

from these experiments are shown in Fig. 2 (a). A decay trend in 𝛾 is observed with increasing 

power, Fig. 2 (b), which reveals a decrease in viscosity of the medium as a consequence of heat 

dissipation from the NP. 

The functional relation between the temperature and the power in the trap is normally 

expressed as 𝑇 𝑃!"!" = 𝑇! + 𝐵×𝑃!"#$, where 𝐵 is the laser-induced heating coefficient.42 When 

a single absorbing particle in the trap is much smaller than the focal region, Δ𝑇/𝑃!"#$ cannot be 

considered constant because the power absorbed by the particle is position-dependent. As 

explained in the Supporting Information, the temperature rise approximately squares with the 

trap power at low power, which makes the heating coefficient depend on the trap power too. 

However, the absorbed power can be considered linear with the trap power above some 20 mW 

in our experimental configuration because the particle remains near the center of the focal region 

most of the time (Fig. S5). The friction coefficient in these conditions is 

𝛾 𝑃!"#$ = 3𝜋𝑑!!"#$𝜂 𝑇! + 𝐵×𝑃!"#$ ,                                (4) 

where 𝑑!!"#$ is the hydrodynamic diameter of the trapped particle and 𝜂(𝑇) the temperature-

dependent viscosity of the medium. 
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Figure 2. Experimental determination of the temperature. (a) Drag force versus 

velocity for a single IONP@SiO2 nanostructure confined at four representative trap powers. Data 

have been artificially shifted in the vertical axis for the sake of clarity (note that 𝐹!"#$ 𝑣!"#$ =

0 = 0). Blue curves are linear fits revealing the drag coefficient of the particle, 𝛾. (b) Drag 

coefficient of a single IONP@SiO2 nanostructure as a function of the power in the trap. Black 

curve is the optimal fitting to 𝛾 𝑃!"#$ = 3𝜋𝑑!!"#$𝜂(𝑇! + 𝐵×𝑃!"#$). The parameters obtained 

from this sample particle were 𝑑!!"#$ = 113± 3 nm and 𝐵 = 34.1± 0.7 K·W−1. 
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Equation (4) was fitted to the experimental data to obtain corresponding heating coefficients 

and 𝑑!!"#$. Since the particles are approximately spherical (Fig. S1) and their size do not change 

for temperature increments of a few degrees, 𝑑!!"#$ approaches the size of the IONP@SiO2 

nanostructure when a single particle is in the trap. Single and multiple trapping events are plotted 

in Fig. 3 (raw data for each trapping event is provided in the Supporting Information). The 

analysis of the set of particles measured on a one-by-one basis yielded 𝐵 = 23± 6 K·W-1 (mean 

± SD). This laser-heating factor is much higher than that of purely dielectric particles 

considering that water absorption by our 808-nm laser is marginal.42-43 Indeed, the laser-induced 

heating coefficients of water comply with 𝐵! < 3 K·W−1 and the temperature rise keeps 

Δ𝑇! < 0.3 K at 𝑃!"#$ = 100 mW (Supporting Information). Our experimental results are 

consistent with these theoretical predictions: measurements of the laser-heating coefficient for 

individual 1-μm polystyrene beads yielded 𝐵!" = 4± 1 K·W−1 (mean ± SD) and Δ𝑇!" = 0.4 K at 

𝑃!"#$ = 100 mW (Fig. 3). 

Single IONP@SiO2 nanostructures yield Δ𝑇 = 2.3± 0.6 K under laser pumping such that 

𝑃!"#$ = 100 mW (Fig. 3). The theoretical prediction (see Eq. (3)), without considering the water 

absorption contribution, is of Δ𝑇 = 2.3 K at the SiO2 surface (Fig. S6). The extrapolation of this 

result to the surface of the IONP core implies that a weakly focused trapping beam in the NIR 

induces a temperature rise of Δ𝑇 = 14 K with an optical power of 100 mW. 

The heating efficiency exhibited by the herein analyzed IONP cores exceeds that of Au NPs, as 

compared to earlier studies at off-resonance conditions. In particular, the ratio [heating 

coefficient]/[geometric cross section] measured on the surface of an Au NP in equivalent optical 

trapping conditions was around 9 times lower than the corresponding ratio for an IONP.33 Similar 

results were obtained by Bendix et al.,27 where this ratio was around 5 times lower than that of the 
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herein considered IONPs, despite the optical power in the trap in that study was more 

concentrated (higher numerical aperture, higher intensity) than in our setup. 

