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Abstract

In this paper, the minus matrix partial order is considered to introduce the con-
cept of minus partial ordered control systems. The transmission of the reach-
ability property under this binary relation is investigated. Furthermore, the
analysis of compartmental systems leads us to consider block triangular matri-
ces. Hence, the existence and computation of partially ordered matrices having
a similar block structure are studied. These results are applied to compartmen-
tal systems to get, via feedback, related systems with the same block structure
and ordered under the minus partial order.
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1. Introduction and background1

Matrix partial orders have been object of research in the literature having2

an increasing attention lastly due to their potential for real applications in3

areas such as electrical networks or statistical problems. In particular, the4

minus partial order plays an important role in solving problems that involve5

shorted operators or modified matrices by adding/deleting a row or a column [8,6

14]. Some results on theoretical, applied, and numerical aspects of generalized7

inverses and partial orders can be found in [6, 7, 9, 15, 16, 17, 19, 20, 21].8

Algebraic relations and properties of partially ordered matrices motivate9

research on the usefulness of partial orders in the field of linear dynamic systems.10

A first approach to this research appeared in [11], where the sharp partial order11

was applied to study linear autonomous systems.12

Systems in which we are interested in the present work are compartmental13

systems, as for example the models related to population dynamic behaviour or14

the evolution of an infectious disease [1, 10]. Usually, these models are repre-15
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sented by discrete/continuous time compartmental control systems whose state16

matrix has a prescribed structure, for instance, a block triangular matrix [4].17

Moreover, we are interested in applying the minus partial order to these18

models to improve their performance and to analyze properties that guarantee19

the efficiency of certain techniques in the medium and long term. Previously,20

we need to introduce the novel concept of minus partial ordered systems and to21

make the first general considerations that derive from them.22

Furthermore, we present the study of the effect of a feedback on the state23

coefficient matrix such that the obtained system is related to the initial system24

under the minus partial order. Since a model represents a real process, it is25

fundamental to keep the structure of the state coefficient matrix. We look for26

successor systems to the initial system by improving the characteristics of it.27

Specifically, we focus our attention on the new state coefficient matrix of the28

system and on the transmission of the reachability property.29

In order to ensure that the structure is maintained for the state coefficient30

matrix of a compartmental system, we have to analyze the minus partial order31

for block triangular matrices under a perturbation.32

We recall that for a given n × n real matrix M , the matrix M− is a {1}-33

generalized inverse of M if MM−M = M , and M† is the Moore-Penrose inverse34

of M if it satisfies MM†M = M , M†MM† = M†, and MM† and M†M are35

symmetric matrices (see [3]).36

Let Rn×n be the set of n×n real matrices. For two given matrices M1,M2 ∈37

Rn×n, it is well known thatM2 is a successor ofM1 under the minus partial order38

if there exists a {1}-generalized inverse M−1 of M1 such that M1M
−
1 = M2M

−
139

and M−1 M1 = M−1 M2. This binary relation will be denoted by M1

−
≤ M2 (see40

[14]). The following result gives a characterization of the minus partial order.41

Proposition 1. [2] Let M1,M2 ∈ Rn×n with rank(M1) = r. Then, the follow-42

ing assertions are equivalent:43

(a) M1

−
≤M2.44

(b) There exist nonsingular matrices P,Q ∈ Rn×n such that

PM1Q =

(
Ir O
O O

)
and PM2Q =

(
Ir O
O Y

)
, (1)

for some matrix Y ∈ R(n−r)×(n−r).45

(c) rank(M2) = rank(M1) + rank(M2 −M1) (rank substractivity condition).46

A discrete-time linear control system is given by

x(k + 1) = Mx(k) +Bu(k), k ∈ Z, (2)

where x(k) ∈ Rn, u (k) ∈ Rm, k ∈ Z. The matrix M ∈ Rn×n is the state47

coefficient matrix and B ∈ Rn×m is the input coefficient matrix. This system is48

denoted by (M,B).49
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We recall that the system (M,B) is reachable if for any state x there exists a
control sequence transferring the trajectory of the system from the origin state
0 into x. The reachability property is characterized by the condition that the
reachability matrix defined by

