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This paper proposes a rolling horizon (RH) approach to deal with management problems under dynamic demand in planning
horizons with variable lead times using system dynamics (SD) simulation. Thus, the nature of dynamic RH solutions entails
no inconveniences to contemplate planning horizons with unpredictable demands. This is mainly because information is
periodically updated and replanning is done in time. Therefore, inventory and logistic costs may be lower. For the first
time, an RH is applied for demand management with variable lead times along with SD simulation models, which allowed
the use of lot-sizing techniques to be evaluated (Wagner-Whitin and Silver-Meal). The basic scenario is based on a real-
world example from an automotive single-level SC composed of a first-tier supplier and a car assembler that contemplates
uncertain demands while planning the RH and 216 subscenarios by modifying constant and variable lead times, holding costs
and order costs, combined with lot-sizing techniques. Twenty-eight more replications comprising 504 new subscenarios with
variable lead times are generated to represent a relative variation coefficient of the initial demand. We conclude that our RH
simulation approach, along with lot-sizing techniques, can generate more sustainable planning results in total costs, fill rates
and bullwhip effect terms.

Keywords: rolling horizon; demand management; simulation; supply chain dynamics

1. Introduction

The rolling horizon (RH) approach has been addressed mainly in the scientific literature in material requirement planning
(MRP) (Whybark and Williams 1976), and in master production scheduling (MPS) (Sridharan, Berry, and Udayabhanu
1988) and supply chain (SC) production planning problems (Boulaksil, Fransoo, and van Halm 2009), among others. This
approach is considered a flexible planning tool to help adapt to a planning horizon with uncertain information that contains
unpredictable behaviour parameters by determining a schedule in which to work with as few errors as possible (Baker 1977;
de Sampaio, Wollmann, and Vieira 2017; Sahin, Narayanan, and Robinson 2013). Nevertheless, Sahin and Robinson (2002,
2005) stress the need to conduct new research works based on the RH approach for SC management. It is important to
highlight at this point that most RH approaches are based on mathematical programming or optimisation models (exact or
heuristic algorithms) constrained for real situations under dynamic parameters. Thus, on the one hand, to deal with demand
uncertainty in supply chains, Boulaksil, Fransoo, and van Halm (2009) determine safety stock levels while carrying out
different experiments with mathematical programming formulations in an RH setting, whereas Rafiei et al. (2014) develop a
decision platform to select the best production planning policy in a wood remanufacturing SC by with various mixed-integer
programming models and a periodic replanning strategy based on an RH procedure. On the other hand, Simpson (1999) and
van den Heuvel and Wagelmans (2005) compare the effectiveness of different lot-sizing and heuristic rules for production
planning problems in an RH context. Vargas and Metters (2011) propose an optimisation algorithm for the MPS problem,
which considers the stochastic character of demand levels based on the RH paradigm to achieve superior performance than
traditional lot-sizing techniques. Lian, Liu, and Zhu (2010) address the replenishment problem with stochastic demand,
and provide analytical formulas and algorithms to calculate the optimal order policy for the two-period RH problem as a
dual-threshold type for updated information and a base-stock level. For a more extensive review on rolling horizon planning
in SC, we refer readers to Sahin, Narayanan, and Robinson (2013) and to de Sampaio, Wollmann, and Vieira (2017).
Lot-sizing is one of the most important, and also one of the most difficult, problems in production systems. Indeed
making the right decisions in lot-sizing will directly affect system performance and its productivity levels (Karimi, Fatemi
Ghomi, and Wilson 2003). In order to help practitioners in the decision-making process of lot-sizing in production planning
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or replenishment scenarios, several exact and heuristic approaches have been developed in the literature, such as the Wagner
and Whitin (1958) (WW) algorithm or the Silver and Meal (1973) (SM) method, the economic order quantity (EOQ) or
order up to level (OUT) policies, which are widely used in industry, among others. The choice of one type of method
or another for lot-sizing calculations or replenishment rules can imply variability existing in the placed orders, whose
amplification generates the bullwhip effect (Bhattacharya and Bandyopadhyay 2011; Jaksi¢ and Rusjan 2008; Lee et al.
1997a). According to Giard and Sali (2013), the main modelling approaches that can reflect the existence of the bullwhip
effect in SCs are analytical formulations and simulation, specially system dynamics (SD) simulation, discrete-event (DE)
simulation and multi-agent (MA) simulation. Simulation is a tool to be used in problem situations which are analytically
intractable, or to confirm the results of analytic models (Wemmerlov and Whybark 1984). Using numerical simulations,
Pujawan (2004) examined several properties of the SM and the least unit cost (LUC) rules on variability of orders created by
an SC channel receiving uncertain demand from its downstream channel. Schmidt, Miinzberg, and Nyhuis (2015) considered
DE simulation techniques to compare different academic and practice-based lot-sizing approaches and their impact on real-
world industrial systems. Pacheco et al. (2017) proposed a new replenishment policy based on the classical OUT and
compared its performance in a multi-echelon SC with demand and lead times variabilities in bullwhip effect and service
level terms by DE simulation. Dominguez, Cannella, and Framinan (2015) quantified the impact of different SC structures on
their corresponding bullwhip effect with an MA simulation study for different business scenarios. Regarding SD simulation,
Hussain and Drake (2011) studied the relationship between order batching and the bullwhip effect in a multi-echelon SC
with information sharing by an SD approach. Li, Ghadge, and Tiwari (2016) compared the EOQ and target stock level
replenishment strategies for small firms by focusing on e-business by developing an SD model that ran in different scenarios
to reflect the overall behaviour of the SC performance indicators used for comparisons in bullwhip effect, service level and
inventory cost terms.

Mathematical and analytical approaches can demand an academically advanced understanding of mathematics, some-
thing that most SC operations managers do not have (Agaran, Buchanan, and Yurtseven 2007). Using SD simulation methods
can help practitioners to better understand SC indicators and to examine the effects of different parameters and their vari-
ability (Hussain and Drake 2011). For instance, in the order management context, Esteso et al. (2018) compared SD and
mathematical programming models. This comparison revealed that the SD model better performs as the number of orders
increases with near-optimum solutions in a shorter time. Our research focuses on demonstrating the usefulness and validity
of the RH approach jointly with SD simulation to illustrate the advantages of both approaches, the RH to mitigate effects of
uncertainty, and SD simulation to obtain competitive solutions in minimum computational times.

