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Abstract

This paper concerns the computation of the probability density function of the stochastic so-
lution to general complex systems with uncertainties formulated via random differential equa-
tions. In the existing literature, the uncertainty quantification for random differential equations
is based on the approximation of statistical moments by simulation or spectral methods, or on
the computation of the exact density function via the random variable transformation (RVT)
method when a closed-form solution is available. However, the problem of approximating the
density function in a general setting has not been published yet. In this paper, we propose a
hybrid method based on stochastic polynomial expansions, the RVT technique, and multidimen-
sional integration schemes, to obtain accurate approximations to the solution density function.
A problem-independent algorithm is proposed. The algorithm is tested on the SIR (susceptible-
infected-recovered) epidemiological model, showing significant improvements compared to the
previous literature.

Keywords: complex model with uncertainties, random differential equation, probability density
function, stochastic polynomial expansion, RVT technique, SIR epidemic model
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1. Introduction

This paper is concerned with complex systems with uncertainties formulated via random
differential equations, whose parameters are random variables having any type of probability
distributions [1, 2, 3, 4].

Several methods have been proposed in the literature to obtain statistical information of the
stochastic solution to random differential equations (uncertainty quantification). Monte Carlo
simulation is a popular statistical method based on obtaining realizations of the solution, which
allows approximating its statistical moments from the generated sample [5]. Although it is a
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robust and easy to implement approach, this technique may become inefficient due to the slow
convergence rate. Thus, more research has been devoted to non-statistical methods, where in-
stead of employing realizations, the goal is different, specifically reconstructing the functional
dependence of the solution on the input parameters. The perturbation method [6], the differential
transform technique [7], and homotopy methods [8, 9] have been applied to different kinds of
models. A fruitful approach for the study of models with uncertainties consists in using spectral
expansions of the solution in terms of the random inputs. Polynomial chaos (PC) methods ex-
pand stochastic quantities in terms of Hermite polynomials when there is functional dependence
on independent Gaussian parameters [10]. This method was extended to generalized polynomial
chaos (gPC) expansions, to alleviate the difficulties arising in non-Gaussian problems [11, 12].
The optimal polynomial basis is selected depending on the probability distribution of the param-
eters. If the parameters are independent and their distributions belong to the Askey scheme, the
corresponding family of orthogonal polynomials is selected (for instance, Legendre polynomials
are associated to the Uniform distribution). For any other probability distribution that does not
readily dispose of an orthogonal family of polynomials, a numerical Gram-Schmidt orthogonal-
ization procedure can be carried out [13, 14]. These expansions have spectral convergence in the
mean square sense, when the moment problem for the random parameters is uniquely solvable
[12, 15]. In the setting of random differential equations, the stochastic Galerkin projection tech-
nique uses truncated gPC expansions based on the random input parameters to approximate the
solution. The Galerkin projections present rapid mean square convergence towards the solution
[12, 16, 17, 18, 19]. When the inputs of the differential equation are not independent, polyno-
mial expansions based on the canonical polynomial basis were proposed [20] (these are not gPC
expansions). This method also presents fast mean square convergence, in general [21, 22], and
compared to some orthogonal chaos bases (see [23, Section 2.3.3] or the Rosenblatt transforma-
tion in [12, Section 4.1.2]) it is easier to handle in computations.

The computation of the probability density function of specific random differential equations
has been tackled recently using the random variable transformation (RVT) method [24, 25, 26,
27, 28]. This technique is feasible only when a simple closed-form solution exists. In other cases,
one should use different representations of the solution, such as Karhunen-Loève expansions
[29, 30], random power series [31] or finite difference numerical schemes [32, 33]. Recently, the
authors of this paper with another colleague proposed a hybrid method combining gPC expan-
sions and the RVT technique for stochastic models with one random input parameter [34]. We
restricted to one degree of uncertainty because we were not able to apply the multidimensional
version of the RVT technique to problems having more than one random parameter, as it was
unclear for us how to derive the injectivity regions of multivariate polynomials. Sobol indices
were utilized to select the random input parameter having the main effect on the output variance,
and the rest of parameters were then set constant.

This paper supposes the complete extension of [34] to random differential equations with
any degree of uncertainty. We combine polynomial expansions (in the independent and non-
independent case of inputs), the RVT technique, and multidimensional integration schemes, to
approximate fast and accurately the probability density function of the solution. An algorithm is
proposed that is problem-independent.

Continuous models allow getting a better understanding of the global spread of epidemics
[35, 36, 37]. Test-problems on the SIR (susceptible-infected-recovered) epidemic model are
studied in this paper. The RVT technique alone has been utilized for SI and SIS-type epidemic
models [38, 39]. However, since the SIR model does not present a simple closed-form solution
to apply the RVT method, in contrast to the SI and SIS models, no faithful approximation of its
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density function has been achieved. Accurate approximations of the expectation and the variance
statistics of the SIR model solution were obtained in [40], by utilizing gPC expansions and the
Galerkin projection technique. Only recently, the solution to the SIR model was approximated
by linearizing differential equations, and the RVT method was then applied to derive a density
function estimate [41]. Nonetheless, the approximated densities obtained in such way may differ
significantly from the exact ones. In this paper, we will achieve fast and accurate approximations
to the density function of the solution to the SIR model, as an application of our algorithm that
combines polynomial expansions and the RVT technique.

