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Abstract. In this review, we present the results on sub-wavelength perfect acoustic absorption using acous-
tic metamaterials made of Helmholtz resonators with diVerent setups. Low frequency perfect absorption re-
quires to increase the number of states at low frequencies and finding the good conditions for impedance
matching with the background medium. If, in addition, one wishes to reduce the geometric dimensions of
the proposed structures for practical issues, one can use properly designed local resonators and achieve sub-
wavelength perfect absorption. Helmholtz resonators have been shown good candidates due to their easy
tunability of the geometry, so of the resonance frequency, the energy leakage and the intrinsic losses. When
plugged to a waveguide or a surrounding medium they behave as open, lossy and resonant systems char-
acterized by their energy leakage and intrinsic losses. The balance between these two represents the critical
coupling condition and gives rise to maximum energy absorption. The critical coupling mechanism is repre-
sented here in the complex frequency plane in order to interpret the impedance matching condition. In this
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review we discuss in detail the possibility to obtain perfect absorption by these critical coupling conditions
in di Verent systems such as re ection (one-port), transmission (two-ports) or three-ports systems.

Résumé. Dans cette revue, nous présentons des résultats sur I'absorption acoustique parfaite sub-longueur
d'onde faisant appel a des métamatériaux acoustiques avec des résonateurs Helmholtz pour di  Vérentes
con gurations. L'absorption parfaite & basse fréquence nécessite une augmentation du nombre d'états aux
basses fréquences ainsi que de trouver les bonnes conditions pour une adaptation dimpédance avec le mi-
lieu environnant. Si en outre, on souhaite réduire les dimensions géométriques des structures proposées pour
des questions pratiques, on peut utiliser des résonateurs locaux judicieusement congus a n d'attendre une
absorption parfaite sub-longueur d'onde. Les résonateurs de Helmholtz se sont révélés de bons candidats en
raison de leur accordabilité aisée de la géométrie, donc de la fréquence de résonance, de la fuite d'énergie
et des pertes intrinseques. Lorsgu'ils sont branchés a un guide d'ondes ou a un milieu environnant, ils se
comportent comme des systémes ouverts, avec pertes et résonances caractérisés par leur fuite d'énergie et
leurs pertes intrinseques. L'équilibre entre ces deux aspects représente la condition de couplage critique et
donne lieu a un maximum d'absorption d'énergie. Le mécanisme de couplage critique est ici représenté dans

le plan de fréquence complexe a n d'interpréter la condition d'adaptation d'impédance. Dans cette revue,
nous discutons en détail la possibilité d'obtenir une absorption parfaite par ces conditions de couplage cri-
tiqgues dans di Vérents systémes tels que la ré exion (a un port), la transmission (a deux ports) ou les systemes
atrois ports.

Keywords. Acoustic metamaterials, Perfect absorption, Helmholtz resonators, Locally resonant materials,
Critical coupling, Complex frequency plane.

Mots-clés. Métamatériaux acoustiques, Absorption parfaite, Résonateurs de Helmholtz, Résonateurs locaux,
Couplage critique, Plan des fréquences complexes.

1. Introduction

The ability to perfectly absorb an incoming wave eld in a sub-wavelength material is advanta-
geous for several applications in wave physics as energy conversion [1], time reversal technol-
ogy [2], coherent perfect absorbers [3] or soundproo ng [4] among others. The solution of this
challenge requires to solve a complex problem: reducing the geometric dimensions of the struc-
ture while increasing the number of states at low frequencies and nding the good conditions to
match the impedance to the background medium.

A successful approach for increasing the number states at low frequencies with reduced di-
mensions is the use of metamaterials. Although the de nition of metamaterial is still a source of
discussion within the community, in this article, we will name metamaterial a structured system
made of resonant elements with physical properties not usually encountered for wavelengths
much larger than its dimensions. Exponentially increasing attention has been paid to these sys-
tems in all the elds of wave physics as electromagnetics [5], acoustics [6], elastodynamics [7, 8]
and seismology [9], among others. In acoustics, the concept of metamaterial was introduced
in the 2000s by Liu et al. [10] and Fang et al. [11]. Applications cover all frequency ranges from
low-frequency vibrations to radio frequencies [6, 12]. Several possibilities based on these locally
resonant systems have been recently proposed to design sound absorbing structures with si-
multaneous sub-wavelength dimensions and strong acoustic absorption [13—-18]. Some strate-
gies to design these sub-wavelength systems consist of using space-coiling structures [19-22],
membranes [23], recon gurable structures [24, 25] or Helmholtz resonators (HRs) [11, 26, 27].
However, all of these structures face the challenge of impedance mismatch to the background
medium while they bring potentially solutions to reduce the geometric dimensions. Recently,
several possibilities based on these systems made of open lossy resonant building blocks have
been proposed to design sound absorbing structures with impedance match conditions, pre-
senting simultaneously sub-wavelength dimensions and perfect acoustic absorption. Examples
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are acoustic metamaterials made of membranes [13, 28-31], quater wavelength resonators [32],
bubbles in water [33], aerogel plates [34], split ring resonators [35] or HRs [20, 28, 36-51]. Among
them, HRs have been shown as potential candidates to solve the problem due to the tunable
possibilities they o Ver just by optimizing their geometry. In this work, the resonance frequency,
the energy leakage and the intrinsic losses can be passively tuned by the geometry of the res-
onator. In fact, the energy leakage of the HRs can be controlled by the aperture of the neck
and the inherent viscothermal losses in the neck and in the cavity. We also show an example
of nonlinear absorption in which the losses are driven dynamically with the amplitude of the
incident wave.

