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Abstract

In spite of its simple formulation via a nonlinear differential equation, the Gompertz model has
been widely applied to describe the dynamics of biological and biophysical parts of complex
systems (growth of living organisms, number of bacteria, volume of infected cells, etc.). Its pa-
rameters or coefficients and the initial condition represent biological quantities (usually, rates and
number of individual/particles, respectively) whose nature is random rather than deterministic.
In this paper, we present a complete uncertainty quantification analysis of the randomized Gom-
perz model via the computation of an explicit expression to the first probability density function
of its solution stochastic process taking advantage of the Liouville-Gibbs theorem for dynam-
ical systems. The stochastic analysis is completed by computing other important probabilistic
information of the model like the distribution of the time until the solution reaches an arbitrary
value of specific interest and the stationary distribution of the solution. Finally, we apply all our
theoretical findings to two examples, the first of numerical nature and the second to model the
dynamics of weight of a species using real data.

Keywords: Random nonlinear differential equation, Continuity partial differential equation,
Liouville-Gibbs theorem, Randomized Gompertz model, Complex systems with uncertainties

1. Introduction1

Mathematical models are one of the most powerful formal tools for increasing our under-2

standing about the dynamics of biological and biophysical parts of complex systems [1]. How-3

ever, deterministic mathematical models are useful to some extent since they neglect random4

fluctuations and other complex factors that may seriously affect the dynamics of biological sys-5

tems. For example, in population dynamics studies, these complex factors include weather, ge-6

netics, resources, etc. Some important mathematical models, that have been extensively studied7
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to describe population dynamics, include the Malthusian, Verhulstian/Logistic and Gompertzian8

models [2]. Although simple, these models serve as cornerstone to develop more sophisticated9

mathematical models devised to describe the dynamics of some parts of biological complex10

systems [3, 4]. Motivated by the foregoing facts, a number of interesting extensions of the11

above-mentioned deterministic growth population models to the stochastic scenario have been12

proposed. It is important to point out that these extensions have been done depending on the13

mathematical properties of the random/stochastic noise introduced in the corresponding deter-14

ministic model to formulate its random/stochastic counterpart. Indeed, when the noise is con-15

sidered via irregular sample paths or trajectories like the Brownian motion or, more generally,16

the Wiener process, stochastic differential equations (SDEs) are formulated. Whereas random17

differential equations (RDEs) are those where noise or random fluctuations have regular sample18

behaviour (continuity, differentiability, bounded variation, etc.) and they are directly manifested19

by assigning appropriate probability distributions to input data (initial/boundary conditions, forc-20

ing/control terms, coefficients). The rigorous handling of SDEs requires special mathematical21

tools like Itô or Malliavin stochastic calculus [5, 6, 7, 8, 9]. Under this approach noise is pre-22

fixed by specific patterns like Gaussian or Lévy stochastic processes. SDEs have found fruitful23

applications in many scientific areas, particularly in Finance [10, 11]. Complementary, RDEs are24

rigorously solved using an extension of classical Newton-Leibniz calculus, usually termed mean25

square calculus. Under this approach, the main mathematical properties of stochastic processes,26

like continuity, differentiability and integrability, are characterized via the correlation function27

associated to the corresponding stochastic process provided it does have finite variance, i.e., it28

is a second-order stochastic process [12, 13, 14, 15]. A main advantage of RDEs is that a wide29

range of probability distributions can be allocated for input parameters including the Gaussian30

distribution. This key fact has stimulated the extensive application of RDEs in dealing with31

real applications where uncertainties play a major role to properly describe the dynamics of the32

corresponding phenomenon under analysis using a number of techniques including generalized33

polynomial chaos, collocation methods, random Fröbenius expansions, equivalent linearization,34

perturbation techniques, etc., [12, 16, 17, 18].35

In the context of SDEs, the classical Malthusian, Verhulstian and Gompertzian models have36

been studied and applied to model a variety of problems like the price of a stock, the asymptotic37

analysis of equilibrium states for a single species and tumour cell growth, for example (see [11,38

19, 20] and references therein, respectively). Whereas in the setting of RDEs both Malthusian39

and Verhulst models have also been extensively studied, see for instance [21, 22, 23, 24, 25, 26].40

However, to best of our knowledge the randomized Gompertz model has not yet been studied in41

the framework of RDEs.42

As in the deterministic setting, the analysis of the aforementioned models formulated via43

SDEs and RDEs, includes the existence and uniqueness of solution, the continuous dependence44

of the solution in terms of the initial data, etc., but also the determination of the main statistical45

properties of the solution stochastic process such as the mean, the variance and higher moments.46

A more ambitious and desirable goal is the computation of the finite dimensional distributions47

(usually called the fidis) of the solution. In particular, the computation of the first probability48

density function (1-PDF) is a major goal since from its integration one can straightforwardly49

determine any one-dimensional moment (in particular, the mean, the variance, the symmetry50

and the kurtosis), provided they exist, as well as confidence intervals and the probability that51

the solution lies in an interval of specific interest. In dealing with SDEs, it is known that the52

1-PDF satisfies the Fokker-Planck partial differential equation (PDE) [27, Ch. 5]. However, its53

computation by solving this important PDE in its general form is still a challenge [28] and most54
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of the contributions mainly focus on determining its solution in particular cases using analytical55

[29] or numerical techniques [30] or to compute the stationary distribution for particular SDEs56

[31]. In the context of RDEs, the computation of the 1-PDF has been dealt with mainly using a57

the so-called Random Variable Transformation (RVT) technique. This important result permits58

to compute the PDF of an absolutely continuous random vector which comes from mapping59

another absolutely continuous random vector whose PDF is known. This result states as follows60

Theorem 1 (Random Variable Transformation technique). [12, pp. 24–25]61

Let V(ω) = (V1(ω), . . . ,Vk(ω))> and W(ω) = (W1(ω), . . . ,Wk(ω))> be two k-dimensional ab-62

solutely continuous random vectors defined on a complete probability space (Ω,F ,P). Let r :63

Rk → Rk be a one-to-one deterministic transformation of V(ω) into W(ω), i.e., W(ω) = r(V(ω)),64

ω ∈ Ω. Assume that r is a continuous mapping and has continuous partial derivatives with re-65

spect to each component vi, 1 ≤ i ≤ k. Then, if fV(v1, . . . , vk) denotes the joint probability density66

function of the vector V(ω), and s = r−1 = (s1(w1, . . . ,wk), . . . , sk(w1, . . . ,wk)) represents the67

inverse mapping of r = (r1(v1, . . . , vk), . . . , rk(v1, . . . , vk)), the joint probability density function68

of the random vector W(ω) is given by69

fW(w1, . . . ,wk) = fV (s1(w1, . . . ,wk), . . . , sk(w1, . . . ,wk)) |Jk | ,

where |Jk |, which is assumed to be different from zero, denotes the absolute value of the Jacobian70

defined by the following determinant71

Jk = det


∂s1(w1, . . . ,wk)

∂w1
· · ·

∂sk(w1, . . . ,wk)
∂w1

...
. . .

