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Abstract

A characterization of the structure of a regular matrix pencil obtained
by a bounded rank perturbation of another regular matrix pencil has been
recently obtained. The result generalizes the solution for the bounded
rank perturbation problem of a square constant matrix. When compar-
ing the fixed rank perturbation problem of a constant matrix with the
bounded rank perturbation problem we realize that both problems are of
different nature; the first one is more restrictive. In this paper we char-
acterize the structure of a regular matrix pencil obtained by a fixed rank
perturbation of another regular matrix pencil. We apply the result to find
necessary and sufficient conditions for the existence of a fixed rank per-
turbation such that the perturbed pencil has a prescribed determinant.
The results hold over fields with sufficient number of elements.

Keywords: Regular matrix pencil, Weierstrass structure, Fixed rank pertur-
bation, Matrix spectral perturbation theory.
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1 Introduction

Low rank perturbations of matrix pencils have been widely studied, and the
problem has recently deserved the attention of several authors, as we will see in
the next references. Given a matrix pencil A(s) and a nonnegative integer r, the
problem consists in characterizing the Kronecker structure of A(s)+P (s), where
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P (s) is a matrix pencil of bounded (rank(P (s)) ≤ r) or fixed rank (rank(P (s)) =
r).

Some authors focus their research on generic perturbations; it means that the
perturbation pencil P (s) belongs to an open and dense subset of the set of pencils
of bounded or fixed rank (for this approach see for instance [4, 5, 6, 10, 12, 13]
and the references therein).

Another approach considers that the pencil P (s) is an arbitrary perturbation
belonging to the whole set of pencils of bounded or fixed rank. Within this
framework and for bounded rank perturbations, the problem has been solved in
[14, 16] for pencils of the form A(s) = sI − A, P (s) = P , with A,P constant
matrices (see Proposition 2.7 below). In the earlier work [15], the same problem
was solved for rank(P (s)) = 1. A solution for quasi-regular matrix pencils of
the form A(s) =

[
sIn −A1 A2

]
and perturbation matrix P =

[
P1 P2

]
has been obtained in [7]. For regular pencils A(s) and A(s)+P (s), a solution to
the bounded rank problem has recently been given in [2] (see Proposition 2.8)
(see also [2] for further references on the problem).

Concerning fixed rank perturbations, the problem has been solved in [14]
when A(s) = sI − A and P (s) = P is a constant matrix. The result obtained
holds over algebraically closed fields (see Proposition 2.10 below).

When comparing the characterization of the solutions of the bounded [14, 16]
and fixed rank [14] perturbation problems, we observe that an extra condition
appears in the fixed rank case, which proves that the two problems are of dif-
ferent nature.

In this paper we deal with regular matrix pencils and we require that P (s)
is a matrix pencil of fixed rank. More precisely, the first problem we solve is the
following:

Problem 1.1 Given two regular matrix pencils A(s), B(s) ∈ F[s]n×n and a
nonnegative integer r, r ≤ n, find necessary and sufficient conditions for the
existence of a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r and
A(s) + P (s) is strictly equivalent to B(s).

A solution to Problem 1.1 is given in Theorems 3.9 and 3.10. Unlike what
happens when perturbing pencils of the form sI−A with constant matrices [14],
in this case the solutions to the bounded and fixed rank perturbation problems
are characterized in terms of the same conditions. This is due to the fact that
as the perturbation matrix can be a matrix pencil, it introduces some more
freedom than in the constant perturbation problem. But, the fact of being a
more restrictive problem determines extra needs for achieving a solution, and in
this case proofs are more demanding. To solve it under the same conditions of
the bounded case, some specific technical lemmas must be introduced; nothing
similar was required in the bounded case.

The solution to Problem 1.1 obtained allows us to solve the following eigen-
value placement problem:
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Problem 1.2 Given a regular matrix pencil A(s) ∈ F[s]n×n, a nonnegative
integer r, r ≤ n, and a monic polynomial 0 6= q(s) ∈ F[s] with deg(q(s)) ≤
n, find necessary and sufficient conditions for the existence of a matrix pencil
P (s) ∈ F[s]n×n such that rank(P (s)) = r and det(A(s) + P (s)) = kq(s), with
k ∈ F.

A solution to Problem 1.2 is given in Theorem 4.1 (see also Corollary 4.2
and Remark 4.3). An analogous problem was solved in [2] in the case that
rank(P (s)) ≤ r. For r = 1, see also [9].

The paper is organized as follows. In Section 2 we introduce the notation,
basic definitions and preliminary results. In Section 3 we solve Problem 1.1,
first for pencils not having infinite elementary divisors and then for the general
case. A solution to Problem 1.2 is given in Section 4. Finally, in Section 5 we
summarize the main contributions of the paper.

2 Notation and preliminary results

The section contains two subsections, where we introduce notation, basic defini-
tions and some results concerning matrix pencils (Subsection 2.1) and previous
results about matrix or pencil perturbations of bounded or fixed rank (Subsec-
tion 2.2).

2.1 Notation and basic definitions

Let F be a field. F[s] denotes the ring of polynomials in the indeterminate s with
coefficients in F, F[s, t] the ring of polynomials in two indeterminates s, t with
coefficients in F, and Fm×n, F[s]m×n and F[s, t]m×n denote the vector spaces of
m× n matrices with elements in F, F[s] and F[s, t], respectively. Gln(F) is the
general linear group of invertible matrices in Fn×n.

The number of elements of a finite set I will be denoted by | I |. If G is a
matrix in Fm×n, I ⊆ {1, . . . ,m}, and J ⊆ {1, . . . , n}, with | I |= r and | J |= s,
then G(I, J) denotes the r× s submatrix of G formed by the rows in I and the
columns in J . Similarly, G(I, :) is the r× n submatrix of G formed by the rows
in I and G(:, J) is the m× s submatrix of G formed by the columns in J .

If | I |=| J | and det(G(I, J)) 6= 0, then the Schur complement of G(I, J) in
G is

G/G(I, J) = G(Ic, Jc)−G(Ic, J)G(I, J)−1G(I, Jc),

where Ic = {1, . . . ,m} \ I and Jc = {1, . . . , n} \ J (see [1]). It is satisfied that

rank(G) = rank(G(I, J)) + rank(G/G(I, J)),

and if m = n,
det(G) = ±det(G(I, J)) det(G/G(I, J)).
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We review now some basic definitions and results about matrix pencils. For
details see, for example, [8, Ch. 12].