2. Method to compute the density function of stochastic models

Consider a general random differential equation problemx′(t) = F(t, x(t), η), t ∈ I,
x(t0) = x0.

(1)

Here I ⊆ R is an interval containing t0, F is a deterministic function, and the randomness
arises from the random vector η and also maybe from components of the initial condition x0 =

(x0,1, . . . , x0,q) ∈ Rq. All the random variables from system (1) are supposed to be jointly abso-
lutely continuous, but no independence is required. We let ξ = (ξ1, . . . , ξs) ∈ Rs be the random
vector whose components are the random input parameters in (1) (subset of (η, x0)), where s < ∞
is the uncertainty dimension. The density function of ξi is denoted as fξi (ξi), and the joint density
of ξ is fξ(ξ). The term x(t) = (x1(t), . . . , xq(t)) is a stochastic process x : I → Rq that solves (1)
(i.e. its trajectories solve the deterministic counterpart of (1) for any realization of ξ), having joint
density function f (x, t). We aim at computing the marginal density functions of xi(t), fi(x, t), for
i = 1, . . . , q.

If (1) has a closed-form solution, x(t) = H(t, ξ) for certain deterministic function H, then
the joint density f (x, t) can be derived from the RVT method mentioned in Section 1. To do so,
given t ∈ I, the transformation mapping H(t, ·) should be injective with non-zero Jacobian J with
respect to ξ, in an open partition {Dk}k of the support of ξ. In this case,

f (x, t) =
∑

k: x∈Hk(Dk)

fξ(H−1
k (t, x))|JH−1

k (t, x)|, x ∈ R,

where Hk = H|Dk .
The problem arises when the solution to (1) is not known via a closed-form expression. To

the best of our knowledge, no solution has been provided in the literature for this case in a
general setting. We propose an algorithmic approach to approximate fi(x, t) based on stochastic
polynomial expansions and the RVT method. We assume that each random input ξi has finite
absolute moments of any order: E[|ξi|

r] < ∞ for all 1 ≤ r < ∞, 1 ≤ i ≤ s, where the operator E
denotes the expectation. This condition will be necessary to assure that any polynomial evaluated
at ξi has well-defined expectation, 1 ≤ i ≤ s.

Suppose for the moment that ξ1, . . . , ξs are independent random variables. Let p ≥ 1. For
1 ≤ i ≤ s, let {φi

k(ξi)}∞k=0 be a sequence of orthogonal polynomials (the degree of φi
k is k) with

respect to the density fξi (ξi). We are considering the weighted space L2
fξi

of real measurable

functions h with finite norm (
∫
R h(v)2 fξi (v)dv)1/2 < ∞. When the distribution of ξi belongs to the

Askey scheme, the family of polynomials is explicitly known (for instance, Hermite polynomials
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correspond to Normal random variables, Legendre polynomials correspond to Uniform random
variables, etc.) [12]. For any other distribution, a Gram-Schmidt orthogonalization procedure
is carried out from the canonical basis {1, ξi, ξ

2
i , ξ

3
i , . . .} up to degree p [13, 14]. We define the

s-multivariate polynomial φk(ξ) = φ1
k1

(ξ1) · · · φs
ks

(ξs), for k1, . . . , ks ≥ 0 and k1 + . . .+ ks ≤ p. The
integer k, 1 ≤ k ≤ P = (p + s)!/(p!s!), is associated bijectively to the multi-index (k1, . . . , ks),
with k = 1 associated to (0, . . . , 0) and φ1 = 1. Note that {φk(ξ)}Pk=1 are orthogonal in L2

fξ
, where

fξ =
∏s

i=1 fξs , by independence.
If ξ1, . . . , ξs are not independent, we define φi

k(ξi) = ξk
i , k ≥ 0. We define the s-multivariate

polynomial φk(ξ) = φ1
k1

(ξ1) · · · φs
ks

(ξs), for k1, . . . , ks ≥ 0 and k1 + . . . + ks ≤ p. The integer
k, 1 ≤ k ≤ P = (p + s)!/(p!s!), corresponds bijectively to the multi-index (k1, . . . , ks), with
k = 1 associated to (0, . . . , 0). The sequence {φk(ξ)}Pk=1 is the canonical basis of s-multivariate
polynomials in ξ of degree less than or equal to p [20]. Here no orthogonality relations hold.

The stochastic process x(t) has a mean square expansion x(t) =
∑∞

k=1 x̂k(t)φk(ξ) when p (and
so P) tends to infinity, where x̂k(t) = (x̂k,1(t), . . . , x̂k,q(t)) ∈ Rq are the deterministic coefficients
of the expansion. When ξ1, . . . , ξs are independent, this is referred to as the gPC expansion of
x(t), where the Fourier coefficients x̂k(t) are given by x̂k(t) = E[x(t)φk(ξ)]/E[φk(ξ)2].