...
∂s1(w1, . . . ,wk)

∂wk
· · ·

∂sk(w1, . . . ,wk)
∂yk


.

When a closed-form solution of the RDE is available, the RVT technique is often useful to72

obtain an exact expression of the 1-PDF of the solution stochastic process [32, 33]. This method73

has also been successfully applied to determine the 1-PDF of other random equations (see [34,74

35] for its application to solve random difference equations, and [36, 37] to deal with random75

partial differential equations). The RVT method has demonstrated to be very useful to compute76

approximations of the 1-PDF of the aforementioned type of random equations in combination77

with other techniques such as Karhunen-Loève expansions [38, 39], Fröbenius expansions [40],78

differential transform method [41], the homotopy method [42], numerical schemes [43, 44], etc.79

The main drawback when applying Theorem 1 is finding the appropriate mapping r as well as its80

jacobian Jk.81

Complementary to the RVT technique, the 1-PDF can also be computed by means of the82

Liouville-Gibbs theorem for dynamical systems [45, 46, 47]. This result establishes that the 1-83

PDF satisfies certain PDE, usually termed Liouville-Gibbs equation, that can be regarded as a84

particular case of the Fokker-Planck PDE for SDEs, but in the setting of RDEs (later on we will85

comment further details in this regard). In this paper, we will show the key role played by this86

PDE to determine the 1-PDF of the randomized Gompertz equation avoiding the application of87

RVT technique and its aforementioned drawbacks. As far as we know, this is the first time that88

this kind of analysis is carried out for the randomized Gompertz model.89

This paper is organized as follows. In Section 2 we summarize and adapt the main results90

related to the Liouville-Gibbs theorem that will be required to determine a closed-form expres-91

sion of the 1-PDF of the solution of the randomized Gompertz model. This is done in Subsection92
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3.1. Section 3 is completed by computing both the distribution of time until certain number of93

individual/particles reaches a prefixed level (Subsection 3.2) and the stationary distribution of94

the solution (Subsection 3.3). In Section 4, all the theoretical results established in Section 3 are95

illustrated via two examples. Conclusions are shown in Section 5.96

We finish this section pointing out that throughout this paper the exponential function will be97

denoted by e or exp, interchangeably.98

2. The Liouville-Gibbs partial differential equation99

In this section we introduce the main results about the Liouville-Gibbs PDE that will be re-100

quired throughout this paper to provide a full probabilistic analysis of the randomized Gompertz101

equation.102

Hereinafter, the triplet (Ω,F ,P) will denote a complete probabilistic space and (L2(Ω), ‖·‖)103

stands for the Hilbert space of second-order real random variables (i.e., having finite variance),104

X : Ω → R, with the inner product 〈X,Y〉 = E[XY], X,Y ∈ L2(Ω), where E[·] is the expectation105

operator and the inferred norm is given by ‖X‖ = (E[X2])1/2. Second-order real random vectors,106

X : Ω → Rn, are defined in a natural way in the Hilbert space (Ln
2(Ω), ‖·‖n) whose elements are107

X = (X1, . . . , Xn), with Xi ∈ L2(Ω), 1 ≤ i ≤ n, and the norm is defined by ‖X‖n = max{‖Xi‖ : 1 ≤108

i ≤ n}. Given T ⊂ R+, a second-order real stochastic process is a family of second-order real109

random vectors indexed by elements of T , X(t) = {X : T ×Ω→ Rn : t ∈ T , ω ∈ Ω}. In practice,110

T = [t1, t2], 0 ≤ t1 < t2 ≤ ∞ (for convenience we interpret the parameter t as time, so we assume111

it is nonnegative). As usual, in the previous notation the dependence on the parameter ω is hid-112

den for random quantities. The convergence of sequences of random variables/vectors/stochastic113

functions in the foregoing norms is usually called mean square convergence and the correspond-114

ing concepts of mean square continuity, differentiability and integrability of a stochastic process115

can be defined in terms of ‖·‖ and ‖·‖n, [12, 13, 15].116

Let us consider the following initial value problem (IVP)117  dX(t)
dt = g(t,X(t)), t > t0,

X(t0) = X0,
(1)

where g = (g1, . . . , gn) ∈ C1([t0,+∞) × Ln
2(Ω),Rn) and X0 ∈ Ln

2(Ω).118

In the context of dynamical systems, the Liouville-Gibbs theorem states that the PDF, f (t, x),119

of the solution stochastic process, X(t), of IVP (1) is an invariant of motion, i.e., the integral120

J(t) =

∫
Dt

f (t, x) dx (2)

is independent of t for any domain Dt ⊂ Rn (defined in terms of t), i.e.,121

dJ(t)
dt

= 0. (3)

This important result can be derived using the characteristic function and its relationship with the122

PDF [12, Ch. 6]. Alternatively, let us consider123

J(t + h) =

∫
Dt+h

f (t + h, y) dy. (4)
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Let us denote by124

x = (x1, . . . , xn) ∈ Dt and y = (y1, . . . , yn) ∈ Dt+h

the coordinates of arbitrary points in the domain of integration of (2) and (4), respectively. On125

the one hand, using the theorem of change of variables for integrals, expression (4) can be written126

on the domain Dt as127

J(t + h) =

∫
Dt

f (t + h, y)
∂y
∂x

dx. (5)