R(M,B) = (B MB M2B · · ·Mn−1B),

has full rank. Moreover, (M,B) is controllable if for any state x there exists a50

control sequence transferring the trajectory of the system from the state x into51

the origin state 0. In the discrete-time case, these properties are equivalent if52

the state coefficient matrix M is nonsingular. In [5], the authors studied the53

reachability property for higher order linear systems.54

We highlight that the main contribution of this paper is to state a link55

between linear control systems and matrix partial orders. The authors think56

that this idea can be fruitful and will provide an interesting new research line57

where areas are enriching each other.58

This paper is organized as follows. In Section 2, we introduce the minus59

partial order for control linear systems and analyze the reachability property.60

In Section 3, we consider the minus partial order for block triangular matri-61

ces and we establish conditions for the existence and computation of successor62

matrices, under this order, of a given matrix. Finally, compartmental systems63

are considered in Section 4. We compute the explicit expression of a feedback64

in order to obtain successor closed-loop systems preserving the block triangular65

structure. Moreover, the reachability property is analyzed in an interesting case66

of compartmental systems.67

2. Minus partial ordered control systems68

In this section we consider control systems and we are going to introduce69

the minus partial order relation between two given systems. Inspired by the70

definition given in [11] for the sharp partial order, we can give the following71

definition.72

Definition 1. We say that two autonomous linear control systems x(k + 1) =73

M1x(k) and x(k + 1) = M2x(k), k ∈ Z, are ordered under the minus partial74

order if M1

−
≤M2.75

Notice that two ordered autonomous systems under the sharp partial order76

are equivalent under similarities [11], while this situation is not true, in general,77

for two ordered autonomous systems under the minus partial order. In this78

last case, we can construct chained systems satisfying the condition rank(Mi) =79

rank(Mi−1) + rank(Mi −Mi−1), i ≥ 1. The final system of the sequence will80

be a system whose state coefficient matrix is nonsingular, that is, a reversible81

system.82

If we consider a linear control system with inputs as in (2), the natural83

extension of this concept allows us to obtain a successor system where the84

reachability from 0 and controllability to 0 properties are equivalent.85
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Definition 2. We say that two linear control systems (M1, B) and (M2, B)86

defined as in (2) are minus partially ordered if M1

−
≤ M2. This relation is87

denoted by (M1, B)
−
≤ (M2, B).88

Given two minus partially ordered systems (M1, B)
−
≤ (M2, B), by Propo-

sition 1, there exist nonsingular matrices P,Q ∈ Rn×n such that M1 and M2

satisfy the relation (1). Hence, with respect to the system (M,B) we can write

PQQ−1x(k + 1) = PM1QQ
−1x(k) + PBu(k), k ∈ Z,

which can be rewritten as

y(k + 1) = M̄1y(k) +Q−1Bu(k),

where y(k) = Q−1x(k) ∈ Rn×1. The state coefficient matrix can be partitioned
as

M̄1 = (PQ)−1
(
Ir O
O O

)
=

(
A11 O
A21 O

)
, (3)

where (PQ)−1 has been denoted by (PQ)−1 = (Aij) with Aij ∈ Rni×nj , i = 1, 2
and n1 = r and n2 = n−r. In the same way, the transformation y(k) = Q−1x(k)
applied to the system (M2, B) leads us to the following system

y(k + 1) = M̄2y(k) +Q−1Bu(k), (4)

with89

M̄2 = (PQ)−1
(
Ir O
O Y

)
= M̄1 + ∆, (5)

∆ = (PQ)−1
(
O O
O Y

)
=

(
O A12Y
O A22Y

)
.