The expansion coefficients x̂k(t) are unknown. One approximates the solution using Galerkin
projections as x(t) ≈ xP(t) =

∑P
k=1 x̂P

k (t)φk(ξ) instead, where x̂P
k (t) = (x̂P

k,1(t), . . . , x̂P
k,q(t)) ∈ Rq

are deterministic coefficients to be found from (1), different from x̂k(t). The stochastic Galerkin
procedure seeks the solution {x̂P

k (t)}Pk=1 to
∑P

k=1
d
dt x̂P

k (t)E[φk(ξ)φl(ξ)] = E[F(t,
∑P

k=1 x̂P
k (t)φk(ξ), η)φl(ξ)], t ∈ I,∑P

k=1 x̂P
k (t0)E[φk(ξ)φl(ξ)] = E[x0φl(ξ)], 1 ≤ l ≤ P.

(2)

This is a system of P coupled deterministic differential equations, which is solvable on I via
numerical methods. Let G = (E[φk(ξ)φl(ξ)])1≤k,l≤P be the Gram matrix of the inner product.
When ξ1, . . . , ξs are independent, then G is the P × P identity matrix and no ill-conditioning
problems of G appear.

In general, E[|x(t) − xP(t)|2] → 0 as p, P → ∞, for each t ∈ I, at spectral rate. Spectral
convergence rate means that the decay of the error with p depends on the smoothness of x(t)
with respect to the input parameters ξ1, . . . , ξs. If x(t) is of class C∞ with respect to ξ1, . . . , ξs,
then the Galerkin projection xP(t) converges to x(t) at exponential rate with p. See [12, pp. 33–
35] for a detailed discussion.

The componentwise expectation and variance of x(t), E[x(t)] and V[x(t)], are approximated
from E[xP(t)] and V[xP(t)], using the formulas

E[xP(t)] =

P∑
k=1

x̂P
k (t)E[φk(ξ)], V[xP(t)] =

P∑
k,l=1

x̂P
k (t)x̂P

l (t)
(
Gk,l − E[φk(ξ)]E[φl(ξ)]

)
(3)

(here the product of vectors in Rq is understood componentwise). When {φk(ξ)}Pk=1 are orthogo-
nal, simpler formulas exist: E[xP(t)] = x̂P

1 (t) and V[xP(t)] =
∑P

k=2(x̂P
k (t))2E[φk(ξ)2].

We approximate fi(x, t), x ∈ R, using the density function of xP
i (t), f P

i (x, t), given a fixed 1 ≤
i ≤ q. We propose a computational method based on the RVT technique. Fixed t ∈ I, the random
variable xP

i (t) is a transformation of ξ, g̃i
t(ξ) =

∑P
k=1 x̂P

k,i(t)φk(ξ). We denote ξ′ = (ξ1, . . . , ξs−1).
Let gi

t(ξ) = (ξ′, g̃i
t(ξ)). Marginalizing, we have

f P
i (x, t) =

∫
Rs−1

fgi
t(ξ)(ξ

′, x) dξ′. (4)
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Multidimensional integrals can be approximated using a set of structured nodes, by means of ten-
sor and sparse tensor constructions. Also using cubature rules based on different node locations
and weights [12, 42, 43, 44]. Let Θ ⊆ Rs−1 be the set of nodes of interest to approximate (4).
Just to put an example: if the supports of ξ1, . . . , ξs−1 are bounded and the uncertainty dimen-
sion s is low, a cubature rule constructed using a tensor product approach based on univariate
Gauss-Legendre quadrature rules can be applied. Univariate Gauss quadratures of Q nodes are
exact for polynomials of degree 2Q − 1; they yield the highest possible polynomial degree of
exactness (i.e. no other quadrature based on Q nodes integrates polynomials of degrees up to
2Q − 1 exactly).

Other formulations for the transformation mapping gi
t(ξ) could be used. One should select the

formulation that yields the easiest multidimensional integral when computing the marginal (4).
Fix x ∈ R. For each ξ′ ∈ Θ, we compute the real roots of the univariate polynomial equation

g̃i
t(ξ
′, y) = x in y. Let Rξ′,x be the set of such roots (it might be empty). Then the following RVT

identity holds (see the forthcoming Remarks 2.1 and 2.2):

fgi
t(ξ)(ξ

′, x) =
∑

y∈Rξ′ ,x

fξ(ξ′, y)
|∂sg̃i

t(ξ′, y)|
(5)

(note that Jgi
t(ξ
′, y) = ∂sg̃i

t(ξ
′, y)). As a consequence, from (4), f P

i (x, t) can be approximated
using an integration rule based on { fgi

t(ξ)(ξ
′, x) : ξ′ ∈ Θ}. The approximations for different x ∈ R

yield an approximation for the function f P
i (·, t).

This methodology is summarized in Algorithm 1. Its set of inputs consists of the random
differential equation problem (1) under study, the degree p of the polynomial bases, the variable
t ∈ I, the discretized domain S of fi(·, t), and the integration rule I-R with its set of nodes Θ to
approximate the marginal (4). The algorithm returns the list of approximations { f P

i (x, t) : x ∈ S}.