On the other hand, let us calculate the two factors, f (t + h, y) and the jacobian
∂y
∂x

, appearing in128

the previous integral. For the former, let us observe using Taylor’s expansion of order 2 that129

f (t + h, y) = f (t, x) + h
(
∂ f
∂x1

dx1

dt
+ . . . +

∂ f
∂xn

dxn

dt
+
∂ f
∂t

)
+ O(h2)

= f + h
(
∂ f
∂x1

g1 + . . . +
∂ f
∂xn

gn +
∂ f
∂t

)
+ O(h2),

(6)

where in the last step we have used the shorter notation f = f (t, x) and that x = (x1, . . . , xn)130

satisfies the differential equation in (1), so
dxi

dt
= gi, gi = gi(t, x1, . . . , xn), 1 ≤ i ≤ n. To compute131

the jacobian, we apply again Taylor’s expansion of order 2 for each component,132

yi = xi + h
dxi

dt
+ O(h2) = xi + hgi + O(h2), 1 ≤ i ≤ n.

Then the jacobian
∂y
∂x

in (5) can be calculated as133

∂y
∂x

= det


∂y1

∂x1
· · ·

∂yn

∂x1
...

. . .
...

∂y1

∂xn
· · ·

∂yn

∂xn


= det


1 + h

∂g1

∂x1
+ O(h2) · · · h

∂gn

∂x1
+ O(h2)

...
. . .

...

h
∂g1

∂xn
+ O(h2) · · · 1 + h

∂gn

∂xn
+ O(h2)


= 1 + h

(
∂g1

∂x1
+ · · · +

∂gn

∂xn

)
+ O(h2).

Therefore, using (6) and this last expression for the jacobian one gets134

f (t + h, y)
∂y
∂x

=

[
f + h

(
∂ f
∂x1

g1 + . . . +
∂ f
∂xn

gn +
∂ f
∂t

)
+ O(h2)

]

·

[
1 + h

(
∂g1

∂x1
+ · · · +

∂gn

∂xn

)
+ O(h2)

]
= f + h

(
∂ f
∂x1

g1 + . . . +
∂ f
∂xn

gn +
∂ f
∂t

+ f
∂g1

∂x1
+ · · · + f

∂gn

∂xn

)
.

5



Now, we use the rule for the derivative of a product
∂( f gi)
∂xi

=
∂ f
∂xi

gi + f
∂gi

∂xi
, 1 ≤ i ≤ n. Then the135

last expression can be written as136

f (t + h, y)
∂y
∂x

= f (t, x) + h

∂ f
∂t

+

n∑
i=1

∂( f gi)
∂xi

 ,
i.e.,137

f (t + h, y)
∂y
∂x
− f (t, x)

h
=
∂ f
∂t

+

n∑
i=1

∂( f gi)
∂xi

, (7)

where, for convenience, we have recovered the notation f = f (t, x). Finally, we subtract (2) from138

(4), we divide by h and take limits as h→ 0, then taking into account (7), one gets139

0 =
dJ(t)

dt
= lim

h→0

J(t + h) − J(t)
h

=

∫
Dt

f (t + h, y)
∂y
∂x
− f (t, x)

h
dx =

∫
Dt

∂ f
∂t

+

n∑
i=1

∂( f gi)
∂xi

 dx.

Therefore, if the PDF f = f (t, x) of the solution stochastic process of (1) satisfies the following140

PDE141

∂ f
∂t

+

n∑
i=1

∂( f gi)
∂xi

= 0 (8)

then it is an invariant of motion of the dynamical system (1). This PDE is called the Liouville-
Gibbs equation and can be regarded as a particular case of the Fokker-Planck equation associated
to the Itô-type SDE dX(t) = g(t,X(t))dt + σ(t,X(t))dW(t), t > t0,

X(t0) = X0,

where σ = (σi j) ∈ C1,2([t0,+∞) × Ln
2(Ω),Rn×m) and W(t) is an m-dimensional Wiener process,142

in the case that the diffusion matrix σ = 0 [27, 47].143

For a given initial PDF, f0(x), the Liouville-Gibbs equation (8) can be expressed as144 
∂ f (t, x)
∂t

+ ∇ · ( f (t, x)g(t, x)) = 0, t > t0, x ∈ Rn,

f (t0, x) = f0(x), x ∈ Rn,
(9)

in terms of the divergence operator ∇ · (·) with respect to the spatial components x. In this form145

this PDE is usually termed the continuity equation [47, 48].146

Developing the divergence of the product, we obtain a more practical form of equation (9)147

∂ f (t, x)
∂t

+

n∑
k=1

gk(t, x)
∂ f (t, x)
∂xk

= − f (t, x)∇ · g(t, x). (10)

Using the Lagrange system associated to this PDE148

dt
1

= −
d f

f ∇ · g(t, x)
=

dx1

g1
= · · · =

dxn

gn
,
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and from the first equality on the above chain of identities, one gets the unique local solution of149

the Liouville-Gibbs equation [12, Ch. 6]150

f (t, x) = f0(h−1(t, x)) exp
{
−

∫ t

t0
∇ · g(s, x = h(t, x0)) ds

} ∣∣∣∣
x0=h−1(t,x)

. (11)

Here, function X(t) = h(t,X0) solves the differential equation (1) and X0 = h−1(t,X) solves for151

X0 the equation X = h(t,X0) for t arbitrary but fixed, so X = X(t). Furthermore, we can see why152

equation (10) is more practical when obtaining the solution of the continuity equation, namely,153

the factor ∇ · g(t, x) of the right-hand side of equation (10) appears directly in the integral that154

explicitly provides the solution via (11).155

So far, we have studied the case where randomness just appears in the initial conditions, how-156

ever in the analysis of complex systems with uncertainties, and in particular in the randomized157

Gompertz model, its coefficients can be also affected by random fluctuations that may seriously158

change the solution. Therefore, it is more realistic to treat the case that both initial condition and159

coefficients (including the forcing/source term) are also stochastic. This motivates that in our160

subsequent analysis we consider the following random IVP161  dX(t)
dt = g(t,X(t),A), t > t0,