The interaction of an incoming wave with an open, lossy and resonant structure, in particu-
lar the impedance matching with the background eld, is one of the most studied process in the
eld of wave physics [1-3]. These open systems, at the resonant frequency, are characterized by
both the leakage rate of energy (i.e., the coupling of the resonant elements with the propagat-
ing medium), and the intrinsic losses of the resonator. The balance between the leakage and the
losses activates the condition of critical coupling, trapping the energy around the resonant ele-
ments and generating a maximum of energy absorption [36, 52]. In the case of a re ecting sys-
tem (one port systems), either symmetric or antisymmetric resonances that are critically cou-
pled can be used to obtain perfect absorption (PA) of energy [28, 29, 33, 37]. In the case of trans-
mission systems with N -ports [53], the problems becomes more di Y cult. In particular for the
two port case, degenerate critically coupled resonators with symmetric and antisymmetric res-
onances [30, 51, 54] or systems with broken symmetry [39, 42] can be used to perfectly absorb
the incoming energy. At this stage it is worth noting what we consider as symmetry. If either the
geometry of the resonator or the pro le of the wave eld are mirror symmetric (antisymmetric)
with respect to the middle plane of the resonator, then the system will be considered as symmet-
ric (antisymmetric).

In this review we discuss the technique based on the analysis of the zeros and poles of the
eigenvalues of the scattering matrix. In general these zeros and poles correspond to complex
frequencies, then we introduce a representation in the complex frequency plane, i.e., real versus
imaginary part of the complex frequency, applied to the case of acoustic metamaterials made
of HRs for deep sub-wavelength PA. This methodology has been shown as an e Y cient tool
to design broadband acoustic absorbers in the low frequency range. In our case, ne tuning
of both the losses and of the geometric characteristics of the sub-wavelength resonators lead
to the crossing of the complex zeros of the eigenvalues of the scattering matrix with the real
frequency axis, i.e., they appear at purely real frequencies, which signi es the PA condition. This
methodology has been also used to design e Y cient broadband absorbers in the low frequency
regime. DiVerent systems corresponding to di Verent con gurations are studied in this work:
single port con guration in which corresponds to the pure re ection problem; two port systems
in which the transmission problem with single side excitation can be analyzed; and multiport
systems, in particular a 3-port system. Several examples of perfect and broadband absorption in
all of these con gurations are reviewed in detail in this work.

2. Scattering problem in 1D systems
2.1. General problem

Let us consider a two-port, one-dimensional and reciprocal scattering process. The relation
between the amplitudes of the incoming ( a, d), and outcoming ( b, c) waves, on both sides of
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Figure 1. (a) Schematic of the two-port scattering process. (b) Symmetric and (c) antisym-
metric uncoupled sub-problems for the case of a mirror-symmetric scatterer §. The time
conventionise i ' t. The weve numberis k /! /c with c the acoustic wave speed.

the scatterer §, as shown in Figure 1(a), is given by

R VI TR TR |
C a T R a
b B g Bri1 g @)

where S(f) is the scattering matrix ( S-matrix), f isthe incident wave frequency, T isthe complex
amplitude transmission coe Y cient, Ri and RA are the complex amplitude re ection coe Y cients
for left (j ) and right ( A) incidence, respectively. Note that the power scattering coe Y cients are,
jRAjZ, jRi j2 and jTj2. In this work, the time dependence convention of the harmonic regime is
el ' U and it will be omitted in the following. The eigenvalues ofthe ~ S-matrix are expressed as

, 12T § [Ri RAY2 )

and the eigenvectors of the system are

3
p
V1 A(V11,V12) /E RA RERI
3 g

p
Vo AE(V21, Vo) £ RERT,RM (3)

Therefore, the ratio of the eigenvector components  vy; and Vi is vai/ vy & 1) (R /RMY2, A
zero eigenvalue of the S-matrix corresponds to the case in which the incident waves correspond-
ing to the eigenvectors of the S-matrix can be completely absorbed ( b Ac AO0). This, called co-
herent perfect absorption (CPA) [55], happens when T & §Ri R’B‘]”2 and the incident waves a,d
correspond to the relevant eigenvector.

