

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/161207

Campos, C.; Jose E. Roman (2020). A polynomial Jacobi-Davidson solver with support for
non-monomial bases and deflation. BIT Numerical Mathematics. 60(2):295-318.
https://doi.org/10.1007/s10543-019-00778-z

https://doi.org/10.1007/s10543-019-00778-z

Springer-Verlag

A polynomial Jacobi–Davidson solver with support for

non-monomial bases and deflation∗

Carmen Campos† Jose E. Roman‡

August 1, 2019

Abstract

Large-scale polynomial eigenvalue problems can be solved by Krylov methods operating
on an equivalent linear eigenproblem (linearization) of size d · n, where d is the polynomial
degree and n is the problem size, or by projection methods that keep the computation in the
n-dimensional space. Jacobi–Davidson belongs to the latter class of methods, and, since it
is a preconditioned eigensolver, it may be competitive in cases where explicitly computing
a matrix factorization is exceedingly expensive. However, a fully fledged implementation of
polynomial Jacobi–Davidson has to consider several issues, including deflation to compute
more than one eigenpair, use of non-monomial bases for the case of large degree polynomials,
and handling of complex eigenvalues when computing in real arithmetic. We discuss these
aspects and present computational results of a parallel implementation in the SLEPc library.

1 Introduction

The polynomial eigenvalue problem (PEP) consists in determining eigenpairs (x, λ) ∈ Cn × C,
x 6= 0, satisfying

P (λ)x = 0, (1)

where P : C→ Cn×n is a matrix polynomial of degree d,

P (λ) = A0 + λA1 + λ2A2 + · · ·+ λdAd, (2)

with Ai ∈ Cn×n, i = 0, . . . , d. The polynomial may also be expressed in a basis other than the
monomial one, as we will discuss later below. We assume that P is regular, that is, detP (λ) is not
identically zero. This problem can be found in scientific computing applications more and more
[31, 3]. In this paper, we focus on the case that only a few eigenvalues λ and corresponding
eigenvectors x of large-scale problems with Ai sparse are required. This is often the case in
problems arising from the discretization of partial differential equations.

A common approach for solving large-scale polynomial eigenvalue problems is linearization
[20], where a linear eigenvalue problem (A − λB)y = 0 is built having the same eigenvalues λ
as the polynomial problem. The corresponding eigenvectors x of (1) can be extracted from the
computed vectors y. The size of the linearization is d ·n, much larger than the original problem
size n. Fortunately, there exist Krylov methods that are able to exploit the structure of the

∗This work was supported by Agencia Estatal de Investigación (AEI) under grant TIN2016-75985-P (including
European Commission ERDF funds).
†D. Sistemes Informàtics i Computació, Universitat Politècnica de València, València, Spain

(mccampos@dsic.upv.es).
‡D. Sistemes Informàtics i Computació, Universitat Politècnica de València, València, Spain

(jroman@dsic.upv.es).

1

matrices of the linearization A,B and restrict their computational and storage requirements to
order n rather than d · n [19, 6]. One drawback of linearization is that it may have an impact
on the conditioning of eigenvalues [13]. Another downside of Krylov methods for PEP is that
they need to compute a matrix factorization, in particular it is necessary to factorize P (σ)
when computing eigenvalues closest to a given target value σ. For large problems, computing
a factorization may be too expensive, or have bad scalability in case of parallel computing.
Sometimes this factorization can be replaced by an iterative linear solver, but this is not robust
enough in most applications.

An alternative to linearization is to employ a projection method that operates on the original
n-dimensional space. These methods impose a Galerkin-type condition on the residual of an
eigenpair of the polynomial eigenproblem, and the resulting projected problem is also a (small-
scale) PEP. Examples of such methods are SOAR [1] and Jacobi–Davidson [28]. In this paper
we focus on the Jacobi–Davidson method, that has the advantage of being a preconditioned
eigensolver in the sense that linear systems appearing within the method need not be solved
accurately to guarantee robustness. Hence, the need of computing a factorization in Krylov
methods is completely avoided and a preconditioned iterative method may be used instead.

The Jacobi–Davidson method for the PEP has been used in several application areas such as
acoustics [32, 16], combustion [27], plasma physics [14], or quantum dot simulation [17]. Our goal
is to provide a general-purpose, robust and efficient implementation that can be used in different
contexts. Our implementation is included in SLEPc, the Scalable Library for Eigenvalue Problem
Computations [23, 11], a freely available library for the solution of large-scale eigenproblems on
parallel computers. SLEPc already contained an implementation of Jacobi–Davidson for linear
eigenvalue problems, which is described in [24], and in this work we present a new version for
the PEP case. Compared to the linear case, polynomial Jacobi–Davidson requires consideration
of several important issues that we briefly discuss below.

One thing to consider is the computation of more than one eigenpair. Jacobi–Davidson
computes approximations of eigenvalues one at a time. In the case of linear eigenproblems,
it is possible to avoid reconvergence to previously converged eigenvalues by adding a deflation
technique (also called locking). Deflation relies on the fact that eigenvectors are linearly in-
dependent, and is essentially based on performing the search in the orthogonal complement of
previously converged eigenvectors. However, in polynomial eigenproblems there are d · n eigen-
vectors so linear independence cannot be guaranteed and hence deflation must be accomplished
in a different way. Meerbergen [22] suggests a locking procedure based on the Schur form of the
linearized problem. A more general approach was proposed more recently by Effenberger [7].
We use this latter scheme in our implementation.

Another issue is the numerical treatment of high-degree polynomials. If the degree is rela-
tively large, e.g., d ≥ 6, the large exponents in the monomial representation of the polynomial
(2) will likely lead to numerical instability. It then turns out to be highly convenient to switch
to a non-monomial basis, where the matrix polynomial is expressed as

P (λ) = Φ0(λ)A0 + Φ1(λ)A1 + · · ·+ Φd(λ)Ad, (3)

where {Φj}dj=0 is a polynomial basis with real coefficients in which Φj has degree j, j = 0, . . . , d.
In our implementation, we have considered families of orthogonal polynomials satisfying a three-
term recurrence relation,

λΦj(λ) = αj Φj+1(λ) + βj Φj(λ) + γj Φj−1(λ), for j = 1, 2, (4)

with Φ−1 ≡ 0, Φ0 ≡ 1. In particular, our implementation supports Chebyshev, Legendre,
Laguerre and Hermite polynomials (as was done for Krylov solvers in [6]). High-degree poly-
nomials appear for instance in the solution of nonlinear eigenvalue problems via polynomial
interpolation [8].

2

A final topic is the use of real or complex arithmetic. In many numerical algorithms, it is
often convenient to perform all the computation in real arithmetic if possible. As we will discuss,
SLEPc provides the option of doing all calculations either in real or complex arithmetic. Jacobi–
Davidson is quite challenging for the case of real arithmetic, because the Ritz approximation
is often complex even if the matrices are real, and this implies that the correction equation
must deal with a complex linear system in real arithmetic. We will discuss how this can be
implemented, and which implications it has with respect to the previously discussed topics
(deflation and non-monomial bases).

The rest of the paper is organized as follows. Section 2 gives an overview of polynomial
Jacobi–Davidson, considering the case of non-monomial polynomial bases. Section 3 deals with
the deflation of converged eigenpairs, while the topic of real arithmetic is covered in section 4.
The specific details of the implementation in SLEPc are discussed in section 5, and some com-
putational results are given in section 6. We wrap up with a few concluding remarks.

