Document downloaded from:

http://hdl.handle.net/10251/160833
This paper must be cited as:

Coll, C.; Sanchez, E. (2020). Epidemic spreading by indirect transmission in a
compartmental farm. Applied Mathematics and Computation. 386:1-9.
https://doi.org/10.1016/].amc.2020.125473

The final publication is available at

https://doi.org/10.1016/j.amc.2020.125473

Copyright E|sevier

Additional Information



Epidemic spreading by indirect transmission in a
compartmental farm

Carmen Coll and Elena Séanchez
mccoll@mat.upv.es, esanchezj@mat.upv.es
Institut Universitari de Matematica Multidisciplinar
Universitat Politecnica de Valencia, Valencia Spain

Abstract

In this paper, we present a discrete dynamic system which describes an
epidemic spreading within a single farm, where animals are separated into
batches. In this model, we consider an indirect transmission of the disease
coming from the bacteria remaining in the reservoir and taking into account
the transfer of bacteria between adjacent compartments. In our model, tridi-
agonal matrices of non-negative blocks are involved. The development of
the matrix spectral properties allows us to improve our understanding of the
epidemic spreading within a farm with the above mentioned characteristics.
Based on the results obtained, we have determined some bounds to obtain
the maximum number of batches and the maximum population in each batch
to ensure that the disease dies out.

Keywords: Epidemic process, discrete-time system, block tridiagonal
matrix, non-negative matrix, stability.

1. Introduction

Block tridiagonal matrices appear frequently in models of biological pro-
cesses when different compartments are connected. These compartments are
not independent, they have interconnections among them which depend on
the type of problem studied. For example, in population dynamics, it is
common to organize individuals by age range classes or cubicles with trans-
fers between the compartments when they reach the age corresponding to
the next compartment, [1, 2, 3, 4]. Moreover, compartmental models are
also used when modeling virus transmission between computers connected
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to each other [5] and in a wide range of processes involving networks. There
is a vast literature on compartmental models on networks, see [6] and the
references given there.

Usually, when performing a linear approach of a model with intercon-
nected compartments the matrices which appear are block-structured matri-
ces. If the connections are between the adjacent compartments, the struc-
tured matrix is a block tridiagonal matrix, see for example [7, 8].

On the other hand, when it comes to biological processes the variables
involved in the model are non-negative because the state variable represents
individuals, bacteria, viruses, etc. In this case we have a positive system.

Now, we recall, some results related with the Non-Negative Matrix The-
ory. A matrix A of size n is defined as non-negative, A > O, if all entries
of A are non-negative and the fundamental results on them are collected in
[9]. In particular, the spectral radius of a non-negative matrix A given by
p(A) = max{|\|, |\, —A| = 0}, where [,, denotes the identity matrix of size
n, is a non-negative eigenvalue of A, and if O < A < B then p(A4) < p(B).
Moreover, if we consider A, B > 0, with p(A) < 1, then one of the following
holds, see Theorem 3.3. of [10]:

p(A+B) =p(B(I, - A)") =1,
or 1< p(A+ B) < p(B(I, — A)™), (1)
or 0 < p(B(I, — A)™") < p(A+ B) < 1.

Furthermore, if a matrix A is stable, that is p(A) < 1, then the discrete time
system x(t + 1) = Az(t) is asymptotically stable. Hence, the trajectory of
the solution of the system tends to zero.

Several authors have studied tridiagonal or band matrices obtaining re-
sults on eigenvalues and eigenvectors, see for instance [11] and [12] for a dis-
crete model with a tridiagonal transition matrix. In block tridiagonal case,
some results on its application to solve systems with special block matrices
are given in [13] and some results on non-singular block triangular matrices
in [14, 15].

The paper is structured as follows. In Section 2, we give an epidemiologi-
cal model whose linear approximation involves a non-negative block tridiago-
nal matrix. In Section 3, we discuss the propagation of the infectious disease
and the analysis of the spectrum of a non-negative block triangular matrix
due to relevance in this epidemiological model. In particular, we study spec-
tral properties of these matrices. We give some bounds on the number of



compartments in the model and on the size of the population in order to
eradicate the disease.