Algorithm 1 Approximation of the density fi(x, t) of xi(t).
1: procedure Density(RDE, p, t, S, Θ, I-R)
2: inputs: RDE (random differential equation) problem (1) with s random parameters, degree

p, variable t ∈ I, discretization vector S of the density domain fi(x, t), set of nodes Θ for the
integration rule I-R on the support of ξ′.

3: Find the expansion g̃i
t(ξ) =

∑P
k=1 x̂P

k,i(t)φk(ξ) = xP
i (t) for xi(t) . see (2)

4: for x ∈ S do
5: for ξ′ ∈ Θ do
6: Set Rξ′,x = {y ∈ R : g̃i

t(ξ
′, y) = x}

7: Set fgi
t(ξ)(ξ

′, x) =
∑

y∈Rξ′ ,x
fξ(ξ′,y)
|∂sg̃i

t(ξ′,y)| . see (5)
8: end for
9: Set f P

i (x, t) according to I-R based on { fgi
t(ξ)(ξ

′, x) : ξ′ ∈ Θ} . see (4)
10: end for
11: return { f P

i (x, t) : x ∈ S}
12: end procedure

In practice, the output of Algorithm 1 should be validated. Firstly, one should check that∫
R f P

i (x, t) dx = 1. And secondly, one should compare the expectation and the variance from
f P
i (x, t) with (3) and Monte Carlo simulation on (1). If these consistency conditions do not

hold, it indicates a likely implementation error or an insufficient set of integration nodes Θ. The
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integrals on dx for f P
i (x, t) may be computed numerically based on the discretization S or any

other set of nodes.
The complexity of Algorithm 1 is related to the cost of deriving the polynomial expansion of

xi(t) (computing expectations of random polynomials, which depends on the distributions, and
solving (2)), the cardinality of S, the cost of the integration rule I-R and the number of its nodes
Θ, and the cost of solving polynomial equations of degree p. Thus, if p, s or the number of nodes
in S or Θ grow, the complexity of Algorithm 1 becomes seriously affected.

In fact, the total cost of Algorithm 1 can be explicitly written. Let G(RDE(s), p) be the
cost of deriving and solving (2) for a random differential equation problem RDE (1) with s
random parameters and polynomial bases truncated to degree p. Let Pp be the cost of solving
a polynomial equation of degree p in the real field (cost of finding Rξ′,x). Let E be the cost of
each fraction in the sum (5), so that (5) requires pE operations, where p bounds the cardinality
of every Rξ′,x. Denote by |S| and |Θ| the cardinality of these sets. Then the cost of Algorithm 1 is

O
(
G(RDE(s), p) + |S||Θ|

(
Pp + 2pE

))
. (6)

Remark 2.1. Expression (5) is defined for almost every (ξ′, x) ∈ Rs−1 × R. Indeed, let us see
that the problematic set U = {(ξ′, x) : x = g̃i

t(ξ
′, y), ∂sg̃i

t(ξ
′, y) = 0 for some y ∈ R} has Lebesgue

measure 0 in Rs. We rewrite U as U = ∪ξ′∈Rs−1 {(ξ′, x) : x ∈ ∆ξ′ }, where ∆ξ′ = {x ∈ R : x =

g̃i
t(ξ
′, y), y ∈ Vξ′ } andVξ′ is the set of real roots of ∂sg̃i

t(ξ
′, y) = 0. Since the cardinality ofVξ′ is

≤ p − 1, ∆ξ′ has Lebesgue measure 0 in R. Then, by Fubini’s theorem, U has Lebesgue measure
0 in Rs, as wanted.

Remark 2.2. The identity (5) can be easily justified using properties of the Dirac delta function
δ(x). First, from the definition of conditional density function, we have:

fgi
t(ξ′,ξs)(η

′, ηs) = f(ξ′,g̃i
t(ξ′,ξs))(η

′, ηs) = fg̃i
t(ξ′,ξs)|ξ′=η′ (ηs) fξ′ (η′) = fg̃i

t(η′,ξs)|ξ′=η′ (ηs) fξ′ (η′),

for (η′, ηs) ∈ Rs−1 × R. Now we compute fg̃i
t(η′,ξs)(ηs). By using the identity fV (v) = E[δ(V − v)]

for any random variable V [45], we write

fg̃i
t(η′,ξs)|ξ′=η′ (ηs) = E

[
δ
(
g̃i

t(η
′, ξs) − ηs

)
|ξ′ = η′

]
.

By [46, Remark 2.3],

δ
(
g̃i

t(η
′, ξs) − ηs

)
=

∑
z∈Rη′ ,ηs

δ(ξs − z)
|∂sg̃i

t(η′, z)|
,

where Rη′,ηs = {z ∈ R : g̃i
t(η
′, z) = ηs}. Hence, by the linearity of the expectation,

fg̃i
t(η′,ξs)|ξ′=η′ (ηs) =

∑
z∈Rη′ ,ηs

E[δ(ξs − z)|ξ′ = η′]
|∂sg̃i

t(η′, z)|
=

∑
z∈Rη′ ,ηs

fξs |ξ′=η′ (z)
|∂sg̃i

t(η′, z)|
.