X(t0) = X0,
(12)

where X0 ∈ Ln
2(Ω) and A ∈ Lm

2 (Ω). At this point, it is important to point out that we restrict162

ourselves to the case that the IVP (12) has a finite degree of randomness [12, Ch. 3] via a finite163

number of second-order random variables A = (A1, . . . , Am). Although A is independent of t,164

we want to stress that our scenario also comprises the case that uncertainties can be considered165

through many stochastic processes such as polynomials, trigonometric or exponential functions,166

etc., depending on A1, . . . , Am and t separately. In the case that randomness is defined via stochas-167

tic processes having a different nature, like for instance Brownian motion (or its transformations,168

Brownian bridge, Brownian with drift, etc.), we can still take advantage of our approach by con-169

sidering its truncated Karhunen-Loève expansions [49]. Therefore, our setting can be applied in170

a wide range of practical cases.171

Considering the conditional PDF of the solution stochastic process with respect to the values172

of A, f (t, x|a), we know that it verifies the continuity equation (9)173

∂ f (t, x|a)
∂t

+ ∇ · ( f (t, x|a)g(t, x; a)) = 0. (13)

Observe that this holds because when we consider the conditional density, we are actually as-174

suming an arbitrary, but fixed, value for A = a. Therefore, although a is written as an entry of175

function g, it does not play the role of a variable but a fixed parameter, so it verifies the continu-176

ity equation. Let fA denote the joint PDF of the random variables appearing in the differential177

equation. Then, we can multiply both sides of (13) by this density and, therefore178

∂( f (t, x|a) fA(a))
∂t

+ ∇ · ( f (t, x|a) fA(a)g(t, x; a)) = 0,

i.e.,179

∂ f (t, x, a)
∂t

+ ∇ · ( f (t, x, a)g(t, x; a)) = 0, (14)

7



where we have used the following relationship between the conditional PDF, f (t, x|a), the joint180

PDF, f (t, x, a) and the marginal, fA(a), namely f (t, x|a) fA(a) = f (t, x, a). Similarly to the case181

where randomness is only in the initial condition, it can be seen that the solution of (14) together182

with the initial condition f0(x0, a) is given by183

f (t, x, a) = f0(h−1(t, x, a), a) exp
{
−

∫ t

t0
∇ · g(s, x = h(s, x0, a); a) ds

} ∣∣∣∣
x0=h−1(t,x,a)

, (15)

where we first solve (12) obtaining X(t) = h(t,X0,A) and then X0 solves the equation X0 =184

h−1(t,X,A) for t fixed. Now, to determine the 1-PDF of the solution stochastic process, we have185

to integrate with respect to the random coefficients A = (A1, . . . , Am), obtaining186

f (t, x) =

∫
Rm

f (t, x, a) da. (16)

3. The randomized Gompertz model187

This section is addressed to determine the main probabilistic properties of the randomized188

Gompertz model, namely, the 1-PDF of its solution stochastic process, the distribution of the189

time until a certain number of the individuals (also termed particles, depending upon the context190

of the problem) reaches a prefixed level and, finally, the stationary distribution. All this crucial191

information is presented in the following subsections. The main mathematical tools that will192

be applied to conduct our subsequent study are the Liouville-Gibbs PDE and the so called RVT193

technique. The former is required to determine the 1-PDF of the randomized Gompertz model194

and the latter to compute both the distribution of the time and the stationary distribution.195

3.1. Computing the 1-PDF of the randomized Gompertz model196

The aim of this subsection is to obtain an explicit expression for the 1-PDF, f (t, n), of the197

following Gompertz model198 N′(t) = N(t)[C − B ln(N(t))], t > t0 ≥ 0,
N(t0) = N0,

(17)

where N0, B and C are second-order random variables and the unknown N(t) is a second-order
stochastic process. Here N(t) can represent the number of cells/organisms, weight or other bi-
ological magnitudes, being N0 its initial value at the time instant t0. Parameters B > 0 and
C > 0 represent the growth rate (division rate in the case of cells) of the system and difference
between the growth and “dampening factor” rates (death rate in the case of cells), respectively
[50]. Observe that according to the development exhibited in Section 2, comparing (17) with the
general problem (12) and its notation, now n = 1 (X(t) ≡ X(t) = N(t)), m = 2 (A = (B,C))
and g(t,X(t),A) = g(t,N(t), B,C) = g1(t,N(t), B,C) = N(t) [C − B ln(N(t))]. Using the notation
n = n(t), the Liouville-Gibbs equation (14) writes

∂ f (t, n, b, c)
∂t

+ ∇ · ( f (t, n, b, c) n(c − b ln(n))) = 0, t > t0, n > 0,

f (t0, n, b, c) = f0(n0, b, c),

where f0 is the joint density of the random variables N0, B and C.199
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To obtain the solution by expression (16), we first need to calculate (15). To this end, we
must obtain the divergence term and function n(t) = h(t, n0, b, c). On the one hand, g(t, n) =

n(c − b ln(n)), so its divergence with respect to the “spatial” components is its derivative with
respect to n, i.e.,

∇ · g(t, n) = c − b(ln(n) + 1).

On the other hand, it is well-known that the solution of the Gompertz model (17) is given by200

n = h(t, n0, b, c), where h(t, n0, b, c) = e−
c(e−b(t−t0)

−1)
b ne−b(t−t0)

0 . (18)

Therefore, solving for n0 gives201

n0 = h−1(t, n, b, c) = neb(t−t0)
e−

c
b (eb(t−t0)−1). (19)

Applying expression (15), we obtain202

f (t, n, b, c) = f0(h−1(t, n, b, c), b, c) exp
{
−

∫ t

t0
c − b(ln(h(s, n0, b, c)) + 1) ds

} ∣∣∣∣
n0=h−1(t,n,b,c)

= f0(h−1(t, n, b, c), b, c) exp (η(t, n, b, c)),
(20)

where, after calculating the integral and performing its evaluation at n0 = h−1(t, n, b, c) given by203

(19) one gets204

η(t, n, b, c) = b(t − t0) + c
b

(
eb(t−t0) − 1

)
+ cteb(t−t0)

−
(
eb(−t+t0)(1 + bt) − 1

)
ln

[
e−

c(−1+eb(t−t0))
b neb(t−t0)

