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dDepartamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

In this paper we perform a complete probabilistic study of a finite dimensional

linear control system with uncertainty. The controllability condition with ran-

dom initial data and final target is analysed. To conduct this investigation we

determine the first probability density function of the control and the solution

of the random control problem under different scenarios. To achieve this objec-

tive, Random Variable Transformation technique is extensively applied. Several

examples illustrate the theoretical results.

Keywords: random linear control system, first probability density function,

random variable transformation technique

1. Introduction

Control Theory is a branch of Mathematics that studies the behavior of a

dynamic system with controllers applied through actuators. Its main objective

is to develop models for controlling such systems using a control action in an
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optimum manner. Applications of Control Theory, in irrigation systems, can5

be found since the ancient Mesopotamia more than 2000 years B.C. But it was

not until the 1868 that the first significant mathematical description of Control

Theory was established in the works by J.C. Maxwell [1]. Since then, Control

Theory [2] gained importance, becoming nowadays a key tool to develop new

technologies [3, 4].10

A control problem consists in finding controls, say u(t), such that the solution

of a model, x(t;u), coincides or gets close to a target value x1 at a final time

instant T , i.e., x(T ;u) = x1 or ‖x(T ;u) − x1‖ < ε. Generally, an optimal

control problem is defined via a set of differential equations, ordinary or partial,

describing the states which depend on the control variables that minimize a

particular cost function of the form

J(u) =
1

2

∥∥x(T ;u)− x1
∥∥2 +

β

2
‖u‖2 ,

where β ≥ 0 allows us to penalize using too much costly control.

On the other hand, the parameters that appear in this kind of formula-

tions are generally set via experimental data. Therefore, since these values are

obtained from certain measurements and samplings, they often contain an in-

trinsic uncertainty. These facts make more convenient to consider inputs as15

random variables (RVs) or stochastic processes (SPs) rather than constants or

deterministic functions, respectively. In recent years many works dealing with

control problems have considered uncertainty in their formulation via Gaussian

processes, mainly like the Brownian motion or the Wiener process, see for in-

stance [5, 6]. The key role played by uncertainty in control models has been20

also shown in numerous areas like mechanics [7, 8], wireless communications

[9], etc. With regard to the present contribution where random autonomous

linear control problems are studied, it must be pointed out that these class

of models have been addressed using different ways to include uncertainties in

their formulation, such as switching signals driven by stochastic processes [10],25

multiplicative noise [11], etc. In the context of partial differential equations

(PDEs), interesting advances have been done for different significant PDEs like

2



the heat and wave equations taking control via the averaged and simulataneous

behaviour of the problem [12, 13, 14, 15] or applying weak greedy algorithms

for parameter dependent PDEs [16, 17].30

As it shall see detail in Section 2, the aim of this paper is to provide a full

probabilistic analysis, via the computation of the probability densities of the

solution and the control, of finite dimensional linear control systems whose initial

and final conditions are random variables satisfying certain general assumptions

that will be specified later.35

The paper is organized as follows. In Section 2, we first formulate the classi-

cal (deterministic) version of the linear control problem that will be study from a

stochastic standpoint as well as some auxiliary classical results. Afterwards, we

randomize the control problem and introduce the stochastic setting where the

problem is going to be analysed. In this section, we further include important40

probabilistic results required to conduct our subsequent study. In Section 3 we

give some considerations about the construction of the deterministic solution

of the linear control problem that will be necessary to extend it to the random

framework. Next, in Section 4 we will compute the complete probabilistic so-

lution given by the 1-PDF of the random linear control problem considering45

that the initial condition and/or final target are absolutely continuous random

variables. Section 5 is devoted to determine the 1-PDF of the control opera-

tor, which is a stochastic process. The theoretical results obtained in previous

sections are illustrated via several numerical experiments in Section 6. Finally,

some conclusions are given.50

2. Problem description

In this paper, we are interested in the problem of controllability for finite

dimensional linear systems of dimension n ∈ N. This kind of problems can be

formulated as

x′(t) = Ax(t) + Bu(t), 0 < t ≤ T,

x(0) = x0,
(1)
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where for each t ∈ (0, T ], x(t) ∈ Rn is the state of the system, x0 ∈ Rn is

the initial data, A is a square matrix of size n × n corresponding to the free

dynamics part, B is a n×m matrix, with m ∈ N such that m ≤ n, and u(t) is

an m-dimensional square integrable function termed the control vector, u(t) ∈55

L2(0, T ;Rm). Furthermore, we will assume that the system (1) is controllable,

then every initial state x0 can be driven to any final state x1 ∈ Rn in a control

time T > 0, i.e., given an initial condition x0, x(T ) = x1. This controllability

property can be established by the so called Kalman’s controllability matrix, in

terms only of matrices A and B, as indicated in the next result [2, 16].60

Theorem 1 (Kalman). A necessary and sufficient condition for (1), in terms

only on A and B, to be controllable is

rank(C) = rank
(
B|AB| · · · |An−1B

)
= n, (2)

where C is a n× nm matrix, called Kalman’s controllability matrix.

The proof of Theorem 1 [18] can be established by defining the matrices

F(t) = eA(T−t)B, Λ =

∫ T

0

F(t)F>(t) dt, (3)

and applying the following Lemmas 1 and 2 that will be used throughout the

paper. As usual, F> denotes the transpose of matrix F. The proof of these

lemmas can be found in [19, pages 88–89].

Lemma 1. A necessary and sufficient condition for (A,B) so that (1) to be65

controllable is that Λ given by (3) is invertible.

Lemma 2. Invertibility of Λ given by (3) is equivalent to Equation (2).