A matrix pencil is a polynomial matrix G(s) ∈ F[s]m×n with deg(G(s)) ≤ 1.
The normal rank of G(s), denoted by rank(G(s)), is the order of the largest non
identically zero minor of G(s), i.e. it is the rank of G(s) considered as a matrix
on the field of fractions of F[s]. The pencil is regular if m = n and det(G(s)) is
a non zero polynomial. Otherwise it is singular.

If rank(G(s)) = ρ, the determinantal divisor of order k of G(s), denoted by
Dk(s), is the monic greatest common divisor of the minors of order k of G(s),
1 ≤ k ≤ ρ. The determinantal divisors satisfy Dk−1(s) | Dk(s), 1 ≤ k ≤ ρ
(D0(s) := 1) and the invariant factors of G(s) are the monic polynomials

γk(s) =
Dk(s)

Dk−1(s)
, 1 ≤ k ≤ ρ.

We will take γi(s) := 1 for i < 1 and γi(s) := 0 for i > ρ.

Given a square matrix G ∈ Fn×n, the invariant factors of G are the invariant
factors of the corresponding pencil sIn −G. Two square matrices G,H ∈ Fn×n
are similar (G

s∼ H) if there exists an invertible matrix Q ∈ Gln(F), such that

G = QHQ−1. It is well known that G
s∼ H if and only if G and H have the

same invariant factors (see, for instance, [8, Ch. 6, Theorem 7]).

Two matrix pencils G(s) = G0 + sG1, H(s) = H0 + sH1 ∈ F[s]m×n are

strictly equivalent (G(s)
s.e.∼ H(s)) if there exist invertible matrices Q ∈ Glm(F),

R ∈ Gln(F) such that G(s) = QH(s)R.

If G(s)
s.e.∼ H(s) then G(s) and H(s) have the same invariant factors. The

converse is, in general, not true. If n = m, det(G1) 6= 0 and det(H1) 6= 0, then

G(s)
s.e.∼ H(s) if and only if G(s) and H(s) have the same invariant factors.

(see, for instance, [8, Ch.12, Theorem 1]). In any other case, more invariants
are needed to characterize the strict equivalence relation of pencils.

Given G(s) = G0 + sG1 ∈ F[s]m×n, with ρ = rank(G(s)), the homogeneous
pencil associated to G(s) is

G(s, t) = tG0 + sG1 ∈ F[s, t]m×n,

and the homogeneous determinantal divisor of order k of G(s), denoted by
∆k(s, t), is the greatest common divisor of the minors of order k of G(s, t),
1 ≤ k ≤ ρ. We will assume that ∆k(s, t) is monic with respect to s. The
homogeneous determinantal divisors of G(s) are homogeneous polynomials and
∆k−1(s, t) | ∆k(s, t), 1 ≤ k ≤ ρ (∆0(s, t) := 1). The homogeneous invariant
factors of G(s) are the homogeneous polynomials

Γk(s, t) =
∆k(s, t)

∆k−1(s, t)
, 1 ≤ k ≤ ρ.
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The following theorem states that the homogeneous invariant factors form
a complete system of invariants for the strict equivalence of regular pencils. A
proof can be found in [8, Ch. 12] for infinite fields and in [11, Ch. 2] for arbitrary
fields.

Theorem 2.1 (Weierstrass) Two regular matrix pencils are strictly equiva-
lent if and only if they have the same homogeneous invariant factors.

If γ1(s) | · · · | γρ(s) are the invariant factors G(s) with rank(G(s)) = ρ, then

γi(s) = Γi(s, 1), 1 ≤ i ≤ ρ,

and
Γi(s, t) = tmi(∞,G(s))tdeg(γi)γi(

s

t
), 1 ≤ i ≤ ρ,

for some integers 0 ≤ m1(∞, G(s)) ≤ · · · ≤ mρ(∞, G(s)). Hence Γ1(s, t) | · · · |
Γρ(s, t). We take Γi(s, t) := 1 for i < 1 and Γi(s, t) := 0 for i > ρ.

If mi(∞, G(s)) > 0, then tmi(∞,G(s)) is an infinite elementary divisor of
G(s). The infinite elementary divisors of G(s) exist if and only if rank(G1) <
rank(G(s)).

Observe that knowing the homogeneous invariant factors of a pencil is equiv-
alent to knowing the invariant factors and the infinite elementary divisors.

We denote by F the algebraic closure of F. The spectrum of G(s) = G0 +
sG1 ∈ F[s]m×n is defined as

Λ(G(s)) = {λ ∈ F ∪ {∞} : rank(G(λ)) < rank(G(s))},

where we agree that G(∞) = G1. The elements λ ∈ Λ(G(s)) are the eigenvalues
of G(s).

The invariant factors and the homogeneous invariant factors of G(s) can be
written as

γi(s) =
∏

λ∈Λ(G(s))\{∞}

(s− λ)mi(λ,G(s)), 1 ≤ i ≤ ρ, (1)

and

Γi(s, t) = tmi(∞,G(s))
∏

λ∈Λ(G(s))\{∞}

(s− λt)mi(λ,G(s)), 1 ≤ i ≤ ρ. (2)

For λ ∈ Λ(G(s)), the integers 0 ≤ m1(λ,G(s)) ≤ · · · ≤ mρ(λ,G(s)) are called
the partial multiplicities at λ of G(s). If λ ∈ F \Λ(G(s)), we put m1(λ,G(s)) =
· · · = mρ(λ,G(s)) = 0. For λ ∈ F∪ {∞}, we will agree that mi(λ,G(s)) = 0 for
i < 1 and mi(λ,G(s)) =∞ for i > ρ.

For regular matrix pencils, expressions (1) and (2) allow us to write

det(G(s)) =

n∏
i=1

γi(s) =
∏

λ∈Λ(G(s))\{∞}

(s− λ)µa(λ,G(s)),
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det(G(s, t)) =

n∏
i=1

Γi(s, t) = tµa(∞,G(s))
∏

λ∈Λ(G(s))\{∞}

(s− λt)µa(λ,G(s)),

where, for λ ∈ F ∪ {∞}, µa(λ,G(s)) =
∑n
i=1mi(λ,G(s)) is the algebraic mul-

tiplicity of λ in G(s). Notice that deg(det(G(s, t))) = n and deg(det(G(s))) =
n− µa(∞, G(s)).