We thus deduce the required formula:

fgi
t(ξ′,ξs)(η

′, ηs) =
∑

z∈Rη′ ,ηs

fξs |ξ′=η′ (z) fξ′ (η′)
|∂sg̃i

t(η′, z)|
=

∑
z∈Rη′ ,ηs

fξ(η′, z)
|∂sg̃i

t(η′, z)|
.
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Remark 2.3. In the particular case of one random input parameter in (1) (s = 1), which was
the case studied in [34], Algorithm 1 is applicable with no ξ′ and no integration rule I-R. There
is only one “for” loop over S, and ξ′ is substituted by a blank space. The total cost (6) of the
algorithm becomes O(G(RDE(1), p) + |S|(Pp + pE)).

In the following examples, we demonstrate the accuracy of the method proposed. In many
situations, our approach shows a significant advantage compared to other stochastic methods.
Nonetheless, its strength is problem-dependent.

Example 2.4. This example illustrates the convergence of Algorithm 1 for a simple model:x′(t) = αx(t), t ∈ R,
x(0) = β,

(7)

where β and α are regarded as random variables. We assume that they follow a Normal(0, 1)
distribution and that they are independent. As the exact solution is known, x(t) = βeαt, its
probability density function can be computed using the RVT method, which yields f (x, t) =∫
R fα(α) fβ(xe−αt)e−αt dα, x ∈ R. We test Algorithm 1. We denote ξ = (ξ′, ξ2) = (β, α) (s = 2).

For different p and P = (p + s)!/(p!s!), we compute the Galerkin projections xP(t) as linear
combinations of tensor Hermite polynomials in ξ (these polynomials form the PC basis func-
tions). As integration rule I-R, we take the one-dimensional Gauss-Hermite quadrature rule of
degree Q with weight function fβ. The set of nodes Θ is formed by the zeros of the Q-th degree
Hermite polynomial. In Figure 1, we plot ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t = 0.5)‖∞ for
Q = 25, where f P(x, t) is the density function of xP(t) computed with Algorithm 1. This kind of
semi-log plot allows observing graphically the exponential convergence of the densities with p.
Figure 1 also depicts the max-norm of the error arising from a non-parametric smooth kernel den-
sity estimation using M simulations (with Silverman’s rule to determine the bandwidth, given by
0.9σ̂x(t)M−1/5, where σ̂x(t) is the Monte Carlo estimate of the standard deviation of x(t), and with
Gaussian kernel), εM(t = 0.5), in log-log scale (the solid line is the estimated mean max-norm
and the dashed lines refer to the estimated 5% and 95% quantiles of the max-norm). We see that
the kernel estimation cannot achieve the convergence regime of the spectral methods. The error
εM(t = 0.5) decreases with M as ∝ M−ρ, ρ ≈ 0.37. The Monte Carlo simulation is a collocation
method, i.e. from local information on the solution (realizations) one must determine its global
variability, so the method is limited in terms of efficiency [23, Section 1.4.2]. Kernel density
estimations are non-parametric methods whose rate of convergence with the number of simula-
tions M is slow, of the order M−γ, for certain 0 < γ < 1/2 (the popular convergence rate M−1/2

corresponds to a parametric Monte Carlo estimation of the mean parameter) [47, 48, 49]. For
instance, according to [47], if the target density function is Γ-Hölder continuous, Γ ∈ (0, 1], then
the pointwise convergence rate is ≤ O(M−γ), where γ = Γ/(2Γ + 1). When the target density is
sufficiently smooth so that Γ = 1, then γ = 1/3 ≈ ρ, which agrees with the numerical experiment
conducted here. Moreover, if the unknown density function is heavy-tailed (e.g. the log-normal
distribution), possesses peaks or discontinuity points (e.g. the uniform distribution), etc. then
the kernel density approach may induce significant error estimates. By contrast, the spectral
methods reconstruct the functional dependence of the solution on the input coefficients, usually
in terms of a series, which permits determining its statistics and its density function analytically
and correctly capturing density features.
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Figure 1: First panel: Error ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t = 0.5)‖∞ of the algorithm for quadrature degree
Q = 25 and different p. Second panel: Max-norm of the error arising from a smooth kernel density estimation using M
simulations, εM(t = 0.5) (the solid line is the estimated mean max-norm and the dashed lines refer to the estimated 5%
and 95% quantiles of the max-norm). This figure corresponds to Example 2.4.