Remark 1. If problem (1) is controllable, in the proof of Lemma 1 is derived

that F(t)F>(t) is an invertible matrix ∀t, 0 ≤ t ≤ T . Thus,
∫ t

w
F(s)F>(s)ds,

0 ≤ w < t ≤ T is an invertible matrix.70
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The aim of this contribution is to solve, from a probabilistic point of view,

the following control problem with uncertainty

x′(t, ω) = Ax(t, ω) + Bu(t, ω), 0 < t ≤ T,

x(0, ω) = x0(ω),
(4)

where the starting seed x0(ω) =
[
x01(ω), . . . , x0n(ω)

]>
, ω ∈ Ω, and the final target

x1(ω) =
[
x11(ω), . . . , x1n(ω)

]>
, ω ∈ Ω, are assumed to be absolutely continuous

RVs defined on a common complete probability space (Ω,F ,P). In order to pro-

vide as much generality as possible throughout our analysis, hereinafter we will

assume a joint probability density function (PDF) of the random vector (x0(ω),75

x1(ω)) given by fx0,x1(x0, x1). We must point out that this is guaranteed since

we are assuming that x0(ω) and x1(ω) are absolutely continuous RVs. From a

practical standpoint, this is not a serious restriction since many important RVs

used in real applications are absolutely continuous RVs, some examples include

Uniform, Beta, Triangular, Gamma, Weibull, Gaussian, t-Student, etc.80

In the stochastic setting, the concepts of space of admissible controls and

reachable sets correspond to the generalizations of their corresponding coun-

terpart. The space of admissible controls, U , is made up of SPs, u = u(t, ω),

such as u ∈ U ⊂ L2((0, T ] × Ω;Rm) almost surely (a.s.) or with probability 1

(w.p. 1). Notice that each component of the control operator u(t, ω), uk(t, ω),85

1 ≤ k ≤ m, is a SP since for each fixed t̂, uk(t̂, ω) is a RV. From the deterministic

theory, as it will be pointed later, u(t, ω) can be explicitly computed in terms

of A, B, x0(ω) and x1(ω).

In the following, we will assume that the Initial Value Problem (IVP) (4) is

controllable in the probabilistic sense, that is

x(T, ω) = x1(ω), ∀ω ∈ Ω, (5)

i.e., x(T, ω) = x1(ω) a.s. or w.p. 1. The state x1(ω), which is a RV, is

said to be reachable in time T if there exists an input or control, u ∈ U ⊂90

L2((0, T ] × Ω;Rm) in problem (4) such that x(T, ω) = x1(ω) a.s. or w.p. 1.

The set of all reachable RVs is called the reachable set. As a main difference

5



wit respect to the deterministic scenario, in the stochastic setting the reachable

set changes since depends upon realizations ω ∈ Ω.

Notice that as A and B are deterministic matrices, the control IVP (4) is95

controllable iff Kalman’s condition given in Theorem 1 is fulfilled.

In the deterministic framework, the main objective is to determine the best

control and, from it, the solution of system (1). Similarly, in the random sce-

nario, a major objective is to determine the control SP, u(t, ω), and, from it,

the solution SP of the problem, x(t, ω), can be derived. Unlike the determinis-

tic theory, an important goal in the random setting is the computation of the

main statistical functions of the SP, such as the mean and variance functions,

and hence confidence intervals, since the average behaviour of that function as

well as its variability about the mean are obtained from these two statistical

moments. A more ambitious objective consists in the determination of the first

probability density function (1-PDF), f1(x, t), of the solution SP, x(t, ω), ω ∈ Ω,

that provides a full probabilistic description of the solution SP in each time

instant t. From the 1-PDF the mean and the variance can be easily straight-

forwardly computed, provided these moments exist, but also other quantities

of interest as the asymmetry, the kurtosis and other higher one-dimensional

statistical moments

E
[
(x(t, ω))l

]
=

∫
Rn

xlf1(x, t)dx,

l = 1, 2, . . .



µx(t) = E [x(t, ω)]

=

∫
Rn

xf1(x, t)dx,

σ2
x(t) = E

[
(x(t, ω))2

]
− E2 [x(t, ω)]

=

∫
Rn

x2f1(x, t)dx− µ2
x(t).

As we have previously indicated, there are many works that have introduced

uncertainty in control problems. Many of them consider the average controlla-

bility [12, 13, 15]. The novelty of this contribution is to work directly with the

PDF of the inputs and to obtain closed expressions for the 1-PDFs of the SP
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solution and the SP operator control. As it has been explained previously, this is

advantageous since from these PDFs, we can give a more complete probabilistic

description of problem (4) via the computation of the mean, variance, asym-

metry, kurtosis, etc., as well as to construct confidence regions at a prescribed

confidence level. Additionally, the 1-PDF permits to compute the probability

that the solution, x(t, ω) (analogously, the control) lies in any set, say D ∈ Rn,

of specific interest

P[{ω ∈ Ω : x(t, ω) ∈ D}] =

∫
D
f1(x, t) dx.

The main goal of this contribution is to compute the 1-PDF of the control

u(t, ω) and the solution SP x(t, ω) of the random control problem (4). With

this aim the Random Variable Transformation method (RVT) will be applied.

RVT is a powerful technique to determine the PDF of a RV which comes from100

mapping another RV whose PDF is known. The multidimensional version of

the RVT method is stated in the following result.