Mirror symmetric scatterer

If the scatterer § is mirror symmetric with respect to the  x 4O plane, RA £Ri “ R and the
problem can be reduced to two uncoupled sub-problems by choosing incident waves that are
symmetric (see Figure 1(b)) or antisymmetric (see Figure 1(c)) with the re ection coe Y cients
Rs £ZRAT and Ry £Rj T. In particular, the re ection and transmission coe Y cients of the
initial problem in Figure 1(a) can be expressed as R £(RsAR,)/2, and T £(Rsi Ra)/2 while
the eigenvalues of the S-matrix can be writtenas , 1 £Rs and , 7 /£ j R4. For a one-sided incident
wave, the absorption coe Y cient de ned as ® &£1j Rj%ij Tj? becomes ® &£(®sA ®;)/2, where

C. R. Physique 2020, 21, nO7-8, 713-749
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®s” 1ij Rsj?and ®, ~ 1jj Raj?. Achieving ®(fmax) Z1 at a frequency fmax, is equivalent to getting
simultaneously the minima of the re ection coe Y cients of the two sub-problems, i.e., Ra(fmax) &
Rs(fmax) ZE0 [®s(fmax) A®a(fmax) Z1]. This has been achieved in Ref. [54] for a mirror symmetric
slab made of graphene and a photonic crystal through intensive numerical calculations. In
acoustics, these degenerate resonators have been analyzed and realized in Refs. [30,51, 54].

Point symmetric scatterer

We now further consider that § is a point scatterer, i.e., its length is reduced to x AO. In
other words, the wavelength corresponding to the working frequency is much larger than the
characteristic dimension of the resonator, which is the radius of the neck of a HR. This case
is also relevant to the study of absorption by deep sub-wavelength scatterers. Imposing the
continuity of the wave- eld at this point [42] yields 1 AR /T . This corresponds to Ry £ i1, i.e.,
the scatterer § is transparent to antisymmetric incident waves, ®;, A0, and thus ® £®¢/2 - 1/2.
The maximum value of one-sided absorption, appears at  fmax, IS ®(fmax) Z£1/2. It corresponds to
®s(fmax) Z1 which gives Rs(fmax) 2, 1(fmax) A0, and R(fmax) & i T (fmax) £1/2. Thus, ®(fmax) £
1/2 corresponds to CPA to the two-incident waves problem for symmetric and in phase incoming
waves at fmax, i-€., Vo(fmax)/ V1(fmax) A1 [56].

Mirror asymmetric scatterer

Inthe most general case 8§ could be asymmetric, such that RA 6/RI . Inthis case two absorption
coeY cients can be de ned, ®* &1ij Tj2 iijAjz and ® /1jj Tj?ij R j2. When the eigenvalues
of the scattering matrix are zero, T A& § RARI . Therefore as soon as one of the re ection
coeY cients reaches zero, T £0 and the system can present unidirectional perfect onﬁ-side
absorption }gUNPOA). The eigenvectors of the system will be represented by v; /E(RA, i RAR )
and vy A( RARI ,RA). From the analysis of the eigenvectors, the direction from which PA is
obtained corresponds to an eigenvector equal to (0,0). This situation has been exploited in
acoustics to design UNPOA units [42,45] and UNPOA panels [39].

2.2. Complex frequency plane

In the previous section we have highlighted the relevance of the eigenvalues and eigenvectors of
the scattering matrix to identify the situations of PA in the system. A graphical procedure with rich
information consists of representing these eigenvalues or the components of the eigenvectors in
a complex frequency plane, in which the real part of the frequency is represented in the abscissas
and the ordinates are used to represent the corresponding imaginary part [36,57,58].

In this section we analyze the re ection problems in order to introduce the concept of the
zeros and the poles of the re ection coe Y cient representing the scattering of the problem, in
the complex frequency plane. The information given by this representation will be exploited to
interpret the PA in terms of the critical coupling conditions.

Consider the simple case of a slot with a quarter wavelength resonance plugged to a waveguide
as shown in Figure 2(a). Since the interest is in the low frequency regime, only single-mode
re ected waves are considered. In other words, attention is paid to the range of frequencies, f,
smaller than the cuto V frequency of the waveguide; therefore the problem can be considered as
1D. This one-mode approximation allows us to illustrate with very simple analytic expressions
the appearance of the zeros and poles of the re ection coe Y cient. The geometry of interest is
displayed in Figure 2(a): it corresponds both to an incident wave on a slot of length L and section
S, at the end of a waveguide of section S; or to a wave normally incident on a wall with periodic
slots.

C. R. Physique 2020, 21, nO7-8, 713-749
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Figure 2. Analysis of the complex plane for the slot. (a) Scheme of the slot. (b) Represen-
tation of the 20 log( jRj) in the complex frequency plane for the lossless case. The analyzed
slot has the following parameters L A25 cm, S,/ S; A0.1. The dot and the star represent
the zero and the pole respectively obtained considering the low frequency approximation
(Equations (6) and (7)). (c) Dependence of the complex frequency of the zero (continuous
line) and the pole (dashed line) on the losses added to the system. Arrows show the direc-
tion of the trajectory of the pole as the losses are increased. Filled symbols represent the
lossless case and open symbols represent the last considered lossy case.

A plane wave is incident from the left such that a total wave of the form
p Ae* ARel 'k* 4)

is created in x C 0. The wavenumber is k &' /c with c the acoustic wave speed.