2 Jacobi–Davidson for polynomial eigenvalue problems

In this section, we briefly describe the Jacobi–Davidson variant used in our solver when com-
puting one eigenpair of a polynomial eigenvalue problem. The Jacobi–Davidson method [29]
is a projection method that generates a search space using a Newton-like correction equation.
This method, that was developed initially to solve linear eigenproblems, has been adapted for
the solution of the polynomial and nonlinear eigenproblems [28, 15, 34]. Our implementation is
based on the nonlinear versions proposed in [34, 7], which are appropriate to address polynomial
eigenproblems expressed in the general form (3).

Jacobi–Davidson is a projection method based on an expanding subspace V , and hence it
has two stages: on one hand the extraction phase, in which the approximate eigenpairs are
obtained via a projection, and on the other hand the expansion phase, in which the search
subspace is extended using corrections obtained from a Newton-type scheme. The extraction is
accomplished by enforcing a Galerkin (or Petrov–Galerkin) condition, which results in a small-
dimensional polynomial eigenproblem,

W ∗P (µ)V y = 0. (5)

In the case of an orthogonal projection, the left (test) and right (search) subspaces are equal,
W = V . The solution of (5) gives Ritz approximations (u = V y, µ). If the most wanted of these
approximations is not accurate enough, the subspace is extended with a new direction. The so
called correction equation has the form(

I − P ′(µ)uw∗

w∗P ′(µ)u

)
P (µ)(I − uu∗)t = −P (µ)u, (6)

from which a vector t ⊥ u is obtained and used to extend the search subspace. Here w is a
constant vector coming from a normalization condition, orthogonal to the residual P (µ)u, and
P ′ denotes the derivative of P .

Algorithm 1 summarizes the Jacobi–Davidson method for polynomial eigenvalue problems
for approximating one eigenpair. In step 2, the search subspace is initialized with a normalized
random vector, and so is the test subspace, which is selected as W = P (σ)V in this case.
Step 4 extracts an approximate Ritz vector from the subspace V , whose accuracy is checked in
steps 5–8. If the iteration does not stop at step 7, the search and test subspaces are extended, in
steps 15 and 16 using a vector t obtained by solving the correction equation with an appropriate
preconditioner in steps 12–14. When the subspaces reach a prescribed maximum dimension,

3

ALGORITHM 1: Computation of an eigenpair by means of polynomial Jacobi–Davidson

Input: Polynomial basis Φ and matrices {Ai}di=0 ⊂ Cn×n defining the PEP, target value σ ∈ C,
tolerance tol, maximum subspace dimension m.

Output: Approximate eigenpair (x, λ), satisfying ‖P (λ)x‖ ≤ tol.
1: Compute random v ∈ Cn, r = P (σ)v
2: V = [v

‖v‖], W = [r
‖r‖] (Initialization)

3: for j = 1, 2, . . . do
4: (u, µ) = (V y, µ) with W ∗P (µ)V y = 0 for µ closest to σ (Extraction)
5: r = P (µ)u
6: if ‖r‖ ≤ tol then
7: (x, λ) = (u, µ), stop (Finalization)
8: end if
9: if dimV ≥ m then

10: Compress V , W , extract (u, µ), recompute r (Restart)
11: end if
12: Build preconditioner K from P (µ) (Preconditioner)
13: Form shell preconditioner K̂ according to (9)
14: t = solve(P (µ), K̂,−r) (Correction equation)
15: v = (I − V V ∗)t, w = (I −WW ∗)r (Orthogonalization)
16: V ← [V, v

‖v‖], W ← [W, w
‖w‖] (Subspace expansion)

17: end for

a restart is forced (step 10) to compress them to a smaller dimension trying to keep the most
useful spectral information.

The algorithm performs an oblique projection using a test subspace W different from the
search subspace V . However, we have also implemented the possibility of doing an orthogonal
projection using W = V , which can be found more often in literature [5, 34, 21, 17, 14]. Our
choice for oblique projection is the one used by Effenberger [7], which is related to the harmonic
Ritz space proposed in [30].

The resolution of the correction equation (6) is done approximately by means of a precon-
ditioned Krylov method [26] such as BiCGStab or GMRES. The equation can be expressed
as

Mπt = −r, Mπ = π1P (µ)π2, t ⊥ u, (7)

with r = P (µ)u and

π1 :=

(
I − P ′(µ)uw∗

w∗P ′(µ)u

)
, π2 := (I − uu∗), (8)

that is, Mπ is the restriction of M := P (µ) to two subspaces, each of them of codimension one. If
K is a preconditioner for M , then its restriction Kπ = π1Kπ2 is an appropriate preconditioner for
Mπ [34]. When applying an iterative method for solving (7), operations of the type y = K−1π Mπv
are performed repeatedly. Following the reasoning described in [34], it can be shown that these
operations are equivalent to y = K̂−1Mv, being

K̂−1 :=

(
I − K−1ṙu∗

u∗K−1ṙ

)
K−1, (9)

where ṙ = P ′(µ)u. As a consequence, we see that using an iterative method to solve the system
with coefficient matrix Mπ and preconditioner Kπ is equivalent to applying such method to
solve the system with matrix M using a preconditioner whose action is given by K̂−1. The
latter is not built explicitly, but instead the elements necessary for its application are computed.
This requires, on one hand, the construction of a preconditioner K for M = P (µ) (step 12 of

4

Algorithm 1), and, on the other hand, the elements that intervene in the projection to be applied
after K−1 in (9), z = K−1ṙ and γ = u∗z. The operation indicated in step 14 of Algorithm 1
corresponds to the application of the Krylov method for the solution of the correction equation,
using matrix P (µ) and the preconditioner defined by K̂.

It is well known that in the context of nested iterations where the outer loop is of Newton
type, there is no point in oversolving the inner iteration during the initial steps of the outer loop.
For this reason, we use a variable tolerance for the Krylov method in step 14 of Algorithm 1. In
particular, the convergence criterion is

‖r(k)‖2 ≤ max{2−j , tol}‖r(0)‖2, (10)

where r(k) denotes the linear system residual at step k of the Krylov iteration, j is the iteration
number of the outer loop, and tol is the tolerance requested to the eigensolver. This strategy
was already suggested in [9].

The restart of step 10 in Algorithm 1 aims at reducing the dimension of subspaces V and
W from m to p̂, to keep memory and computational requirements bounded. We implement
the restart as V ← V Q, W ← WS, where Q,S are m × p̂ matrices with orthonormal columns
spanning the primitive right and left Ritz vectors y, z corresponding to the p eigenvalues closest
to the target σ, with p̂ ≤ p. The p parameter can be set by the user, see section 5.4.

The process described in Algorithm 1 generates an eigenpair of the polynomial eigenvalue
problem. When more than one eigenpair is required, an outer loop is added to such process, that
iterates until the desired number of eigenpairs is obtained. However, it is necessary to add some
type of mechanism to avoid recomputing previously computed eigenpairs. This is discussed in
the following section.