Thus, M̄i = (PQ)−1PMiQ = Q−1MiQ, i = 1, 2.90

Summarizing, we have shown the following result.91

Lemma 2. For two given ordered systems, that is (M1, B)
−
≤ (M2, B), the fol-92

lowing statements hold.93

(a) The system (Mi, B) is similar to the system (M̄i, Q
−1B) with M̄i defined94

in (3) and (5), i = 1, 2.95

(b) σ(M1) = σ(M̄1) = σ(A11) ∪ {0} and σ(M2) = σ(M̄2), where σ(·) denotes96

the spectrum of the matrix.97

(c) (M̄1, Q
−1B)

−
≤ (M̄2, Q

−1B).98
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Notice that matrices M̄1 and M̄2 are related by (5). Then, the system99

(M̄2, Q
−1B) can be interpreted as the result of a disturbance in the state co-100

efficient matrix of the system (M̄1, Q
−1B). This provides an interpretation of101

what determines the order relation in the field of linear control systems.102

Moreover, in control theory this kind of perturbation can be considered the103

result of the action of a feedback. So, we can search for successor systems of104

a given system (M,B) via a state-feedback u(k) = Fx(k) + v(k), that is, to105

look for systems (M +BF,B) which are ordered with (M,B) under the minus106

partial order. In this case, rank(M +BF ) = rank(M) + rank(BF ) according to107

the characterization given in Proposition 1.108

2.1. Reachability109

For two given systems ordered under the minus partial order, (M1, B)
−
≤110

(M2, B), we are interested in studying their structural properties to see if there111

exists some relationship between them. Specifically, we are going to focus on the112

reachability property. Since, by Lemma 2, system (Mi, B) is similar to system113

(M̄i, Q
−1B), i = 1, 2, we can derive the reachability property from the last one.114

We analyze several cases attending to the structure of the control coefficient115

matrix B :116

Case 1. Assume that BQ =

{
Q

(
S
O

)
, with S ∈ Rr×m

}
and let B ∈ BQ.117

The reachability matrix of the systems (M̄1, Q
−1B) and (M̄2, Q

−1B) are given118

by119

R(M̄1, Q
−1B) = H

(
S O O . . . O
O S A11S . . . An−2

11 S

)
(6)

and120

R(M̄2, Q
−1B) = R(M̄1, Q

−1B) +H

(
O O ? . . . ?
O O ? . . . ?

)
, (7)

where H =

(
Ir A11

O A21

)
∈ Rn×2r and where ?’s represent suitable block ma-121

trices obtained to construct the reachability matrix which are not needed in the122

remaining computations.123

According to this expression we have the following result.124

Proposition 3. Let (M1, B) and (M2, B) be two minus partially ordered control125

systems, (M1, B)
−
≤ (M2, B), with B ∈ BQ. If rank(S) = r we have126

(a) (M1, B) is reachable if and only if rank(A21) = n− r.127

(b) If (M1, B) is reachable then (M2, B) is also reachable.128

Proof.129
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(a) Assume that (M1, B) is a reachable system. By Lemma 2, (M̄1, Q
−1B) is

reachable as well. Then, rank(R(M̄1, Q
−1B)) = n. By using factorization (6),

we have

n = rank

(
H

(
S O O . . . O
O S A11S . . . An−2

11 S

))
≤ rank(H) ≤ n,

which implies rank(H) = n. By definition of H, rank(A21) = n− r.130

Conversely, if rank(A21) = n− r and rank(B) = r, we have (see [18])

rank(R(M̄1, Q
−1B)) ≥ rank(H)+rank

(
S O O . . . O
O S A11S . . . An−2

11 S

)
−2r = n.

(b) By using (6) we have

rank(R(M̄1, Q
−1B)) = rank

(
H

(
S O
O S

))
.