The SD methodology was herein used to deal with the problem of the impact that variable lead times have on demand
management in the RH context. It allowed to model demand management throughout the SC during the considered plan-
ning horizon. For a review on SD models in the SC context, we refer readers to Campuzano-Bolarin, Mula, and Peidro
(2013); Campuzano, Mula, and Peidro (2010); Mendoza, Mula, and Campuzano-Bolarin (2014) and Moreno, Mula, and
Campuzano-Bolarin (2015), among others. Thus, it would be possible to analyse the impact of lead time variability on
different key performance indicators (KPIs) of SC. In this way, the combination of both RH and SD approaches could act
as a tool to manage demand in variable lead times contexts during the planning horizon by allowing distorted demand, or
the bullwhip effect, to be analysed (Fransoo and Wouters 2000; Hosoda and Disney 2018; Lee, Padmanabhan, and Whang
1997a, 1997b) throughout the SC.

To the best of our knowledge, no papers address an SC demand management problem with an RH approach based
on SD simulation to simulate different what-if scenarios in order to evaluate the bullwhip effect, lead time variability and
different replenishment rules. This paper proposes a novel approach, dubbed as RH-SD-Java, based on an RH approach
along with SD simulation to manage dyadic SC demands with lead time variability. Moreover, in order to process RH
input and to calculate production orders, it proposes an external subroutine to carry out these tasks, which was done
in the Java programming environment. Lot-sizing calculations are based on Silver and Meal (1973) and on Wagner and
Whitin (1958). These techniques are applied to information about discretised planning horizon demands and provide the
replanning of orders at a minimum cost. Moreover, which traditional SC parameters can help to cushion the bullwhip
effect has also been studied (Lee, Padmanabhan, and Whang. 1997a, 1997b); i.e. reduce the distortion or variability of
upstream customer demand, which is an important indicator in an uncertain demand management process with lead time
variability.

This paper intended to answer the research question about whether the integrated RH and SD simulation proposed can
provide new dynamic insight into classic static lot-sizing approaches based mainly on optimisation or heuristic rules. Hence
the main contributions of this paper were to: (i) provide a simulation model using RH information to face demand and
lead time variability with minimum inventory costs and at higher fill rates; (ii) reduce the bullwhip effect by using RH
simulation techniques (SD plus Java programming) with unknown lead times; (iii) develop a new easy-to-use tool for SC
planners to manage demand under uncertainty and with variable lead times by an RH approach and lot-sizing techniques;
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(iv) validate the proposal through different what-if simulation scenarios based on the use of distinct parameters related to
lot-sizing techniques.

The rest of the paper is organised as follows. Section 2 describes the proposal for demand management with lead
time variability. Section 3 formulates the RH approach, the SD based-simulation model and the corresponding solution
algorithms. Section 4 presents computational experiments and validates the proposed model. Finally, Section 5 provides the
conclusions and further research lines.

2. The RH-SD-Java framework

A dyadic SC formed by one customer and one manufacturer was considered according to an e-shopping SC structure that
refers to the scenario where the manufacturer receives orders directly from a customer and supplies products directly after
the production lead time (Disney, Naim, and Potter 2004). The main point of this proposal lies in an SD model, which
simulates demand management in various scenarios; that is, constant and variable lead times. This model, implemented
with the Vensim® simulation software, receives input information from spreadsheets for the demand management process.
Next, depending on the model’s inventory state and on the time required to deliver production orders, it calls on a subroutine
that is in charge of carrying out lot-sizing according to RH data (also from spreadsheets). Then the orders lot-sized by this
subroutine are used by the simulation model to control demands. An SD environment is created to simulate and compare
different manufacturing scenarios with the information saved from previous simulation results. Figure 1 describes the RH-
SD-Java decision framework.

For example, if the demand data from a spreadsheet environment (a) comprise 500 units, the system dynamics environ-
ment (c) checks whether the inventory state is able to accomplish future demands. If it cannot because, e.g. the inventory
state has 200 units, the Java environment (b) determines, with the RH data (forecasted demand) from the spreadsheet envi-
ronment (a), the manufacturing orders lot-size by SM or WW techniques. The manufacturing orders that result from the
Java environment (b) are sent to the spreadsheet environment (d) to be later compared with other orders created in constant
or variable lead time environments with three different SD models (e) by SM, WW or OUT-S techniques in total costs, fill
rates and bullwhip effect terms.

3. The RH-SD-Java approach
3.1. The RH approach

The RH approach has been addressed mainly in the scientific literature in material requirement planning (MRP) (Diaz-
Madrofiero, Mula, and Peidro 2017; Mula, Poler, and Garcia-Sabater 2007, 2008; Mula, Poler, and Garcia 2006; Whybark
and Williams 1976), the master production scheduling (MPS) (Sridharan, Berry, and Udayabhanu 1988) and SC production
planning problems (Boulaksil, Fransoo, and van Halm 2009; Mula, Peidro, and Poler 2010). This is chiefly because it
is a proven flexible planning tool (de Sampaio, Wollmann, and Vieira 2017; Sahin, Narayanan, and Robinson 2013) for
environments with little information and planning horizons containing variable performance parameters. The objective is to
determine a dynamic functioning schedule with as few errors as possible along a static planning horizon. This method works
with a set of planning horizons, PH;, which result from the discretisation or segmentation of a longer planning horizon. In
these PH; which have shorter time periods than a total planning horizon, fewer planning errors can be made. Moreover, these
errors diminish for all the PH;; | as each one can put to good use the information generated by previous planning horizons,
PH;_, in such a way that when each PH;, | is replanned, it can enhance the certainty of input data and can, therefore, reduce
output data errors.