Theorem 2 (Random Variable Transformation technique). [20, pp. 24–

25] Let X(ω) = (X1(ω), . . . , Xk(ω))
>

and Y (ω) = (Y1(ω), . . . , Yk(ω))
>

be two

m-dimensional absolutely continuous random vectors defined on a complete prob-

ability space (Ω,F ,P). Let r : Rk → Rk be a one-to-one deterministic transfor-

mation of X(ω) into Y (ω), i.e., Y (ω) = r(X(ω)), ω ∈ Ω. Assume that r is a

continuous mapping and has continuous partial derivatives with respect to each

component xi, 1 ≤ i ≤ k. Then, if fX(x1, . . . , xk) denotes the joint probability

density function of the vector X(ω), and s = r−1 = (s1(y1, . . . , yk), . . . , sk(y1, . . . , yk))

represents the inverse mapping of r = (r1(x1, . . . , xk), . . . , rk(x1, . . . , xk)), the

joint probability density function of the random vector Y (ω) is given by

fY (y1, . . . , yk) = fX (s1(y1, . . . , yk), . . . , sk(y1, . . . , yk)) |Jk| ,

where |Jk|, which is assumed to be different from zero, denotes the absolute
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value of the Jacobian defined by the following determinant

Jk = det


∂s1(y1, . . . , yk)

∂y1
· · · ∂sk(y1, . . . , yk)

∂y1
...

. . .
...

∂s1(y1, . . . , yk)

∂yk
· · · ∂sk(y1, . . . , yk)

∂yk

 .

3. Deterministic theory for linear control problems

As we are interested in the study of the randomized version (4) of the de-

terministic problem (1), first it is convenient for the sake of completeness to105

introduce a basic review about the derivation of the solution to problem (1).

For further details we refer to [1, 16, 2].

Given a control u ∈ L2(0, T ;Rm), according to the variation of parameters

formula, the unique solution of control problem (1), x ∈ H1(0, T ;Rn), is

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds, t ∈ (0, T ), (6)

where L2(0, T ;Rm) is the space of square integrable Rm-valued functions with110

domain the interval [0, T ] and H1(0, T ;Rn) is the Sobolev space whose elements,

say f , satisfy f, f ′ ∈ L2(0, T ;Rn).

To reach our objective, i.e. the computation of the 1-PDFs of the control

and solution SPs, it is more convenient to use the approach based on the so

called dual problem of observability of the homogeneous adjoint system115

ρ′(t) = −A>ρ(t), 0 ≤ t ≤ T,

ρ(T ) = ρ0.
(7)

In this manner, both the control and the solution SPs can be explicitly rep-

resented in terms of coefficients and the initial condition and the final target

[16].

The duality principle allows us to reduce the controllability problem of the

system (1) into an observability one for the adjoint system (7). Then, the control

u(t) is given by

u(t) = B> ρ(t), (8)
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being ρ(t) the solution of the adjoint system (7) taking ρ0 the minimiser of the

quadratic functional J : Rn → R

J(ρ0) =
1

2

∫ T

0

|B>ρ(t)|2dt− < x1, ρ0 > + < x0, ρ(0) > .

The minimiser ρ0 can be expressed as

ρ0 = Λ−1(x1 − eATx0), (9)

where Λ is defined in (3).

Therefore, taking into account (9) the solution of the adjoint system (7) is

given by

ρ(t) = eA
>(T−t)ρ0 = eA

>(T−t)Λ−1(x1 − eTAx0).

As it has been pointed out previously, the control is given by (8), so

u(t) = B>eA
∗(T−t)Λ−1(x1 − eTAx0). (10)

Summarizing, the solution of the deterministic control problem (1) with final

target, x(T ) = x1, is given by

x(t) = eAtx0 +

∫ t

0

eA(t−s)BB>eA
>(T−s) dsΛ−1(x1 − eATx0). (11)

4. Computing the 1-PDF of the solution SP x(t, ω)120

If we randomize the initial condition in IVP (1) and we consider the random

final target given in (5), then we obtain the corresponding random problem (4)–

(5). Thus, according to (11), the solution of the randomized problem (4)–(5) is

x(t, ω) = eAtx0(ω)+

∫ t

0

eA(t−s)BB>eA
>(T−s) dsΛ−1(x1(ω)−eATx0(ω)), (12)

where Λ is the deterministic matrix given by (3).

To obtain the 1-PDF of the solution SP x(t, ω), we will apply the RVT

method, Theorem 2. First, for sake of clarity, we rewrite the solution as follows

x(t, ω) =
(
eAt −H(t)eAT

)
x0(ω) + H(t)x1(ω),

9



where

H(t) =

∫ t

0

eA(t−s)BB>eA
>(T−s) dsΛ−1. (13)

In most situations the initial condition and the final target are both random.

This case will be studied in Subsection 4.1 in detail. But there are situations in

which only the initial or final condition can be considered separately random.

These cases will be analysed in Subsections 4.2 and 4.3.125

Now, we establish some properties about matrix H(t) that will be required

in the subsequent development.

Proposition 1. If (2) is fulfilled, then H(t) given by (13) is invertible.

Proof.

det (H(t)) = det

(∫ t

0

eA(t−s)BB>eA
>(T−s)dsΛ−1

)
6= 0

⇔ det

(∫ t

0

eA(t−s)BB>eA
>(T−s)ds

)
6= 0

⇔ det

(
eA(T−t)

∫ t

0

eA(t−s)BB>eA
>(T−s)ds

)
= det

(∫ t

0

eA(T−s)BB>eA
>(T−s)ds

)
6= 0.