 

Figure 3. Temperature measurements near magnetic nanostructures. The laser 

heating coefficient is shown for a set of 14 single IONP@SiO2 nanostructures and near 70 

IONP@SiO2 clusters of varying hydrodynamic diameter measured at 𝑃!"#$ = 100 mW. The 

blue-shaded area indicates the single IONP@SiO2 nanostructure diameter range, as derived from 

TEM measurements. The horizontal blue line is the average temperature increase of single 

IONP@SiO2 nanostructures. Data within the red-shaded area correspond to IONP@SiO2 clusters 

and the red curve is a fitting of all the measurements (single IONP@SiO2 and clusters) to 

~𝑑!!"#$! . Purple dots are control experiments performed with 1 µm-diameter polystyrene (PS) 

beads. The black, dashed line marks the temperature increase of distilled water under identical 

conditions. 
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With regards to the IONP@SiO2 clusters, it is observed in Fig. 3 that Δ𝑇 increases with the size 

of the trapped object.44 Due to the geometry and orientation of the small number of particles in 

each cluster against the viscous drag, it is not possible to determine the exact number of particles 

at the focal region on each assay. However, by fitting our results to a power law, Δ𝑇~𝑑!!"#$! , we 

find 𝑛 = 2.9± 0.2, consistent with a coarse-grained model in which the temperature rise scales 

with the volume of the optically generated IONP@SiO2 aggregate. The third law behavior of the 

heat coefficient with the size of the IONP@SiO2 clusters can be used as a reference when 

considering aggregation inside cells. However, it is important to note that these clusters, apart 

from containing silica, hold gaps between IONP@SiO2 nanostructures filled with water 

molecules. The heat coefficient for a magnetite nanoparticle does not necessarily increase with 

its volume because it actually depends on the absorption optical cross section of the nanoparticle, 

which is not linear with the volume of the nanoparticle. The herein measured heating coefficients 

for individual clusters, which scale up to 102-103 K·W−1 for hydrodynamic sizes in the 102-103 nm 

range, are compatible with those obtained in bulk measurements.19 

The temperature rise as a function of the power in the trap is studied in Fig. 4. It is observed 

that the experimental measurement was always lower than the theoretical prediction at the 

surface of one NP (𝑟 = 𝑅) considering the mild heating from water absorption (some 0.3 K at 

100 mW within the focal region, see previous subsection). Then, it is clear that the Stokes’ law 

assays access the water temperature in an environment around the trapped IONP@SiO2 

nanostructure instead of directly on the SiO2 outer surface. After including the effect of water 

absorption, theory and experiment nearly coincide at 𝑟 = 57 nm, i.e. some 7 nm away from the 

outer surface of the IONP@SiO2 nanostructure. This implies that temperature measurements 



 13 

comply with an energy equivalent to the kinetic motion of water molecules averaged over some 

30 molecular layers. 

 

 

Figure 4. Temperature as a function of the laser power. The temperature rise near a 

single optically-trapped IONP@SiO2 nanostructure is shown (green curve and shaded area, mean 

± SD), together with the theoretical predictions at 𝑟 = 𝑎 for weak (black), moderate (red) and 

strong (blue) confinement regimes (Supporting Information). 

In conclusion, we have measured for the first time the temperature near an individual heating 

NP by a fundamental method, that is, without the use of neighboring nanostructures calibrated 

for temperature sensing, which may alter the physical properties of the heating NP. To that end, 

we have used an optical trap to confine the NP and induce its heating through optical absorption. 

We have developed straightforward theoretical methods to interpret the temperature 

measurements, which take into account the Brownian motion of the NP in the trap. This theory 

can be used to predict temperature gradients by other optically absorbing nanostructures 

manipulated by laser tweezers in the limit of very small particles, where optical heating becomes 

stochastic. From the point of view of the use of NPs in biomedicine, a spatial change in 
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temperature, which does not necessarily involve a high temperature maximum, may dramatically 

alter signaling pathways that lead to cell death. 

Theory and experiments confirm IONPs as efficient optical heat generators over metallic NPs 

away from plasmon resonance conditions. We have used a low power NIR laser, which enables 

non-invasive radiation for optical hyperthermia thus pushing forward the versatility of IONPs in 

health. More in depth, beyond their use in contrast imaging, our results with IONP@SiO2 

nanostructures show that optical hyperthermia implemented with NIR lasers generates 

temperatures similar to those obtained by magnetic hyperthermia under AC magnetic fields in 

the MHz. These methods are physically independent and biologically compatible, and, therefore, 

they may be simultaneously tuned to optimize the heating response of IONPs at specific 

biomedical scenarios. Finally, we present silica-coating as a chemical route to increase optical 

absorption and thus the heating capacity of IONPs in physiological media, a strategy that is also 

convenient for their optical tweezing under weak laser focusing. 

Temperature is a physical property that makes sense on average over the many-body dynamics 

of the materials’ components. Extending this statistic concept down to the nanoscale is 

challenging because the number of these components may be limited, especially when the 

heating source is small and subjected to collisions with them. Our results shed light on the 

understanding of temperature microscopically and for general non-equilibrium problems. In 

particular, by comparing theory and experiments, we show that the temperature outside a heating 

NP corresponds to the average kinetic energy of a few tens of water molecule layers. 

ASSOCIATED CONTENT 
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