3 Deflation of converged eigenpairs

There are several possible strategies to avoid reconvergence to previously computed eigenpairs.
A simple scheme is to modify the extraction (step 4 of Algorithm 1) to avoid picking eigenvalues
that are close (according to a tolerance) to one of the eigenvalues computed so far. Obviously,
this scheme is viable only for problems with well-separated eigenvalues. A better approach
is to deflate converged eigenpairs. In linear eigenproblems, deflation is usually effected by
shifting or by orthogonalization. The former has been extended to polynomial problems as non-
equivalence deflation [10], that maps already computed eigenvalues to a different location. In
linear eigenproblems, deflation by orthogonalization is usually preferred. However, in polynomial
eigenproblems maintaining the search subspace orthogonal to the previous eigenvectors may
miss other eigenvalues because eigenvectors need not be linearly independent. One possible
workaround is to deflate based on the Schur form of the linearization [22, 25]. The strategy
that we have used is based on the deflation approach proposed by Effenberger for the general
nonlinear eigenvalue problem [7].

3.1 Minimal invariant pairs

The deflation technique proposed in [7] is based on expanding invariant pairs. Invariant pairs
are generalizations for the nonlinear case of invariant subspaces for linear eigenproblems. The
concept of invariant pair has been defined in [18] for general nonlinear eigenproblems, and in [4]
for polynomials expressed in the monomial basis. Here we give a definition particularized for
non-monomial bases.

5

Definition 1. A pair (X,H) ∈ Cn×k × Ck×k is said to be an invariant pair for a matrix
polynomial P defined as in (3) if it verifies

P(X,H) := A0X Φ0(H) +A1X Φ1(H) + · · ·+AdX Φd(H) = 0, (11)

where Φi(H) stands for the matrix function defined in terms of the polynomial Φi [12].

Generalizing the linear case, Kressner [18, lemma 4] shows that eigenvalues of a matrix H
from an invariant pair (X,H) are also eigenvalues of the associated nonlinear eigenproblem,
provided that the invariant pair is minimal. For our purpose, we give the following definition of
minimal invariant pair, which is shown to be equivalent to the standard definition [7, lemma 2.4].

Definition 2. An invariant pair (X,H) for a matrix polynomial (3) is minimal if there exists
` ≥ 1 such that

V`(X,H) :=


X Φ0(H)
X Φ1(H)

...
X Φ`−1(H)

 (12)

has full column rank. The minimality index of (X,H) is defined as the minimum value of `
satisfying this condition.

In the case of a matrix polynomial of degree d, it is sufficient to consider invariant pairs with
minimality index d at most [4, theorem 3].

3.2 Deflation in the Jacobi–Davidson solver

Effenberger [7] studies the way in which, once a minimal invariant pair (X,H) ∈ Cn×k × Ck×k
of a nonlinear eigenproblem has been computed, an extended pair

(X̃, H̃) =

([
X x

]
,

[
H t

λ

])
(13)

is obtained that in turn is a minimal invariant pair of the same problem. By imposing the
conditions of invariant pair and minimality on the extended pair (13), a new extended (of size
n+k) nonlinear eigenvalue problem [

P (λ) U(λ)
A(λ) B(λ)

] [
x
t

]
= 0 (14)

is obtained. Its solution provides the required data for the wanted extension (13).
In this section, we give explicit expressions for the extended nonlinear eigenproblem (14)

particularized for the case when a polynomial eigenvalue problem in the general form (3) is
considered. In this case, the resulting problem will also be a PEP that we will solve by the
Jacobi–Davidson method described in section 2. We are interested in expressing the small-
dimensional PEP resulting from applying the Galerkin condition to the extended problem in
terms of the same basis as the polynomial P .

In order to derive the explicit formulas that have been used in our implementation, we first
impose the invariant pair condition (Definition 1),

0 =
d∑
i=0

Ai
[
X x

]
Φi

([
H t

λ

])
=

d∑
i=0

Ai
[
X x

] [Φi(H) Φ̂i(H,λ)t
Φi(λ)

]
, (15)

6

where Φ̂i(H,λ)t is obtained in a recursive way as follows. Using the recurrence (4) applied to
H̃ we obtain Φ−1(H̃) = 0, Φ0(H̃) = I and, for j ≥ 0,

Φj+1(H̃) =
1

αj

(
H̃ Φj(H̃)− βj Φj(H̃)− γj Φj−1(H̃)

)
, (16)

from where we derive the wanted recurrence,

Φ̂−1(H,λ)t = 0, Φ̂0(H,λ)t = 0,

Φ̂j+1(H,λ)t =
[
Ik 0

]
Φj+1(H̃)ek+1

=
1

αj

([
H t

] [Φ̂j(H,λ)t
Φj(λ)

]
− βjΦ̂j(H,λ)t− γjΦ̂j−1(H,λ)t

)
=

1

αj

(
Φj(λ)Ik + (H − βjIk)Φ̂j(H,λ)− γjΦ̂j−1(H,λ)

)
t, j ≥ 0. (17)

Defining the matrix function

U(λ) :=

d∑
i=0

AiXΦ̂i(H,λ), (18)

the condition (15) gives way to the equality 0 =
[
P(X,H) P (λ)x+ U(λ)t

]
, from which it

follows (using the fact that (X,H) is an invariant pair) that the equation

P (λ)x+ U(λ)t = 0, (19)

determines an invariant pair condition for (13).
In order to enforce the minimality requirement, we consider Definition 2, that is expressed in

the same polynomial basis as the PEP. Denoting Z := V`(X̃, H̃), each block Zi, i = 0, 1, . . . , `−1,
has the form

Zi =
[
X x

]
Φi

([
H t

λ

])
=
[
X Φi(H) XΦ̂i(H,λ)t+ xΦi(λ)

]
. (20)

As in [7], to make sure that V`(X̃, H̃) has full column rank, we force orthogonality of the last
column with respect to the previous ones, that is, to V`(X,H), whose columns are linearly
independent since (X,H) is minimal. This results in the equation

0 =

`−1∑
i=0

(X Φi(H))∗(XΦ̂i(H,λ)t+ xΦi(λ)) = A(λ)x+B(λ)t, (21)

where the matrix polynomials A and B are given by

A(λ) :=
`−1∑
i=0

Φi(λ) Φi(H)∗X∗, B(λ) :=
`−1∑
i=0

Φi(H)∗X∗XΦ̂i(H,λ). (22)

The expressions (22) and (18) determine the extended polynomial eigenvalue problem (14)
that an extended minimal invariant pair of the form (13) must verify. Each of the four blocks of
the matrix in (14) is a matrix polynomial in the polynomial basis {Φj(λ)}j≥0. As a consequence,
we have that the new problem (14) is a PEP defined by a matrix polynomial P̃ (λ) of type (3),
analog to the initial one, P (λ). When applying the extraction phase (step 4 of Algorithm 1) to
the extended problem, we want to generate a projected PEP, W ∗P̃ (λ)V = 0, with the polynomial

7

expressed in the basis Φ. For this, it is necessary to determine the coefficients of the polynomial
P̃ (λ) in such basis. The blocks P (λ) and A(λ) are already expressed in the desired form, by
definition. However, matrices U(λ) and B(λ) have been defined in (18) and (22), respectively,
in terms of the matrix functions Φ̂j(H,λ). The following result provides a recurrence to express
these matrix polynomials in terms of the basis Φj .

Proposition 1. Given {Mj}dj=0 ⊂ Cm×k, the matrices {Nj}dj=0 defined by

Nd = 0, Nd−1 =
1

αd−1
Md,

Nj−1 =
1

αj−1

(
Mj +Nj(H − βjIk)− γj+1Nj+1

)
, j < d− 1, (23)

verify that
∑d

j=0MjΦ̂j(H,λ) =
∑d

j=0Nj Φj(λ), for Φ̂j defined in (17).