2.2.1. Lossless case

For a rigid wall at the end of the slot pJL) £0 and thus p%0™)/p(0*) £k tan(kL), with the
prime denoting di Verentiation with respect to x. Then, assuming a one-mode approximation,
the continuity conditions are  p(0i ) Z&p (OA) and S;p%0i ) £S,p{0A). That leads to the expression
of the re ection coe Y cient

AECOI(kL)A 1S,/ S1

cot(kL)j iSy/ Sl.

For a real frequency (k real), jRj £1 is recognized as dictated by energy conservation. Going
to the complex frequency plane (complex k), Equation (5) shows that R satis es R(K) £1/R(K)
where r (k) and k represent the complex conjugate of R(k) and k respectively. The re ection
coeY cient has pairs of poles and zeros that are complex conjugate, where the poles have a
negative imaginary part and the zeros have a positive imaginary part. These properties are
general [59]; they come from the structure of the wave equation (Helmholtz equation) and are
independent of the one-mode approximation used in this calculation.

®)
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From (5), the poles correspond to cot( kL) iSy/S; A0 and the zeros to cot( kL) AiS,/ S, AO.
Assuming that the slotis thin ( Sp/S1 ¢ 1), the expression of the rst pole—zero pair is given by

(KL)pole /EE i iS—l, (6)
. Sp
(kL)zero 'CEE'B“S_l (7)

Next pairs of pole—zero are just shiffedby m (m , 1) and will not be regarded in the following.
The complex pole of (6) corresponds to a complex resonance frequency of the slot with an open
end at x /0. The imaginary part ( Sp/ S1) represents the leakage due to the radiation at the open
end towards the exterior of the slot. With the convention of time dependence used in this work,

the wave at the resonance frequency decreases as e"™(* Pt (where | PO AE(KL)pole ¢/ L), thus the
decay time, ¢jeak, €an be related with the quality factor due to the leakage as,

Re( pole)éleak Re( pole)
2 2lm(! pole),

where the leakage rate can be dened as jjeak £ 1/ ¢jeak ZEIM(! poie). The jRj in the complex
frequency plane is shown in Figure 2(b). According to the theory, there is a pole with negative
imaginary part and a zero which is its complex conjugate (with an opposite imaginary part).
In the neighborhood of the pole—zero pair, R is just given by R (kL /2 i iSy/S)/(kL j
12 RS,/ S1). Consequently, for real frequency ( k real), although jRj &1, the complex resonance
frequency is seen as a rapid phase change of the re ection coe Y cient around kL & /2. The
imaginary part, which is related with the leakage rate of energy from the slot to the surrounding
space, is equal to Sy/ Sp, and it gives the quality factor of this rapid phase change.

Qleak /E (8)

2.2.2. Lossy case

Now a lossy coating at the end of the slot, such that pYL) £kYop(L) where Im(Yp) E 0 is
considered. The reduced admittance Yy has a positive imaginary part that corresponds to the
loss of the coating. By using p%0*)/ p(0*) A (k tan(kL) A pXL)/ p(L))(Li tan(kL)/k £ pAL)/ p(L)),
the re ection coe Y cientis changed from (5) to

cot(kL)i YoAiSy/ Si(1A Ygcot(kL)) 9

cot(kL)i Yoi iSo/S1(1A Ygcot(kL)) ©
Due to the loss (Im( Yo) E 0), jRj C 1 for real frequency k. Besides, the pole—zero pair is now shifted
in the complex k plane. For thin slot and small coating ( Yo £0(Sz/ S1) ¢ 1), the pair is given
analytically by

.S
kL E—ii—i Yo, 10
(KL)pole 21|Sll 0 (10)
.S
kL A-Ai=i Y. 11
(KL)zero 5 ISll 0 (11)

By comparing (6)—(7) and (10)—(11) the e Vect of the lossy coating is explicit: the pole and the zero
are shifted downwards in the complex frequency plane by Y. This shiftis illustrated in Figure 2(c)
for a purely resistive admittance Yo /i Awith AE 0.

From the point of view of absorptionde nedas ~ ® /1jj Rj?, all that has decisive consequences:
the zero of r coincides with the real frequency axis ( k real) of the complex plane when

So/ S1 /Elm( Yo). (12)

Then, there is total absorption (for a real frequency) and it corresponds to the critical coupling
where the leakage (Sy/ S1) is balanced by the loss (Im( Yo)). It is worthwhile to emphasize here that
the narrowband or broadband character of this absorption peak is only governed by the radiation

C. R. Physique 2020, 21, nO7-8, 713-749
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Figure 3. (a) Square cross-section HRs. (b) Conceptual view of the metamaterial panel
placed on a rigid end with N A4 layers of HRs. (c) Conceptual view of the metamaterial
panel with N /4 layers of HRs for the transmission problem.

leakage through the distance between the pole and the zero in the complex frequency plane. The
loss just shifts the pole—zero pair (see (10)—(11)).