Then, from (7) we have rank(R(M̄2, Q
−1B)) = n. �131

Case 2. Assume that BP =

{
B / PB =

(
S
O

)
, with S ∈ Rr×m

}
and let

B ∈ BP . The reachability matrix of the systems (M̄1, Q
−1B) and (M̄2, Q

−1B)
are given by

R(M̄1, Q
−1B) = (PQ)−1

(
S A11S A2

11S . . . An−2
11 S

O O O . . . O

)
and

R(M̄2, Q
−1B) = R(M̄1, Q

−1B) + (PQ)−1
(
O O ? . . . ?
O Y A21S ? . . . ?

)
.

Then, the following result is straightforward.132

Proposition 4. Let (M1, B) and (M2, B) two minus partially ordered control133

systems, (M1, B)
−
≤ (M2, B), with B ∈ BP . Then134

(a) (M1, B) is not reachable.135

(b) If rank(Y A21S) = n− r and rank(S) = r then (M2, B) is reachable.136

Case 3. Assume that BQ =

{
Q

(
O
S

)
, with S ∈ R(n−r)×m

}
and let B ∈

BQ. Then, the reachability matrices are

R(M̄1, Q
−1B) =

(
O O O . . . O
S O O . . . O

)
and

R(M̄2, Q
−1B) = R(M̄1, Q

−1B) +

(
O A12Y S ? . . . ?
O A22Y S ? . . . ?

)
.

We can prove the following result.137
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Proposition 5. Let (M1, B) and (M2, B) be two minus partially ordered control138

systems, (M1, B)
−
≤ (M2, B), with B ∈ BQ.139

(a) (M1, B) is always not reachable.140

(b) If rank(A12Y S) = r and rank(S) = n− r then (M2, B) is reachable.141

Case 4. Assume that BP =

{
B / PB =

(
O
S

)
, with S ∈ R(n−r)×m

}
and

let B ∈ BP . The reachability matrices are

R(M̄1, Q
−1B) = (PQ)−1

(
O A12S A11A12S . . . An−2

11 A12S
S O O . . . O

)
and

R(M̄2, Q
−1B) = R(M̄1, Q

−1B) + (PQ)−1
(
O O ? . . . ?
O Y A22S ? . . . ?

)
.

Now, we state the following proposition.142

Proposition 6. Let (M1, B) and (M2, B) be two minus partially ordered con-143

trol systems, (M1, B)
−
≤ (M2, B), with B ∈ BP . If rank(A12S) = n − r and144

rank(S) = n− r then (M1, B) and (M2, B) are reachable.145

The study of these special classes allow us to assert that, in general, the146

reachability property is not preserved under the minus partial order for systems.147

Interested on compartmental systems, whose state coefficient matrix has a148

block triangular structure, in the following section we analyze block triangular149

matrices under the minus partial order. We will obtain a characterization for150

successor matrices under the minus partial order of a given matrix M preserving151

the same structure as M .152

3. Ordering block triangular matrices153

In this section we are going to consider a fixed block triangular matrix M ∈
Rn×n given by

M =

(
M11 M12

O M22

)
, (8)

where M11 ∈ Rn1×n1 and M22 ∈ Rn2×n2 , with n = n1 + n2, and rank(M) =
r > 0. This matrix allows us to define the following set:

M =

{
MX =

(
M11 M12

O M22 +X

)
: X ∈ Rn2×n2

}
.

154
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Remark 1. Notice that, for a given square real matrix, we can always use the155

Schur decomposition to get an orthogonally similar upper-triangular matrix M .156

Since, moreover, the minus partial order is preserved under nonsingular matrices157

[14], the above structure is not restrictive at all.158

From now on, we say that MX is associated with X ∈ Rn2×n2 whenever159

MX ∈M.160

It is well known that always there exist nonsingular matrices P,Q ∈ Rn×n

such that

PMQ =

(
Ir O
O O

)
. (9)

By partitioning these matrices P and Q as

P =

(
P11 P12

P21 P22

)
and Q =

(
Q11 Q12

Q21 Q22

)
, (10)

with P11 ∈ Rr×n1 , P22 ∈ R(n−r)×n2 , Q11 ∈ Rn1×r, and Q22 ∈ Rn2×(n−r), we161

can state the following characterization on successor matrices of M in the set162