Proof. We proceed by induction on d. For d = 0 we immediately see that N0 = 0. For d = 1,
using the relations (17) we have that N1 Φ1(λ) + N0 Φ0(λ) = M1Φ̂1(H,λ) = (M1/α0) Φ0(λ),
from where it follows that N1 = 0 and N0 = M1/α0. Now, supposing that the result is true up
to d−1, we must check that the result is verified also up to order d.

Defining the matrices M̃d−1 := Md−1 + 1
αd−1

Md(H − βd−1Ik), M̃d−2 := Md−2 − γd−1

αd−1
Md and

M̃j := Mj , for j < d− 2, by the induction hypothesis we have

d∑
j=0

MjΦ̂j(H,λ) = MdΦ̂d(H,λ) +
d−1∑
j=0

MjΦ̂j(H,λ) =
Md

αd−1
Φd−1(λ) +

d−1∑
j=0

M̃jΦ̂j(H,λ)

=
Md

αd−1
Φd−1(λ) +

d−1∑
j=0

Ñj Φj(λ) = Nd−1 Φd−1(λ) +
d−2∑
j=0

Ñj Φj(λ), (24)

for matrices {Ñj}d−1j=0 verifying (23) with respect to {M̃j}d−1j=0 . On the other hand,

Ñd−2 =
M̃d−1
αd−2

=
1

αd−2
(Md−1 +Nd−1(H − βd−1Ik)) = Nd−2,

Ñd−3 =
1

αd−3

(
M̃d−2 + Ñd−2(H − βd−2Ik)− γd−1Ñd−1

)
=

1

αd−3

(
Md−2 −

γd−1
αd−1

Md +Nd−2(H − βd−2Ik)
)

= Nd−3,

Ñj =
1

αj

(
M̃j+1 + Ñj+1(H − βj+1Ik)− γj+2Ñj+2

)
= Nj , j < d− 3. (25)

Substituting (25) in (24) we have the desired result.

For solving the correction equation associated with Jacobi–Davidson (Algorithm 1) by using
an iterative Krylov method, it is necessary to perform matrix-vector multiplications with the
matrix P̃ (λ) evaluated at some Ritz value µ, and apply a preconditioner for the same matrix.
Effenberger [7] suggests using the preconditioner

K̃−1 =

[
K−1 −X(µI −H)†(B(µ)−A(µ)X(µI −H)†)−1

0 (B(µ)−A(µ)X(µI −H)†)−1

]
(26)

for the matrix P̃ (µ), supposing that K−1 is a preconditioner for the matrix P (µ).

8

In our implementation the extended operators (14) and (26) are not explicitly created for
each value µ, but implicit operations with them are performed. In section 5.2 we give details
related to the implementation of these operations using PETSc and SLEPc functionality.

A final comment is that when a Ritz value converges to working accuracy, the search subspace
already contains good approximations of other eigenvectors. Hence, when locking the converged
eigenvalue, the subspace must somehow be recycled to continue the search of other eigenvalues
in subsequent iterations. This is accomplished by extending the vectors of the V basis by one
additional element as proposed in [7]. This extension of vectors is done essentially as follows:

suppose (Y, T) is an invariant pair of the projected eigenproblem, with T =
[
λ t12
T22

]
in Schur

form, then the new search space for the extended problem is set to the Q-matrix obtained from
an economy QR decomposition of

[
V
t12

]
. In case of an oblique projection, we take W = P (σ)V

for the test subspace.

4 Real arithmetic

The described Jacobi–Davidson method may generate a complex Ritz pair when solving a real
eigenproblem, even for problems in which all the eigenvalues are real. In this case, the associated
correction equation involves solving a complex linear system. The SLEPc design does not allow
mixed real and complex arithmetic computations. Also, from a computational point of view, it
is convenient to perform the computation in real arithmetic whenever possible, for both memory
and computational efficiency. A typical case when this is important is computing real eigenvalues
of a polynomial of real matrices—in this case the approximate eigenvalue may be complex in
the initial iterations, and a trivial implementation in SLEPc would have to abort. Due to these
considerations, we have implemented the Jacobi–Davidson polynomial eigensolver in SLEPc
in a way that allows solving real eigenproblems by means of real arithmetic exclusively. In
this section, we describe the modifications included to achieve this, in particular to extend an
invariant pair with a converged complex Ritz pair, or to solve a complex linear system coming
from the correction equation associated with a complex Ritz approximation.

First we show how a real invariant pair is extended when a complex Ritz pair (x, λ) converges.
For real eigenvalue problems the convergence of complex Ritz pairs comes in conjugate pairs.
Hence, in this case, we extend the invariant pair with two complex Ritz pairs.

Proposition 2. Let (X,H) be a minimal invariant pair for a matrix polynomial (3), and
{(yi, λi)}2i=1 two eigenpairs for the extended PEP associated with (X,H) with λ1 6= λ2. Then,[X x1 x2

]
,

H t1 t2
0 λ1 0
0 0 λ2

 , with yi =

[
xi
ti

]
, i = 1, 2, (27)

is also a minimal invariant pair for (3).

Proof. This is a particular case of [7, Lemma 4.3].

We apply the above result when extending a minimal invariant pair (X,H) with two complex
conjugate eigenpairs, (y, λ) and (ȳ, λ̄). Then, applying a similarity transformation with Q =
1
2

[
1 −i
1 i

]
results in a real pair[

X Rex Imx
]

=
[
X x x̄

] [I
Q

]
,H Re t Im t

0 Reλ Imλ
0 − Imλ Reλ

 =

[
I

Q−1

]H t t̄
0 λ 0
0 0 λ̄

[I
Q

]
,

(28)

9

which is also invariant and minimal [7, Lemma 2.5] and has the eigenvalues λ(H) ∪ {λ, λ̄}.
Now we move to the situation where a non-converged complex Ritz value is generated in the

extraction step of Jacobi–Davidson, and hence the corresponding correction equation becomes
complex. Let us first consider the simpler case where the deflation of section 3 has not been ac-
tivated yet. In order to restrict the computation to real arithmetic, we must write the correction
equation (7) in a 2× 2 block form,[

ReMπ − ImMπ

ImMπ ReMπ

] [
Re t
Im t

]
= −

[
Re r
Im r

]
. (29)

The details have been worked out in [33] for the linear eigenvalue problem. As explained in
section 2, the solution of the correction equation by an iterative method involves operations of
the form y = K̂−12 M2v, where the matrix M2 is the 2 × 2 form of P (µ) and K̂−12 is the 2 × 2
analog of the preconditioner (9), with the difference that the real part of µ is used to build the
preconditioner instead of the complex µ. The expression for the preconditioner is

K̂−12 = Π

[
K−1r 0

0 K−1r

]
, (30)

where Π is a projector and K−1r is a preconditioner constructed from P (Reµ). The projector Π
has the form

Π =

[
I − zru∗r − ziu∗i −zru∗i + ziu

∗
r

zru
∗
i − ziu∗r I − zru∗r − ziu∗i

]
, (31)

where u = ur + iui and z = zr + izi = K−1
r ṙ

u∗K−1
r ṙ

.