Demand Manufacturing Manufacturing
® ® @ ©

data orders orders

System dynamics environment
Spreadsheet Java Spreadsheet to simulate and compare
environment environment environment different manufacturing orders
and scenarios

Rolling horizon
data

System dynamics Total cost, fill rate, bullwhip effect

environment

©)

Figure 1. The RH-SD-Java framework.
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Figure 2. Flow chart of the demand management process simulation.

In the present work, the proposed RH was modelled and programmed in a Java programming environment. The choice
of Java as a programming environment was due mainly to two factors: specific libraries exist that call on Vensim® from
this programming environment; this programming language’s simplicity and power. The RH functions as follows: when
the Java model begins to run, it considers the first PH; (PH ) on which demand management is dealt with by generating
manufacturing orders according to the forecast demand and the inventory state (Section 3.3). The RH approach works by
updating real demands for each planning horizon time period instead of considering the forecasted demands for a given
planning horizon. After solving this PH;, the Java model acquires information about inventory levels so that when the RH
updates the next PH; (PH;. ), it makes the most of all the information from the previous stage, and the replanning of this
new PH;, | includes the stockouts that might take place throughout the planning horizon during simulation. This procedure
is repeated in each discretised PH; with time. Figure 2 depicts the flow chart of the demand management process simulation
according to an RH approach.

3.2. SD model formulation

Here we consider a dyadic single-product SC. Model formulation is based on the APIOBPCS (automatic pipeline, inventory
and order-based production control system) (Campuzano, Mula, and Peidro 2010; John, Naim, and Towill 1994) and the
previous works by Mula, Poler, and Garcia-Sabater (2008) and Diaz-Madrofiero, Mula, and Jiménez (2014). The main
contemplated characteristics are as follows:

e A one-stage SC consisting in a customer and a manufacturer, with customer orders to the manufacturer
e The manufacturer supplies products immediately upon receiving orders according to on-hand inventory levels. A
pull planning strategy is considered
Orders can be partially delivered and unfulfilled orders are backlogged
Supplied goods arrive after a lead time
Raw materials are considered infinite

Table 1 provides the nomenclature of the SD model. Figure 3 depicts the flow chart of the simulation model. Table 1

describes the nomenclature of the flow variables, level variables and auxiliary variables that the model employs (Forrester
1961).
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Table 1. Nomenclature of the SD model.

Level variables

MBO Manufacturer’s backordered orders (units)

MFR Manufacturer’s fill rate (%)

MOHI Manufacturer’s on-hand inventory (units)

MTC Manufacturer’s total costs (€)

MWIP Manufacturer’s work-in-process (units)

Flow variables

BOD Backordered orders delivered (units per time period)
Mmcc Manufacturing capacity constraints (units per time period)
PDC Products delivered to customer (units per time period)
PDM Products delivered to manufacturer (units per time period)
Auxiliary variables

be Bullwhip effect (dmnl)

c Manufacturer capacity (units)

d End customer demand (units per time period)

el Expected inventory status (units per time period)

f Manufacturer’s forecast (units per time period)

fo Firm orders (units per time period)

he Holding cost (€ per unit and time period)

It Manufacturing lead time (time periods)

mhc Manufacturer’s holding costs (€)

mis Manufacturer inventory status (units per time period)
moc Manufacturer’s order costs (€)

mpc Manufacturer’s production costs (€)

msc Manufacturer’s stockout costs (€)

o Orders to manufacturer (units per time period)

oc Ordering cost (€ per order)

pc Production cost (€ per unit)

per Performance of the manufacturing capacity (%)

sc Stockout cost (€ per unit)

Launching orders to be manufactured, o are determined by demand forecasts, f, backorders, MBO, on-hand inventory,
MOHLI, and orders being manufactured, MWIP.
Equation (1) determines the possible backorders, MBO.

0, if MOHI(t) + PDM (t) — fo(t) > 0;
MBO(t) = [ —BOD(t) + (d — PDC(1)), if PDC(t) < d, dr. (1)
’ 0, in otherwise

Equation (2) determines the available inventory in the manufacturer’s warehouse.
t
MOHI(t) = / [PDM (t) — PDC(¢t)]dt + MOHI (ty). 2)
1y
Equation (3) defines the manufacturer’s work-in-process, MWIP.

t

MWIP(t) = / [o(t)] — PDM (t)]dt + MWIP(ty). 3)
1y

Equation (4) represents the total manufacturing cost, MTC, defined by the sum of the order costs, moc, storage costs, mhc,

stockout costs, msc, and production costs, mpc.

MTC(t) = / [moc(t) + mhe(t) + msc(t) + mpe(H)1dt + MTC(ty). 4)
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Figure 3. Part of the flow chart of the SD model from the demand management system.

Equation (5) determines the manufacturer fill rate, which is defined as the relationship between the products delivered to
customers, PDC(¢), and the firm orders fo(¢) during the time periods.

PDC(t) 1 .
7 s if fo(¢) > 0;
MFR() = fo(t) 1 ast(t) )
—_— otherwise
last(t)
Equation (6) calculates the products delivered to customers, PDC.
fo(p), if (MOHI(t) + PDM (t) — fo(t)) > O;
PDC(t) = . (6)
MOHI (1), otherwise
The backordered orders delivered, BOD, are stated in Equation (7).
MBO(1), if PDC(t) = fo(1);
BOD(t) = (PDC(t) — d(1)), if PDC(t) > d(t) . @)
0, in otherwise
The manufacturing capacity constraints, MCC(¢), are defined in Equation (8).
0 * perf, ifperf < 1;
MCC(t) = . ®)
0, in otherwise
Finally, the products delivered to the manufacturer, PDM, are defined in Equation (9).
PDM (t) = MCC(t + Ir). )

The seminal definition (going back to Forrester and 1961) of the bullwhip effect calculation in an e-shopping SC can be
distorted. Although the bullwhip effect is mainly the result of lack of transparency across multiple echelons and with many
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parties in each echelon (Lee et al. 1997), Disney, Naim, and Potter (2004) proved that the bullwhip effect still exists in a
single-level SC. Here the bullwhip effect indicator proved to be a useful tool to measure distortion in orders due to lead time
variability and lot-sizing techniques in a single-echelon SC. Other authors have also proved this (Li, Ghadge, and Tiwari
2016). Thus in accordance with Fransoo and Wouters (2000), the bullwhip effect, be, is measured at a particular level in a
multilevel SC as the quotient of the coefficient of variation in the demand generated by this level, Cqy, and the coefficient
of variation of the demand received at this level, Cj,:

9

be = (10)
Cin
where
o(o(t,t +1T))
Cow = ——— 0> (11)
uo(t,t+ 1))
and,

_o(dtt+T1))
S oud@t+ 1))
where d(t, t + T) and o(t, t + T) are the demands and orders during the time interval (¢,  + T), o is the standard deviation
and p is the mean. This bullwhip effect measure (10), thought for a particular level in a multi-level SC, is also adequate
for a single-echelon or e-shopping SC structure where, upstream and downstream bullwhip cyclicality (Geary, Disney, and
Towill 2006), known as the boom-and-bust scenario in a multilevel SC, it does not need to be captured.

12)

in

3.3. Lot-sizing

As previously mentioned, a subroutine programmed in Java is in charge of lot-sizing, which implements different lot-sizing
methods. Below the pseudo codes developed for WW (Wagner and Whitin 1958) and SM (Silver and Meal 1973) lot-sizing
algorithms, respectively, are presented. They send information to the SD model, as detailed in Section 2. The Java model
formulation is included in the Annexes of this paper.
The pseudo code for WW is:
cost [0] =0;
FOR n, from 1 to the maximum number of periods
FOR p, from 0 to (n-1)
current_cost= cost[p] + cost of ordering during period p, all the demand data from p to n-1
IF current_cost is the minimum:
cost[n] = current_cost
END IF
END FOR
END FOR
and, the pseudo code for SM is:
cost [0]=0;
processed_index =0
WHILE processes_index < number of demands
FOR i from 1 to number of demands
current_cost = calculate cost of ordering during period ‘processed_index’ all the demands between that
period and ‘processed index’ + 1
IF current_cost is higher than the last calculated
number of periods =i-1
/I calculate accumulated cost
cost = cost + cost from process_index to (process_index + number of periods)

BREAK FOR
END IF
END FOR
processed_index = processed_index + number of periods
END WHILE

RETURN cost
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4. The RH-SD-Java application

In order to apply and validate the created and modelled RH-SD-Java approach, the results were compared and offered in
costs, service level and bullwhip effect terms for different manufacturing orders. That is, the OUT-S (order up to level S)
(Silver, Pyke, and Peterson 1998) (see the Annexe) orders simulated in an SD model (Campuzano, Mula, and Peidro 2010)
and those which use lot-sizing according to the SM and WW techniques (Table 2), which are created by the RH-SD-Java
approach during all the simulation periods according to the inventory requirements to cover demand.

The setup data for the experiments are based on a real-world example taken from an automotive SC composed of a first-
tier supplier and a car assembler, which has been previously addressed in our research (Diaz-Madrofiero, Mula, and Jiménez
2014; Mula, Poler, and Garcia-Sabater 2008). From these input data, four main scenarios were recreated and simulated
according to different lead times (It = 2 weeks, /It = 3 weeks, It = 4 weeks and It = variable; 24 weeks) (Table 3). In
parallel, all four scenarios contemplated several subscenarios determined by different holding cost values, hc, and order
cost values, oc; as shown on the right in Table 3. In order to measure the simulated SC performance, total costs (sum of
order costs, oc, holding costs, hc, stockout costs, sc and production costs, pc), service level, MFR, and bullwhip effect,
be, were used as the main parameters. Hence it was possible to determine which manufacturing order (OUT-S, RH-SM or
RH-WW) implied improvements in the aforementioned parameters according to the different costs and lead times (constant
or variable).

The characteristics of the simulated scenarios are as follows:

e Constant and variable lead times (Table 3, left). Specifically, four possible lead times values were considered, three
of which contemplated constant lead times (/12 It3, I+4), while another scenario considered variable lead times (/tv).

e Different values were contemplated for the holding costs, Ac, and order costs, oc (Table 3).

e Production costs, pc, and stockout costs, sc, remained constant for each simulated scenario (Table 3).

All the initial values for the level variables were defined as null, except the manufacturer on-hand inventory, MOHI,
which was set up as 1458 units according to the used dataset taken from Mula, Poler, and Garcia-Sabater (2008) and
Diaz-Madrofiero, Mula, and Jiménez (2014).

Table 4 shows the considered actual demands (highlighted in bold) in relation to the forecasted demands. Thus Table 4
presents the demand information released by the customer (the car assembler) during each time period of the consid-
ered planning horizon to the first-tier supplier. The highlighted demand information is firm for each first releasing time
period, while for the other time periods demand information represents forecasts, which the RH-SD-Java approach manages
beforehand. We can find 21 demand releases that contemplate 30 time planning periods in an RH context.

4.1. Simulating scenarios

The model is simulated using Vensim DLL® (Ventana Systems Inc.), simulation software for SD, and worked in a Java
environment. Each RH-SD-Java model run consists of 216 simulation scenarios by combining constant or variable lead
times with different lot-sizing policies and holding and order costs. The computer used to carry out the experiments has an
Intel® i5 2.50 GHz processor with 8 GB of RAM memory and a 64-bits operating system. The average computational time

Table 2. Manufacturing order type.

Manufacturing order type Description
OUT-S Order up to level S
RH-SM Rolling horizon with SM
RH-WW Rolling horizon with WW

Table 3. Values of lead times (/¢) and costs setting.

Lead time setting Cost setting
Values of /¢ Holding costs Order costs Stockout cost Production cost
It in weeks (€/(period*unit)) (€/order) (€/unit) (€/unit)
12 2 2;5.39; 8 500; 1000; 1500 269.598 6.34
i3 3
it4 4 2000; 2500; 3000

Itv variable (2—4)




Table 4. Demand (d) corresponding to the total PH; length conformed by 21 demand releases and 30 time periods.