M under the minus partial order.163

Proposition 7. Let M ∈ Rn×n be a structured matrix as in (8) with rank(M) =
r > 0. Then, there exists a matrix X ∈ Rn2×n2 such that MX ∈ M satisfies

M
−
≤ MX if and only if there exist nonsingular matrices P,Q ∈ Rn×n decom-

posed as in (10), a matrix Y ∈ R(n−r)×(n−r) such that the relation (9) holds,
and the following system

P12XQ21 = O, P12XQ22 = O, P22XQ21 = O, P22XQ22 = Y (11)

has a solution X.164

Proof. Let X be a matrix such that MX ∈ M and M
−
≤ MX . By Proposition

1, there are nonsingular matrices P,Q ∈ Rn×n and Y ∈ R(n−r)×(n−r) such that

PMQ =

(
Ir O
O O

)
and PMXQ =

(
Ir O
O Y

)
.

Moreover, by definition of M, MX = M +

(
O O
O X

)
. By combining both165

results and by using the decompositions of P and Q given in (10), we have166 (
P12XQ21 P12XQ22

P22XQ21 P22XQ22

)
= P

(
O O
O X

)
Q =

(
O O
O Y

)
.

Then, we get that the system (11) has a solution.167

Conversely, we consider P,Q, and Y such that M satisfies (9) and the system168

(11) has a solution X. Now, it is straightforward to show that the matrix169

MX = M +

(
O O
O X

)
∈M satisfies M

−
≤MX .170
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However, the existence of a solution of the matrix system (11) for matrices171

P and Q satisfying (9) is not always guaranteed. This fact is illustrated in the172

following example.173

174

Example 8. Consider the matrix

M =

 m11 m12 m13

0 m22 m23

0 m22 m23

 ,

with m11 6= 0, m22 6= 0, and m12m23 6= m13m22. Then, for the matrices

P =

 1
m11

0 − m12

m11m22

0 0 1
m22

0 1 −1


and

Q =

 0 0 1
m11m23

m12m23−m13m22
1 m11m23

m13m22−m12m23
m11m22

m13m22−m12m23
0 m11m22

m12m23−m13m22

 ,

the equation (9) holds for r = 2. The system (11) has only the trivial solution175

X = O if Y = 0. And for Y 6= 0, the system (11) has no solution. Therefore,176

in this last case, there are not successors under the minus partial order of the177

matrix M in the set M− {M}.178

In general, the consistency of the system (11) and its form depend on the
properties of the block matrices of P and Q. In order to study them we will use
the Kronecker product of two matrices which is defined by

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq,

for A ∈ Rm×n and B ∈ Rp×q. According to this definition the following prop-179

erties can be easily stated.180

Lemma 9. Let A ∈ Rm×n, B ∈ Rp×s, and C ∈ Rq×s. Then181

(i) There exists a permutation T such that A⊗
(
B
C

)
= T

(
A⊗B
A⊗ C

)
.182

(ii)

(
B
C

)
⊗A =

(
B ⊗A
C ⊗A

)
.183

Moreover, we will denote by vec(A) the vectorization of the matrix A, which184

consists of stacking the columns of A into a unique column vector.185
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This vectorization and the Kronecker product allow us to express the ma-186

trix equation AXB = C by means of the linear system of equations (BT ⊗187

A) vec(X) = vec(C) (see [13]).188

In addition, if S− is a {1}-generalized inverse of S, we denote by PS =189

I − SS− the oblique projector onto the null space N (SS−) along the column190

space R(S).191

Theorem 10. Let M ∈ Rn×n be a structured matrix as in (8) with rank(M) =192

r > 0. Consider the block decomposition (10) of a pair of matrices P and Q193

that satisfy (9). Then, the following statements are equivalent.194

(a) There exists a matrix X ∈ Rn2×n2 such that MX ∈ M associated with X195

satisfies M
−
≤MX .196

(b) There exists a matrix U ∈ Rn2×n2 such that(
P12

P22

)
UPQ21

Q22 =

(
O
Y

)
, for some Q−21.