The above is also valid for the general case of an extended operator P̃ (µ) involving defla-
tion of previously converged eigenvalues. In addition to solving the correction equation in real
arithmetic, it is also necessary to keep separate real and imaginary parts of all the quantities
computed to operate with P̃ (µ), such as for instance the recurrence (17). The details of how
real arithmetic is done in practice in our implementation will be explained in section 5.3.

5 Implementation details in SLEPc

We now provide some details related to implementation in SLEPc, the Scalable Library for
Eigenvalue Problem Computations [23, 11]. SLEPc is mainly concerned with linear eigenvalue
problems, but in the last years we have included a lot of functionality for the polynomial and
general nonlinear eigenproblems. The polynomial Jacobi–Davidson solver is the latest addition,
that we describe in this paper.

In subsection 5.1 we describe how code is organized, and give minimal descriptions of concepts
that will be required in the rest of the section. Then we focus on details regarding operations
with extended operators and computation in real arithmetic.

5.1 Overview of SLEPc

SLEPc consists of several solver classes (one per different problem class) together with several
auxiliary object classes. SLEPc depends on the PETSc library [2], and in particular it uses
its data structures for linear algebra objects (vectors and matrices) as well as linear system
solvers that are required in some eigenvalue computations. Both PETSc and SLEPc are parallel
libraries based on the message passing paradigm (MPI), which in brief means that objects have
their data structures distributed across several processes and most operations acting on an object
are carried out in parallel by all participating processes.

10

PETSc’s vector objects (Vec) provide common operations in vector space algebra such as
addition and inner product, while matrix objects (Mat) are mainly intended to represent sparse
matrices, with a certain internal representation, or also “matrix-free” matrices where the linear
algebra operator is defined via a user-provided matrix-vector product subroutine (shell matrices
in PETSc’s terminology).

PETSc’s linear solvers are gathered in the KSP class, which consists of a collection of iterative
solvers such as GMRES or BiCGStab together with preconditioners (PC). Direct linear solvers
are also available via “complete factorization preconditioners” such as LU. For the case of parallel
LU factorization, it is necessary to have recourse to external libraries such as MUMPS.

SLEPc’s module for linear eigenproblems is called EPS, and, as we have mentioned before,
it contains an implementation of Jacobi–Davidson [24]. The solver class for polynomial eigen-
problems is PEP, and here is where the new polynomial Jacobi–Davidson is located. PEP also
provides several linearization-based Krylov solvers, most notably the TOAR solver, which is the
default. In the computational experiments of section 6, we will compare TOAR with the newly
developed solver. The TOAR solver requires the accurate solution of linear systems, usually via
PETSc’s LU factorization, whereas Jacobi–Davidson relies on a preconditioned iterative solver
(possibly with low accuracy).

Both EPS and PEP use other auxiliary SLEPc classes that are relevant for our discussion. One
of them is BV, which provides functionality related to bases of vectors. Essentially, BV allows to
operate efficiently with a collection of vectors as a whole, rather than working with individual
vectors. An example operation included in BV is the (parallel) orthogonalization of vectors.
The other auxiliary class is DS (dense solver), that operates on small-size dense matrices that
are stored redundantly (not distributed) in a group of processes. This is used in the projected
problem arising in various projection algorithms. In most cases, the projected problem is a
linear eigenproblem so LAPACK subroutines are invoked to solve it. However, as discussed
above, Jacobi–Davidson produces a projected PEP. To support this, we have implemented a DS

solver for small-size dense PEPs with dense coefficient matrices, in which we explicitly build the
matrices of the linearization (using dense storage), call the LAPACK subroutine on them, and
finally retrieve the eigenvectors of the PEP. Since we want to support non-monomial bases, we
use the more general linearization explained in [6].

5.2 Operations involving the extended operators

We now proceed to discuss implementation aspects relative to the management of extended
operators (14) and (26), and the way in which we have tried to minimize the overhead associated
with the increase of the dimension of the extended problem, especially in terms of parallel
communication.

The extended problem (14) is not built explicitly, but instead all the operations involving the
extended matrix or its preconditioner (26) are carried out in an implicit way. The elements that
intervene in the definition of the extended problem are: the (distributed) coefficient matrices of
the initial PEP; the parallel vectors X that are stored in an object of class BV; and the matrix
H, that is replicated in all processes. The bases of the search and test spaces are also stored
in objects of class BV, which provides the necessary functionality for orthogonalization. From
the beginning, the vectors of these subspaces are considered to have length n+k, being k the
number of eigenvalues to compute. The last k entries are initialized to zero and progressively
become nonzero as soon as eigenpairs get converged and the extended problem grows in size.

All parallel vectors are represented as follows. Given y = [y1y2] ∈ Cn+k, y1 (of length n) is
distributed conformally to the coefficient matrices of the original PEP, and y2 is stored redun-
dantly in all processes. This redundancy aims at avoiding the communication that would be
required if y2 was stored in just one process. From the point of view of the implementation,

11

the solvers operate with PETSc vector objects whose global length is n + k · p, where p is the
number of processes. The structure of such vectors will be taken into account in all operations
described below, so that the algorithm always computes the same quantities irrespective of the
number of processes.

The main parallel operations that appear in the execution of the Jacobi–Davidson method
of Algorithm 1 are:

Multiplication. Consider vector z = [z1z2] ∈ Cn+k (remember that z2 is stored redundantly
as discussed above). The matrix-vector product y = P̃ (µ)z is carried out by means of the
calculations,

y1 =P (µ)z1 +
d∑
i=0

AiXΦ̂i(H,µ)z2, (32)

y2 =
`−1∑
i=0

Φi(µ) Φi(H)∗X∗z1 +
`−1∑
i=0

Φi(H)∗X∗XΦ̂i(H,µ)z2, (33)

in which, in addition to the matrix-vector multiplication with the original problem, P (µ)z1,
other computations are done that require communication among the processes. In order to
minimize parallel communication, we allocate additional distributed data structures (of class
BV) in which the products AiX, i = 0, . . . , d, are explicitly stored. These variables are updated
whenever a new eigenpair is obtained. Similarly, the products X∗X (of dimension k × k) are
explicitly stored redundantly in each process. In this way, the second summands appearing in
expressions (32) and (33) do not require any communication since z2 (of length k) is available
in all processes. In turn, in the first summand of (33) we must compute the inner product of k
pairs of vectors, which is done with a single communication operation thanks to the functionality
offered by the BV class. The result y2 is stored redundantly in all processes.

In our implementation, the value of ` in (33) does not necessarily correspond to the mini-
mality index of the invariant pair. By default, we take ` = min{d, k}, but it is also possible to
limit its value (see section 5.4).

Preconditioner. As mentioned before, the extended preconditioner K̃−1 of (26) is not built
explicitly. Instead, at the implementation level, a subroutine is defined that computes its appli-
cation to a vector, considering that the necessary elements have been precomputed and stored
in a data structure.