Last expression is true by Remark 1. �

Proposition 2. If (2) is fulfilled, then eAt −H(t)eAT is invertible.130
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Proof. Observe that for t : 0 < t < T , one gets

det
(
eAt −H(t)eAT

)
= det

((
eA(t−T ) −H(t)

)
eAT

)
6= 0

⇔ det
(

eA(t−T ) −H(t)
)

= det

(
eA(t−T ) −

∫ t

0

eA(t−s)BB>eA
>(T−s)dsΛ−1

)
6= 0

⇔ det

(
eA(t−T )Λ−

∫ t

0

eA(t−s)BB>eA
>(T−s)ds

)
= det

(
eA(t−T )

∫ T

0

eA(T−s)BB>eA
>(T−s)ds−

∫ t

0

eA(t−s)BB>eA
>(T−s)ds

)

= det

(∫ T

0

eA(t−s)BB>eA
>(T−s)ds−

∫ t

0

eA(t−s)BB>eA
>(T−s)ds

)

= det

(∫ T

t

eA(t−s)BB>eA
>(T−s)ds

)
6= 0

⇔ det

(
eA(T−t)

∫ T

t

eA(t−s)BB>eA
>(T−s)ds

)

= det

(∫ T

t

eA(T−s)BB>eA
>(T−s)ds

)
6= 0.

Last expression is true by Remark 1. �

4.1. 1-PDF of x(t, ω) when x0(ω) and x1(ω) are random vectors

We will assume a joint PDF of the random vector (x0(ω), x1(ω)) denoted by

fx0,x1(x0, x1). Let t > 0 be fixed, and define the mapping r = (r1, r2) : Rh → Rh

(h = n+n = 2n) whose components ri : Rh → Rn, i = 1, 2, are defined as follows

y1 = r1(x0, x1) =
(
eAt −H(t)eAT

)
x0 + H(t)x1,

y2 = r2(x0, x1) = x0.

Then, applying Proposition 1 the components of the inverse mapping of r,

s = r−1 are given by

x0 = s1(y1, y2) = y2,

x1 = s2(y1, y2) = H(t)−1y1 −
(
H(t)−1eAt − eAT

)
y2.

The Jacobian of the inverse transformation is given by the following deter-

minant

Jh = det

 0n×n H(t)−1

In #n×n

 = −det
(
H(t)−1

)
,

11



where, as usually, 0n1×n2 stands for the null matrix of size n1 × n2 and In1 for

the identity matrix of size n1. Notice that using the Kalman’s condition for

controllability, Theorem 1, the transformation is well defined by Proposition 1135

and Jh 6= 0.

Then, applying RVT technique, Theorem 2, the PDF of the random vector

(y1, y2) in terms of the joint PDF of the random vector of input parameters

(x0, x1), is

fy1,y2(y1, y2) = fx0,x1

(
y2,H(t)−1y1 −

(
H(t)−1eAt − eAT

)
y2
) ∣∣det

(
H(t)−1

)∣∣ .
(14)

Since the solution for every t fixed of the random IVP (4) is given by the

first component of mapping r, y1, we marginalize expression (14) with respect

to y2 = x0

fy1(y1) =

∫
Rn

fx0,x1

(
x0,H(t)−1y1 −

(
H(t)−1eAt − eAT

)
x0
) ∣∣det

(
H(t)−1

)∣∣dx0,
where

dx0 =

n∏
i=1

dx0i . (15)

Then, taking an arbitrary t, T > t > 0 the 1-PDF of the solution SP x(t, ω)

of linear control problem (4)–(5) is given by

f1(x, t) =

∫
Rn

fx0,x1

(
x0,H(t)−1x−

(
H(t)−1eAt − eAT

)
x0
) ∣∣det

(
H(t)−1

)∣∣dx0,
(16)

where H(t) and dx0 are defined by (13) and (15), respectively.

4.2. 1-PDF of x(t, ω) when x0(ω) is a random vector

In this section we will obtain the 1-PDF of the solution SP in the case that

only the initial condition is a random vector x0(ω) whose PDF is denoted by

fx0(x0). Let us fix t > 0, and define the mapping r : Rn → Rn as follows

y = r(x0) =
(
eAt −H(t)eAT

)
x0 + H(t)x1,

Then, the inverse mapping, s = r−1, is

x0 = s(y) =
(
eAt −H(t)eAT

)−1 (
y −H(t)x1

)
,

12



that is well defined by Proposition 2. Furthermore, the Jacobian of the inverse

transformation is given by

Jn = det
((

eAt −H(t)eAT
)−1) 6= 0.

Since the solution for every t fixed of the random IVP (4) is given by y,

applying RVT technique, Theorem 2, taking T > t > 0 the 1-PDF of the

solution SP x(t, ω) of the linear control problem when the initial condition is

random is given by

f1(x, t) = fx0

((
eAt −H(t)eAT

)−1 (
x−H(t)x1

)) ∣∣∣det
((

eAt −H(t)eAT
)−1)∣∣∣ ,

(17)

where H(t) is defined by (13).

4.3. 1-PDF of x(t, ω) when x1(ω) is a random vector140

Finally, we deal with the scenario where the final condition is a random

vector x1(ω) whose PDF is denoted by fx1(x1). Let us fix t > 0. In order to

apply RVT technique, we define the following mapping r : Rn → Rn as follows

y = r(x1) =
(
eAt −H(t)eAT

)
x0 + H(t)x1.

Reasoning similarly as in Subsection 4.1, we obtain the PDF fy(y), and then,

taking T > t > 0, the 1-PDF, f1(x, t), of the solution SP x(t, ω) of the linear

control problem when the final target is a random vector. This leads to

f1(x, t) = fx1

(
H(t)−1x−

(
H(t)−1eAt − eAT

)
x0
) ∣∣det

(
H(t)−1

)∣∣ , (18)

where H(t) is defined by (13). Notice that H(t)−1 exists according to Proposi-

tion 1.