]
+bt ln

e− c(−1+eb(−t+t0))
b

(
e−

c(−1+eb(t−t0))
b neb(t−t0)

)eb(−t+t0) .
(21)

Finally, we apply expression (16) to determine the PDF of the solution stochastic process of the205

randomized Gompertz model (17) by marginalizing206

f (t, n) =

∫
R2

f (t, n, b, c) db dc, (22)

where f (t, n, b, c) is given by (19)–(21). In the case that the N0, B and C are independent random207

variables, then f0(n0, b, c) = fN0 (n0) fB(b) fC(c) and (20) writes208

f (t, n, b, c) = fN0 (h−1(t, n, b, c)) fB(b) fC(c) exp (η(t, n, b, c)). (23)

Finally, observe that once the 1-PDF f (t, n) has been determined, the computation of the one-209

dimensional moments turn easily out provided they exist. For instance, the mean and the standard210

deviation are given by211

µN(t) = E[N(t)] =

∫
R

n f (t, n) dn, (24)

and212

σN(t) =

√∫
R

n2 f (t, n, b, c) dn − (µN(t))2, (25)

respectively.213
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3.2. The distribution of the time until a certain number of individuals reaches a prefixed level214

The Gompertz model describes the dynamics of N(t) over the time t. In this setting a crucial215

question that often arises in research is to determine when N(t) reaches a specific value of interest,216

say ρN . In other words, we may be interested in determining the time instant TρN := T such that217

N(t) = ρN . In our context, N(t) = N(t; N0, B,C) depends on model parameters N0, B and C,218

which are random variables, so the time T is also a random variable. Hereinafter, we derive the219

distribution of T under very general hypotheses on N0, B and C taking advantage of the RVT220

method stated in Theorem 1.221

To this end, let us fix a value ρN > 0. Then, the solution (18) can be expressed as (observe
that for convenience the model parameters and time are written using capital letters since now
they are interpreted as random variables)

ρN = e−
C(e−B(T−t0)

−1)
B Ne−B(T−t0)

0 .

According to Theorem 1 with k = 3, let us consider the following identification V = (V1,V2,V3) =222

(N0, B,C) and W = (W1,W2,W3) with the following transformation r : R3 −→ R3 whose com-223

ponents ri(v), i = 1, 2, 3, are given by224

w1 = r1(v) = t = t0 − 1
b ln

(
ln(ρN )− c

b
ln(n0)− c

b

)
,

w2 = r2(v) = b,
w3 = r3(v) = c.

Now, we compute the inverse mapping of r: s(w) = r−1(v), whose components si, 1 ≤ i ≤ 3, are225

n0 = s1(w) = ρew2(w1−t0)

N e−
w3
w2

(ew2(w1−t0)−1)
,

b = s2(w) = w2,
c = s3(w) = w3.

The absolute value of the jacobian of this transformation s is226

|J| =

∣∣∣∣∣∣∣∣∣det


∂n0
∂w1

0 0
∂n0
∂w2

1 0
∂n0
∂w3

0 1


∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∂n0

∂t
(w1,w2,w3)

∣∣∣∣∣ = ρew2(w1−t0)

N e−
w3
w2

(ew2(w1−t0)−1)
|w2 ln(ρN) − w3|ew2(w1−t0).

Therefore, applying Theorem 1 the distribution of time T for a given value ρN of N is given by227

fT (t, ρN) =

∫
R2

f0(ρeb(t−t0)

N e−
c
b (eb(t−t0)−1), b, c)ρeb(t−t0)

N e−
c
b (eb(t−t0)−1)|b ln ρN − c|eb(t−t0) db dc, (26)

where f0(n0, b, c) denotes the joint PDF of the random vector (N0, B,C). If we assume inde-228

pendence between the model parameters N0, B and C, f0 would factorize as the product of the229

corresponding marginals fN0 , fB and fC .230

An important information that will be utilized later in the Example 2 is the average time231

of random variable T := TρN for a fixed value of ρN . This quantity is now straightforwardly232

obtained once the PDF of T has been determined,233

µT (ρN) := E[TρN ] = E[T ] =

∫
R

t fT (t, ρN) dt =

∫ +∞

t0
t fT (t, ρN) dt, (27)

where fT (t, ρN) is given by (26).234
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3.3. Stationary distribution of the solution235

In this section, we will take advantage of the RVT technique to calculate the probability236

distribution of the stationary state. Taking limits as t → ∞ in expression (18) it is straightforward237

to check that the steady-state of the randomized Gompertz model is the random variable N∗ =238

eC/B. To compute its PDF we will apply Theorem 1 with k = 2, V = (V1,V2) = (B,C), W =239

(W1,W2) and the following deterministic mapping, r : R2 → R2, r(v) = (r1(v), r2(v)) where240

w1 = r1(v) = ec/b, w2 = r2(v) = b.

Then, its inverse mapping, s : R2 → R2, is241

b = s1(w) = w2, c = s2(w) = w2 ln (w1).

The absolute value of the Jacobian of mapping s can be easily calculated242

|J2| =

∣∣∣∣∣∣det
[

0 w2
w1

1 ln (w1)

]∣∣∣∣∣∣ =

∣∣∣∣∣−w2

w1

∣∣∣∣∣ =
w2

w1
.

The last equality holds since both P
[
{ω ∈ Ω : ec(ω)/b(ω) > 0}

]
= 1 and P [{ω ∈ Ω : b(ω) > 0}] = 1.243

Therefore, the PDF of the random vector (N∗, B) is244

fN∗,B(w1,w2) = fB,C (w2,w2 ln (w1))
w2

w1
. (28)

Since we are assuming that the PDF f0 of model parameters, (N0, B,C), is known, then the PDF245

of random vector (B,C) is given by246

fB,C(b, c) =

∫
R

f0(n0, b, c) dn0.

So, applying this in (28) and taking into account that w1 = n∗ and w2 = b, one obtains

fN∗,B(n∗, b) =
b
n∗

∫
R

f0(n0, b, b ln (n∗)) dn0.