Lastly, in the Appendix, we shown some properties of non-negative block
tridiagonal matrices which allow us to establish the results on the stability
of the epidemiological model considered in this work.

2. Epidemiological dynamic in a compartmental farm

Several mathematical models are used, both in continuous and discrete
time, to analyze the evolution of an infectious disease, see [16, 17]. When
modeling livestock farming processes, it is interesting to know how animals
are organized on the farm. For example, if they are in independent pens
or semi-isolated in poultry houses or cages. This is particularly important
in poultry sector where the environmental and epidemiological implications
are different if the chickens are raised by several small households or in a
single industrial unit, [18, 19, 20]. It is clear that in many livestock farming
processes the transmission of a disease can not only be by directly but also
indirectly transmitted. Thus, an infectious disease, as example salmonella or
avian influenza, can spread by indirect transmission, see [21, 22, 23, 24| and
[25] for a PDE model.

We are interested in studying epidemic models that include the indirect
transmission of the disease due to the underlying contamination in the space
where we have the animals. For that, we take into account that the animals
are raised in several semi-isolated poultry houses which is frequent in small
farms or livestock farming. In this case, the animals or poultry are organized
in reservoirs or households, in order to improve the optimal environmental
conditions. But, as total isolation does not occur, the sediments contami-
nated with feces from the individuals may flow through the water being a
source of infection for animals. When an infected animal is introduced into
the farm, it produces bacteria which dissipates through the air, or through
water. For example, individuals can be separated into boxes but share the air
space or water troughs. That is, the contaminant can be found in the food
or beverage distribution system supplied to animals. So, an indirect trans-
mission of the disease occurs. Individuals are not only in contact with the
bacteria produced by the individuals in their compartment, but also with
part of the bacteria produced by the infected individuals in the adjacent
cubicles.



We consider the individuals organized in m compartments, and we denote
by S; the susceptible individuals, by I; the infected individuals and by B;
bacteria amount at the ith-compartment, for ¢ = 1,...,m. At any time
and in each compartment, we want the population size (i.e. total number
of individuals except the bacteria) to remain constant equal to P. We are
working in a livestock farm where resources and infrastructure determine the
size of the population in order to optimize the results, that is, the benefits of
the farm. As we have already mentioned, this livestock farm has cubicles with
a capacity for P individuals. Ideally, there should be the same number of
individuals in all cubicles, which facilitates and homogenizes the distribution
of food and water, and allows to establish the same climatic conditions in all
compartments. The individuals can become infected with residuals found in
those compartments and with bacteria coming from adjacent compartments.
The bacteria can be transmitted between compartments through water or
another element keeping the bacteria alive. To replace dead individuals, we
introduce an amount of new susceptible individuals equal to p;(t)P, i =
1,...,m.

The parameters involved in the model are: the survival probabilities of
individuals, susceptible and infected; the survival probability, in the environ-
ment, of the bacteria; the coefficient of infection transmission of the disease;
the amount of bacteria production by an infected individual; and finally, the
transition probability of bacteria that escapes forward and backward from a
compartment, passing into adjacent compartments since the boxes are not
isolated. Note that, for the model to have biological meaning, all parameters
are non-negative and some relationships between them have to be satisfied.
A description of the parameters of the model is given in following Table 1.

D, q, s | Survival probabilities of susceptible individuals, infected individuals
and bacteria, respectively.
a | Infection transmission coefficient (1/bacteria).

B | The amount of bacteria produced by each infected individual
(bacteria/ind).

v | Transition probability from adjacent compartments, with

2y < s < 1.

Table 1: Parameters in a compartment structured SIB model.



The mathematical representation of this SIB epidemiological model is
given by the nonlinear discrete-time system:

Si(t+1) = —a((1 = 29)Bi(t) + v(Bi-1(t) + Bit1(1))) Si(t) + pSi(t) + pi(t) P
Li(t+1) = a((1 = 29)Bi(t) + 7(Bi-1(t) + Bita(t))) Si(t) + qLi(t)
Bi(t +1) = vBi-1(t) — 2vBi(t) + vBis(t) + BLi(t) + sBi(t),

(2)
with i =1,...,m, and By(t) = By+1(t) = 0.