Example 2.5. We consider (7), where ξ = (ξ′, ξ2) = (β, α) ∼ Dirichlet(1.5, 1.5, 1.5). The exact
density function of x(t), f (x, t) =

∫
R f(α,β)(α, xe−αt)e−αt dα, is plotted for t = 0.5 in the first

panel of Figure 2, together with a kernel density estimation using 20, 000, 000 simulations. We
observe that f (x, t = 0.5) has the non-differentiability point x = 0; then the kernel density
estimate smooths out the approximation and draws a tail. Our approach based on polynomial
expansions and the RVT method does not present such problem. In Algorithm 1, we consider
polynomial approximations of x(t): xP(t) for P = (p + s)!/(p!s!), s = 2 and distinct basis
orders p, where xP(t) is a linear combination of the canonical basis αiβ j, i, j ≥ 0, i + j ≤ p.
As I-R, we take the Gauss-Legendre quadrature rule on [0, 1] of degree Q, and Θ is the set
of zeros of the Q-th degree Legendre polynomial. Figure 2, second panel, depicts the error
ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t = 0.5)‖∞ in semi-log scale. These errors decrease to
zero exponentially with p, until the error due to the quadrature rule I-R is reached. The rate of
convergence of the quadrature rule I-R with Q depends on the smoothness of the corresponding
integrand: from exponential convergence if it is analytic, to maybe sub-algebraic convergence
(i.e. error decay slower than Q−1) if it is merely continuous; and if the integrand is smooth with
large derivatives (sharp peaks, which may occur if the variances of the inputs are small), then the
convergence rapidity deteriorates. For instance, the convergence of the quadrature rule I-R with
Q in Example 2.4 was much faster than in this example.

Example 2.6. We consider (7) with independent inputs β, α ∼ Uniform(0, 1). The exact density
function of the solution x(t), f (x, t) =

∫
R fα(α) fβ(xe−αt)e−αt dα, is plotted at t = 0.5 in Figure 3,

first panel. Observe the discontinuity point at x = 0 and the other two non-differentiability points.
We demonstrate in this example that Algorithm 1 is able to identify these discontinuities and
peaks, in contrast to kernel-based methods. The procedure here is analogous to Example 2.4,
but the gPC basis functions consist of tensor Legendre polynomials on [0, 1] × [0, 1] and I-R
is the Gauss-Legendre quadrature rule on [0, 1] of degree Q. Figure 3, second panel, depicts
the error ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t = 0.5)‖∞ in semi-log scale. As occurred in
Example 2.5, the decay of the error to zero is exponential with p, until the error due to the
quadrature rule I-R dominates. For p = 3, the error due to the Galerkin approximation is already
smaller than the quadrature error for Q = 180, so for p ≥ 3 the density approximations do not
improve. The numerical quadrature I-R converges slowly with Q because of the discontinuity
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Figure 2: First panel: Exact density function f (x, t = 0.5) and a kernel density estimation using 20, 000, 000 Monte Carlo
simulations (MC). Second panel: Error ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t = 0.5)‖∞ of the algorithm for different
quadrature degrees Q and different basis orders p. This figure corresponds to Example 2.5.

of the corresponding integrand. In these cases, the integration scheme I-R may slow down the
convergence of the algorithm severely and we may not benefit from the spectral convergence of
the Galerkin projections. Nonetheless, good pointwise approximations to the target density with
error of the order of 10−3 are still possible. The third panel of Figure 3 plots the error ep(t = 0.5)
of the algorithm for Q = 600 and different p. The error reaches 10−3. For p ≥ 4 the quadrature
error dominates and ep(t = 0.5) becomes constant with p.

Example 2.7. This example is devoted to the study of two pathological cases. The gPC and
Galerkin-based methods have been extensively used in the recent years to approximate the sta-
tistical moments of random variables. However, from a theoretical standpoint, the series repre-
sentations of the random variable only converge in the mean square sense. As shown in [50], it
is possible to find examples of random quantities whose gPC approximations do not converge
in certain Lebesgue space Lr, r > 2. For instance, if X = Φ(Z), where Z ∼ Normal(0, 1), Φ is
the cumulative distribution function of Z and X ∼ Uniform(0, 1), then the PC expansion of X in
terms of the Hermite polynomials evaluated at Z does not converge in the mean fourth sense. The
same occurs for X = |Z|, where Z ∼ Normal(0, 1). In these two cases, the PC expansions of X are
available via closed-form expressions, see [50]. We aim at analyzing the convergence of Algo-
rithm 1 for these two situations. As there is only one random parameter ξ = Z, the simplifications
for the algorithm explained in Remark 2.3 apply. Figure 4 shows the errors ep = ‖ f − f p‖∞ of
the algorithm in semi-log scale for X = Φ(Z) (first panel) and X = |Z| (second panel), where f is
the exact density function of X and f p is the density function of the PC expansion of X truncated
at order p. In the first plot, we clearly observe exponential convergence with p. By contrast, the
second plot does not show convergence, at least for p ≤ 50; either there is no convergence or
the convergence is very slow as p → ∞. The main difficulty in the gPC approximation of the
absolute value comes from its lack of differentiability at zero [23, Section 4.5.4].