Given an homogeneous polynomial Γ(s, t), we will use the following notation

Λ(Γ(s, t)) := {λ ∈ F ∪ {∞} : Γ(λ, 1) = 0},

where Γ(∞, 1) := Γ(1, 0). With this notation, if G(s) ∈ F[s]n×n is a regular
matrix pencil with Γ1(s, t) | · · · | Γn(s, t) homogeneous invariant factors, then

Λ(G(s)) = Λ(Γn(s, t)) = Λ(Γ1(s, t) . . .Γn(s, t)).

Also, for a polynomial q(s) ∈ F[s] with deg(q(s)) ≤ n, we define

Λn(q(s)) := {λ ∈ F : q(λ) = 0} if deg(q(s)) = n,

Λn(q(s)) := {λ ∈ F : q(λ) = 0} ∪ {∞} if deg(q(s)) < n.

When a matrix pencil has infinite elementary divisors, we can perform a
change of variable which turn it into a new pencil without infinite structure.
This will be done in Section 3, and we will need the following results, which can
be found in [3].

Let X =

[
x y
z w

]
∈ Gl2(F). For a matrix pencil G(s) = sG1 +G0 ∈ F[s]m×n

and an homogeneous polynomial Φ(s, t) ∈ F[s, t] we define:

PX(sG1 +G0) = s(xG1 + zG0) + (yG1 + wG0) ∈ F[s]m×n,

ΠX(Φ)(s, t) = Φ(sx+ ty, sz + tw) ∈ F[s, t].

Lemma 2.2 [3, Lemma 6] The functions PX ,ΠX are invertible and

(PX)
−1

= PX−1 , (ΠX)
−1

= ΠX−1 .

Lemma 2.3 [3, Lemma 7] Let Φ(s, t),Ψ(s, t) ∈ F[s, t] be homogeneous polyno-
mials. Then, Φ(s, t) | Ψ(s, t) if and only if ΠX(Φ)(s, t) | ΠX(Ψ)(s, t).

Lemma 2.4 [3, Lemma 9] Let G(s) = sG1 +G0, H(s) = sH1 +H0 ∈ F[s]m×n.

Then G(s)
s.e.∼ H(s) if and only if PX(G(s))

s.e.∼ PX(H(s)).

Lemma 2.5 [3, Lemma 10] Let G(s) = sG1 + G0 ∈ F[s]m×n, ρ = rank(G(s)).
Let Γ1(s, t) | . . . | Γρ(s, t) be the homogeneous invariant factors of G(s). Then
the homogeneous invariant factors of PX(G(s)) are ΠX(Γ1)(s, t) | . . . | ΠX(Γρ)(s, t).

Remark 2.6 Observe that

(i) rank(PX(G(s))) = rank(G(s)).

(ii) In Lemma 2.5, ΠX(Γi)(s, t) are not necessarily monic with respect to s.
In fact, ΠX(Γi)(s, t) are the homogeneous invariant factors of PX(G(s))
multiplied by a constant 0 6= ki ∈ F.
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2.2 Rank perturbations of square matrices and regular
matrix pencils

The problem of characterizing the Weierstrass structure of a regular matrix
pencil obtained by a bounded rank perturbation of another regular matrix pencil
(i.e. Problem 1.1 with the relaxed condition rank(P (s)) ≤ r) was solved in [2].
The key point in the obtention of the solution was the next result. It was proven
in [16] and in [14] under another formulation.

Proposition 2.7 [14, Theorem 1], [16, Theorem 3] Let A(s) = sIn+A,B(s) =
sIn+B ∈ F[s]n×n. Let α1(s) | · · · | αn(s) and β1(s) | · · · | βn(s) be the invariant
factors of A(s) and B(s), respectively. Let r be a nonnegative integer. Then

there exists a matrix P ∈ Fn×n such that rank(P ) ≤ r and A(s) +P
s.e.∼ B(s) if

and only if
βi−r(s) | αi(s) | βi+r(s), 1 ≤ i ≤ n. (3)

The next proposition is the generalization of Proposition 2.7 to regular ma-
trix pencils obtained in [2].

Proposition 2.8 [2, Theorem 4.12] Let A(s), B(s) ∈ F[s]n×n be regular ma-
trix pencils. Let φ1(s, t) | · · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be the
homogeneous invariant factors of A(s) and B(s), respectively, and assume that
F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(B(s)). Let r be a nonnegative integer. There exists a

matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) ≤ r and A(s)+P (s)
s.e.∼ B(s)

if and only if
φi−r(s, t) | ψi(s, t) | φi+r(s, t), 1 ≤ i ≤ n. (4)

From this proposition we can derive the following result.

Corollary 2.9 Let A(s), B(s) ∈ F[s]n×n be regular matrix pencils. Let φ1(s, t) |
· · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be the homogeneous invariant factors
of A(s) and B(s), respectively, and assume that F∪ {∞} 6⊆ Λ(A(s))∪Λ(B(s)).
Let

r0 = min{r ≥ 0 : φi−r(s, t) | ψi(s, t) | φi+r(s, t), 1 ≤ i ≤ n}.

Then there exists a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r0 and

A(s) + P (s)
s.e.∼ B(s).

In this paper we will show that for any r , r0 ≤ r ≤ n, there exists a matrix
pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r and A(s) + P (s)

s.e.∼ B(s) (see
Corollary 3.11).

When F is an algebraically closed field the possible similarity class of a
square matrix obtained by a fixed rank perturbation of another square matrix
was characterized in [14]. The result is presented in the next proposition; the
statement is different from the original one and more adapted to our problem.
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Proposition 2.10 [14, Theorem 2] Suppose that F is algebraically closed. Let
A,B ∈ Fn×n and let α1(s) | · · · | αn(s) and β1(s) | · · · | βn(s) be the invariant
factors of A and B, respectively. Let r be a nonnegative integer, r ≤ n. Then
there exists a matrix P ∈ Fn×n with rank(P ) = r such that A + P has β1(s) |
· · · | βn(s) as invariant factors if and only if (3) is satisfied and

r ≤ min{rank(A− λIn) + rank(B − λIn) : λ ∈ F}. (5)

As mentioned in the Introduction section, the aim of this paper is to solve
an analogous problem to that solved in Proposition 2.10 for regular matrix
pencils. When F is algebraically closed, if A(s) = sIn +A and B(s) = sIn +B,
by Proposition 2.10 conditions (4) and (5) are sufficient for the existence of a

matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r andA(s)+P (s)
s.e.∼ B(s).