Finally, we can determine the PDF of the stationary state marginalizing this distribution with247

respect to random variable B. This yields248

fN∗ (n∗) =
1
n∗

∫
R

∫
R

b f0(n0, b, b ln (n∗)) dn0 db. (29)

In the usual case where all input parameters are independent random variables, the previous249

expression can be simplified as250

fN∗ (n∗) =
1
n∗

∫
R

b fB (b) fC(b ln (n∗)) db, (30)

since f0 (n0, b, b ln (n)) = fN0 (n0) fB(b) fC(b ln (n)) (where fN0 , fB and fC denote the PDFs of ran-251

dom variables N0, B and C, respectively) and
∫
R fN0 (n0) dn0 = 1.252

Remark 1. Observe that since C is a positive random variable, in practice the domain of inte-253

gration in (30) must be calculated taking into account that the term b ln (n∗) must be positive.254

Even more, since B is also a positive random variable, then N∗(ω) > 1 for all ω ∈ Ω. This fact255

will be used later in Example 2.256
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4. Examples257

In this section we present two examples. Example 1 is devised to illustrate the applica-258

tion of the theoretical results established throughout Section 3 considering statistical depen-259

dence/independence of model parameters N0, B and C. The nature in this example is just nu-260

merical. We complete this section including a second example where we show how to describe261

the dynamics of a biological process using real data via Gompertz model. In both examples we262

calculate the 1-PDF of the solution stochastic process, its mean and standard deviation func-263

tions together with confidence intervals as well as the stationary distribution. Additionally, we264

compute the PDF the random variable time T as defined in Section 3.2.265

Example 1. In this numerical example we will examine two scenarios with respect to depen-266

dence/independence of model parameters N0, B and C and its impact on the Gompertz model267

output. To this end, we will first consider that the random vector (N0, B,C) has a Multinormal268

distribution whose variance-covariance matrix, say Σ, is non-diagonal (so, N0, B and C are269

dependent random variables) and, secondly, when Σ is diagonal (so, N0, B and C are indepen-270

dent random variables). Then we show how the 1-PDF of the solution stochastic process, the271

mean and standard deviation functions, the PDF of the time random variable and the stationary272

distribution change in each scenario.273

• Scenario 1 (dependence): The random vector (N0, B,C) has a Multinormal distribution274

truncated to T = R+ × R+ × R+, (N0, B,C) ∼ NT (µ,Σ), with the following mean vector275

and variance-covariance matrix276

µ = (0.8, 1, 1.5), Σ =
1

10

 1 0 1
0 1.2 1
1 1 2

 , (31)

respectively. Then, the PDF of random vector (N0, B,C) is277

f0(n0, b, c) =

{
0.001676 e−25b2−30c2+b(15+50c−50n0)+(16−35n0)n0+c(−8+60n0), n0, b, c > 0,
0, in other case.

(32)

• Scenario 2 (independence): The random vector (N0, B,C) has a Multinormal distribution278

truncated to T = R+ × R+ × R+, (N0, B,C) ∼ NT (µ,Σ), with the following mean vector279

and variance-covariance matrix280

µ = (0.8, 1, 1.5), Σ =
1

10

 1 0 0
0 1.2 0
0 0 2

 , (33)

respectively. Then, the PDF of random vector (N0, B,C) is281

f0(n0, b, c) = fN0 (n0) fB(b) fC(c) =

{
1.30656 e−4.17(−1+b)2−2.5(−1.5+c)2−5(−0.8+n0)2

n0, b, c > 0,
0 in other case.

(34)

In Figure 1 we show the 1-PDF, f (t, n), of the solution stochastic process for different time282

instants in the interval [0, 1] in both scenarios. To compute f (t, n) in the scenario 1, we have283
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used expressions (22) together with (19)–(21) where f0 is given by (32). While to compute f (t, n)284

in the scenario 2, we have applied (22), (19), (21) and (23) where f0 is given by (34). From this285

graphical representation we can observe that the 1-PDF corresponding to scenario 2 is more286

leptokurtic than in the scenario 1. This fact is in agreement with the results shown in Figure 2287

where the expectation (calculated via (24)) and the standard deviation (calculated via (25)) in288

each scenario are compared. In Figure 2 we see that the variability of the solution is, in general,289

greater considering dependent random inputs (scenario 1). We observe that near the time instant290

t = 1, the variability in the dependent case is smaller than in the independent one. This fact can291

be explained from Figure 3 since at t = 1 we see that the right-tail of the PDF, f (n, 1), obtained292

in the scenario 2 is heavier than in scenario 1.293

Figure 1: 1-PDF of the solution stochastic process, f (t, n), of the Gompertz model (17) whose input is a multinormal
distribution (N0, B,C) ∼ NT (µ,Σ), at different time instants in the interval [0, 1], in both scenarios. Left (scenario 1-
dependent random variables (RVs)): µ and Σ are given by (31). Right (scenario 2-independent RVs): µ and Σ are given
by (33). Example 1.

0.2 0.4 0.6 0.8 1.0
t

1.0

1.5

2.0

2.5
μ(t)

Dependent RVs

Independent RVs

0.2 0.4 0.6 0.8 1.0
t

0.4

0.5

0.6

0.7

0.8

0.9

σ(t)

Dependent RVs

Independent RVs

Figure 2: Expectation (left), µ(t), and standard deviation (right), σ(t), in scenario 1 (dependent random variables (RVs))
and in scenario 2 (independent RVs) in the time interval [0, 1]. Example 1.
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Figure 3: PDF of the solution stochastic process in the time instant t = 1, f (1, n), in scenario 1 (dependent random
variables (RVs)) and in scenario 2 (independent RVs). Example 1.

According to Subsection 3.2 we can also compute the PDF of the time T until a certain294

number of individuals/particles reach a fixed value, ρN . In Figure 4 we show the PDF of T for295

different values of ρN ∈ {1, 1.25, 1.5, 1.75, 2, 2.25, 2.50}. By applying (27), in Table 1 we collect296

the expectation of T for the different values of ρN in scenarios 1 and 2. To carry out computations,297

we have used expressions (27) and (26), taking f0 the PDF defined in (32) (in scenario 1) and298

(34) (in scenario 2). With data chosen in our numerical experiments, we observe that in the case299

of independent random inputs (scenario 2), the time µT (ρN) needed to reach each prefixed value300

ρN is smaller than in the dependent case (scenario 1).301
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Figure 4: PDF of the time T until a given number of individuals reach a fixed value ρ = ρN ∈

{1, 1.25, 1.5, 1.75, 2, 2.25, 2.50}. Left (scenario 1-dependent random variables (RVs)). Right (scenario 2-independent
RVs). Example 1.