(c) PGvec

(
O
Y

)
= O with G = QT

22P
T
Q21
⊗
(
P12

P22

)
for some G− and Q−21.197

Proof. (a)⇒ (b) By Proposition 7, the system (11) has a solution. This system
can be rewritten as(

P12

P22

)
XQ21 = O,

(
P12

P22

)
XQ22 =

(
O
Y

)
. (12)

Firstly, the general solution of the homogeneous equation in (12) is given by

X = U −
(
P12

P22

)−(
P12

P22

)
UQ21Q

−
21, for an arbitrary U ∈ Rn2×n2 . Since

(12) has a solution, by substituting the above expression of X into the second
equation of (12), we can ensure the existence of a matrix U such that(

P12

P22

)
UPQ21

Q22 =

(
O
Y

)
.

(b) ⇒ (a) It is easy to check that X = U −
(
P12

P22

)−(
P12

P22

)
UQ21Q

−
21198

satisfies the system (12), provided that (b) holds. Now, by Proposition 7, the199

result follows.200

(b) ⇔ (c) By using the Kronecker product, the relation given in (b) can be
expressed as (

QT
22P

T
Q21
⊗
(
P12

P22

))
vec(U) = vec

(
O
Y

)
.
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That is, vec

(
O
Y

)
∈ R(G), where G is defined as in the statement (c). Since201

R(G) = R(GG−) = N (PG) (see [3]), we get that PGvec

(
O
Y

)
= O. �202

We close this section with a result that provides an explicit solution X of203

the system (11).204

Proposition 11. Let M ∈ Rn×n be a structured matrix as in (8) with rank(M) =
r > 0. Consider the block decomposition (10) of a pair of matrices P and Q that
satisfy (9). If the system (11) is consistent for some matrix Y , then a solution
X is given by

vec(X) = ((Q̃T )† ⊗ P̃ †)
(

I O
O S

)(
O

vec(Y )

)
,

with P̃ =

(
P12

P22

)
, Q̃ =

(
Q21 Q22

)
, and S being a suitable permutation205

matrix.206

Proof. By applying vectorization to equations of the system (11), we obtain
the system given by (QT

21 ⊗ P12)vec(X) = O, (QT
22 ⊗ P12)vec(X) = O, (QT

21 ⊗
P22)vec(X) = O, (QT

22 ⊗ P22)vec(X) = vec(Y ). By using Lemma 9, we get(
Q̃T ⊗ P̃

)
vec(X) =

(
I O
O S

)(
O

vec(Y )

)
,

with P̃ and Q̃ as in the statement, and S ∈ Rn(n−r)×n(n−r) being a suitable
permutation matrix. Since the matrix R := Q̃T ⊗ P̃ has full column rank and
R† = (Q̃T )† ⊗ P̃ † (see [13]), a solution of the last system is given by

vec(X) = R†
(
I O
O S

)(
O

vec(Y )

)
.

�207

Remark 2. Since the matrices Q21Q
T
21 +Q22Q

T
22 and PT

12P12 + PT
22P22 in

(Q̃T )† =

(
QT

21

QT
22

)†
= (Q21Q

T
21 +Q22Q

T
22)−1

(
Q21 Q22

)
and

P̃ † =

(
P12

P22

)†
= (PT

12P12 + PT
22P22)−1

(
PT
12 PT

22

)
are positive definite, their inverses are given by a simple numerical computation.208
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4. Ordered compartmental systems209

Compartmental systems are frequently used in real process of areas such as210

biology, demography, engineering; see [12] and references therein. A compart-211

mental system consists of a finite number of connected subsystems and hence,212

the coefficient matrices have a specific block structure. They appear, for in-213

stance, when individuals of a specie are organized in classes depending on the214

stage of life [4]. In this case the state matrix shows a block triangular structure215

as in [1].216

Consider a compartmental system (M,B) whose state coefficient matrix M
has the structure given in (8). By applying a state-feedback u(k) = Fx(k)+v(k),
we obtain the closed-loop system

x(k + 1) = (M +BF )x(k) +Bv(k).