Nevertheless, (5) is not a necessary condition, as we can see in the next example.

Example 2.11 Let c ∈ F (F algebraically closed), A = B = cIn, r an integer,

0 < r ≤ n and P (s) =

[
Ir 0
0 0

]
(sIn +A). Then rank(P (s)) = r and

sIn +A+ P (s) =

[
2Ir 0
0 In−r

]
(sIn +A)

s.e.∼ sIn +A = sIn +B,

but
min{rank(A− λIn) + rank(B − λIn) : λ ∈ F} = 0 < r.

3 Fixed rank perturbation for regular matrix
pencils

In this section we give a complete solution to Problem 1.1 under the same
restriction on the field F as in Proposition 2.8. According to this proposition, the
interlacing conditions (4) are necessary. We prove that they are also sufficient,
except when F is a finite field with | F |= 2 and r = n = 1.

Following the strategy of [2], we start analyzing the case when the pencils
A(s), B(s) do not have infinite elementary divisors.

3.1 Pencils A(s), B(s) without infinite elementary divisors

First, we analyze the case when r = n, then when r < n.
Observe that conditions (4) are trivially fulfilled for r = n. We prove in

Proposition 3.3 that for regular pencils A(s) = sIn + A,B(s) = sIn + B ∈
F[s]n×n, n ≥ 2, and r = n, there always exists solution to Problem 1.1.

We need the following technical lemma. Notice that it is trivial if | F |6= 2.

Lemma 3.1 Let n ≥ 2. Then there exists a matrix En ∈ Gln(F) such that
In + En ∈ Gln(F).
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Proof. We prove the result by induction on n.

If n = 2, put E2 =

[
1 1
1 0

]
. Then E2, I2 + E2 ∈ Gl2(F).

Let n > 2, let p = n − 1. Assume that there exists Ep ∈ Glp(F) such that
Ip + Ep ∈ Glp(F).

Obviously, Ep 6= Ip +Ep. Therefore, if R = E−1
p − (Ip +Ep)

−1, then R 6= 0.
Let i, j ∈ {1, . . . , p} be such that R(i, j) 6= 0 and let w = −1 + etiE

−1
p ej ∈ F.

We define

Ep+1 =

[
Ep ej
eti w

]
∈ F(p+1)×(p+1).

Then,

det(Ep+1) = det(Ep+1/Ep) det(Ep) = (w − etiE−1
p ej) det(Ep) = −det(Ep) 6= 0,

det(Ip+1 + Ep+1) = (1 + w − eti(Ip + Ep)
−1ej) det(Ip + Ep)

= (1 + w − eti(E−1
p −R)ej) det(Ip + Ep) = R(i, j) det(Ip + Ep) 6= 0,

hence, Ep+1, Ip+1 + Ep+1 ∈ Glp+1(F).
2

Remark 3.2 If | F |6= 2, the result holds for n ≥ 1. We can take, for example,
En = cIn, with c ∈ F, c 6= 0,−1.

Proposition 3.3 Let n ≥ 2 and A(s) = sIn + A,B(s) = sIn + B ∈ F[s]n×n.
Then there exists a matrix pencil P (s) ∈ F[s]n×n with rank(P (s)) = n such that

A(s) + P (s)
s.e.∼ B(s).

Proof. By Lemma 3.1, there exists En ∈ Gln(F) such that In+En ∈ Gln(F).
Let P0 = (In + En)B − A ∈ Fn×n and P (s) = Ens + P0 ∈ F[s]n×n. Then

rank(P (s)) = n and

A(s)+P (s) = sIn+A+Ens+(In+En)B−A = (In+En)(sIn+B)
s.e.∼ sIn+B.

2

When r < n, next lemma allows us to take advantage of a solution to the
bounded case and out of it to build a solution for the fixed rank case. This is
done in Proposition 3.5.

Lemma 3.4 Let r1, r, n be integers, 0 ≤ r1 < r < n. Let I, J ⊂ {1, . . . , n} be
such that | I |=| J |= r1. Then there exists a matrix E ∈ Fn×n satisfying that
rank(E) = r − r1, In + E ∈ Gln(F), E(I, :) = 0, and E(:, J) = 0.

Proof. First, let us see that there exist sets of indices in {1, . . . , n},

R1 = {i1, . . . , ix′}, R2 = {ix′+1, . . . , ix′+a′}, S2 = {ix′+a′+1, . . . , ix′+2a′}

(x′ ≥ 0, a′ ≥ 0) with ik 6= i` for k 6= `, such that R1∪̇R2 ⊂ Ic, R1∪̇S2 ⊂ Jc,
x′ + a′ = r − r1, and x′ 6= 1.
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Let
X = Ic ∩ Jc, Y = Ic \X, Z = Jc \X

and let x =| X | and a =| Y |=| Z |= n− r1 − x.

• If a ≥ r − r1, we put R1 = ∅ and choose R2 ⊆ Y , S2 ⊆ Z such that
| R2 |=| S2 |= r − r1. In this case, x′ = 0, a′ = r − r1.

• If a < r − r1, then x = n− r1 − a > n− r > 0. Therefore x ≥ 2.

– If (r − r1)− a ≥ 2 we put R2 = Y , S2 = Z and choose R1 ⊂ X with
| R1 |= r− r1−a(< n− r1−a = x). In this case, x′ = r− r1−a ≥ 2,
a′ = a.

– If (r − r1)− a = 1 and a ≥ 1, we choose R1 ⊆ X with | R1 |= 2 and
R2 ⊂ Y , S2 ⊂ Z with | R2 |=| S2 |= r − r1 − 2 = a− 1. In this case,
x′ = 2, a′ = a− 1.

– If (r − r1) − a = 1 and a = 0, then r − r1 = 1 < x. We can choose
i, j ∈ X such that i 6= j. We put R1 = ∅, R2 = {i}, S2 = {j}. In
this case, x′ = 0, a′ = 1.

We have that R1∪̇R2∪̇S2 ⊆ {1, . . . , n}, hence x′ + 2a′ ≤ n. Let us denote
(R2 ∪R1 ∪ S2)c = {ix′+2a′+1, . . . , in}.

We have obtained that x′ = 0 or x′ ≥ 2. If x′ ≥ 2, by Lemma 3.1 there
exists Ex′ ∈ Glx′(F) such that Ix′ + Ex′ ∈ Glx′(F).