Regarding the parallel implementation, in order to minimize the extra communication re-
quired to apply the extended preconditioner (compared to the one of dimension n), whenever
the problem is extended with a new eigenpair we precompute the small-size matrices

S := (µI −H)†, J := (B(µ)−A(µ)XS)−1, (34)

and store them redundantly in all processes. In this way, the application of the precondi-
tioner (26) takes the form

K̃−1
[
z1
z2

]
=

[
K−1z1 −XSJz2

Jz2

]
, (35)

and no additional communication (compared to the operation K−1z1) is required.
In the case that ` = 1, we have that A(µ) = X∗, B(µ) = 0, so J = −(X∗XS)−1 and the

preconditioner can be simplified to

K̃−1 =

[
K−1 X(X∗X)−1

0 (H − µI)(X∗X)−1

]
. (36)

12

Orthogonalization. The orthogonalization of the search and test subspaces of extended di-
mension is carried out by means of the operations available in the BV class, and does not imply
additional communication with respect to the one of dimension n. The only additional com-
ment here is that, given a vector y = [y1y2] ∈ Cn+k, in our implementation the second part of the
vector (which is replicated in all processes) stores y2/

√
p instead of y2, so that all inner products

and norms result in the correct value irrespective of the number of processes p. This scaling is
applied on the result vectors of the operations described above.

Projection. The projected problem that is solved in the extraction phase has an expression
of the form

W ∗P̃ (µ)V =

d∑
i=0

Qi Φi(µ). (37)

The coefficient matrices Qi associated with the basis {Φi} are stored and extended whenever
the subspaces V and W are extended. For this, distributed data structures Ui, i = 0, . . . , d, are
created to store sets of vectors such that P̃ (µ)V can be expressed by

P̃ (µ)V =
d∑
i=0

Ui Φi(µ), (38)

for any µ ∈ C. In this way, when a column is appended to V and W (in position j), the
matrices Qi in (37) can be extended easily, by just adding a row eTj Qi = w∗jUi and a column

Qiej = W ∗Uiej . To update the set of vectors {Ui}di=0, extending them when the V basis is
extended with a column v, we use the expression of the multiplication operation

P̃ (µ)

[
v1
v2

]
=

[
P (µ)v1 + U(µ)v2
A(µ)v1 +B(µ)v2

]
=

d∑
i=0

[
Aiv1 +Niv2

Φi(H)∗X∗v1 + N̂iv2

]
Φi(µ), (39)

where the matrices Ni and N̂i are obtained by means of the recurrence (23) using matrices Mi =
AiX and M̂i = Φi(H)∗X∗X, respectively. Each matrix Ui is extended with the corresponding
coefficient associated with Φi(µ) in (39).

5.3 Details for real arithmetic

In the case of using real arithmetic, if the Ritz value µ is complex the operations must be carried
out storing the real and imaginary part of each variable separately. For instance, in the first
part of the matrix vector product with the extended operator, corresponding to (32), the real
part of y1 is obtained as

Re y1 =
d∑
i=0

Ai (Re Φi(µ) Re z1 − Im Φi(µ) Im z1)

+
d∑
i=0

AiX
(

Re Φ̂i(H,µ) Re z2 − Im Φ̂i(H,µ) Im z2

)
, (40)

and we have similar expressions for Im y1, Re y2 and Im y2. The subroutine to compute Re Φi(µ)
and Im Φi(µ) works in a similar way, separating real and imaginary parts in recurrence (4), and
similarly for Φ̂i(H,µ) in recurrence (17).

In real arithmetic, the correction equation needs to be expressed in the 2 × 2 block form
(29) whenever the Ritz value µ is complex. Our implementation of the Jacobi–Davidson solver

13

is able to dynamically switch from a linear system solve of order n to order 2n, and vice versa,
when needed. In order to avoid reallocating all the memory when this change happens, we use
a trick consisting in using a standard KSP solver defined on vectors of the special type VecComp.
These vectors virtually have length 2n, but are actually formed by two sub-vectors of length
n, the second one being used only when the approximate eigenvalue is complex. This trick
was already used in the Jacobi–Davidson solver for linear eigenproblems [24], and simplifies the
implementation of the product of the double-sized coefficient matrix (which is not built explicitly
but handled implicitly as a shell matrix) times a vector, that can be arranged as a 2-by-2 block
product. Similarly, the application of the preconditioner is done in a 2-by-2 fashion using the
expression of (30).

5.4 User interface

We conclude this section with a brief description of the user interface for the new polynomial
Jacobi–Davidson solver. Apart from the PEP general options (number of eigenvalues to compute,
maximum basis size, etc.), the solver has several options and parameters that can be set by the
user, either by a function call or by a runtime argument.

• PEPJDSetRestart. Sets the restart parameter, that is, the proportion of basis vectors that
must be kept after restart. The default is 0.5.

• PEPJDSetMinimalityIndex. Sets the maximum allowed value of ` used in (33).

• PEPJDSetFix. In step 14 of Algorithm 1 the correction equation is built from the constant
value σ instead of the Ritz value µ whenever the residual norm is larger than a user-defined
parameter called fix [9].

• PEPJDSetReusePreconditioner. Sets a flag indicating whether the preconditioner must
be reused or not. This is off by default. If the flag is set, the preconditioner is built only
at the beginning, using the target value σ.

• PEPJDSetProjection. Switches between oblique (the default) or orthogonal projection.

6 Computational results

In this section we show computational results to assess the accuracy of the new solver as well as
its performance (including parallel efficiency). The computer used for the runs is called Tirant 3,
and consists of 336 computing nodes, each with two Intel Xeon SandyBridge E5-2670 processors
(16 cores each) running at 2.6 GHz with 32 GB of memory, linked with an Infiniband network.
All runs placed at most 8 MPI process per node.

The details for the test problems we have used is summarized in Table 1. The table shows the
degree of the polynomial, the dimension of the matrices that define the problem, the number of
requested eigenvalues, and the target value around which eigenvalues have been computed. The
first considered problems (qd cylinder and qd pyramid) arise from electronic structure calculations
of quantum dots by means of the discretization of the Schrödinger equation [17]. The rest of
the problems belong to the collection of nonlinear eigenvalue problems NLEVP [3]. The last
test problem in the table (loaded string) corresponds to a rational eigenproblem that has been
solved by means of polynomial interpolation using Chebyshev polynomials [8], that is why the
resulting polynomial eigenproblem is expressed in terms of such polynomial basis. The other
considered problems are all defined using the monomial basis.

Table 2 shows the results of several executions using test problems from Table 1. The table
compares Jacobi–Davidson (run in both real and complex arithmetic) and the Krylov solver

14

Table 1: Description of the test problems used for the performance analysis, indicating the
degree (d) of the matrix polynomial, the polynomial basis, the dimension (n) of the coefficient
matrices, the number of requested eigenvalues (nev) and the target (σ) around which eigenvalues
have been computed.

name d basis n nev σ

qd cylinder 3 monomial 690,718 4 0.1

qd pyramid-186k 5 monomial 186,543 6 0.4

qd pyramid-1.5m 5 monomial 1.5 mill 4 0.4

sleeper 2 monomial 1 mill 20 -0.9

spring 2 monomial 1 mill 5 -10

acoustic wave 2d 2 monomial 999,000 2 0

loaded string 10 Chebyshev 1 mill 6 0

TOAR (run with either a direct linear solver, LU, or a preconditioned iterative solver). For the
iterative linear solves, the KSP is configured to run BiCGStab with a tolerance of 10−5 (and 150
iterations at most) in the case of Jacobi–Davidson, and 10−8 in the case of TOAR. In the table,
BJacobi and ASM stand for block Jacobi and (restricted) Additive Schwarz Method, respectively,
which are preconditioners implemented in PETSc. The other preconditioners are provided by
third-party packages: LU is implemented in MUMPS, ARMS in PARMS, and AMG in Hypre.
Both Jacobi–Davidson and TOAR had a maximum subspace dimension 30 and a tolerance of
10−8. The accuracy of a computed solution (x, λ) is assessed by means of its relative backward
error

ηP (x, λ) =
‖P (λ)x‖(∑d

i=0 |Φi(λ)|‖Ai‖
)
‖x‖

, (41)

where we use ∞-norms for practical computation of matrix norms. We can see from the max-
imum values of ηP shown in Table 1 that the new Jacobi–Davidson solver works correctly in
terms of accuracy.