In general, this system is z(t + 1) = f(z(t), u(t)), where z(t) is the state
variable recollecting the variables corresponding to susceptible, infected pop-
ulation and bacteria, S;(t), [;(t), B;(t), and pu(t) is the vector whose entries
are the functions p;(t). If we consider the equilibrium points of this system,
we are looking for (z*, u* = (u)) such that z* = f(z*, u*). That said, we
cannot forget that we are working with a model subject to a particular con-
dition: the size of the population is constant P in each compartment. Thus,
for all time ¢, S;(t + 1) + Li(t + 1) = S;(t) + I;(t) = P lead us to

pi(t)P =P —pSi(t) —qli(t), i=1,...,m. (3)

Note that by replacing the relation (3) in the first equation of the system
(2), we obtain a model where p, the survival probability of the susceptible
individuals, does not appear explicitly. This model is

St + 1) = —a (1 — 2)B(t) + ABir(t) + Bos (1)) Silt) + P — aLi(t)
Lt +1) = a (1= 29)Bi(t) + 1(Bia(t) + Bia () Sit) + ali(t)

Bi(t +1) = vBi-1(t) — 2vBi(t) + vBis(t) + BLi(t) + sBi(t),
(1)
The system is z(t + 1) = f(2(t)) and the equilibrium points z* = f(z*).The
disease-free equilibrium is given by SF = P, I =0, Bf =0,i=1,...,m
and we can observe that the relation given in (3) leads us to 1 = p + p*.
Now, denoting z(t) = (z1(t) Z2(t))T where z;(t) = (Si(t) - - S ()T, and
Zo(t) = (I1(t) Bi(t) -+ L,(t) Bn(t))T, we reorder the model (4) obtaining

(200) = (i) ®

and we consider its linear approach around the disease-free equilibrium point

ZF = ( P ) with P a column vector of size m whose entries are equal to P.

@)
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Taking B;(t)S;(t) =~ Bj(t)P, j=i—1, i, i+1,i=1,

zlt+1
2t +1)

., m, we have

)=(0 ., )(28) ©

where 2 (t) = 7 (t) — P, and 24(t) = Z(t), and E}) a block matrix given by
qg g 0 ayP
B s=2y | 0 1~ © ©
0 ayP q g 0 ayP 0
0 7 B s=2v | 0 ~
0 0 0 0 ayP
0 v
q g
@) @) @) B s— 2y

where g = (1 — 2v)P, i = 1,...,m, m > 2, and all parameters are given
in Table 1. It is clear that the analysis of the stability of the system (6) is
closely related with the stability of the matrix E,.
So, considering the variables of infected individuals and bacteria, we have
the linear subsystem
(1) = By (0). (8)

It is well known that we can analyze the evolution of the infectious disease
from the subsystem which relates, in the linear approximation, the infected
individuals and the bacteria, in our case, the system given in (8). Remember
that it is usual to decompose the matrix of the system in two matrices,
By = T+ F, where T' corresponds to the transition term and F' corresponds
to the infection term. From these matrices, the basic reproduction number
is defined by Ry = p(F(I — T)™') and it is a measure or indicator to know
whether the disease will disappear, for instance, see [10, 25]. If Ry < 1
the disease tends to disappear around the disease-free equilibrium point and
otherwise it remains. However, the decomposition of the matrix of the system
is not unique, see for instance the discussion shown in [26].

Throughout the work, an m x 1 block matrix is denoted by Ay, ; and mxm
block matrix by Aj,). Some matrices with this structure are analyzed in the
Appendix. In the next Section, we use the result given in this Appendix on
spectral properties to analyze the stability of the system (8).