Let Ē ∈ Fn×n be the matrix having

Ē({1, . . . , x′}, {1, . . . , x′}) = Ex′ , Ē({x′+1, . . . , x′+a′}, {x′+a′+1, . . . , x′+2a′}) = Ia′ ,

and the rest of its entries equal to zero, i.e.

Ē =


Ex′ 0 0 0
0 0 Ia′ 0
0 0 0 0
0 0 0 0

 ∈ F(x′+a′+a′+(n−x′−2a′))×(x′+a′+a′+(n−x′−2a′)).

(If x′ = 0 or a′ = 0, the corresponding block vanishes). Obviously,

rank(Ē) = rank(Ex′) + rank(Ia′) = x′ + a′ = r − r1,

and

In + Ē =


Ix′ + Ex′ 0 0 0

0 Ia′ Ia′ 0
0 0 Ia′ 0
0 0 0 In−x′−2a′

 ∈ Gln(F).

Let P be the permutation matrix P =
[
ei1 . . . ein

]
, where ek denotes the

k-th column of In. Then, Pek = eik for 1 ≤ k ≤ n; equivalently, P teik = ek,
and etikP = etk.
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Let E = PĒP t. Then, rank(E) = rank(Ē) = r−r1, In+E = PP t+PĒP t =
P (In + Ē)P t ∈ Gln(F),

E((R1∪R2)c, :)) = E({ix′+a′+1, . . . , in}, :) =

e
t
ix′+a′+1

...
etin

PĒP t =

e
t
x′+a′+1

...
etn

 ĒP t
= Ē({x′ + a′ + 1, . . . , n}, :)P t = 0,

and

E(:, (R1 ∪ S2)c) = E(:, {ix′+1, . . . , ix′+a′} ∪ {ix′+2a′+1, . . . , in})

= PĒP t
[
eix′+1

. . . eix′+a′ eix′+2a′+1
. . . ein

]
= PĒ

[
ex′+1 . . . ex′+a′ ex′+2a′+1 . . . en

]
= PĒ(:, {x′ + 1, . . . , x′ + a′} ∪ {x′ + 2a′ + 1, . . . , n}) = 0.

Since I ⊆ (R1 ∪ R2)c and J ⊆ (R1 ∪ S2)c, it results that E(I, :) = 0 and
E(:, J) = 0.

2

Proposition 3.5 Let n ≥ 2 and A(s) = sIn + A ∈ F[s]n×n. Let P ∈ Fn×n be
a matrix such that rank(P ) = r1 and let r be an integer, r1 < r < n. Then
there exists a matrix pencil P (s) ∈ F[s]n×n with rank(P (s)) = r such that

A(s) + P (s)
s.e.∼ A(s) + P .

Proof. Since rank(P ) = r1, there exist I, J ⊂ {1, . . . , n} such that | I |=|
J |= r1 and det(P (I, J)) 6= 0 (if r1 = 0, then I = J = ∅). By Lemma 3.4,
there exists a matrix E ∈ Fn×n such that rank(E) = r − r1, In + E ∈ Gln(F),
E(I, :) = 0, and E(:, J) = 0.

Let Q = In + E. Then

sIn+A+P
s.e.∼ Q(sIn+A+P ) = sIn+A+P +E(sIn+A+P ) = A(s) +P (s),

where P (s) = P + E(sIn +A+ P ).
Let us see that rank(P (s)) = r. On one hand,

rank(P (s)) ≤ rank(P )+rank(E(sIn+A+P )) ≤ rank(P )+rank(E) = r1+r−r1 = r.

On the other one,

P (s)(I, :) = P (I, :) + E(I, :)(sIn +A+ P ) = P (I, :).

Therefore,
det(P (s)(I, J)) = det(P (I, J)) 6= 0,

and

P (s)/P (s)(I, J) = P (s)(Ic, Jc)− P (s)(Ic, J)P (I, J)−1P (I, Jc).
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As
P (s)(Ic, Jc) = P (Ic, Jc) + sE(Ic, Jc) + (E(A+ P ))(Ic, Jc),

and
P (s)(Ic, J) = P (Ic, J) + sE(Ic, J) + (E(A+ P ))(Ic, J)

= P (Ic, J) + (E(A+ P ))(Ic, J) ∈ F(n−r1)×r1 ,

we can write P (s)/P (s)(I, J) = sE(Ic, Jc)+P0, with P0 ∈ F(n−r1)×(n−r1), from
where

rank(P (s)/P (s)(I, J)) ≥ rank(E(Ic, Jc)) = rank(E) = r − r1.

Hence,

rank(P (s)) = rank(P (I, J)) + rank(P (s)/P (s)(I, J)) ≥ r.

2

Theorem 3.6 Let n ≥ 2 and A(s) = sIn + A,B(s) = sIn + B ∈ F[s]n×n. Let
φ1(s, t) | · · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be the homogeneous invariant
factors of A(s) and B(s), respectively. Let r be a nonnegative integer, r ≤ n.
If (4) is satisfied, then there exists a matrix pencil P (s) ∈ F[s]n×n such that

rank(P (s)) = r and A(s) + P (s)
s.e.∼ B(s).

Proof. If r = n, we apply Proposition 3.3.
If r < n, let αi(s) = φi(s, 1) and βi(s) = ψi(s, 1), 1 ≤ i ≤ n, be the invariant

factors of A(s) and B(s), respectively. Then, conditions (4) imply conditions
(3). By Proposition 2.7, there exists P ∈ Fn×n such that rank(P ) ≤ r and

A(s) + P
s.e.∼ B(s). If rank(P ) < r, we apply Proposition 3.5.

2

We show next an example of regular pencils A(s) and B(s) such that B(s)
cannot be obtained by a constant perturbation of rank 2 of A(s), but it does
result as a pencil perturbation of rank 2 of the pencil A(s).

Example 3.7 Let F be an arbitrary field and r = 2,

A(s) =

s− 1 0 0
0 s− 1 0
0 0 s− 1

 , B(s) =

s− 1 0 0
0 s− 1 0
0 0 s

 .
The homogeneous invariant factors of A(s) and B(s) are φ1(s, t) = φ2(s, t) =
φ3(s, t) = (s − t) and ψ1(s, t) = 1, ψ2(s, t) = (s − t), ψ3(s, t) = s(s − t), respec-
tively. We have that

φi−2(s, t) | ψi(s, t) | φi+2(s, t), 1 ≤ i ≤ 3.