Time periods

1 2 3 4 5 6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N 1 677 780 647 358 537 419 0 0 231 324 324 324 395 395 395 395 372 372 372 372 266 266 266 266 266 0 O O 0 O
L 2 780 729 351 617 517 0 0 226 363 306 306 395 395 395 395 371 371 371 371 264 264 264 264 264 0 O O O O
§ 3 753 339 578 581 0 O 151 238 221 245 434 434 434 434 316 316 316 316 268 268 268 268 268 0 O O O O
s 4 339 620 551 0 O 157 240 225 244 434 434 434 434 316 316 316 316 268 268 268 268 268 311 311 311 311 O
< 5 618 510 0 O 470 587 560 572 880 892 892 892 380 380 380 380 306 306 306 306 306 361 361 361 361 O
,§° 6 524 0 0 430 937 766 134 915 858 904 904 379 379 379 379 307 307 307 307 307 362 362 362 362 O
s 7 0 0 429 942 774 194 872 868 872 852 380 380 380 380 306 306 306 306 306 380 380 380 380 O
§ 8 0 344 942 784 203 987 941 1014 994 429 429 429 429 309 309 309 309 309 380 380 380 380 303
P9 344 942 784 203 930 983 1049 985 503 407 407 407 308 308 308 308 308 380 380 380 380 304
g 10 940 697 203 1000 965 997 985 526 483 353 353 310 310 310 310 310 380 380 380 380 304
§ 11 728 688 1275 1176 1204 415 417 446 168 433 328 328 328 328 328 360 360 360 360 313
T 12 660 1275 1179 1209 464 421 399 179 459 327 327 327 327 327 360 360 360 360 314
I B3 1275 1179 1209 466 391 354 206 392 364 287 287 287 287 340 340 340 340 298
§ 14 1179 1207 749 747 801 419 739 565 483 369 369 369 291 291 291 291 307
S 15 1206 748 1038 1283 635 658 471 504 395 352 352 291 291 291 291 307
S 16 748 1039 1282 628 659 512 466 404 429 312 291 291 291 291 310
17 1039 1304 634 656 562 558 411 434 342 333 333 333 333 419
18 1301 636 681 655 635 502 511 379 467 469 469 469 428
19 636 654 350 840 661 641 243 456 458 480 480 428
20 652 625 858 827 616 246 443 447 458 477 455
21 611 850 595 558 475 489 468 480 488 544
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Figure 4. Steady state of the bullwhip effect KPI and the inventory level.

spent to solve the 216 simulation scenarios is about 3 min, which is not a critical point for practical use. By way of example,
Figure 4 presents the bullwhip effect at the manufacturer level KPI, where we can see that the steady state is reached after
approximately 10 time periods. Figure 4 also shows the warm up time of the inventory level and, as initial inventories are
considered according to the dataset used, stockout initial periods can be avoided.

4.1.1. Constant lead times

Table 5 shows the results for the 54 simulated scenarios for a constant lead time of two unit times, /#2, and offers the results
that reach the total costs, the service level, MFR, and the bullwhip effect, be, for the different sc and oc values. The results
corresponding to scenarios /¢3 and /t4 are also seen in Figures 5, 6 and 7.

The results obtained with constant lead times revealed how using manufacturing orders RH-SM and RH-WW provided
better results in terms of costs and service levels than the OUT-S policy (Figures 5 and 6). Figure 5 shows how the RH-SD-
Java approach performed better in terms of total costs for all the considered constant lead times, 2, 3 and 4, mainly because
the demand updating from the RH data allowed the lot-sizing techniques to make more accurate calculations because the
lot-size amounts were updated during each simulation time period, or demand releasing, which avoided higher costs due
to demand uncertainty. Regarding the manufacturer fill rate, Figure 6 shows how the RH-SD-Java approach led to better
performance with shorter lead times because the possible backorders were updated during each contemplated time period
in such a way that they were added to the actual demand by creating more stability in the system.



Table 5. Total costs, fill rate, MFR, and bullwhip effect, be, for I£2.

he =2 he = 5.39 he =38
Manufacturing
Set up parameters order type Total costs (€) MFR (%) be Total costs (€) MFR(%) be Total costs (€) MEFR (%) be
oc = 500 OUT S 1484.000 82.45 1.633 1543.000 82.45 1.633 1589.000 82.45 1.633
RH-SM 1002.000 88.25 1.586 1069.000 88.32 1.511 1126.000 88.32 1.511
RH-WW 994.500 88.32 1.511 1069.000 88.32 1.511 1126.000 88.32 1.511
oc = 1000 OUT S 1493.000 82.45 1.633 1552.000 82.45 1.633 1598.000 82.45 1.633
RH-SM 994.700 88.43 1.886 1077.000 88.32 1.511 1135.000 88.32 1.511
RH-WW 967.600 88.63 1.515 1077.000 88.32 1.511 1135.000 88.32 1.511
oc = 1500 OUT S 1502.000 82.45 1.633 1561.000 82.45 1.633 1607.000 82.45 1.633
RH-SM 576.400 92.34 2.161 1094.000 88.25 1.586 1153.000 88.25 1.586
RH-WW 780.800 89.87 1.768 1086.000 88.32 1.511 1143.000 88.32 1.511
oc = 2000 OUT S 1511.000 82.45 1.633 1570.000 82.45 1.633 1616.000 82.45 1.633
RH-SM 643.300 94.21 2.007 1059.000 88.63 1.515 1161.000 88.25 1.586
RH-WW 816.600 93.18 1.952 1059.000 88.63 1.515 1152.000 88.32 1.511
oc = 2500 OUT S 1520.000 82.45 1.633 1579.000 82.45 1.633 1625.000 82.45 1.633
RH-SM 421.400 96.55 2.331 1103.000 88.43 1.886 1169.000 88.25 1.586
RH-WW 429.300 96.43 2.089 1068.000 88.63 1.515 1160.000 88.32 1.511
oc = 3000 OUT S 1529.000 82.45 1.633 1588.000 82.45 1.633 1634.000 82.45 1.633
RH-SM 27.000 99.04 2.950 674.300 92.38 1.714 1134.000 88.63 1.515
RH-WW 264.900 98.97 2.012 1111.000 88.32 1.511 1134.000 88.63 1.515
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Figure 5. Total costs of manufacturing orders OUT-S, RH-SM and RH-WW.
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Figure 7 presents the bullwhip effect calculated to measure the distortion between generated orders and demand. We can
see that as the holding cost goes up, the order distortion measured in bullwhip effect terms goes down. By using lot-sizing
techniques, higher holding costs should yield smaller orders and reduce the order distortion. These results are in line with
Lee, Padmanabhan, and Whang (1997a), who identified lot-sizing and non-null lead times as two of the main causes of
the bullwhip effect. From this case study, it was concluded that the RH-SD-Java approach with the WW and SM lot-sizing
techniques, and with demand management and constant lead times, offers better results in total costs and service levels

terms than the OUT-S manufacturing orders generated by a static planning horizon approach.