5. Computing the 1-PDF of the control SP u(t, ω)

According to the explicit expression of the control u(t) given in (10) in terms

of the initial condition x0 and the target condition x1, and depending on the

random nature of x0 = x0(ω), or x1 = x1(ω), or both, we can take advantage

13



of RVT technique to determine its PDF in each one of these cases. To this end,

let us consider the randomization of u(t) given in (10),

u(t, ω) = B>eA
>(T−t)Λ−1(x1(ω)− eATx0(ω)). (19)

We can rewrite equation (19) as

u(t, ω) = G(t)(x1(ω)− eATx0(ω)),

where

G(t) = B>eA
>(T−t)Λ−1, (20)

is a matrix of dimensions m× n.

In order to obtain the 1-PDF of the control operator u(t, ω), we will assume

the following hypothesis

H1: The control operator B has maximun rank, i.e., rank(B) = m.

Although dependence between several controls is plausible, it is important145

to remark that hypothesis H1 is not a restriction. In practice the objective

is to find the minimum number of controllers to assure the controllability of

the system under study. The ideal case would be that one a unique control is

needed, if it is possible.

5.1. 1-PDF of u(t, ω) when x0(ω) and x1(ω) are random vectors150

Let us consider a joint PDF, fx0,x1(x0, x1), of the random vector (x0(ω),

x1(ω)).

Notice that by hypothesis H1 we have

rank (G(t)) = rank
(
B>eA

>(T−t)Λ−1
)

= m.

Then, we can easily construct a matrix L of dimensions (n −m) × n such

that  G(t)

L



14



is a non-singular matrix of dimensions n × n. To construct L, we consider the

position of the m linear independents columns of matrix G(t). Then, in the

columns of matrix L associated with this positions we put zero-vectors. The

rest of matrix L is fulfilled with the n−m vectors corresponding to the identity

matrix In−m. Notice that matrix L is not unique, For example, if the first m

columns of matrix G(t) are linear independent, we can take L as

L =
[

0(n−m)×m In−m

]
. (21)

Now, we will define an adequate mapping in order to apply Theorem 2. Let

us fix t > 0, we define the mapping r = (r1, r2) : Rh → Rh (h = n + n = 2n)

whose components ri : Rh → Rn, i = 1, 2, are defined as follows

y1 = r1(x0, x1) =

 G(t)

L

x1 +

 −G(t)eATx0

0(n−m)×1

 ,
y2 = r2(x0, x1) = x0.

Then, the components of the inverse mapping s = r−1 are

x0 = s1(y1, y2) = y2,

x1 = s2(y1, y2) =

 G(t)

L

−1y1 +

 G(t)eAT y2

0(n−m)×1

 .

Notice that the mapping is well defined because of the construction of L and

the Jacobian of the inverse transformation is given by the following determinant

Jh = det

 0n×n

 G(t)

L

−1
In #n×n

 = −det

 G(t)

L

−1 6= 0.

Then, applying RVT technique, Theorem 2, the PDF of the random vector

(y1, y2) in terms of the joint PDF of the random vector of input parameters

(x0, x1), is

fy1,y2(y1, y2) = fx0,x1

y2,
 G(t)

L

−1y1 +

 G(t)eAT y2

0(n−m)×1



∣∣∣∣∣∣∣det

 G(t)

L

−1
∣∣∣∣∣∣∣ .

(22)

15



Since the solution for every t fixed of the control operator (19) is given by

the m first components of the first component, y1, of mapping r we marginalize

expression (22) with respect to the n−m latests components of y1 (this is the

n − m latests components of x1) and y2 = x0, obtaining the 1-PDF for the

control operator as

f1(u, t) =

∫
Rn

∫
Rn−m

fx0,x1

x0,
 G(t)

L

−1  u+ G(t)eATx0

w



∣∣∣∣∣∣∣det

 G(t)

L

−1
∣∣∣∣∣∣∣dwdx0,

(23)

where G(t), L and dx0 are defined by (20), (21) and (15), respectively and

w =
[
x1m+1, . . . , x

1
n

]>
, dw =

n∏
i=m+1

dx1i . (24)

5.2. 1-PDF of u(t, ω) when x0(ω) is a random vector

In this subsection, we deal with the computation of the 1-PDF of the control

u(t, ω) in the case that the initial condition x0(ω) is a random vector with a

PDF, fx0(x0). By hypothesis H1 we have

rank
(
G(t)eAT

)
= rank (G(t)) = m,

and matrices G(t) and G(t)eAT have the m linear independent columns in the

same position, so  −G(t)eAT

L


is a non-singular matrix of dimensions n×n, where L is constructed as explained

in Subsection 5.1, and for simplicity, and without lack of generality, we suppose155

it is given by expression (21).

Now, let us fix t > 0, and define the mapping r : Rn → Rn (h = n+n = 2n)

as follows

y = r(x0) =

 G(t)x1

0(n−m)×1

+

 −G(t)eAT

L

x0.

16



Then, the inverse mapping s = r−1 is

x0 = s(y) =

 −G(t)eAT

L

−1y −
 G(t)x1

0(n−m)×1

 .

Notice that the mapping is well defined and the Jacobian of the inverse trans-

formation is given by the following determinant

Jn = det

 −G(t)eAT

L

−1 6= 0.