ρN 1 1.25 1.5 1.75 2 2.25 2.5
µT (ρN) Dep. 0.23233 0.414261 0.592096 0.774202 0.967645 1.17377 1.38623
µT (ρN) Indep. 0.169975 0.359007 0.551017 0.745765 0.934527 1.10648 1.25512

Table 1: Expectation of the time needed to reach certain fixed values, ρN ∈ {1, 1.25, 1.5, 1.75, 2, 2.25, 2.50} in the scenario
1 (dependent random variables) and in scenario 2 (independent random variables). Example 1.

Finally, we compute the distribution of the stationary state N∗ = eC/B, using the results302

derived in Subsection 3.3. In Figure 5 we have plotted the PDF of N∗, fN∗ (n∗) from expressions303

(29) (scenario 1) and (30) (scenario 2). In this latter case, observe that fB and fC correspond304

to the PDF of the following Gaussian random variables B ∼ N(µB = 1;σ2
B = 12/100) and305

C ∼ N(µC = 15/10;σ2
C = 2/10). From Figure 5 we observe, that in this particular case, the306

stationary corresponding to scenario 2 has a heavier right-tail.307
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Figure 5: PDFs of the stationary state for each scenario. Left: scenario 1-dependent random variables (RVs). Right:
scenario 2-independent RVs. Example 1.

Example 2. In real applications, the Gompertz model is used to explain the dynamics of data308

that has been sampled. This model has been used to explain the growth of species, tumors, etc.,309

via measurements like weight, volume, etc. In this example, we use data corresponding to weight310

measurements, in kilograms, for a randomly bred male Pearl Gray Guinea Fowl population311

during 23 consecutive days [51]. We have assumed that model parameters are independent312

random variables and, for them, we choose the following distributions:313

N0 ∼ U ([0.019779, 0.032472]) (uniform distribution),
B ∼ G(3841.397958, 0.000057) (gamma distribution),
C ∼ N|T (0.105982, 0.002643) (normal distribution truncated in the interval T = (0.09, 0.12)).

Now, we justify the selection made for the above-mentioned distributions of each model input. We314

will assume independence between N0, B and C since, from a computational point of view, this315

assumption simplifies the calculations. Anyway, the subsequent computations may be carried316

out in the case that input parameters are statistically dependent as was shown in Example 1.317

For the sake of clarity, down below, we explain, in several steps, the underlying reasoning to318

select the probability distribution of each model input as well as how we have calculated their319

corresponding parameters.320

Step 1: Initially, the model inputs whose information is more limited are B and C. We only know321

that both are positive. So, we are going to assign them positive distributions having cer-322

tain flexibility (specifically, having two degree of freedom, i.e., two parameters, and whose323

respective shape’s density probability varies with such parameters) so that we can bet-324

ter capture their intrinsic uncertainty. Specifically, we will assume that B has a Gamma325

distribution with parameters b1, b2 > 0, B ∼ G(b1, b2), and C has a Normal distribution326

with mean, µ > 0, and standard deviation, σ > 0, truncated in certain interval T ⊂ R+,327

N|T (µ, σ). For the initial condition N0 we will assume that it has a Uniform distribution in328

the interval [n0,1, n0,2]. These six parameters (b1, b2), (µ, σ) and (n0,1, n0,2) together with329

the interval T will be determined later.330

Step 2: We first calculate (deterministic) values for model inputs n0, b and c that best fit, in the331

mean square sense, the sampled data. We have used the command “NonlinearModelFit”332
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(by Mathematica c© software) that provides the estimates of model inputs and their errors,333

n0 = 0.026615, εn0 = 0.000776,
b = 0.226409, εb = 0.003654,
c = 0.1046, εc = 0.002296.

These (deterministic) estimates will be used later to determine the parameters, (n0,1, n0,2),
(b1, b2) and (µ, σ), of the probability distributions, assigned in Step 1, to each model in-
put N0, B and C, respectively. Specifically, we will consider that the previous values for
(n0, εn0 ), (b, εb) and (c, εc) represent (approximately) their means and standard deviations,
respectively. As, initially, we are assuming that C has a Normal distribution with mean
c = 0.1046 and standard deviation εc = 0.002296, truncated a certain interval T to be
determined, we take T large enough so that it contains its total probability density. We
will take, for example, T = (0.09, 0.12) since P[{ω ∈ Ω : 0.09 < C(ω) < 0.12}] ≈ 1, i.e.∫ 0.12

0.09

1
√

2 π 0.0022962
e−

1
2 ( c−0.1046

0.002296 )2

dc ≈ 1.

Step 3: Now, we will determine the parameters (n0,1, n0,2), (b1, b2) and (µ, σ) by minimizing the334

mean square error between sampled data, n j, 0 ≤ j ≤ 22, and the expectation of the335

solution stochastic process N(t) = N(t; n0,1, n0,2, b1, b2, µ, σ) evaluated at the time instants336

t = t j, 0 ≤ j ≤ 22:337

min
n0,1,n0,2,b1,b2,µ,σ>0

E(n0,1, n0,2, b1, b2, µ, σ) =

22∑
j=0

(
E

[
N(t j; n0,1, n0,2, b1, b2, µ, σ)

]
− n j

)2
,

(35)
where the above expectation is computed using expression (24). In order to calculate the338

minimum of the above error function E, we have used the Nelder-Mead algorithm. Nelder-339

Mead is a simplex-type method that requires an initial value (seed) to apply it. We use the340

deterministic information shown in Step 2 to set the starting values that, hereinafter, will341

be denoted by (n0
0,1, n

0
0,2), (b0

1, b
0
2) and (µ0, σ0). The starting values for random variable C342

match, obviously, the mean and standard deviation calculated via the deterministic fitting343

shown in Step 2, so µ0 = 0.1046 and σ0 = 0.002296. For N0, we calculate (n0
0,1, n

0
0,2)344

using the Moment Matching Method [52] for the mean and the variance of a Uniform345

distribution,346

0.026615 = E[N0] =
n0

0,1 + n0
0,2

2
, 0.0007762 = V[N0] =

(n0
0,2 − n0

0,1)2

12
.