4.1.2. Variable lead times

Table 6 corresponds to the variable lead times scenario, /tv. Here, lead time variability represents the existence of different
lead times for each simulated time period. This is generated through a random uniform function between a minimum of two

and a maximum of four unit times.
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Figure 7. Bullwhip effect of manufacturing orders OUT-S, RH-SM, RH-WW.

Regarding the results corresponding to the scenarios with variable lead times (/#v), Figures 8, 9 and 10 reveal that the
RH-WW and RH-SM policies are not always better than the OUT-S policy, which occurred in the scenarios with constant
supply times. These policies might prove slightly better than others as far as the values for any previously defined parameter
are concerned; i.e. order costs (oc) and/or holding costs (hc). For instance, with hc = 2, and after taking into account the
values of the total costs and fill rates, the RH-WW and RH-SM policies proved better than OUT-S for an order with a cost
over €1500 (Note A, Note D, respectively, in Figure 8 and Figure 9). However, when contemplating the bullwhip effect
value (Figure 10) for the considered case of hc = 2, the best value of both policies was obtained with oc = 2000 (Note G
in Figure 10). Similarly, to hic = 5.39, the RH-SM policy better performed than the other two in total costs and service level
terms for an order cost (oc) value between 1000 and 1500 (Note B and Note E in Figures 8 and 9). Regarding the bullwhip
effect value, RH-WW outperformed RH-SM for an order cost value between 1500 and 2000 (Note H in Figure 10). It is
worth highlighting that for all cases, the bullwhip effect was lower when the RH-SD-Java approach was used with lot-sizing
techniques than the OUT-S policy in a static simulation context. Finally, for ic = 8, the choice of a policy with an optimum
point was more difficult because the RH-SM policy proved better for all the parameters employed for order cost values
between 1500 and 2500 (Note C, Note F, and Note I, respectively, in Figures 8, 9 and 10). Nonetheless, RH-SM and RH-
WW gave results that came close to those of OUT-S for oc = 3000 (Note J in Figure 10). Therefore, in a manufacturing
environment with variable lead times, the replenishment order OUT-S (determined without an RH) should be carefully
selected or, otherwise, an RH approach along with the WW or SM technique would be a better choice depending on the
parameter we are interested in improving; i.e. total costs, service level or demand distortion. It is necessary to bear in mind
that this choice would be sensitive to changes in order costs, oc, and holding costs, Ac.

In order to provide a more exhaustive and general analysis, we experimented with 28 new numerical instances by
considering variable lead times, several order and holding costs, and by using the same demand patterns provided in Table 4,
but with different random number generators. Thus, the demand data for each time period were multiplied by the same
random number between =+ o, which represents a relative variation coefficient of the initial demand value provided in
Table 4. This o value was between 10% and 50%. An easy-to-use interface for potential practitioners was also created to
manage the RH-SD-Java model, which allows the number of different parameters to be selected to set the related holding
costs, order costs and lead times (Figure 11).

From the generated output data (https://bit.ly/2Tp6bnwv), we conclude that the RH-SD-Java approach, using SM and
WW lot-sizing techniques, generally improves the total costs and fill rates for variable lead times compared to the OUT-S
policy in a non-RH environment. Thus, from most of the simulations made, the SM technique behaved better than the WW
and OUT-S procedures for lower holding costs and higher order costs, and behaved even better when order costs increased.
This was due to the major distortion of the generated orders in relation to demands, which better absorbed the stockout
periods generated mainly by the instability in the SC introduced by the variable lead times.



Table 6. Total costs, fill rate, MFR, and bullwhip effect, be, for ltv = 2—4 weeks.

he =2 he = 5.39 he =8
Set up parameters Manufacturing order type Total cost (€) MFR (%) be Total cost (€) MFR(%) be Total cost (€) MFR(%) be
oc = 500 ouUT S 3833.000 63.93 2.648 3892.000 63.93 2.648 3937.000 63.93 2.648
RH-SM 4407.000 63.78 2.625 4426.000 63.15 248 4293.000 63.15 248
RH-WW 4186.000 63.15 2.48 4246.000 63.15 2.48 4293.000 63.15 2.48
oc = 1000 ouT S 3839.000 63.93 2.648 3898.000 63.93 2.648 3943.000 63.93 2.648
RH-SM 4412.000 63.78 2.625 3550.000 67.1 2.342 4299.000 63.15 2.48
RH-WW 3921.000 63.1 2.461 4252.000 63.15 248 4299.000 63.15 248
oc = 1500 ouUT S 3845.000 63.93 2.648 3904.000 63.93 2.648 3949.000 63.93 2.648
RH-SM 4425.000 63.91 2.71 3556.000 67.1 2.342 3613.000 67.1 2.342
RH-WW 3533.000 64.01 2.235 4258.000 63.15 2.48 4305.000 63.15 2.48
oc = 2000 ouUT S 3851.000 63.93 2.648 3910.000 63.93 2.648 3955.000 63.93 2.648
RH-SM 2664.000 75.93 2.321 3987.000 63.1 2.461 3619.000 67.1 2.342
RH-WW 2789.000 74.61 2.182 3987.000 63.1 2.461 4311.000 63.15 2.48
oc = 2500 ouT S 3857.000 63.93 2.648 3916.000 63.93 2.648 3961.000 63.93 2.648
RH-SM 2672.000 77.55 2.675 4493.000 63.78 2.625 3625.000 67.1 2.342
RH-WW 1908.000 76.61 2.452 3993.000 63.1 2.461 4317.000 63.15 2.48
oc = 3000 ouT S 3863.000 63.93 2.648 3922.000 63.93 2.648 3967.000 63.93 2.648
RH-SM 2285.000 77.79 3.133 4499.000 63.78 2.625 4039.000 63.1 2.461
RH-WW 1815.000 77.98 2.502 3999.000 63.1 2.461 4039.000 63.1 2.461
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Figure 11. The RH-SD-Java simulator.