The situation of PA in the re ection problem in acoustics, described in this section with
a toy model, has been exploited in real conditions to obtain deep sub-wavelength anechoic
terminations by means of resonant building blocks made of slow sound metamaterials [32, 37],
porous membranes [28], membranes [31], decorated membranes [29], bubble metascreens [33]
and aerogel-like metamaterials [34], among other systems.

2.3. Helmholtz resonators

In this work we use HRs with either square or cylindrical cross-section. HRs with square (cylin-
drical) cross sections are characterized by a neck and cavity of width  wp and w, (of radius r, and
re) and length |, and | respectively (see Figure 3(a)). The HR is loaded in cylindrical waveguides
(of radius r) or in two-dimensional slits (of height h). Two examples of HRs loaded in slits em-
bedded in panels are shown in Figures 3(b) and (c) for the re ection and transmission problems.
The visco-thermal losses in the system are considered in the resonators as well as in the slits or in
the main waveguides by using its e Vective complex and frequency dependent parameters [60].
Using the e Vective parameters for the neck and cavity elements of a HR, the impedance can
be written as
2 Aj tankplptankelc
" Atanknln Atankelc’
with A EZ./Zy, |y and | are the neck and cavity lengths, S, and S are the neck and cavity
surfaces and k, and k¢, and Z,, and Z. are the eVective wavenumbers and e Vective characteristic
impedance in the neck and cavity respectively. As we are using either square or cylindrical cross
section HRs, the neck and cavity surfaces should be calculated corresponding to each case.
Equation (13) is not exact as long as correction due to the radiation should be included. The
characteristic impedance accounting for the neck radiation can be expressed as [61]:

2 ;E.icos(knln)cos(kclc)j Znkn€lcos(knln)sin(kele) Zei Zn sin(knlp)sin(kele)! Zc
HR 7= sin(knln)cos(kele) Zn i kn€lsin(knln)sin(kele) Ze Acos(knln)sin(kelc) Ze

Zur (13)

., (14)

C. R. Physique 2020, 21, nO7-8, 713-749



V. Romero-Garcia et al. 721

where the correction length is deduced from the addition of two correction lengths ¢l E¢l Acl,
as

: noTs,
r r
¢ly £0.82 1j 1.35r—“A0.31 r—” In, (15)
: (r: U: 1
¢l, /£0.82 1j o.235r—”i 1.32 r—” (16)
t
Hr T3 ® Ur 1.
A154 L 086 2 rp. (17)

Mt It
The rst length correction, ¢l1, is due to pressure radiation at the discontinuity from the neck
duct to the cavity of the HR [62], while the second ¢, comes from the radiation at the disconti-
nuity from the neck to the principal waveguide [63]. This correction only depends on the geome-
tries of the waveguides (or slits), so it becomes important when the duct length is comparable to
the radius, i.e., for small neck lengths and for frequencies where  kr, ¢ 1.

2.4. Transfer matrix method

In this work we use the transfer matrix method (TMM) to analyze the wave propagation in the
proposed systems. This method allows us to develop discrete models accounting for the nite
number of resonators. The transfer matrix is written as:
[ H

P; ET Po

U| UO ’
where P;j and P, (Uj and U,) are the incident and the output pressures (velocities) of the system.
If the system is made of N resonators, as shown in Figure 3(c) for a single slit, the system can be
represented by the following transmission matrix
M f 3 ’
T T, ¥

LR e MMM

TaaTe \m

(18)

TA

In the case of identical resonators, Mf_?F)e AMuyr 8n, and then

T A(MsMprMs)" (19)

where the transmission matrix for each lattice step, Mg, is Writteri as
3 - 3

a ._ . a

cos kSE iZgsin kSE
MslcE . 3 - 3 4 ) (20)

(. a a

—sin ks— cos ks—

Zs 2 2
with - g, ¥ and Sg the eVective bulk modulus, density (given by Ref. [60]) and the area of
the waveguide where the resonators are loaded respectively. The resonators are introduced as
punctual scatterers by a transmission matrix M ,(4”% as

Hlo'ﬂ

(n) q -
Uz R
If the system is embedded in a panel of periodic slits with periodicity  d, the radiation correction
of the slit to the free space should be added to the (19) as

3l
1Z¢

slit = 0 1 & ’ (22)

with the characteristic radiation impedance  Zg , 4 ji! ¢l Yol At S, where S is the area of

exterior periodicity, Y the air density and ¢lg; the proper end correction coming from the

Q)
MG & (21)

Mg

C. R. Physique 2020, 21, nO7-8, 713-749



722 V. Romero-Garcia et al.

radiation from the slits to the free air. The radiation correction for a periodic distribution of slits
can be expressed as [64]: " ) )
¢lgji ENA¢ o A (n’ A:;t)

n /L (n At)

Note thatfor0.1 - A - 0.7 this expression reducesto ¢lgj ¥4i 2In[sin( A/2))/ .Although (23)
is appropriate for a periodic array of slits, it is not exact for slits loading HRs, therefore, we can
evaluate a more realistic value for the end correction by reconstructing an equivalentimpedance,

Z, from the re ection coe Y cient of the zeroth order Bloch mode calculated with the full model
and comparing it as [57]:

(23)

1
Zi iZecotan(kel) £ ji! %msm, (24)
t
where Z¢ and ke are the eVective acoustic impedance and wave number of the acoustic metama-
terial [38]. The end correction using this last approach gives a value that depends on the geometry
of the HRs.
Then, in the re ection problem, the re ection coe Y cient is calculated using the elements of
the transfer matrix as

T11i ZoT
R A 1Ll o 21, (25)
T11AZoTn
with Zg AYp»Col Sp, and nally the absorptionas ® A1 jj Rjz.
In the symmetric reciprocal transmission problem, the re ection and the transmission coe Y-
cients are calculated as
2¢i ikL
T A , 26
T11AT1o/ ZoAZoT21 AT (26)
T11AT12/ Zoi ZoTo1i Tao
. 27)
T11AT12/ ZoAZoT21 AT
In the antisymmetric reciprocal transmission problem, the re ection and the transmission
coeY cients are calculated as
2¢l ikL
T A , 28
TllAT12/ZOAZoT21AT22 (28)
T11AT1o/ Zoi ZoTo1i T
rA g 1A T2l Zoi Zola1i 22’ (29)
T11AT1o/ ZgAZoT21 AT
o i TuATl Zoi ZoT2 AT
R gl ATl zoi Zol1ATae (30)
T11AT12/ ZoA ZT21 AT

3. Perfect absorption in one port systems (pure re ection problem)

In this section we experimentally and analytically report PA for audible sound, by the mechanism
of critical coupling, with a sub-wavelength single resonant scatterer made of a HR with a closed
waveguide structure [28]. The controlled balance between the energy leakage of the several
resonances and the inherent losses of the system leads PA peaks.

The con gurations analyzed in this section can be considered as equivalent to an asymmetric
Fabry—Pérot cavity oflength L withtwo di Verent mirrors, i.e., the resonant scatterer, considered as
a point-scatterer because it is sub-wavelength, and the rigid backing (as schematically shown in
Figure 4(a)). The absorption of this system can be expressed as ® ZA1jj Rj%, where R is the complex
re ection coe Y cient obtained from the standard three-medium layer Fresnel equation [65],

T ,%Rt ei2kL
1i RrRie2kt’
where Rg and R; are the re ection coe Y cients of the resonant element and of the termination,
respectively (in our case, R; A1). Considering inherent losses in this con guration, the PA is

R /AERg A (31)
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Figure 4. (a) Asymmetric Fabry—Pérot resonator made of a resonant element (red point)
and a rigid backing at distance L from the resonator. (b) Shows the resonator set-up. In the
set-up an Impedance Sensor (I1S) [61] is used for the measurements.

Figure 5. (a) Complex frequency map of log jrj for the resonant system with Lg A£8.3 cm.
Black dashed (continuous) line represents the trajectory of the zero of  jrj for the lossless
(lossy) case in the complex plane increasing Lg (sense of the increasing shown by arrows
over the lines). (b) Red continuous and green dotted lines (open red circles and open
green squares) represents the absorption coe Y cient ® for the con gurations ( Lg,fcc) £
(8.3 cm,484.5 Hz) and (LR, fcc) Z£(3.9 cm,647 Hz). Blue dash-dotted line represents the
absorption coe Y cient for the con guration ( LRg, fcc) £(7 cm,526 Hz) with half inherent
losses of the experimental case. Black dashed line represents the absorption coe Y cient
for the con guration ( Lg, fcc) A£(16 cm, 330 Hz) with 20 times the inherent losses of the
experimental case. Figure reproduced from Ref. [28].

ful lled when the re ection coe Y cient is zero, i.e., when the superposition of the multiple
re ections in the cavity (second term in (31)) destructively interferes with the direct re ection
from the resonant element ( rstterm in (31)).

Figure 4(b) shows the set-up used for the system with the HR side-loaded to the closed
waveguide. The HR is composed of a neck of length L, A£2 cm with radius R, A1 cm, a cavity
with tunable length, Lg, and radius Rgr A£2.15 cm. The waveguide has a radius R £2.5 cm
and L A£15 cm. The viscothermal losses at the walls of the waveguide and of the resonator are
characterized by both a complex wave vector and a complex impedance [60, 61, 66].

By changing Lr from 0 to 15 cm, i.e., by changing the resonant frequency of the HR, we
study the trajectory of the zero of the re ection coe Y cient in the complex frequency plane
for the lossless case. Figure 5(a) (black dashed line) shows the trajectory of the zero of the
re ection coe Y cient that is produced by a hybridized resonance due to the interaction between
the resonance of the HR and the resonance of the backing cavity. As shown by the arrows over
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the trajectory, the zero moves to lower real frequencies as Lg increases. The characteristics of the
modes, i.e., the resonant frequency and the leakage rate are related to the real and imaginary part
of the zero in the complex frequency plane respectively [28].