We look for admissible feedbacks F that preserve the structure of the state
matrix M and satisfy

BF =

(
O O

O B2F2

)
, (13)

where

B =

(
B1

B2

)
and F =

(
F1 F2

)
, (14)

with B1 ∈ Rn1×m, B2 ∈ Rn2×m, F1 ∈ Rm×n1 , and F2 ∈ Rm×n2 . Moreover, we217

are interested in obtaining successor closed-loop systems of the initial system218

under the minus partial order. In this way, we look for systems that preserve the219

structure of the state matrix M and that the rank of its state matrix satisfies220

rank(M+BF ) = rank(M)+rank(B2F2). This problem is solved in the following221

result which follows from Theorem 10 and Proposition 11.222

Proposition 12. Let (M,B) be a compartmental system with M structured as223

in (8) and B =

(
O

B2

)
with rank(B2) = m. There exists a matrix F2 ∈ Rn2×n2

224

such that M + BF satisfies M
−
≤ M + BF for F = (O F2) if and only if225

PGvec

(
O
Y

)
= O with G = QT

22P
T
Q21
⊗
(
P12B2

P22B2

)
for some G− and Q−21.226

Moreover,

vec(F2) = ((Q̃T )† ⊗ P̃ †)
(

I O
O S

)(
O

vec(Y )

)
,

with P̃ =

(
P12B2

P22B2

)
, Q̃ =

(
Q21 Q22

)
, and S being a suitable permutation227

matrix.228
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Next, we consider a particular case in which the interconnections in the
first compartment of (8) have associated a nonsingular matrix, that is 0 <
rank(M11) = n1 < r. Then, if r2 = rank(M22), we have that

r = rank(M) = rank(M11) + rank(M22) = n1 + r2. (15)

Consider two nonsingular matrices P2 and Q2 that satisfy

P2M22Q2 =

(
Ir2 O
O O

)
,

then we can check that

PMQ =

(
Ir O
O O

)
, (16)

with

P =

(
In1

O
O P2

)
and Q =

(
M−111 −M−111 M12Q2

O Q2

)
. (17)

Hence, we can establish the following result.229

Proposition 13. Let (M,B) be a compartmental system with M structured as

in (8) satisfying the condition (15) and B =

(
O
B2

)
such that rank(B2) = m.

Then, the state-feedback u(k) = (O F2)x(k) with

F2 = (BT
2 B2)−1BT

2 P
−1
2 Ŷ Q−12 , (18)

and Ŷ =

(
Or2 O
O Y

)
for some Y ∈ R(n−r)×(n−r), provides a block triangular230

matrix M +BF such that (M,B)
−
≤ (M +BF,B).231

Proof. In order to get a feedback such that M + BF is a successor to matrix
M , we impose that the equation given in (1) is verified, with the matrices P
and Q given in (17). Taking into account the structure of the matrix M +BF ,
we get

P (M +BF )Q =

(
In1 O
O P2(M22 +B2F2)Q2

)
=

(
Ir O
O Y

)
,

for some matrix Y ∈ R(n−r)×(n−r). Then, we have

P2B2F2Q2 =

(
Or2 O
O Y

)
.