Moreover, with higher holding costs, the optimisation WW technique performed slightly better in total costs and fill
rates terms than the SM and OUT-S techniques. It is highlighted that when lower total costs are generated, higher fill rates
are also provided due mainly to the produced minimum stockout costs. Regarding the bullwhip effect in order distortions
terms in relation to demand, as expected, it increased when using lot-sizing techniques, but mainly with lower holding costs,
while order distortion can lower or remain unchanged compared to the OUT-S policy with higher holding and order costs.
Here, WW performed better than SM because the generated lots were similar to the demand requirements. Additionally,
the RH-SD-Java performed better than the OUT-S policy for a higher relative variation coefficient of the initial demand
value + «. From previous conclusions, we would recommend to the automotive SC under study proceeding as follows for
a prescriptive way of making the order technique choice a priori:

e With variable lead times, low holding costs and high order costs, use the SM technique.
e With variable lead times and high holding costs, use the WW technique
e With variable lead times and minimum order distortions in relation to demands are required, use the WW technique

Therefore, we can positively answer the research question set out in this proposal about the validity and usefulness of the
integrated use of RH and SD simulation approaches to manage demand under both uncertainty and lead time variability by
evaluating different lot-sizing techniques. We also recommend planning practitioners to model and simulate their respective
production planning systems by recreating different scenarios of holding and order costs, lead times and demand variabilities
in a RH-SD-Java environment.

5. Conclusions

The paper proposes an RH approach to deal with management problems in a streamlined SC. This article presents a
developed RH approach combined with SD in a Java environment, namely RH-SD-Java, to model and improve demand
management processes in an environment with variable lead times and uncertain demand. It identifies replenishments with
constant or variable lead times, and the modelled approach provides results that can help demand planners in their decision
making. Nonetheless, to date all studies into RH have been applied mainly to different optimisation techniques based on
mathematical programming. Hence the present study is pioneering insomuch as it is applied in SD-based simulation. To
develop this new RH-SD-Java approach proposal, a Java programming environment was used along with Vensim® to cal-
culate manufacturing orders using the optimum WW and SM lot-sizing techniques by an RH approach. This RH-SD-Java
approach is proposed to face the dynamic nature that some SC demands can present, where the management of such demand
must be solved immediately and in an unstable planning horizon lacking reliability that is not risk-free.

The main contribution of this paper aims to propose an integrated approach for production managers to provide new
insight by combining RH planning for demand management with variable lead times, along with an SD simulation model. It
also evaluates two different lot-sizing techniques, i.e. WW (optimisation) and SM (heuristic), integrated into an RH approach
and compares them to an order up to inventory management policy (OUT-S). For a specific, but dynamic demand stream,
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this work evaluates costs, service levels and planning nervousness (bullwhip effect). A sensitivity analysis by varying lead
times, holding costs and order costs is carried out. More numerical experiments with the same demand parameters, but
with different random number generators, are analysed to acknowledge a more exhaustive analysis. Generally speaking,
this work identifies how the application of an optimum lot-sizing technique in an RH setting with variable lead times can
generate more sustainable planning results in total costs, fill rates and demand distortion (bullwhip effect) terms.

Managerial implications are referred to adopt an existent dynamic production plan (input/output data) and the replen-
ishment order policy used by the company under study, and to compare them with other desired lot-sizing techniques (WW,
SM, among others) by our RH-SD-Java approach. In the first place, technical requirements are related to an SD simula-
tion modelling language (Vensim® or similar), spreadsheet and a Java environment. Some adaptations in the RH-SD-Java
approach can be required as regards SC characteristics, i.e. inventory level variables, order and lead time auxiliary vari-
ables, among others. Moreover, end users will be provided with an easy-to-use interface, just as it was developed herein, to
manage the RH-SD-Java model. In the context studied to manage demand with both uncertainty and lead time variability,
a prescriptive way of making the order technique choice a priori was provided by comparing the WM and SM lot-sizing
techniques and simulating several scenarios using different holding and order costs. From the managerial perspective, this
integrated RH and SD simulation proposal could deduce more practical polices according to manager requirements and,
subsequently, simulated scenarios (lot-sizing techniques, costs, among others). Lot size could also be constrained by the
limited storage capacity limits in production processes, which should be especially considered in collaborative supply chain
structures such as a vendor-managed inventory (VMI), where minimum and maximum inventories are usually predefined
by a contract. In this case, the RH-SD-Java model may also include constraints to avoid an over-storage capacity in terms
of reducing the selected order in accordance with updated on-hand inventory levels.

Finally, it is worth stressing that our forthcoming work intends to address the RH-SD-Java multilevel, multiproduct and
supplier capacity constrained SC to test alternative lot-sizing techniques (least total cost, least unit cost, among others) and
their application to different industrial or agri-food SC settings (Taylor and Fearne 2006). In this way, they will be able to
better face the management of adverse demands which, for instance, this second sector presents suddenly or in the short or
midterms, and result from external agents, like climate, natural disasters (Brown and Kshirsagar 2015; Ostberg et al. 2018),
oil prices and international situations (Anderson and Nelgen 2012; Zhang and Qu 2015), among others, especially those that
are uncontrolled.
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Annexe

Note: The nomenclature used in the following formulations belongs to the original authors.
OUT-S policy
The order-up-to level policy, OUT-S, is as follows (Silver, Pyke, and Peterson 1998):
O, = S;—inventoryposition.