6



3. Stability in the epidemiological model

Note that if the subsystem (8) is asymptotically stable, the state variables
I;(t) and B;(t) will tend to zero and the disease will be controlled, tending to
disappear. Moreover, the linear system given in (6) it is also asymptotically
stable. It is known that a system is asymptotically stable if the state matrix
is stable, that is, its spectral radius is less than 1. Note that matrix £, is
a non-negative matrix and it has a block tridiagonal structure as in (A.1).
Thus, we can apply the results of Appendix. Note that Ej, has an m x m
block tridiagonal structure and from notation introduced in (A.1). From now
on, E[m] = E[m] (X, Y, Y) with

()T

First, we focus our attention on the case where there is no loss of bacteria
and therefore, it can not spread between adjacent compartments. In this
case, v = 0 and Ep, = Eppy (X, 0,0) with g = aP. Then, the system will
be stable if and only if

s =p (4 00 )) - Lt IR

Solving for P, see [27], we obtain that this condition is equivalent to

(1-qg)(—s)
ba

However, we are interested in the case of transferring contaminant between
adjacent batches. When the loss of bacteria in each compartment (given by
the parameter ) is coming to the adjacent compartments producing new
infected individuals, the structure of matrix £y, allows us to ensure that the
condition given in (10) is not a stability condition.

In order to simplify the calculations and to make it easier to see the
process, we consider a farm with two reservoirs, m = 2. In each compartment,
if we do not consider infected individuals from bacteria of other compartment,

X O
0O X
model from the stability of matrix X defined in (9). Solving for P, we have

P < . (10)

the matrix of the system is , then, we have the stability of the



that the stability condition

p(X>:q—l—s—2'y+\/(q—s—527)2+4a(1—27)5P

it is equivalent to the size of the population satisfying

(1—q)(1—(s—27))
P i 2) (1)

In general, we consider that susceptible individuals can be infected by
contact with bacteria spreading between adjacent batches. The system (8)

<1

Y X
with X and Y given in (9). We define Vi (M, M) from Ejy as in (A.2). Then,
using Theorem 3 given in Appendix, we have that p(Ejy) < 1 if and only if
p(Viy (M, M) < 1, with

with m = 2 is asymptotically stable if p(Ejy) < 1, where Ejg = ( Xy )’

(14 BaP —q)
(1—=q)(1—(s—27)) — faP(l —27)

Thus, the size of the population has to satisfy

(I-¢)(1—=(s=1))
P Ba(l —7)

It is clear that condition (12) is stronger than condition (11).

In the following Theorem, we assume a stable model in the case of inde-
pendent compartments, that is satisfying (11), and we give two results when
there is transfer of bacteria between the compartments: an upper bound
for the population size when the number of compartments is fixed, and re-
ciprocally, a bound for the number of compartments if the population P is
given.

p(Viy (M, M) = p(¥ (I,=X) ") = <L

(12)

Theorem 1. Consider the epidemic spreading given in model (4) with m

compartments, m > 2, and we assume that the size of population P in each
one satisfies (11). Then,

(i) The state variable of the system tends to the disease free equilibrium if

and only 1
" (1= @)1 = (5= w)

P = k)

(13)

with Ky, = 27(1 — cos(;.55))-



(i1) If we consider a size P fized, the state variable of the system tends to the
disease free equilibrium if and only if the number of the compartments
m 1s less than

™

1_ M) -
2y(14+-paP—q)

mo =

(14)
arcos <

Proof.  Under Theorem assumptions, matrix E}, is an m X m block
tridiagonal matrix as in (A.1) with X; = X, Y; = Z; =Y/, for all 4, being X
and Y given in (9) and p(X) < 1.

(i) From Theorem 4, Ej,, is a stable matrix if and only if p (Y/(I, — X)™') <

1
. That is, p (t,,Y (I — X)™') < 1. From (1) we can ensure that it is

ealuivalent to p(X +t,Y) < 1. Calculating the eigenvalues of X +1¢,,Y, we
obtain the stability condition

p(X +1t,Y) =1 <q+s—km+ V@ =5+ k)2 + 4Ba(l —k:m)P) <1
(15)

where k,,, = 27(1 — cos(;;%5)). Hence, solving this inequality for the popula-
tion size P, we obtain the upper bound given in (13).
(#1) Using, Corollary 1 and (15), it is straightforward that expression (14)
gives the maximum number mq of compartments maintaining asymptotically
stable the process. O

In Theorem 1 we have given conditions to ensure local stability of the
disease free equilibrium of the system (4). Now, in the next result, we discuss
if the disease free equilibrium is globally stable.