3. Application to the SIR epidemic model

In the SIR (susceptible-infected-recovered) epidemiological model, the population is divided
into compartments according to the disease stage: S (t), I(t) and R(t) denote the proportion of

9



-0.5 0.5 1.0 1.5 2.0 2.5
x

0.2

0.4

0.6

0.8

f(x,t=0.5)

Q=60

Q=100

Q=140

Q=180

1 2 3 4 5
p

0.005

0.01

0.05

0.1

0.5
e
p (t=0.5)

Q=600

1 2 3 4 5
p

0.001

0.005

0.010

0.050

0.100

0.500
e
p (t=0.5)

Figure 3: First panel: Exact density function f (x, t = 0.5). Second panel: Error ep(t = 0.5) = ‖ f (·, t = 0.5) − f P(·, t =

0.5)‖∞ of the algorithm for different quadrature degrees Q and different basis orders p. Third panel: Error ep(t = 0.5) of
the algorithm for quadrature degree Q = 600 and different p. This figure corresponds to Example 2.6.
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Figure 4: Errors ep = ‖ f − f p‖∞ of the algorithm for the random variables X = Φ(Z) (first panel) and X = |Z| (second
panel), for different basis orders p. This figure corresponds to Example 2.7.
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susceptible, infected and recovered individuals at time t, respectively. There are several assump-
tions that characterize the SIR model. There is homogeneous mixing, that is, all individuals
are equally likely to contact any other individual. The population is constant, by assuming no
vital dynamics (no births, no deaths). Finally, it is assumed that there is lasting immunity after
infection. The mathematical model is the following system of quadratic differential equations:

S ′(t) = −γS (t)I(t),
I′(t) = γS (t)I(t) − δI(t),
R′(t) = δI(t),

(8)

where γ > 0 and δ > 0 are the contact and the recovery rates, respectively. The initial conditions
are S (0) = S 0, I(0) = 1 − S 0 and R(0) = 0.

Let us assume that δ > 0, γ > 0 and S 0 ∈ [0, 1] are random variables. Let ξ = (ξ1, ξ2, ξ3) =

(δ, γ, S 0). We aim at approximating the probability density functions fS (x, t), fI(x, t) and fR(x, t),
at time t ≥ 0. No solution has been presented in the literature, due to (8) not having a simple
closed-form solution to apply the RVT method. Only very recently, the RVT technique has been
applied to an approximate solution (by linearization) to (8) [41], although the approximations to
fS (x, t), fI(x, t) and fR(x, t) obtained in such a way may not be accurate.

In the following examples, we approximate successfully fS (x, t), fI(x, t) and fR(x, t) using
Algorithm 1. We set different probability distributions to (δ, γ, S 0), based on independent and
non-independent distributions, to test our methodology. Such probability distributions should
match the epidemiological interpretation (boundedness, positiveness, etc.).

Example 3.1. Set the distributions δ ∼ Normal(0.6, σ2 = 0.005)|[0,1], γ ∼ Exponential(20)|[0,1]
and S 0 ∼ Beta(1200, 400). The distributions of δ and γ are truncated to [0, 1]. These three
random inputs are assumed to be independent. These distributions were tested in [41].

We apply the stochastic Galerkin technique with gPC basis functions based on orthogo-
nal polynomials constructed via Gram-Schmidt orthogonalization procedures, for degrees p ∈
{1, 2, 3}. We obtain polynomial representations for S (t), I(t) and R(t); let us denote them by
S P(t), IP(t) and RP(t), where P = (p + s)!/(p!s!), s = 3.

We focus on fS (x, t). Let g̃i
t(ξ) = S P(t), ξ = (δ, γ, S 0), and ξ′ = (δ, γ). The marginal

density (4) is an integral on [0, 1] × [0, 1] with respect to δ and γ. As I-R, we use a cubature
rule constructed using a tensor product approach based on univariate Gauss-Legendre quadrature
rules, each one of degree Q. The set of nodes Θ is given by Θ1 × Θ2, where Θ1 = Θ2 consist of
the roots of the Q-th degree Legendre polynomial on [0, 1].

In Figure 5, we plot fS (x, t = 1) for degrees p = 1, 2, 3, with quadrature degree Q = 20.
Observe that convergence is achieved for small p, due to the fast convergence of the Galerkin
projections. The right panel is a zoom where we compare our approximations for p = 1, 2, 3
with the approximation from [41]. Notice that the method from [41] gives rise to errors in the
estimates. Figure 6 is analogous for time t = 2.

In Figure 7, we analyze the accuracy of the quadrature rule with Q, for p = 3. We observe
that Q = 20 gives essentially error-free double integrals. For Q ≤ 10, a significant error is
perceptible. In general, one should analyze carefully which Q gives accurate approximations, as
this accuracy is problem-dependent.