The order quantity, O;, equals S;, reduced for the inventory position, where O; is the ordering decision made at the end of time period
t and S; is the OUT-S used during time period t. OUT-S is updated each period according to:

S, = DF + k6}
where S; equals the estimate mean of demand, th, over L periods (th = b, - L) increased for the prescribed fill rate with buffer stocks. atL
is an estimation of the standard deviation over L periods, and k is the fill rate factor (safety factor) that depends on the demand distribution.
inventory position = inventory on hand + orders placed but not yet received—backlogged orders.
Wagner-Whitin model
The mathematical model of Wagner-Whitin (WW) (1958) is based on dynamic programming, given by
t—1 3
F(t) = min 1@}21 |:s/- * hX::ijXhi_l b+ FG = l):| ,
ss+F@E—1)

where, 7 is the current time period number; d; = the amount demand during time period ¢; i; = the interest charge per inventory unit

carried forward to time period ¢ 4+ 1; s; = the ordering (or setup) cost during time period #; x; = the amount ordered (or manufactured)
during time period #; F(f) = the minimal cost programme for periods 1 through to 7.
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Silver-Meal model
The heuristics technique of the SM (1977) model is based on dynamic programming, given by

1

M= T

j
k+ Y htk =iy |,

k=1

where, ¥ is the cost per period if we buy from time period i through to j; £ is the holding cost; dy is the demand for time period k.

The Wagner-Whitin Java code

package wagnerwhitin;

// WagnerWithinCalculator is used to calculate the optimal lot-sizing using the
Wagner-wWhitin algorithm that is based on dynamic programming

public class WagnerWhitinCalculator {

private float [] originalDemands; // demands
private double orderCost; // oc
private double stockPerUnitPerPeriodCost; // hc

public WagnerWhitinCalculator(float [] demands, double orderCost, double
stockPerUnitPerPeriodCost) {
this.originalDemands = demands;
this.orderCost = orderCost;
this.stockPerUnitPerPeriodCost = stockPerUnitPerPeriodCost;

}

public double getCost(int fromPeriod, int toPeriod) ({
double cost = orderCost;

for (int period=fromPeriod + 1; period <= toPeriod; period++) {
int step = period - fromPeriod;
cost = cost + step * originalDemands[period] *
stockPerUnitPerPeriodCost;
}

return cost;

}

public float [] getOrders() {
double [] costTable = new double[originalDemands.length + 1];
int [] fromTable = new int[originalDemands.length + 1];
costTable[0] = 0.0;

for (int numberOfPeriods=1; numberOfPeriods < costTable.length;
numberOfPeriods++) {
costTable[numberOfPeriods] = Double.POSITIVE_INFINITY;

for (int fromNumberOfPeriods=0; fromNumberOfPeriods <
numberOfPeriods; fromNumberOfPeriods++) {

double cost = costTable[fromNumberOfPeriods] +

getCost (fromNumberOfPeriods, numberOfPeriods - 1);
if (cost <= costTable[numberOfPeriods])
costTable[numberOfPeriods] = cost;

fromTable [numberOfPeriods] =
fromNumberOfPeriods;

}
}
float [] orders = new float [originalDemands.length];
int index = originalDemands.length;
int ordersIndex = originalDemands.length - 1;

while (index !'= 0) {
int currentNumberOfPeriods = index - fromTable[index];
int accumulatedOrders = 0;
for (int demandsIndex=ordersIndex; demandsIndex >
ordersIndex - currentNumberOfPeriods; demandsIndex--)
accumulatedOrders += originalDemands[demandsIndex];

ordersIndex -= currentNumberOfPeriods;
orders[ordersIndex + 1] = accumulatedOrders;
index = fromTable[index];

}

return orders; // optimum orders

3819



3820

F. Campuzano-bolarin et al.

The Silver-Meal Java code

package silvermeal;

// SilvermealCalculator is used to calculate the lot-sizing using the heuristic

technique of Silver-Meal algorithm, that is based on dynamic programming

public class SilverMealCalculator {

private Integer [] originalDemands; // demands
private double orderCost; // oc
private double stockPerUnitPerTimeCost; // hc

public SilverMealCalculator(Integer [] demands, double orderCost, double

stockPerUnitPerTimeCost) {
this.originalDemands = demands;
this.orderCost = orderCost;
this.stockPerUnitPerTimeCost = stockPerUnitPerTimeCost;

}

private double calculateMeanCost (ArrayList<Integer> demands, int
numberOfPeriods) {

double result = orderCost;

for (int step = 1; step < numberOfPeriods; step++) {
result = result + step * demands.get(step) *
this.stockPerUnitPerTimeCost;
}
result = result / numberOfPeriods;

return result;

}

private int getNumberOfPeriods (ArrayList<Integer> demands) {
double lastCost = Double.POSITIVE INFINITY;

double currentCost = 0;

int result = 1;

for (int period = 1; period <= demands.size(); period++)
{

currentCost = calculateMeanCost (demands, period) ;
if (currentCost > lastCost)
break;
result = period;
lastCost = currentCost;

}
return result;

}

public int [] getOrders() {
ArrayList<Integer> demands = new
ArrayList<Integer>(Arrays.asList (originalDemands)) ;
int currentNumberOfPeriods;
int [] orders = new int[originalDemands.length];
int orderIndex = 0;
while (demands.size() > 0) {
currentNumberOfPeriods = getNumberOfPeriods (demands) ;
int accumulatedDemand = 0;
for (int index = 0 ; index < currentNumberOfPeriods;
{
accumulatedDemand = accumulatedDemand +
demands.get (0) ;
demands . remove (0) ;
}
orders[orderIndex] = accumulatedDemand;
orderIndex = orderIndex + currentNumberOfPeriods;

}

return orders;

index++)




	1. Introduction
	2. The RH-SD-Java framework
	3. The RH-SD-Java approach
	3.1. The RH approach
	3.2. SD model formulation
	3.3. Lot-sizing

	4. The RH-SD-Java application
	4.1. Simulating scenarios
	4.1.1. Constant lead times
	4.1.2. Variable lead times


	5. Conclusions
	Acknowledgement
	Disclosure statement
	Funding
	ORCID
	References