Theorem 2. Consider the epidemic spreading given in model (4) with m
compartments, m > 2, and we assume that the size of population P in each
one satisfies (11). Then, the disease free equilibrium of model (4) is globally
asymptotically stable if the population P satisfies (13).

Proof. Under Theorem assumptions, matrix Ej,, is stable which implies
that matrix of linear model (6) is also stable and the disease free equilibrium
point of (4) is locally asymptotically stable. From the two last equations of
(4) and the fact S;(t) < P we have

Li(t+1) < a((1 = 27)Bi(t) + v(Bi-a(t) + Bia (1)) P + qLi(?)
Bi(t +1) = yBi-1(t) = 2yBi(t) + vBis1(t) + fLi(t) + sBi(t),

9



i =1, ..., m. Then, using the representation given in (5), we obtain the
inequality
Z(t+1) < E[m]ZZ(t), t>0.

For any initial condition z»(0) and by recurrence, we obtain
0 < Z(t) < Ep,y2(0), t > 0.

Then, from the stability matrix L, we have p(Ejp,)) < 1, this implies that
for any initial condition Z(0) we have tlim Ef,172(0) = 0. Since 0 < Z(t) <
—00

Ef,17(0) we have tlim Zy(t) = 0. Hence, tlim Li(t) = tlim Bi(t) =0, i =
—00 —00 —00
1, ..., m. Moreover, as S;(t) + [;(t) = P then tlim Si(ty="P,i=1, ..., m.
— 00
Thus, tlim Z(t) = z*. This implies that the disease free equilibrium point of
— 00

(4) is globally asymptotically stable. O

In order to illustrate the usefulness of the results obtained, we present

the following academic example.
Example 1. We consider a farm where the animals are distributed in cu-
bicles. These cubicles are not totally isolated. The animals of different
boxes do not come into contact with each other, but they share the airspace
and also share the drinking fountain and feeding trough. We consider that
there is an outbreak of an infectious disease, which is transmitted by indirect
contact. That is, susceptible individuals are infected by contact with the
bacteria coming from infected animals and staying alive in the environment.
The following parameters are considered: ¢ = 0.6, = 10~* Bacteria™!,
$ = 102 Bacteria.Indiv™! colony-forming unit (c.f.u.) and a loss of bacteria
in each compartment with transition probability v = 0.07; and we consider
two scenarios. In the first, the bacterium has a survival probability in the
environment s = 0.4 , and in the second case, the bacterium is more resistant
and has a survival probability s = 0.8.

If the cubicles were totally isolated and with a loss of bacteria equal to
27, in each scenario, the bound given in (11) provides that a population less
than or equal to 34 individuals and 15 individuals, respectively, assures us
that matrix X is stable and the disease dies out.

Now, we consider the case where an amount of the contaminated solid
waste is transferring to the adjacent compartments and we study the two
scenarios. According to (13) and (14), Table A.2 shows the relationship be-
tween the maximum number of compartments and the maximum population

10



in each one to eradicate the disease. Moreover, for each option, the spectral
radius of M =Y (I, — X)™!, By = X and Ej,, with m > 2 are shown.

In order to illustrate in more detail the results obtained from the proposed
test, we graphically present the evolution of the infectious process in the
following cases. We consider a farm with s = 0.4. If we have 56 individuals
in a single reservoir, the Figure A.1 shows that the disease remains, that
is, the population of infected individuals grows. However, if we have these
individuals distributed in two cubicles with 28 individuals in each of them,
Figure A.2 shows that the disease tends to disappear. Finally, we check that
if we add a third cubicle with 28 individuals, the process becomes unstable
again, as shown in Figure A.3. From here, we conclude that if cubicles have
a capacity for 28 individuals, we can only have two of them. According to
Table A.2, the ideal number of individuals in each cubicle is 24, since in that
case we can connect as many cubicles as we want.

As it is deduced in the example, if we intend to eradicate the disease,
the virulence and the resistance of the bacteria are important to establish
the size of the maximum population that we can have in each cubicle. Thus,
in the second scenario where the survival probability of the bacterium is
s = 0.8, the population of each cubicle must be reduced considerably so that
the disease can be eradicated. Based on the obtained results it is possible to
determine the population size which prevents that the disease dies out.