Then, applying RVT technique, Theorem 2, the PDF of the random vector

y, fy(y), in function of the PDF of the random vector of initial condition x0,

is constructed. Since the solution for every t fixed of the control operator (19)

is given by the m first components of y, we marginalize fy(y) with respect to

the n−m latests components of y (this is the n−m latests components of x0),

obtaining that the 1-PDF for the control operator is given by

f1(u, t) =

∫
Rn−m

fx0


 −G(t)eAT

L

−1  u−G(t)x1

v



∣∣∣∣∣∣∣det

 −G(t)eAT

L

−1
∣∣∣∣∣∣∣dv,

(25)

where G(t) and L are defined by (20), (21) , respectively and

v =
[
x0m+1, . . . , x

0
n

]>
, dv =

n∏
i=m+1

dx0i . (26)

5.3. 1-PDF of u(t, ω) when x1(ω) is a random vector

Throughout this subsection we will consider the PDF of random vector x1(ω)

is given by fx1(x1). Let us fix t > 0. In order to apply RVT technique, we define

the mapping r : Rn → Rn as follows

y = r(x1) =

 G(t)

L

x1 +

 −G(t)eATx0

0(n−m)×1

 ,
where L is constructed as indicated in Subsection 5.1, and without lack of

generality, we consider it is given by (21).

17



Following a reasoning similar to that performed in Subsection 4.1, we obtain

the PDF fy(y), and then, taking T > t > 0, the 1-PDF, f1(x, t) of the control

operator SP u(t, ω) of the linear control problem when the final target is random

is obtained,

f1(u, t) =

∫
Rn−m

fx1


 G(t)

L

−1  u+ G(t)eATx0

w



∣∣∣∣∣∣∣det


 G(t)

L

−1

∣∣∣∣∣∣∣dw,

(27)

where G(t), L are defined by (13), (21), respectively and w, dw are given by160

(24).

6. Numerical examples

In this section we will illustrate by means of two examples all the theoretical

results established in Sections 4 and 5 related to the computation of the 1-PDF

of x(t, ω) and u(t, ω) depending on the random nature of the initial condition,165

x0(ω) and/or final target x1(ω). In both examples, calculations have been car-

ried out using Mathematica c© software. In particular, the command NIntegrate,

which allows us to perform integrals (16)–(18), (23), (25) and (27) numerically.

Example 1. Let A and B be the matrices of the control IVP (1) defined by

A =

 0 1

−1 0

 , B =

 0

1

 . (28)

By Kalman’s rank condition, see Remark 1, (A,B) is controllable

rank(B|AB) = rank

 0 1

1 0

 = 2.

Then, the system is controllable and we know the expression for the solution

and the control. Therefore, the distribution of both stochastic processes can be170

computed. In this example we consider randomness in both the initial condition

and the final target. To show the capability of the theoretical results previously

established we consider that all RVs involved are independent with the following

distributions:

18



- The first component of the initial condition, x01, follows a Gamma distri-175

bution with mean 1 and variance 0.005, i.e., x01(ω) ∼ Ga(200, 0.005).

- The second component of the initial condition, x02, has a Uniform dis-

tribution defined in the interval [0.8, 1.2] (with mean 1), i.e., x02(ω) ∼

U([0.8, 1.2]).

- The first component of the final target, x11, is Normal distributed with180

mean 0 and variance 0.05, i.e., x11(ω) ∼ N(0, 0.05).

- The second component of the final target, x12, has a Triangular distribu-

tion defined in the interval [−0.05, 0.1] with mode −0.05, i.e., x12(ω) ∼

T([−0.05, 0.1];−0.05).

With this choice for the distributions, we observe that the system starts at the185

random vector x0(ω) and finishes at the random vector x1(ω). The control time

considered to carry out the computations shown down below is T = 1.

The 1-PDF, f1(x, t), of the solution SP is shown in Figure 1 for t = 0.8.

In this plot we have compared Monte Carlo Method with the 1-PDF obtained

from expression (16). We can observe a good agreement. We have also displayed190

confidence regions at levels 1− α = 0.5 (blue line) and 1− α = 0.9 (red line).

Phase portrait is shown in Figure 2. We have represented confidence regions

at 50% (blue curve) and 90% (red curve) confidence levels, respectively, at

several time instants. The result of the control is expected since one observes

that the solution tends to the random vector x1(ω).195

As rank(B) = 1, we can compute the 1-PDF, f1(u, t), of the control oper-

ator through expression (23). In Figure 3 we have represented the 1-PDF of

control for several time instants. We can observe that is sharper at intermediate

instants.

Since the algebraic expressions of the 1-PDFs, f1(x, t) and f1(u, t), are some-200

what cumbersome, for the sake of completeness in the Appendix we have detailed

how computations could be performed.
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Figure 1: 1-PDF of the solution SP to the random control problem (4) by applying Monte

Carlo (top panel), RVT (central panel) and both (down panel) for the time instant t = 0.8,

Example 1. In the PDF computed via RVT method we highlight confidence regions at different

confidence level 1− α (blue, 1− α = 0.5 and red, 1− α = 0.9).
20
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Figure 2: Portrait phase for the random control problem (4). Continuous spiral line represents

the expectation of the solution. 50% (blue curve) and 90% (red curve) confidence regions are

plotted at the time instants t ∈ {0, 0.1, 0.5, 0.8, 0.9, 0.975, 1}. Example 1.
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Figure 3: 1-PDF of control plotted at the time instants t ∈ {0, 0.1, 0.5, 0.8, 1}. Example 1.
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Example 2. Let us consider the matrices A and B introduced in Example 1.

Thus, we know that the system is controllable and, as rank(B) = 1 then we

can compute the 1-PDF of x(t, ω) and u(t, ω). We take the control time T = 1.205

Regarding the randomness of the initial and final conditions we will consider

multivariate Normal distributions. In particular, we contemplate the three cases

introduced in the theoretical development exhibited in previous Section 4, and

in each scenario, we will compute the distribution of the solution and of the

control:210

• Case 1: x0(ω) and x1(ω) have multivariate Normal distributions.

• Case 2: The initial condition x0(ω) has a multivariate Normal distribution

and the target condition x1 is deterministic.

• Case 3: The initial condition x0 is deterministic ant the target condition

x1(ω) has a multivariate Normal distribution.215

For the sake of clarity, we will present the same structure to show both

computations and results in each one of the above-listed case.