Therefore,
φi−2(s, 1) | ψi(s, 1) | φi+2(s, 1), 1 ≤ i ≤ 3,
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hence, by Proposition 2.7, there exists a matrix P ∈ F3×3 such that rankP ≤ 2

and A(s)+P
s.e.∼ B(s). In fact, taking P =

0 0 0
0 0 0
0 0 1

, we have that rankP = 1

and A(s) + P = B(s).
Observe that

min{rankA(λ) + rankB(λ) : λ ∈ F̄} = 1.

By Proposition 2.10, this means that there is no P ∈ F̄3×3 such that rankP = 2
and A(s) + P

s.e.∼ B(s).

Let Q =

1 1 0
0 1 0
0 0 1

 ∈ Gl3(F). Then

B(s)
s.e.∼ QB(s) = Q(A(s) + P ) =

s− 1 s− 1 0
0 s− 1 0
0 0 s

 = A(s) + P (s),

where P (s) =

0 s− 1 0
0 0 0
0 0 1

 ∈ F[s]3×3, and rankP (s) = 2.

Corollary 3.8 Let n ≥ 2 and let A(s) = A0 + sA1, B(s) = B0 + sB1 ∈ F[s]n×n

be such that det(A1) 6= 0 and det(B1) 6= 0. Let φ1(s, t) | · · · | φn(s, t) and
ψ1(s, t) | · · · | ψn(s, t) be the homogeneous invariant factors of A(s) and B(s),
respectively. Let r be a nonnegative integer, r ≤ n. If (4) is satisfied, then there
exists a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r and A(s) +

P (s)
s.e.∼ B(s).

Proof. We have that A(s)
s.e.∼ A−1

1 A0 + sIn and B(s)
s.e.∼ B−1

1 B0 + sIn.
Hence, the homogeneous invariant factors of sIn + A−1

1 A0 and sIn + B−1
1 B0

are φ1(s, t) | · · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t), respectively. By Theorem
3.6, there exists a matrix pencil P ′(s) ∈ F[s]n×n such that rank(P ′(s)) = r and

sIn + A−1
1 A0 + P ′(s)

s.e.∼ sIn + B−1
1 B0

s.e.∼ B(s). Let P (s) = A1P
′(s). Then,

rank(P (s)) = rank(P ′(s)) = r and

A(s) + P (s) = A1(sIn +A−1
1 A0 + P ′(s))

s.e.∼ sIn +A−1
1 A0 + P ′(s)

s.e.∼ B(s).

2

3.2 Solution to Problem 1.1

We analyze first the case n = 1.

Theorem 3.9 Let a(s) = a0 + sa1, b(s) = b0 + sb1 ∈ F[s] be such that a(s) 6= 0
and b(s) 6= 0. Let φ1(s, t) and ψ1(s, t) be the homogeneous invariant factors of
a(s) and b(s), respectively. Let r be an integer, 0 ≤ r ≤ 1.
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1. If | F |> 2 or r = 0, then there exists p(s) = p0 + sp1 ∈ F[s] such that

rank(p(s)) = r and a(s) + p(s)
s.e.∼ b(s) if and only if (4) holds.

2. If | F |= 2 and r = 1, then there exists p(s) ∈ F[s] such that rank(p(s)) = 1

and a(s) + p(s)
s.e.∼ b(s) if and only if a(s) 6= b(s).

Proof.

1. The necessity is an immediate consequence of Proposition 2.8. Let us
prove the sufficiency.

Since n = 1, conditions (4) reduce to

ψ1−r(s, t) | φ1(s, t) | ψ1+r(s, t). (6)

• If r = 0, then (6) implies ψ1(s) = φ1(s), hence b(s)
s.e.∼ a(s) = a(s)+0.

• If r = 1, then (6) is trivially satisfied for any a(s), b(s). As | F |> 2,
there exists c ∈ F \ {0} such that a(s) 6= cb(s). Taking p(s) =
cb(s)− a(s), the sufficiency is proven.

2. It is enough to observe that if | F |= 2, there exists p(s) ∈ F[s] such that

a(s) + p(s)
s.e.∼ b(s) if and only if a(s) + p(s) = b(s).

2

Next theorem is our main result.

Theorem 3.10 Let n ≥ 2. Let A(s) = sA1 +A0, B(s) = sB1 +B0 ∈ F[s]n×n be
regular matrix pencils. Let φ1(s, t) | · · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be
the homogeneous invariant factors of A(s) and B(s), respectively, and assume
that F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(B(s)). Let r be a nonnegative integer, r ≤ n.
There exists a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r and

A(s) + P (s)
s.e.∼ B(s) if and only if (4) holds.

Proof. The necessity is an immediate consequence of Proposition 2.8.
Assume that (4) holds. As F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(B(s)), there exists

c ∈ F ∪ {∞} such that c 6∈ Λ(A(s)) ∪ Λ(B(s)).
If c =∞, we apply Corollary 3.8.
If c 6=∞, take

X =

[
c 1
1 0

]
,

and
A′(s) = PX(sA1 +A0) = s(cA1 +A0) +A1 = sA′1 +A′0,

B′(s) = PX(sB1 +B0) = s(cB1 +B0) +B1 = sB′1 +B′0.

Then, det(A′1) 6= 0, det(B′1) 6= 0.
Let φ′1(s, t), . . . , φ′n(s, t) and ψ′1(s, t), . . . , ψ′n(s, t) be the homogeneous invari-

ant factors of A′(s) and B′(s), respectively. By Lemma 2.5 and Remark 2.6,

φ′i(s, t) = ciΠX(φi)(s, t), ψ′i(s, t) = diΠX(ψi)(s, t), 1 ≤ i ≤ n,
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where 0 6= ci ∈ F, 0 6= di ∈ F, 1 ≤ i ≤ n. Applying Lemma 2.3, from (4) we
obtain

φ′i−r(s, t) | ψ′i(s, t) | φ′i+r(s, t), 1 ≤ i ≤ n.
By Corollary 3.8, there exists a matrix pencil P ′(s) = sP ′1 + P ′0 ∈ F[s]n×n

such that rank(P ′(s)) = r and

A′(s) + P ′(s)
s.e.∼ B′(s).

Then, by Lemmas 2.2 and 2.4,

(PX)
−1

(A′(s))+(PX)
−1

(P ′(s)) = (PX)
−1

(A′(s)+P ′(s))
s.e.∼ (PX)

−1
(sB′1+B′0).