4. Conclusions

A mathematical model that represents the evolution of a disease through
indirect transmission in a compartmental farm has been considered. The
linear approximation of this model around the disease-free equilibrium point
involves some special non-negative structured matrices. This special struc-
ture has motivated us to study some spectral properties of non-negative block
tridiagonal matrices. In particular, we analyze the propagation of the in-
fectious disease by using a relationship between the stability of the initial
tridiagonal block matrix and the stability of a bidiagonal block matrix with
a special structure. The spectral radii of the matrices that appear in the
model are fundamental to determine if the disease is going to be eradicated.
For that, we obtain an explicit expression of the spectral radius of the bi-
diagonal block matrix that allows us to give the bounds that determine the
maximum number of compartments and the maximum population in each
compartment. These bounds assure us that the disease is eradicated. Fi-
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nally, an example has been used to clarify the results obtained. Specifically,
the outbreak of two diseases with different probability of survival of the bac-
teria s has been compared and we have obtained the following conclusions.
When s is low (s = 0.4) we can have any number of compartments with
the condition that no more than 24 individuals are located in any of the
compartments. However, if the bacteria are more resistant (s = 0.8) , the
maximum number allowed per compartment decreases to 8 individuals. The
method proposed in this work also indicates (see Table A.2) that a cubicle
with more than 34 individuals (if s = 0.4) and with more than 15 (if s = 0.8),
is not viable, as the disease remains. Other intermediate cases with several
compartments and with the disease disappearing are shown in the Table A.2.
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Appendix A. Spectral properties of non-negative block tridiago-
nal matrices

We consider a non-negative m x m block tridiagonal matrix given by

7y Xy Yy .- O o)
O Zy, X3 --- O @)
To(Xi, Y Zi) = | . . . . Cl,m>2, (A1)
O O O -+ X,1 Y,
O O O - Zpn1 Xn
where X, Y;, Z; > O are non-negative matrices of size n x n, 1 =1,...,m.

First, we have the following result.

Theorem 3. Consider Tp,(X;,Y;, Z;) defined as (A.1) with X; a stable ma-
triv, i = 1,...,m. Then, Ty (X;,Y:, Z;) is a stable matriz if and only if the
m x m block matrizx

O My, O --- 0O O
N O My -~ O O
O N, O --- O O
Ve (Mi, Noy= |0 ] (A.2)
O 0 0 -~ 0 M,
O O O -+ Ny, O

with M; = Y;([,—X;)™ Y, i=2,... . mand N; = Z;([,— X;)" Y, i=1,...,m—
1, is stable.

Proof. The matrix T},)(X;,Y;, Z;) can be writen as Tj,(X;,Y:, Z;) =
G + Hppy with G = diag (X7 ... X,,) > O and Hp, > O is the rest of
initial matrix. By a simple calculation, we prove that Hiy,(Inm — Gpnj) ™"
is equal to matrix Vj,,(M;, N;) given in (A.2). Note that G, is a stable
non-negative matrix, then, we can to apply the result given in (1) obtaining
that p(T[m] (Xi, Y;-, Zl)) < 1if and only if p(H[m]([nm — G[m})_l) < 1. [

Note that, the relationship obtained in the previous theorem may be use-
ful when studying the stability of matrices Vi, (M;, N;). In particular, if a ma-
trix Vior (M;, N;) is not stable it would imply that the matrix Vigpi1(M;, N;)
is neither. This is due to the relationship obtained in the theorem and to the
fact that the matrices are non-negative.
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Now, we study the particular case in which only two different matrices
form the blocks of the matrix T, (X;,Y;, Z;), given in (A.1), that is, we
consider the blocks

X;=X,Y=Y,=27, forall i, (A.3)

and, then we have that matrix T}, (X,Y,Y’) deserves a particular analysis.
Now, M = N =Y (I, — X)~! and an approach to characterize the stability
of the matrix Tf,,(X,Y,Y) is given using the Kronecker product to define
matrix Vi, (M, M), m > 2. This characterization is given in the following
theorem.