Case 1. We consider that the random vectors x0(ω) and x1(ω) have multivariate

Normal distributions with mean µ0 = (1, 1) and µ1 = (0, 0), respectively, and

common variance-covariance matrix Σ = 0.01I2, i.e.

x0 = (x01, x
0
2) ∼ N(µ0,Σ), x1 = (x11, x

1
2) ∼ N(µ1,Σ),

µ0 = (1, 1), µ1 = (0, 0), Σ =

 0.01 0

0 0.01

 .

The 1-PDF of the solution SP is shown in Figure 4 for t = 0.5. In this

plot we have compared Monte Carlo Method with the 1-PDF obtained from

expression (16). We can observe good agreement between both approaches. We220

have also displayed confidence regions at confidence levels 1 − α = 0.5 (blue

line) and 1− α = 0.9 (red line).

Phase portrait is represented in Figure 5. We have plotted confidence regions

at 50% (blue curve) and 90% (red curve) at several time instants. The result of
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Figure 4: 1-PDF of the solution SP to the random control problem (4) by applying Monte

Carlo (top panel), RVT (central panel) and both (down panel) for the time instant t = 0.5,

Case 1, Example 2. In the PDF computed via RVT method, we have highlighted confidence

regions at different levels 1− α (blue, 1− α = 0.5 and red, 1− α = 0.9).
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Figure 5: Portrait phase for the random control problem (4). Continuous spiral line represents

the expectation of the solution. 50% (blue curve) and 90% (red curve) confidence regions are

plotted at the time instants t ∈ {0, 0.1, 0.5, 0.8, 1}. Case 1, Example 2.

the control is expected since we observe that the solution tends to the random225

vector x1(ω).

In Figure 6, we have represented the 1-PDF of control for several time in-

stants. We can observe that it is sharper at intermediate instants.

Case 2. Now we will suppose that the initial condition is random and the target

condition is deterministic, specifically, we consider that x0(ω) has a multivariate

Normal distribution with mean µ0 and variance-covariance matrix Σ, i.e., x0 =

(x01, x
0
2) ∼ N(µ0,Σ), where

µ0 = (1, 1) Σ =

 0.01 0

0 0.01

 ,

and the final target has the deterministic value x1 = (1, 1).

The 1-PDF of the solution SP is shown in Figure 7 for t = 0.1. Observe that230

analytical computations from expression (17) and Monte Carlo simulations are

in full agreement.
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Figure 6: 1-PDF of control plotted at the time instants t ∈ {0, 0.1, 0.5, 0.8, 1}. Case 1, Example

2.

Phase portrait is represented in Figure 8. We can observe that the solu-

tion tends to the target point x1 = (0, 0). As this point is deterministic, the

variability vanishes as time increases.235

In Figure 9 we have represented the 1-PDF of control given by (25) for

several time instants. Again, we can observe that it is sharper at intermediate

times.

Case 3. Finally, we suppose that the initial condition is deterministic, x0 =

(0, 0), and the target condition is a random vector following a multivariate

Normal distribution with mean µ1 and variance-covariance matrix Σ, i.e., x1 =

(x11, x
1
2) ∼ N(µ1,Σ), where

µ1 = (1, 1), Σ =

 0.01 0

0 0.01

 .

The 1-PDF of the solution SP is shown in Figure 10 for t = 0.8. As in

previous examples, analytical computations and Monte Carlo simulations agree.240

Phase portrait is represented in Figure 11. We can observe how the random

target is reached from an initial deterministic point.
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Figure 7: 1-PDF of the solution SP to the random control problem (4) by applying Monte

Carlo (top panel), RVT (central panel) and both (down panel) for the time instant t = 0.1,

Case 2, Example 2. In the PDF computed via RVT method, we have highlighted confidence

regions at different confidence levels 1− α (blue, 1− α = 0.5 and red, 1− α = 0.9).
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Figure 8: Portrait phase for the random control problem (4). Continuous spiral line represents

the expectation of the solution. 50% (blue curve) and 90%(red curve) confidence regions are

plotted at the time instants t ∈ {0, 0.1, 0.5, 0.9, 1}. Case 2, Example 2.
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Figure 9: 1-PDF of control plotted at the time instants t ∈ {0, 0.1, 0.5, 0.9, 1}. Case 2, Example

2.
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Figure 10: 1-PDF of the solution SP to the random control problem (4) by applying Monte

Carlo (top panel), RVT (central panel) and both (down panel) for the time instant t = 0.8,

Case 3, Example 2. In the PDF computed via RVT method, we have highlighted confidence

regions at different confidence levels 1− α (blue, 1− α = 0.5 and red, 1− α = 0.9).
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Figure 11: Portrait phase for the random control problem (4). Continuous spiral line rep-

resents the expectation of the solution. 50% (blue curve) and 90% (red curve) confidence

regions are plotted at the time instants t ∈ {0, 0.3, 0.5, 0.8, 1}. Case 3, Example 2.

In Figure 12 we have plotted the 1-PDF of control for several time instants.

As in previous examples, we can observe that it is sharper at intermediate times.

7. Conclusions245

Controllability of systems in the presence of uncertainty is a topic of interest

in recent years. The novelty of this paper is that we work directly with random

variables for the initial condition and final target, and provide a complete prob-

abilistic solution, unlike other contributions that work with the average. The

complete probabilistic solution is given via the first probability density function,250

both for the stochastic solution process and for the control operator. This type

of solutions allow us, for example, to calculate mean, variance and confidence re-

gions for both the solution and the control operator in any specific time instant

of interest. In our future research we plan to extend the analysis to the case

that inputs involved in the random differential equation are random matrices.255
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Figure 12: 1-PDF of control plotted at the time instants t ∈ {0, 0.1, 0.5, 0.7, 0.8, 1}. Case 3,

Example 2.