Taking P (s) = (PX)
−1

(P ′(s)) = PX−1(P ′(s)), we obtain that

A(s) + P (s)
s.e.∼ B(s),

and by Remark 2.6, rank(P (s)) = r.
2

Corollary 3.11 Let n ≥ 2. Let A(s) = sA1 + A0, B(s) = sB1 + B0 ∈ F[s]n×n

be regular matrix pencils. Let φ1(s, t) | · · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be
the homogeneous invariant factors of A(s) and B(s), respectively, and assume
that F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(B(s)). Let

r0 = min{r ≥ 0 : φi−r(s, t) | ψi(s, t) | φi+r(s, t), 1 ≤ i ≤ n}.

Then there exists a matrix pencil P (s) ∈ F[s]n×n with rank(P (s)) = r and such

that A(s) + P (s)
s.e.∼ B(s) if and only if r0 ≤ r ≤ n.

Proof. It is straigthtforward that r ≥ r0 if and only if conditions (4) hold.
2

Example 3.12 Let F be an arbitrary field. Let A(s), B(s) ∈ F[s]5×5 be regular
matrix pencils with homogeneous invariant factors

φ1(s, t) = φ2(s, t) = 1, φ3(s, t) = t, φ4(s, t) = φ5(s, t) = t2,

ψ1(s, t) = ψ2(s, t) = 1, ψ3(s, t) = ψ4(s, t) = s− t, ψ5(s, t) = (s− t)3,

respectively. Then

Λ(A(s)) = {∞}, Λ(B(s)) = {1}, 0 6∈ Λ(A(s)) ∪ Λ(B(s)),

and

r0 = min{r ≥ 0 : φi−r(s, t) | ψi(s, t) | φi+r(s, t), 1 ≤ i ≤ 5} = 3.

Hence, for 3 ≤ r ≤ 5 there exist matrix pencils Pr(s) ∈ F[s]5×5 with rank(Pr(s)) =

r such that A(s) + Pr(s)
s.e.∼ B(s).

Moreover, there is not any pencil P (s) with rank(P (s)) ≤ 2 such that A(s)+

P (s)
s.e.∼ B(s).
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The characterization of the solution given in Theorem 3.10 can be stated
in terms of the partial multiplicities of the elements of Λ(A(s)) ∪ Λ(B(s)) (see
[2, Corollary 4.5] for an analogous result when rank(P (s)) ≤ r; see also [9,
Proposition 4.2] for r = 1).

Corollary 3.13 Let n ≥ 2. Let A(s), B(s) ∈ F[s]n×n be regular matrix pencils.
Assume that F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(B(s)). Let r be a nonnegative integer,
r ≤ n. There exists a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r

and A(s) + P (s)
s.e.∼ B(s) if and only if

mi−r(λ,A(s)) ≤ mi(λ,B(s)) ≤ mi+r(λ,A(s)), 1 ≤ i ≤ n, λ ∈ F ∪ {∞}. (7)

As pointed out in [2, Remark 4.15], if | F |> 2n, the condition F ∪ {∞} 6⊆
Λ(A(s))∪Λ(B(s)) is automatically satisfied. In the case that | F |≤ 2n, Theorem
3.10 can still be applied if there exists an element c ∈ F∪ {∞} which is neither
an eigenvalue of A(s) nor of B(s).

Moreover, we show in Corollary 3.14 that the condition F∪{∞} 6⊆ Λ(A(s))∪
Λ(B(s)) is not always necessary.

Corollary 3.14 Let A(s), B(s) ∈ F[s]n×n be regular matrix pencils. Let φ1(s, t) |
· · · | φn(s, t) and ψ1(s, t) | · · · | ψn(s, t) be the homogeneous invariant factors of
A(s) and B(s), respectively, and assume that for some λ0 ∈ F ∪ {∞},

mi(λ0, A(s)) = mi(λ0, B(s)), 1 ≤ i ≤ n.

Let r be a nonnegative integer, r ≤ n. There exists a matrix pencil P (s) ∈
F[s]n×n such that rank(P (s)) = r and A(s) + P (s)

s.e.∼ B(s) if and only if (4)
holds.

Proof. Analogous to the proof of [2, Theorem 4.17]. 2

Example 3.15 Let F = Z2, r = 2,

Â(s) =


1 0 0 0
0 s− 1 0 0
0 0 s− 1 0
0 0 0 s− 1

 , B̂(s) =


1 0 0 0
0 s− 1 0 0
0 0 s− 1 0
0 0 0 s

 .
The homogeneous invariant factors of Â(s) and B̂(s) are φ1(s, t) = 1, φ2(s, t) =
φ3(s, t) = (s − t), φ4(s, t) = t(s − t) and ψ1(s, t) = ψ2(s, t) = 1, ψ3(s, t) =
(s− t), ψ4(s, t) = ts(s− t), respectively. Then

φi−2(s, t) | ψi(s, t) | φi+2(s, t), 1 ≤ i ≤ 4,

Λ(Â(s)) = {1,∞}, Λ(B̂(s)) = {0, 1,∞},

and F ∪ {∞} = Λ(Â(s)) ∪ Λ(B̂(s)) = {0, 1,∞}. But

(m1(∞, Â(s)), . . . ,m4(∞, Â(s))) = (m1(∞, B̂(s)), . . . ,m4(∞, B̂(s))) = (0, 0, 0, 1).
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We have that

Â(s) =

[
1 0
0 A(s)

]
, B̂(s) =

[
1 0
0 B(s)

]
,

where A(s) and B(s) are the pencils of Example 3.7 and we have seen that there

exists a matrix pencil P (s) ∈ F[s]3×3 such that rankP (s) = 2 and A(s)+P (s)
s.e.∼

B(s). Taking P̂ (s) =

[
0 0
0 P (s)

]
∈ F[s](1+3)×(1+3), we have that Â(s)+ P̂ (s)

s.e.∼

B̂(s) and rank P̂ (s) = 2.

4 Eigenvalue placement for regular matrix pen-
cils under fixed rank perturbations

In this section we give a solution to Problem 1.2.

Recall that if Γ(s, t) is an homogeneous polynomial,

Λ(Γ(s, t)) := {λ ∈ F ∪ {∞} : Γ(λ, 1) = 0},

where Γ(∞, 1) := Γ(1, 0).
The following theorem is the main result in this section. The proof is similar

to that of Theorem 5.1 of [2].