Theorem 4. Consider T, (X,Y,Y) with m > 2, defined as (A.1) satisfying
condition (A.8) with X a stable matriz. Then, T (X,Y,Y) is a stable matrix

if and only if p (Y(In — X)_l) < ti’ with t,, = 2cos (L)

m—+1
m

Proof. From Theorem 3, T}, (X,Y,Y) is a stable matrix if and only if
Vim)(M, M), given in (A.2), is also stable. In this case,

O M O O O
M O M 0 0
O M O -~ 0 O
Vi) (M, M) = Hig)(lom =G) ™ = | . oMz
0O 0 0 - 0 M
0O 0 O - M O

with M =Y (I, — X)~'. We rewrite the matrix Vj,;(M, M) using the Kro-
necker product (see for instance [28]) to get more information about this
spectral radius.

Moreover, the eigenvalues of the Kronecker product of two matrices, C,, ®
M, are the pairwise products of the respective eigenvalues of C, and M.
Then, it is clear that the spectral radius of Vj,,j(M, M) is the product of the
spectral radii of C,,, and M, [28],

p(Vim) (M, M)) = p(Crn)p(M).

As C,, is an m x m tridiagonal matrix, using the results given in [11],
k

we obtain the spectrum of C,,, (C,,) = {2cos (—W) , k=1,...,m}.
m

+1

Hence, p(C,,) = t,, with t,, = 2cos (mLH)
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Hence, the condition p(Viy)) = p(Hpp)(Inm — Gpmy) ') < 1is p(M) =

1
p(Y(I, - X)) < - O
Note that if we construct the sequence of block tridiagonal matrices

{T1(X, YY), m > 2} satisfying (A.3), the above result allows us to estab-
lish a relationship between the stability property of these matrices. First, we

denote by my = max{m / p (Y (I, — X)7!) < i, m > 2}. From the relation-
ship between the spectral radii of the matrices, p(Vim) (M, M)) = p(Cy,)p(M),
and using that the sequence {i, m > 2} is decreasing, we obtain the result
given in the next Corollary.

Corollary 1. Consider X and Y square non-negative matrices with X sta-
ble, my and Tj,y (X, Y,Y) defined as (A.1) satisfying condition (A.3). Then,

T (X, YY) is a stable matriz if m < mg and it is an unstable matriz oth-
erwise.

’ Bacteria probability s ‘ P ‘ m ‘ p(M) ‘ P(Ejm))
P >35 - — Disease remains
34 1 — 0.996
28 2 0.8623 0.8623
0.4 27 2 0.7351 0.7351
26 3 0.6381 0.9024
25 5 0.5617 0.9729
24 any m <0.5 Disease dies out
P>16 - — Disease remains
15 1 - 0.99
0.8 11 2 0.8623 0.8623
' 10 3 0.7 0.9899
9 4 0.5853 0.947
8 any m <0.5 Disease dies out

Table A.2: Analysis of an infectious disease with ¢ = 0.6, a = 10~* Bacteria™!, 8 = 102
Bacteria.Indiv—"' c.fu. and v = 0.07, for s = 0.4 and s = 0.8.
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Nonlinear model
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Figure A.1: Infected population in a farm with P = 56 individuals in an enclosure
from the data of the Fxample 1 with s = 0.4 and from the initial conditions: 51
susceptible individuals, 5 infected individuals and without bacteria.
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Figure A.2: Infected population in a farm with P = 56 individuals in two cubicles
with 28 individuals in each one from the data of the Example 1 with s = 0.4 and
from the initial conditions: 26 susceptible individuals and 2 infected individuals
in the compartment 1; 25 susceptible individuals and 8 infected individuals in the
compartment 2 and without bacteria.
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Figure A.3: Infected population in a farm with P = 84 individuals in three cubi-
cles with 28 individuals in each one from the data of the Example 1 with s = 0.4
and from the initial conditions: 26 susceptible individuals and 2 infected individ-
uals in the compartment 1; 26 susceptible individuals and 2 infected individuals
in the compartment 2; 27 susceptible individuals and 1 infected individuals in the
compartment 8 and without bacteria.
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