Solving the above nonlinear system, we obtain n0
0,1 = 0.020285 and n0

0,2 = 0.032944.347

Similarly, we calculate the estimates b0
1 = 3838.25 and b0

2 = 0.000059 solving the system348

0.226409 = E[B] = b0
1b0

2, 0.0036542 = V[B] = b0
1

(
b0

2

)2
.

With this starting value, the error is E(n0
0,1, n

0
0,2, b

0
1, b

0
2, µ

0, σ0) = 0.011507. After minimiz-349

ing the objective function (35), we obtain350

n∗0,1 = 0.019779, n∗0,2 = 0.032472, b∗1 = 3841.297958,
b∗2 = 0.000057, µ∗ = 0.105982, σ∗ = 0.002643,

being the error 0.006635.351
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In Figure 6, we show the data (points), the mean of the solution (solid curve) and confidence
interval (dotted curves). The mean, µN(t), has been calculated by (24) and (19)–(22), being
f0(n0, b, c) = fN0 (n0) fB(b) fC(c) and

fN0 (n0) =

78.7836, if n0 ∈ [0.019779, 0.032472],
0, otherwise,

fB(b) =

4.119667 · 104203 e−17542.9b b3840.4, if b > 0,
0, otherwise,

fC(c) =

150.943 e−71577.4(−0.105982+c)2
, if 0.09 < c < 0.12,

0, otherwise,

and t0 = 0. The confidence interval has been calculated by µN(t) ± 1.96σN(t) where σN(t)352

has been calculated via (25). From Figure 6 we can see that this confidence interval captures353

satisfactorily the uncertainty of data. In Figure 7, we show the evolution of the 1-PDF, f (t, n),354

of the solution stochastic process, N(t), together with the data (points), mean (solid curve) and355

confidence intervals (dotted curves). We observe that variability slightly increases as time goes356

on in agreement with fitting shown in Figure 6.357

5 10 15 20
Time (d)

0.5

1.0

1.5

Weight (Kg)

Real data

μN(t)

μN(t)±1.96σN(t)

Figure 6: Model fitting: Sample data (points), expectation function (solid curve) and confidence interval (dotted curves)
centred in the mean µN (t) and radius 1.96σN (t), being σN (t) the standard deviation function. Example 2.

Now, using expression (26), in Figure 8 we show the PDF of random variable time T (in358

days) until the Pearl Gray Guinea Fowl species has a prefixed weight ρ = ρN (in kilograms). In359

Table 2, we collect the expect value of T for different values of ρ = ρN using expression (27).360

According to these values, for example, it is expected that after 9 or 10 days, the species will361

weight 1 kg. It is worthwhile pointing out that the numerical values shown in Table 2 agree with362

the graphical representation shown in Figure 8.363
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Figure 7: Representation of the 1-PDF, f (t, n) of the solution stochastic process, N(t), for fixed time values. In the
horizontal plane t − f (t, n) we have projected the plot shown in Figure 6. Example 2.

ρN 0.25 0.5 0.75 1 1.25 1.50
µT (ρN) 3.628197 5.746689 7.682120 9.719286 12.575619 18.112325

Table 2: Expected time (µT (ρN ), measured in days, needed for the weight to reach certain prefixed values (ρN ), measured
in kilograms. Example 2.
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Figure 8: Graphical representation of the PDF of the random variable time T for the prefixed values of ρ = ρN shown in
Table 2. Example 2.
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We conclude this example calculating, from expression (30), the PDF of the asymptotic state,
N∗ = eC/B,

fN∗ (n∗) =


∫ 0.12/ ln(n∗)

0.09/ ln(n∗)

1
n∗

(
6.218349 · 104205b2840.4 e−17543.9b−71577.4(−0.105982+b ln (n∗))2)

db, if n∗ > 1,

0, otherwise.

Observe that, using Remark 1, the domain of integration has been determined so that b ln(n∗) ∈364

(0.09, 0.12), taking into account that B > 0 (recall that it has a Gamma distribution). In Figure 9,365

we show the PDF of the equilibrium, fN∗ (n∗), as well as its mean,366

m∗ =

∫
R

n∗ fN∗ (n∗) dn∗ = 1.622966, (36)

and the confidence interval367

[m∗ − 1.96σ∗,m∗ + 1.96σ∗] = [1.577268, 1.668664],

σ∗ =

√∫
R(n∗)2 fN∗ (n∗) dn∗ − (m∗)2 = 0.023315.

(37)

For the sake of clarity, in Figure 10 we show a graphical representation of the model fitting368

together with the equilibrium including the means and confidence intervals. We can observe that369

for finite time (until t = 22), the diameter of confidence interval increases slowly. It is expected370

that its maximum diameter will be reached as t → ∞, so the confidence interval graphically371

represented for the equilibrium accounts this quantity. This quantifies the maximum expected372

uncertainty.373

1.55 1.60 1.65 1.70 1.75 1.80
n*

5

10

15

fN*(n*)

Figure 9: PDF of the equilibrium random variable N∗ = eC/B. In the horizontal axis, the mean (point) and the confidence
interval (dashed lines) are indicated. They have been calculated by (36) and (37), respectively. Example 2.
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5 10 15 20
Time (d)

0.5

1.0

1.5

Weight (Kg)

Real data

μN(t)

μN(t)±1.96σN(t)

Figure 10: Graphical representation of the model fitting together with the equilibrium including the means (solid lines),
confidence intervals (dotted lines) and data (points). Example 2.

5. Conclusions374

In this paper we have studied, from a probabilistic standpoint, the fully randomized Gom-375

pertz model. This important model plays a key role to describe the dynamics of biological and376

biophysical parts of complex systems which often involve uncertainties. The study has been377

conducted under very general hypotheses regarding the probability distributions of model pa-378

rameters, which confers a wide range of applicability to our theoretical findings. The numerical379

experiments and modelling carried out in the our examples show very good results. Our future380

efforts will concentrate on studying systems where the Gompertz model with uncertainties is a381

key part of the full complex model.382
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