To complete the computations of the densities, Figure 8 depicts fI(x, t = 1) and fR(x, t = 1)
for p = 1, 2, 3, and for Q = 25 and Q = 30 respectively. One selects Q such that the convergence
of the quadrature rule has been achieved; this depends on the response process under study.
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Figure 5: Approximation of fS (x, t = 1) for degrees p = 1, 2, 3, with quadrature degree Q = 20. The right panel is a
zoom where the approximation from [41] is also represented. This figure corresponds to Example 3.1.
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Figure 6: Approximation of fS (x, t = 2) for degrees p = 1, 2, 3, with quadrature degree Q = 20. The right panel is a
zoom where the approximation from [41] is also represented. This figure corresponds to Example 3.1.
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Figure 7: Approximation of fS (x, t = 1) (first) and fS (x, t = 2) (second) for different quadrature degrees Q and p = 3.
This figure corresponds to Example 3.1.
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In the case of fR(x, t = 1), we also plot the density derived from [41] in order to show our
improvements. In Figure 9 we analyze graphically the convergence of the quadrature rule with
Q, for p = 3 fixed.
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Figure 8: Approximation of fI (x, t = 1) (first) and fR(x, t = 1) (second) for p = 1, 2, 3, Q = 25 (for I) and Q = 30 (for
R). The approximation using the method from [41] is also plotted. This figure corresponds to Example 3.1.
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Figure 9: Approximation of fI (x, t = 1) (first) and fR(x, t = 1) (second) for different quadrature degrees Q and p = 3.
This figure corresponds to Example 3.1.

Example 3.2. Let us consider (δ, γ) ∼ Dirichlet(80, 4, 316) and S 0 ∼ Beta(1200, 400), where
(δ, γ) and S 0 are assumed to be independent.

Due to the non-independence of the components of ξ, we use canonical polynomial expan-
sions based on δk1γk2 S k3

0 , k1, k2, k3 ≥ 0, k1 + k2 + k3 ≤ p. For degrees p ∈ {1, 2, 3}, we obtain
polynomial representations for S (t), I(t) and R(t): S P(t), IP(t) and RP(t), respectively, where
P = (p + s)!/(p!s!), s = 3. Then the two nested “for” loops from Algorithm 1 are run as in
Example 3.1, with ξ′ = (δ, γ), I-R being the tensor product of univariate Gauss-Legendre quadra-
tures of degree Q on [0, 1], and Θ = Θ1 × Θ2, being Θ1 = Θ2 the set of roots of the Q-th degree
Legendre polynomial on [0, 1].

Figure 10 plots the densities fS (x, t = 1), fI(x, t = 1) and fR(x, t = 1), for p = 1, 2, 3, Q = 60
(for S and I) and Q = 85 (for R). This degree Q has been checked to be enough, by densities and
statistics comparisons for different quadrature degrees and by validation of the algorithm output,
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as in Example 3.1. Intuitively, Q is larger than in Example 3.1 because the variances of the inputs
are smaller, therefore the densities involved in the algorithm are more picked. Observe that, once
Q is selected, convergence is achieved for small p due to the fast convergence of the polynomial
representations. Even for p = 1 the estimates obtained are very accurate.
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Figure 10: Approximation of fS (x, t = 1) (first), fI (x, t = 1) (second) and fR(x, t = 1) (third) for p = 1, 2, 3, Q = 60 (for
S and I) and Q = 85 (for R). This figure corresponds to Example 3.2.

We conclude this example by assessing graphically the convergence of the quadrature rule
with Q in Figure 11, for p = 3 fixed.
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Figure 11: Approximation of fI (x, t = 1) (first) and fR(x, t = 1) (second) for different quadrature degrees Q and p = 3.
This figure corresponds to Example 3.2.
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4. Discussion and conclusions

In this paper, we combine polynomial representations and the RVT method to approximate
the probability density function of the solution to general complex systems with uncertainties
formulated via random differential equations. The differential equations can be non-linear and
the random inputs may be non-independent. This paper is very general in dealing with density
approximations, as it does not need closed-form solutions and is problem-independent. We take
profit of two stochastic methods with very especial features: spectral convergence (for the poly-
nomial expansions) and exact density computation (for the RVT technique). In many situations
it improves the classical density estimations that use Monte Carlo simulation and kernel-based
methods, in terms of fast density approximations and correctly capturing density features.

Our methodology is applied to the SIR (susceptible-infected-recovered) epidemic model.
Given specific probability distributions for the contact and recovery rates and the initial condi-
tions, we approximate the probability density function of the proportion of susceptible, infected
and recovered individuals. Our results present significant improvements compared to the existing
literature on random differential equations and random epidemic models.

We comment further research that could be conducted in the future. Although polynomial ex-
pansions converge rapidly, for certain problems a large polynomial degree p might be required,
especially when working at large time t. In such a case, the derivation of the polynomial ex-
pansion is more expensive and challenging. Thus, other polynomial representations could be
sought.

On the other hand, our algorithm becomes very expensive when the number s of random in-
put parameters is large or the set Θ of integration nodes needs to be increased; it suffers from the
so-called curse of dimensionality. First, because of the derivation of the polynomial representa-
tion. And second, because of the integration on Rs−1 to compute the marginal density function.
Efficient numerical integration schemes based on sparse grids should be used in such a case.

Our methodology could be applied to other types of stochastic models arising in Epidemiol-
ogy, Physics, etc. based on random difference equations, random partial differential equations,
random systems with delay, etc. The methods are analogous.

Finally, a theoretical analysis on the validity of the algorithm in general and on the conver-
gence of the density functions as p grows shall be carried out. Essentially, the main question is
whether the polynomial expansions presented in the paper converge to the model solution in the
total variation distance, i.e. their density functions converge in L1(R). A stronger condition is
the convergence almost everywhere of the densities.
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