Appendix

In this appendix we obtain explicit expressions of the 1-PDFs, f1(x, t) and

f1(u, t), of the solution SP x(t, ω) and the control u(t, ω), respectively, in the

context of Example 1. In this example we have considered independence among

the random input parameters, x0(ω) = (x01(ω), x02(ω)) (initial condition) and

x1(ω) = (x11(ω), x12(ω)) (terminal condition), therefore the joint PDF can be

written as the product of the marginals PDFs, i.e.,

fx0,x1(x01, x
0
2, x

1
1, x

1
2) = fx0

1
(x01)fx0

2
(x02)fx1

1
(x11)fx1

2
(x12).

Below we indicate the distributions chosen for each random variable and their

density:

• x01(ω) ∼ Ga(200, 0.005). Then, the PDF is

fx0
1
(x01) =

4.07512× 1087 e−200 x0
1

(
x01
)199

, x01 > 0,

0, in other case.
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• x02(ω) ∼ U([0.8, 1.2]). Then, the PDF is

fx0
2
(x02) =

2.5, 0.8 ≤ x02 ≤ 1.2,

0, in other case.

• x11(ω) ∼ N(0, 0.05). Then, the PDF is

fx1
1
(x11) = 7.97885 e−200 (x1

1)
2

.

• x12(ω) ∼ T ([−0.05, 0.1];−0.05). Then, the PDF is

fx1
2
(x12) =

88.8889(0.1 − x12), −0.05 ≤ x12 ≤ 0.1,

0, in other case.

From (16) the 1-PDF of x(t, ω) is:

f1(x1, x2, t) =

∫ ∞
0

∫ 1.2

0.8

fx0
1
(x01)fx0

2
(x02)fx1

1
(M[1])fx1

2
(M[2])

∣∣det
(
H(t)−1

)∣∣ dx02 dx01,

where M[i], i = {1, 2}, denotes the i-th component of vector

M ≡M(x1, x2, x
0
1, x

0
2, t) = H(t)−1

 x1

x2

− (H(t)−1eAt − eAT
) x01

x02

 .
From matrices A and B (see (28)), and the final instant time T = 1, we can

calculate, using expressions in (3), the auxiliary matrices F(t) and F(t)

F(t) =

 sin(1− t)

cos(1− t)

 , Λ =

 0.272676 0.354037

0.354037 0.727324

 ,
required to determine matrix H(t), using expression (13),

H(t) =

 4.73329t cos(t) + (2.88247t− 4.73329) sin(t) (2.88247 − 1.03166t) sin(t)− 2.88247t cos(t)

2.88247t cos(t) + (2.88247 − 4.73329t) sin(t) (2.88247t− 1.03166) sin(t)− 1.03166t cos(t)

 .
Then, H(t)−1 is given by (0.841471t−0.301169) sin(t)−0.301169t cos(t)

t2+0.5 cos(2t)−0.5
(0.301169t−0.841471) sin(t)+0.841471t cos(t)

t2+0.5 cos(2t)−0.5
(1.38177t−0.841471) sin(t)−0.841471t cos(t)

t2+0.5 cos(2t)−0.5
(0.841471t−1.38177) sin(t)+1.38177t cos(t)

t2+0.5 cos(2t)−0.5


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and its determinant by

det
(
H(t)−1

)
=

0.291927

t2 + 0.5 cos(2t)− 0.5
.

Substituting the densities previously indicated for each RV, we obtain

f1(x1, x2, t) =

∫ ∞
0

∫ 1.2

0.8

7.2255·1090 e−200(x
0
1+(M[1])2) (x01)199 (0.1−M[2])

∣∣det
(
H(t)−1

)∣∣dx02 dx01.

Analogously, we calculate the 1-PDF of the control u(t, ω) by means of formula

(23)

f1(u1, u2, t) =

∫ ∞
0

∫ 1.2

0.8

∫ 0.1

−0.05
fx0

1
(x01)fx0

2
(x02)fx1

1
(N[1])fx1

2
(N[2])

∣∣∣∣∣∣∣det

 G(t)

L

−1
∣∣∣∣∣∣∣dx12dx02 dx01,

where N[i], i = {1, 2}, denotes the i-th component of vector

N ≡ N(u1, u2, x
0
1, x

0
2, x

1
2, t) =

 G(t)

L

−1

 u1

u2

+ G(t)eAT

 x01

x02


x12

 ,
and matrices G(t) and L have been computed by (20), resulting

G(t) =

 9.96585 sin(1− t)− 4.85104 cos(1− t)

3.73622 cos(1− t)− 4.85104 sin(1− t)

> , L =

 1

0

> .
Furthermore, the determinant is

det

 G(t)

L

−1 =
0.540302

1.11482 cos(t)− 3.11482 sin(t)
.

Finally, substituting the densities of input parameters as well as the auxiliary

calculations previously shown, we obtain the following expression for 1-PDF of

the control SP

f1(u1, u2, t) =

∫ ∞
0

∫ 1.2

0.8

∫ 0.1

−0.05
7.2255×1090 e−200(x

0
1+(N[1])2) (x01)199 (0.1−N[2])

∣∣∣∣∣∣∣det

 G(t)

L

−1
∣∣∣∣∣∣∣ dx12dx02 dx01.

The integrals defining the 1-PDFs f1(x1, x2, t) and f1(u1, u2, t) have been cal-

culated by Mathematica c© software. We skip explicitly showing their respective260

algebraic expressions because are very cumbersome.
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