Now we consider the viscothermal losses in the system and we observe that the trajectory
of the zero down-shifts (black continuous line) with respect to the lossless case. The critical
coupling condition is satis ed at the frequency, fcc at which the trajectory of the zero crosses
the real frequency axis. For the analyzed system, one can clearly see two crossing points, i.e., two
diVerent con gurations producing PA. These points correspond to (LR, fcc) Z£(8.3 cm,484.5 Hz)
and (Lg, fcc) A(3.9 cm, 647 Hz). Figure 3(a) shows the re ection coe Y cient (31) in the complex
frequency plane for the con guration (LR, fcc) A(8.3 cm,484.5 Hz). Similarly, a complex map for
the con guration ( Lg, fcc) £(3.9 cm, 647 Hz) with the zero in the real frequency axis can also
be obtained [28]. We nd analytically PA ( ® A1) for the two above mentioned con gurations
at 484.5 Hz and 647 Hz as shown in Figure 3(b), in agreement with the crossing points of the
trajectory of the zero with the real frequency axis represented in Figure 5(a) (black continuous
line). Experiments show also very good agreement with the theoretical predictions, producing
100% of absorption for these con gurations at the corresponding frequencies with a relative
narrow bandwidth of frequencies due to the small leakage of the resonance.

Generally, by changing the inherent losses of the system, we can move the trajectory of
the zero in the complex plane, and we can always nd a con guration with the good balance
between the energy leakage and the inherent losses of the whole resonator to ful Il the critical
coupling condition and activate the PA. In particular, increasing of inherent losses in the system
produces two main e Vects: the critical coupling condition is shifted in frequencies and the PA
peak becomes broadband because the critical coupled resonances are more leaky.

In order to show these e Vects, we theoretically analyze the cases of weak and large inherent
losses. Dash-dotted blue line and dashed black line in Figure 5(b) represent the absorption
coeY cient for the con gurations ( Lg,fcc) £(7 cm,526 Hz) and (LR, fcc) £(16 cm,330 Hz)
each one with the right amount of inherent losses to accomplish the critical coupling. The rst
(second) one corresponds to a situation with 0.5 (20) times the inherent losses of the experimental
case. With small amount of inherent losses, one can nd a very narrow PA peak while with large
amount of inherent losses the PA peak becomes broad. The broad character is due to the large
energy leakage of the critically coupled resonance [28].

4. Perfect absorption in two port systems

In this section we review the main features of PA through the interplay of the inherent losses and
transparent modes [67—71] with high Q factor as shown in [42]. These modes are generated in a
two-port one-dimensional waveguide which is side-loaded by isolated resonators with moderate

Q factor. This mode allows transparency in the lossless case, i.e., a perfectly transmitted wave,
within a narrow spectral range. These modes are characterized by an extreme dispersion which
leads to slow waves. In mirror symmetric structures, we show that in the presence of small
inherent losses, these modes lead to coherent PA associated with one-sided absorption slightly
larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%)
with a deep sub-wavelength sample ( , /28).

4.1. Point symmetric

A point symmetric scatterer made of two detuned HRs ('R 6/4,'R) located at the same axial
position is analyzed in this section (see the sketch in Figure 6(b)). We de ne the detuning
parameter as (f;'Rj f/R)/j _, where j | £3.14 Hz is the decay rate due to losses of the HRs [42].
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Figure 6. Point symmetric scatterer. (a) Theoretical lossless transmission coe Y cient
(logscale) in the complex frequency plane with the trajectories of the poles (black lines)
and of the zero (red dashed line) for ( /'R f1R)/j 2[j 37;67]. The positions of the poles
are marked for ( fJRj 1Ry | /9.8 (yellow dots) and the underlying colormap image cor-
respondsto (/'R f/1R)/j | /A 37. Inset: zoom around the critical coupling point. (b) Theo-
retical with losses (dashed curves), experimental (continuous curves) transmission (yellow
curves) and re ection (green curves) coe Y cients versus frequency for ( f5'R; R)/ A9.8
with fg A£311 Hz. (c) Absorption (gray), transmission (orange) and re ection (blue) coef-
cients at fmax versus (f/'Rj 1R)/j | (curves for theory and dots for experiments). Inset:
eigenvalues of the experimental S-matrix for ( f1Rj £R)/j /9.8

Ignoring the losses, it has been shown that, for small values of the detuning parameter, the
transmission coe Y cient presents an extraordinary induced transparent (EIT) like mode with
unity transmission at fo A& (f}'R A £/1R)/2 [67-71]. The lossless transmission coe Y cient in the
complex frequency plane is displayed in Figure 6(a); this reveals two poles which are hybridized
resonances resulting from the two resonances of the HRs. As the detuning parameter changes, in
our case by increasing the resonance frequency of one HR while keeping the other one xed at
leR /294 Hz, the poles move (sense of the arrows in Figure 6(a)), interact and repel each others.
AstIR; £HR1 0, one pole at fyle, With Re(fpoie) ' fo, approaches the real axis giving rise to an
EIT-like mode with high Q factor. In other words, the interaction of the two resonances leads to
a dark mode (the EIT-like mode) and a bright mode (with a corresponding pole far from the real
axis).