Theorem 4.1 Let n ≥ 2. Let A(s) ∈ F[s]n×n be a regular matrix pencil and
φ1(s, t) | · · · | φn(s, t) be its homogeneous invariant factors. Let Ψ(s, t) ∈ F[s, t]
be a nonzero homogeneous polynomial, monic with respect to s, and such that
deg(Ψ(s, t)) = n. Assume that F ∪ {∞} 6⊆ Λ(A(s)) ∪ Λ(Ψ(s, t)). Let r be a
nonnegative integer, r ≤ n. There exists a matrix pencil P (s) ∈ F[s]n×n with
rank(P (s)) = r such that if C(s, t) is the homogeneous pencil associated to
A(s) + P (s), then det(C(s, t)) = kΨ(s, t) with 0 6= k ∈ F if and only if

φ1(s, t) . . . φn−r(s, t) | Ψ(s, t). (8)

Proof. Necessity. Let C(s) = A(s) + P (s) and let ψ1(s, t) | · · · | ψn(s, t)
be its homogeneous invariant factors. Taking Ψ(s, t) = ψ1(s, t) . . . ψn(s, t), from
Theorem 3.10 condition (8) is satisfied.

Sufficiency. Assume that (8) holds. Then, there exists an homogeneous
polynomial γ(s, t) ∈ F[s, t] such that

Ψ(s, t) = φ1(s, t) . . . φn−r(s, t)γ(s, t).

We define

ψi(s, t) := φi−r(s, t), 1 ≤ i ≤ n− 1, ψn(s, t) := φn−r(s, t)γ(s, t),

then

ψ1(s, t) | · · · | ψn(s, t) and

n∑
i=1

deg(ψi(s, t)) = deg(Ψ(s, t)) = n.
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Let B(s) be a pencil with homogeneous invariant factors ψ1(s, t) | · · · |
ψn(s, t). Then, B(s) is regular and condition (4) is satisfied. By Theorem 3.10,
there exists a pencil P (s) ∈ F[s]n×n such that rank(P (s)) = r and A(s) +

P (s)
s.e.∼ B(s). Let B(s, t) be the homogeneous pencil associated to B(s). Then

there exist 0 6= k1, k2 ∈ F such that

det(C(s, t)) = k1 det(B(s, t)) = k1k2ψ1(s, t) . . . ψn(s, t)

= k1k2φ1(s, t) . . . φn−r(s, t)γ(s, t) = k1k2Ψ(s, t), 0 6= k1k2 ∈ F.
2

Notice that Theorem 4.1 gives us a solution to Problem 1.2 as we see in the
following corollary (compare it with Theorem 5.4 in [2]).

Corollary 4.2 Let n ≥ 2. Let A(s) ∈ F[s]n×n be a regular matrix pencil and
α1(s) | · · · | αn(s) be its invariant factors. Let q(s) ∈ F[s] be a nonzero monic
polynomial with deg(q(s)) ≤ n. Assume that F∪{∞} 6⊆ Λ(A(s))∪Λn(q(s)). Let
r be a nonnegative integer, r ≤ n. There exists a matrix pencil P (s) ∈ F[s]n×n

such that rank(P (s)) = r and det(A(s) + P (s)) = kq(s) with 0 6= k ∈ F if and
only if

α1(s) . . . αn−r(s) | q(s), (9)

n−r∑
i=1

mi(∞, A(s)) ≤ n− deg(q(s)). (10)

Proof. Let φ1(s, t) | · · · | φn(s, t) be the homogeneous invariant factors of
A(s) and let Ψ(s, t) = tnq( st ). Then Ψ(s, t) ∈ F[s, t] is a nonzero homogeneous
polynomial, deg(Ψ(s, t)) = n and F∪ {∞} 6⊆ Λ(A(s))∪Λ(Ψ(s, t)). Take δ(s) =
α1(s) . . . αn−r(s). Then

φ1(s, t) . . . φn−r(s, t) = t
∑n−r

i=1 mi(∞,A(s))tdeg(δ)δ(
s

t
).

Hence, (8) is equivalent to (9)-(10).
Assume that there exists a matrix pencil P (s) ∈ F[s]n×n such that rank(P (s)) =

r and det(A(s) + P (s)) = kq(s) with 0 6= k ∈ F. Let C(s, t) be the homoge-
neous pencil associated to C(s) = A(s) + P (s). Then, deg(det(C(s, t))) =
n and det(C(s, 1)) = det(A(s) + P (s)) = kq(s), from where det(C(s, t)) =
tn−deg(q)tdeg(q)kq( st ) = kΨ(s, t). By Theorem 4.1, (8) (equivalently, (9)-(10))
holds.

Conversely, assume that (9) and (10) (equivalently, (8)) hold. Then by
Theorem 4.1, there exists a matrix pencil P (s) ∈ F[s]n×n with rank(P (s)) = r
and such that if C(s, t) is the homogeneous pencil associated to C(s) = A(s) +
P (s), then det(C(s, t)) = kΨ(s, t) with 0 6= k ∈ F. Therefore, det(A(s)+P (s)) =
det(C(s, 1)) = kq(s).

2

Remark 4.3 If n = 1, given pencils a(s), q(s), p(s) ∈ F[s], then det(a(s) +

p(s)) = kq(s) with 0 6= k ∈ F if and only if a(s) + p(s)
s.e.∼ q(s), i.e. Problem 1.2

is the same as Problem 1.1.
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5 Conclusions

Given a regular matrix pencil, we have completely characterized the Weiestrass
structure of a regular pencil obtained by a perturbation of fixed rank. The
characterization is stated in terms of interlacing conditions between the homo-
geneous invariant factors of the original an the perturbed pencils, except in a
very particular case. This work completes the research carried out in [2], where
the same type of problem was solved in the case that the perturbed pencil was
of bounded rank. Surprisingly enough, both solutions are characterized in terms
of the same interlacing conditions.

The necessity of the conditions holds over arbitrary fields and the sufficiency
over fields with sufficient number of elements.

As mentioned, the characterization of the fix rank perturbation of a pencil
of the form A(s) = sI −A requires an extra condition when the perturbation is
performed by a constant matrix [14], and that extra condition disappears when
the fixed rank perturbation is allowed to be a pencil of degree one.

We also solve an eigenvalue placement problem characterizing the assignment
of the determinant to a regular matrix pencil obtained by a fixed rank pencil
perturbation of another regular one.
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