From the execution times shown in Table 1, we can draw several conclusions:

• One could expect that the real version of Jacobi–Davidson has a different convergence
history compared with the complex version. However, in these test problems both versions
converge more or less with the same number of iterations, probably because all computed
eigenvalues are real except in the acoustic wave problem that has complex eigenvalues. In
terms of computation time, the complex version takes up to twice as much time, due to
complex arithmetic.

• The TOAR solver is generally the fastest one, either when a direct linear solver (LU) is
used or in other cases with an iterative one. Using a direct solver is feasible in these tests
due to their moderate problem size, except in the qd pyramid problem of size 1,5 million.
For this latter problem we see that Jacobi–Davidson is faster than TOAR.

• The difference between the overall solve time and the KSP solve time is significantly larger
in Jacobi–Davidson, because it is doing more operations compared to TOAR. The splitting
of these operations is shown in Table 3 for two problems. The linear solve (KSP) takes more
than 75% or the time, and the other operations are: updating the preconditioner, which
includes computing P (θ), the orthogonalization of the basis vectors, the computation of

15

Table 2: Results for several executions with 16 MPI processes of the polynomial eigensolvers
Jacobi–Davidson (JD) and TOAR, showing the employed preconditioner (PC), the number of
iterations used by the polynomial eigensolver (IPEP) and the linear solver (IKSP), the execution
time in seconds of both the polynomial eigensolver (tPEP) and the linear solver (tKSP) and the
maximum backward error ηP .

problem method PC IKSP tKSP IPEP tPEP ηP

qd cylinder JD real ASM 4367 21 42 25 1 · 10−13

JD complex ASM 4412 42 43 47 5 · 10−13

TOAR ASM 17375 60 100 61 2 · 10−10

TOAR LU 100 14 100 21 2 · 10−10

qd pyramid-186k JD real ASM 1466 3.5 37 5.6 6 · 10−11

JD complex ASM 1447 7.1 36 10 5 · 10−11

TOAR ASM 2503 3.2 58 3.4 8 · 10−11

TOAR LU 57 2.9 57 14 1 · 10−12

qd pyramid-1.5M JD real ASM 1494 23 20 30 4 · 10−11

JD complex ASM 1591 50 22 60 7 · 10−11

TOAR ASM 3417 38 45 40 5 · 10−11

TOAR LU 45 23 45 760 2 · 10−14

sleeper JD real BJacobi 5916 53 95 68 1 · 10−10

JD complex BJacobi 5256 98 89 130 2 · 10−10

TOAR BJacobi - - - - -

TOAR LU 83 17 83 21 2 · 10−13

spring JD real BJacobi 699 3.4 20 5.0 1 · 10−10

JD complex BJacobi 533 5.6 19 7.8 3 · 10−11

TOAR BJacobi 1131 3.6 30 3.9 4 · 10−12

TOAR LU 30 5.9 30 67 1 · 10−13

acoustic wave JD real ARMS 3868 331 30 393 2 · 10−9

JD complex ARMS 3520 300 21 361 1 · 10−9

TOAR ARMS 7602 356 30 358 5 · 10−10

TOAR LU 30 6.9 30 15 5 · 10−10

loaded string JD real AMG 117 2.9 20 8.8 2 · 10−16

TOAR AMG 60 1.3 30 2.4 1 · 10−11

TOAR LU 30 59 30 68 4 · 10−13

16

Table 3: Split execution times for Jacobi–Davidson (in real arithmetic) when solving qd cylinder
and qd pyramid-1.5M with 16 MPI processes.

operation qd cylinder qd pyramid-1.5M

Linear solve 21.2 22.9

Preconditioner update 1.75 4.23

Orthogonalization in JD 0.36 0.34

Projection 0.45 0.52

Projected PEP 0.14 0.29

PEP solve 24.6 29.5

the projection (37), and the solution of the projected PEP. It should be noted that the
latter operation is not parallel, all processes compute the solution redundantly.

For the parallel performance experiments we use the quantum dot problems (with monomial
basis) and the loaded string problem (with Chebyshev basis). Figure 1 shows the execution time
with varying number of MPI processes for qd cylinder and qd pyramid-1.5m. In the plot for
qd cylinder, we observe that Jacobi–Davidson is faster than TOAR. We also see that scalability
of Jacobi–Davidson is very similar to that of TOAR, with no further improvement after 128
processes (this can also be observed if we consider only the linear solves performed within Jacobi-
Davidson, KSP). For the larger problem qd pyramid-1.5m, performance does not degrade and we
observe a very similar behaviour of Jacobi–Davidson and TOAR (with the same preconditioner),
while TOAR with LU lags behind due to a exceedingly high cost of the parallel factorization.

Figure 2 shows results for a problem with non-monomial basis, loaded string. In this case,
TOAR with iterative linear solver is faster than Jacobi–Davidson, and we also observe a degra-
dation of parallel performance in both solvers (especially in TOAR). In this case, TOAR with
direct linear solves displays a terrible scalability. This Figure also includes a plot correspond-
ing to Jacobi-Davidson with minimality index prescribed to 1, since we know that all wanted
eigenvectors are linearly independent in this problem. This allows saving some operations when
working with extended operators, which translates into slightly faster times.

7 Conclusions

In this paper we have presented a parallel solver for the polynomial eigenvalue problem based on
the Jacobi–Davidson method. A remarkable feature of this solver is its free availability, since it
is integrated in the SLEPc package. Other features that are not usually found in other Jacobi–
Davidson solvers are its support for non-monomial polynomial bases, the possibility to solve
problems with real coefficient matrices using only real arithmetic, and deflation of previously
computed eigenvalues.

Our numerical experiments do not show a clear benefit of Jacobi–Davidson with respect
to the Krylov solver (TOAR). When many eigenvalues need to be computed, Krylov methods
are likely to be faster, because they approximate several eigenvalues at a time while Jacobi–
Davidson computes one eigenvalue after the other in sequence. However, Krylov methods have
the drawback of often needing a direct linear solver, which usually implies an exceedingly high
computational cost and a bad parallel scalability, as seen in some of our tests. Jacobi–Davidson
relies on a preconditioned iterative solver, and then the gist becomes how to choose a good
preconditioner for the particular problem. In our experiments, we have used standard black-

17

1 2 4 8 16 32 64 128 256

101

102

103

T
im

e
[s

]

qd cylinder

1 2 4 8 16 32 64 128 256

101

102

103

qd pyramid

JD ASM KSP TOAR ASM TOAR LU

Figure 1: Execution time (in seconds) with the tests qd cylinder (left) and qd pyramid (right)
for the Jacobi–Davidson solver (with real arithmetic and ASM preconditioner), for the (accu-
mulated) linear solves in the Jacobi–Davidson run (KSP) and for the TOAR solver (both with
ASM preconditioner and with direct solver), with up to 256 MPI processes and requesting 4
eigenvalues.