We now analyze the experimental results and compare them with the theoretical predictions
taking into account the losses [42] by looking at the scattering coe Y cients as a function of the
frequency (corresponding to the real axis in the complex frequency plane). For small detuning
parameter, the viscothermal losses importantly reduce the amplitude of the transparent peak
associated with the EIT like mode: instead of the unity transmission in the lossless case, the peak
can take values between 0 and 1. For each value of the detuning parameter, the transparent peak
is associated with a peak of absorption found at  fiax (slightly di Verent from fg due to the losses).
The maximum peak of absorption is found with ('R f/R)/; | /9.8, highlighted with circles
in Figure 6(a), at fmax Z£306 Hz. The relevant scattering coe Y cients are displayed in Figure 6(b).
According to the theoretical considerations on point symmetric scatterers, T (fmax)j £ R(fmax)j £
0.5 corresponds to ®s(fmax) ££1 and consequently to ®(fnax) ZA£0.5. This one-sided incident
wave maximum of absorption is found when the leakage of the EIT-like mode is tuned in order
to balance the inherent losses, i.e., it is critically coupled [33, 42, 52, 72]. This is con rmed in
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Figure 6(c) where the scattering coe Y cients and the absorption at fnax are plotted as a function
of the detuning parameter. In addition, one experimental eigenvalue becomes zero at fmax as
shown in Figure 6(c). As mentioned above, this is the symmetrical CPA [56]; the case at which the
incident waves from the two sides of the sample, correspondingtothe  S-matrix eigenvector such
asvy/ vy /1, are completely absorbed.

4.2. Mirror symmetric resonators

We now pay attention to mirror symmetric scatterers. The interest of these scatterers, compared

to the point symmetric scatterers, relies on the fact that the one-sided absorption ® takes value
larger than 0.5. This happens since ®; can be diVerent from zero. Two tuned HRs ( leR yi
f 1R 1 HR) located at di Verent axial positions and separated by the distance | forms the mirror
symmetric resonator analyzed in this section (see the sketch in Figure 7(a)). Now, the detuning
parameter is de ned as k"Rl £2 tHR|/cy where ¢ is the sound velocity. As in the point
symmetric scatterer case, we rst inspect the behavior of the lossless transmission coe Y cient
in the complex frequency plane. In addition to the two HR-related poles, multiple poles due

to the Fabry—Pérot resonances of the waveguide appear. Once the resonance frequency of the
HRs is close to a Fabry—Pérot frequency f™ (kMRl » n , where n 2 N including n Z0), one
of the poles approaches the real axis and gives rise to an EIT-like mode. In Figure 7(a), the
case where k"R| | is shown. As before, the viscothermal losses can subsequently reduce the
amplitude of the transparent peak associated to the ElIT-like mode, see Figures 7(b) and (c).
The discrepancies between experimental results and theoretical predictions, larger than in the
case of point symmetric scatterers, are attributed to a larger leakage outside the waveguide and

to the di Y culty to get R £f1R in experiments. We continue our analysis by studying some
particular detuning parameters values. For instance, we experimentally (theoretically) nd that
R(fcpa)'i T(fcpa) for kKMRI/ A£0.82and 1.17 k"RI/  /0.86 and 1.14) at fcpa.

According to the theory, these cases correspond to ®s(fcpa) Z£1, which is equivalent to a
symmetrical CPA point, , 1(fcpa) Z0O. In Figure 7(b), we verify the existence of a symmetrical CPA
point by plotting the scattering coe Y cients, as well as the eigenvalues of the experimental S-
matrix, as a function of frequency for kHRI/  /E1.17. Importantly, at these detuning parameter
values, both in theory and experiments, the one-sided absorption ~ ® takes a value larger than 0.5
around fcpa. Indeed, as we mentioned above ®, 64, which is con rmed experimentally by the
factthat | » 64, see inset of Figure 7(b). It is worth to comment here that, by using HRs of smaller
Q factor, we observe a larger value of ®. Overall, we nd that the maximum peak of absorption
is ®(fmax) Z£0.55 in theory (®(fmax) £0.6 in experiments) for kHRI/ /0.86 and 1.14 as shown
in Figure 7(c); as before, we show that this corresponds to the critical coupling of the relevant
EIT-like mode [42]. The maximum peak of absorption appears theoretically at the symmetrical
CPA point, i.e., for the same detuning parameter and at fmax Z£fcpa. This is explained by the
experimentally observed nearly constant behavior of | 5, and thus ®,, which is not the case of
asymmetric scatterers as we will see below.

4.3. Perfect absorption in asymmetric systems

To enhance the one-side incident wave absorption, let us now turn to the case of asymmetric scat-
terers. We consider an additional degree of freedom in the setup: two detuned HRs (/'R 6/&/R)
separated by the distance | (see the sketch in Figure 8(a)). The mirror symmetry is broken
(Ri 6/R™) and two detuning parameters are de ned as kYRl and k4RI, Figure 8(a) shows the
maximum of one-sided absorption found at  fihax, which is de ned with the left incoming wave

® /A1ij Rij?ij Tj? as a function of the two detuning parameters, where the red dashed line
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