Since P2 and Q2 are nonsingular matrices and B2 has full column rank, its232

Moore-Penrose inverse is given by B†2 = (BT
2 B2)−1BT

2 , we obtain that the feed-233

back u(k) = (O F2)x(k) with F2 as in (18), for some Y ∈ R(n−r)×(n−r), provides234

(M,B)
−
≤ (M +BF,B). �235
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Now, we consider the reachability property and the set of reachable states236

(reachability space), which is the space generated by the columns of the reach-237

ability matrix. Next proposition establishes that the set of reachable states238

remains invariant under this kind of feedback.239

Proposition 14. Consider the ordered systems (M,B) and (M +BF,B) with240

M as in (8) satisfying the condition given in (15). Let B =

(
O
B2

)
, with241

B2 ∈ Rn2×m being a full column rank matrix, and F = (O F2) given as in (18).242

Then, the reachability space of (M,B) is the same as the reachability space of243

(M +BF,B).244

Proof. We analyze systems (M̄,Q−1B) and (M̄F , Q
−1B), introduced in Section

2, similar to ordered systems (M,B) and (M + BF,B). From (17) we obtain
that these similar systems are given by

M̄ =

(
M11 M12M22Q2

O Q−12 M22Q2

)
, M̄F = M̄ + ∆ = M̄ +

(
O M12B2F2Q2

O Q−12 B2F2Q2

)
,

and

Q−1B =

(
M12B2

Q−12 B2

)
.

Then, the reachability matrix of the system (M̄F , Q
−1B) is

R(M̄F , Q
−1B) =

(
Q−1B (M̄ + ∆)Q−1B · · · (M̄ + ∆)n−1Q−1B

)
,

and we have to analyze matrix products of the kind (M̄)i∆jQ−1B and (M̄)i∆jQ−1B.
In this way, we obtain

∆iQ−1B = Q−1B(F2B2)i,

∆(M̄)iQ−1B = Q−1BF2M
i
22B2,

∆i(M̄)jQ−1B = Q−1B(F2B2)iF2M
j
22B2,

(M̄)i∆jQ−1B = (M̄)iQ−1B(F2B2)j .

So, we can assure that the blocks of the matrix R(M̄F , Q
−1B) satisfy

(M̄F )iQ−1B = (M̄)iQ−1B + V,

with V = (v1 · · · vm) ∈ Rn×m such that

vi ∈ span(Q−1B, M̄Q−1B, . . . , M̄ i−1BQ−1B), i = 1, . . . ,m,

where span(X, Y, . . . ) denotes the subspace of Rn generated by the column
vectors of matrices X, Y , and so on. Thus,

span
(
R(M̄,Q−1B)

)
= span

(
R(M̄F , Q

−1B)
)
.

�245
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5. Conclusions246

In this work, we have introduced the minus partial order relation for control247

systems. This notion allows us to generalize in two senses the study done in248

[11]: (a) from autonomous systems to control systems and (b) from the sharp249

partial order (only defined for index-one matrices) to the minus partial order.250

In general, minus partially ordered matrices are not related under similarities,251

this fact allows us to do a more general study than that carried out in [11].252

We have analyzed the reachability property for two ordered control systems253

under the minus partial order. Depending on the control coefficient matrix,254

this property is inherited by the successor of a system or we can get a reachable255

successor system from a non-reachable one. Moreover, we have studied feedbacks256

in compartmental systems to get related systems with the same structure and257

ordered under the minus partial order.258

Acknowledgements259

We would like to thank the Referees for their valuable comments and sug-260

gestions which helped us to improve the presentation of the paper.261

This research was partially supported by Ministerio de Economı́a, Industria262

y Competitividad of Spain (Red de Excelencia Grant MTM2017-90682-REDT).263

The fourth author was partially supported by Universidad de Buenos Aires of264

Argentina (Proyecto EXP-UBA: 13.019/2017, 20020170100350BA).265

References266

[1] A.S. Ackleh and P. Zhang. Competitive exclusion in a discrete stage-267

structured two species model,Mathematical Modelling of Natural Phenomena268

4 (6) (2019), pp. 156–175.269

[2] R.B. Bapat. Linear Algebra and Linear Models, Third Edition, Springer,270

New York, 2012.271

[3] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Ap-272

plications, Second Edition, Springer, New York, 2003.273
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