1 2 4 8 16 32 64 128 256

100

101

102

T
im

e
[s

]

loaded string

JD AMG
JD idx=1

TOAR AMG
TOAR LU

Figure 2: Execution time (in seconds) with the loaded string test for the Jacobi–Davidson solver
(with real arithmetic and AMG preconditioner), for the same solver prescribing the minimality
index to 1, and for the TOAR solver (both with AMG preconditioner and with direct solver),
with up to 256 MPI processes and requesting 6 eigenvalues.

18

box preconditioners that may not work especially well, but we would expect a much better
performance with problem-specific preconditioners.

In terms of parallel efficiency, our solver has shown a reasonably good behaviour, with a
similar scalability to the Krylov solver for the same problem and the same preconditioner.

Regarding plans for future work, it would be interesting to analyze the feasibility of adapting
the harmonic Ritz strategies proposed in [15] to the general non-monomial framework proposed
here.

Acknowledgements We thank Eloy Romero for useful comments on an initial version of the
manuscript. The computational experiments of section 6 were carried out on the supercomputer
Tirant 3 belonging to Universitat de València. The authors of [17] are acknowledged for kindly
providing the code of their polynomial Jacobi–Davidson solver, which served as inspiration for
building our own solver, as well as the matrices coming from the quantum dot simulation used
in section 6.

References

[1] Z. Bai and Y. Su. SOAR: a second-order Arnoldi method for the solution of the quadratic
eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

[2] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Ei-
jkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L. Curfman McInnes,
R. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang, and H. Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.10, Argonne National
Laboratory, 2018.

[3] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: a collection
of nonlinear eigenvalue problems. ACM Trans. Math. Software, 39(2):7:1–7:28, 2013.

[4] T. Betcke and D. Kressner. Perturbation, extraction and refinement of invariant pairs for
matrix polynomials. Linear Algebra Appl., 435(3):514–536, 2011.

[5] T. Betcke and H. Voss. A Jacobi–Davidson-type projection method for nonlinear eigenvalue
problems. Future Gener. Comp. Sy., 20(3):363–372, 2004.

[6] C. Campos and J. E. Roman. Parallel Krylov solvers for the polynomial eigenvalue problem
in SLEPc. SIAM J. Sci. Comput., 38(5):S385–S411, 2016.

[7] C. Effenberger. Robust successive computation of eigenpairs for nonlinear eigenvalue prob-
lems. SIAM J. Matrix Anal. Appl., 34(3):1231–1256, 2013.

[8] C. Effenberger and D. Kressner. Chebyshev interpolation for nonlinear eigenvalue problems.
BIT, 52(4):933–951, 2012.

[9] Diederik R. Fokkema, Gerard L. G. Sleijpen, and Henk A. van der Vorst. Jacobi–Davidson
style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput.,
20(1):94–125, 1998.

[10] J.-S. Guo, W.-W. Lin, and C.-S. Wang. Numerical solutions for large sparse quadratic
eigenvalue problems. Linear Algebra Appl., 225:57–89, 1995.

[11] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

19

[12] N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numerica, 19:159–208,
2010.

[13] N. J. Higham, D. S. Mackey, and F. Tisseur. The conditioning of linearizations of matrix
polynomials. SIAM J. Matrix Anal. Appl., 28(4):1005–1028, 2006.

[14] M. Hochbruck and D. Lochel. A multilevel Jacobi–Davidson method for polynomial PDE
eigenvalue problems arising in plasma physics. SIAM J. Sci. Comput., 32(6):3151–3169,
2010.

[15] Michiel E. Hochstenbach and Gerard L. G. Sleijpen. Harmonic and refined Rayleigh-Ritz
for the polynomial eigenvalue problem. Numer. Linear Algebra Appl., 15(1):35–54, 2008.

[16] T.-M. Huang, F.-N. Hwang, S.-H. Lai, W. Wang, and Z.-H. Wei. A parallel polynomial
Jacobi–Davidson approach for dissipative acoustic eigenvalue problems. Computers & Flu-
ids, 45(1):207–214, 2011.

[17] F.-N. Hwang, Z.-H. Wei, T.-M. Huang, and W. Wang. A parallel additive Schwarz precon-
ditioned Jacobi–Davidson algorithm for polynomial eigenvalue problems in quantum dot
simulation. J. Comput. Phys., 229(8):2932–2947, 2010.

[18] D. Kressner. A block Newton method for nonlinear eigenvalue problems. Numer. Math.,
114:355–372, 2009.

[19] D. Kressner and J. E. Roman. Memory-efficient Arnoldi algorithms for linearizations of
matrix polynomials in Chebyshev basis. Numer. Linear Algebra Appl., 21(4):569–588, 2014.

[20] P. Lancaster. Linearization of regular matrix polynomials. Electron. J. Linear Algebra,
17:21–27, 2008.

[21] Y. Matsuo, H. Guo, and P. Arbenz. Experiments on a parallel nonlinear Jacobi–Davidson
algorithm. Procedia Comp. Sci., 29:565–575, 2014.

[22] K. Meerbergen. Locking and restarting quadratic eigenvalue solvers. SIAM J. Sci. Comput.,
22(5):1814–1839, 2001.

[23] J. E. Roman, C. Campos, E. Romero, and A. Tomas. SLEPc users manual. Technical
Report DSIC-II/24/02–Revision 3.10, D. Sistemes Informàtics i Computació, Universitat
Politècnica de València, 2018.

[24] E. Romero and J. E. Roman. A parallel implementation of Davidson methods for large-scale
eigenvalue problems in SLEPc. ACM Trans. Math. Software, 40(2):13:1–13:29, 2014.

[25] J. Rommes and N. Martins. Computing transfer function dominant poles of large-scale
second-order dynamical systems. SIAM J. Sci. Comput., 30(4):2137–2157, 2008.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications, 2nd edition,
2003.

[27] C. Sensiau, F. Nicoud, M. van Gijzen, and J. W. van Leeuwen. A comparison of solvers
for quadratic eigenvalue problems from combustion. Int. J. Numer. Methods Fluids,
56(8):1481–1488, 2008.

[28] Gerard L. G. Sleijpen, Albert G. L. Booten, Diederik R. Fokkema, and Henk A. van der
Vorst. Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigen-
problems. BIT, 36(3):595–633, 1996.

20

[29] Gerard L. G. Sleijpen and Henk A. van der Vorst. A Jacobi–Davidson iteration method for
linear eigenvalue problems. SIAM J. Matrix Anal. Appl., 17(2):401–425, 1996.

[30] Gerard L. G. Sleijpen, Henk A. van der Vorst, and Ellen Meijerink. Efficient expansion
of subspaces in the Jacobi–Davidson method for standard and generalized eigenproblems.
Electron. Trans. Numer. Anal., 7:75–89, 1998.

[31] F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Rev., 43(2):235–
286, 2001.

[32] M. B. van Gijzen and F. Raeven. The parallel computation of the smallest eigenpair of an
acoustic problem with damping. Int. J. Numer. Methods Eng., 45(6):765–777, 1999.

[33] T. van Noorden and J. Rommes. Computing a partial generalized real Schur form using
the Jacobi–Davidson method. Numer. Linear Algebra Appl., 14(3):197–215, 2007.

[34] H. Voss. A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems. Com-
put. & Structures, 85(17-18):1284–1292, 2007.

21

