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Abstract: There have appeared in the literature a lot of
optimal eighth-order iterative methods for approximating
simplezerosofnonlinear functions.Although, thesimilar ideas
can be extended for the case of multiple zeros but the main
drawback is that the order of convergence and computational
efficiency reduce dramatically. Therefore, in order to retain the
accuracy and convergence order, several optimal and non-
optimal modifications have been proposed in the literature.
But, as far as we know, there are limited number of optimal
eighth-order methods that can handle the case of multiple
zeros. With this aim, a wide general class of optimal eighth-
order methods for multiple zeros with known multiplicity is
brought forward, which is based onweight function technique
involving function-to-function ratio. An extensive convergence
analysis is demonstrated to establish the eighth-order of the
developed methods. The numerical experiments considered
the superiority of the newmethods for solving concrete variety
of real life problems coming from different disciplines such as
trajectory of an electron in the air gap between two parallel
plates, the fractional conversion in a chemical reactor,
continuousstirred tank reactorproblem,Planck’s radiation law
problem, which calculates the energy density within an
isothermal blackbody and the problem arising from global
carbon dioxide model in ocean chemistry, in comparison with
methods of similar characteristics appeared in the literature.

Keywords:Kung-Traub conjecture;multiple roots; nonlinear
equations; optimal iterative methods; stability.
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1 Introduction

Importance of solving nonlinear problems is justified by
numerous physical and technical applications and intense
growth of the field over the past decades. These problems
arise inmany areas of natural and physical sciences, which
include initial and boundary value problems, heat and
fluid flow problems, electrostatics problems, as well as
problems associated with global positioning systems
(GPS). In absence of analytical solutions, one of the
possible ways to tackle the problem is to use appropriate
numerical methods for finding approximate solutions. An
algorithm, which is a cornerstone to the modern study of
root-finding algorithms was made by Newton through his
‘method of fluxions’. Later on this method was polished by
Raphson to produce what we now know as the Newton-
Raphson method [1–3]. It converges quadratically for
simple roots but if the root is non-simple, the convergence
becomes linear. Since then, a tremendous amount of effort
has been made in the direction of improving the conver-
gence resulting inmodifiedNewtonmethod (also known as
Rall’s method) for finding multiple roots of nonlinear
equations of the form f(x) = 0, where f(x) is real function
defined in a domain D ⊆ ℝ. It is given by

xn+1 � xn −m
f(xn)
f ′(xn) . (1)

Given the multiplicity m ≥ 1 in advance, it converges
quadratically for multipe roots. Although, there are many
one-point iterative methods available in the literature but
when seen from real context, they are not of practical in-
terest because of their theoretical limitations regarding
convergence order and efficiency index. Moreover, most of
the one-point methods are computationally expensive and
inefficient when they are tested on academic problems
originating from real life. Therefore, multipoint iterative
methods are better candidates to qualify as efficient
solvers. The good thing with multipoint iterative methods
without memory for scalar nonlinear equations is that we
have a conjecture about their convergence order. Accord-
ing to the Kung-Traub conjecture [2], any multipoint
methodwithoutmemory can reach its convergence order of
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atmost 2n−1 for n functional evaluations. A large community
of researchers from the world wide turn towards the most
important class of multipoint iterative methods and pro-
posed various optimal fourth-order methods (requiring
three functional evaluations, per iteration) [4–9] and non-
optimal methods [10, 11] for approximating multiple zeros
of nonlinear functions. In the literature, there are limited
number ofmultipoint point iterativemethods having sixth-
order of convergence. For instance, Thukral [12] proposed
the following sixth-order multipoint iteration scheme:

yn � xn −m
f(xn)
f ′(xn) ,

zn � xn −m
f(xn)
f ′(xn) ∑i�1

3 ( f(yn)
f(xn))

i
m

,

xn+1 � zn −m
f(xn)
f ′(xn) ( f(zn)

f(xn))
1
m⎡⎢⎢⎣∑

i�1

3 ( f(yn)
f(xn))

i
m⎤⎥⎥⎦2. (2)

In 2015, Geum et al. [13], presented a non-optimal class
of two-point sixth-order methods as follows:

yn � xn −m
f(xn)
f ′(xn) ,

xn+1 � yn − Q(un, sn) f(yn)
f ′(yn) , (3)

where un �
���
f(yn)
f(xn)

m
√

, sn �
����
f ′(yn)
f ′(xn)

m−1
√

(m > 1), and Q : ℂ→ ℂ is a
holomorphic function in the neighborhood of origin (0, 0).
But, the main drawback of this scheme is that it does not
work for simple zeros (i. e., for m = 1).

In 2016, Geum et al. [14] developed another non-
optimal family of three-point sixth-order methods for
multiple zeros and it is defined by

yn � xn −m
f(xn)
f ′(xn) ,

wn � yn −mG(un) f(xn)
f ′(xn) ,

xn+1 � wn −mK(un,  vn) f(xn)
f ′(xn) , (4)

where un �
���
f(yn)
f(xn)

m
√

and vn �
����
f(wn)
f(xn)

m
√

. The weight functions
G : ℂ→ ℂ and K : ℂ2 → ℂ are analytic in the neighborhood
of 0 and (0, 0), respectively. It can be seen that themethods
(3) and (4) require four function evaluations to achieve
sixth-order of convergence. Therefore, these methods are
not optimal in accordance with Kung and Traub conjec-
ture. It is needless tomention that in the last decadesmuch
effort has been done to develop and analyze optimal
eighth-order methods for multiple zeros but with no suc-
cess. Motivated and inspired by this fact, Behl et al. [15]
introduced an optimal family of eighth-order iterative
methods in case of multiple roots for the first time. Its
iterative expression is given by

yn � xn −m
f(xn)
f ′(xn) ,

zn � yn − unQ(hn) f(xn)
f ′(xn) ,

xn+1 � zn − unvnG(hn,  vn) f(xn)
f ′(xn) , (5)

where the weight functions Q : ℂ→ ℂ is analytic in the
neighborhood of (0) and G : ℂ2 → ℂ is holomorphic in the

neighborhoods of (0, 0), with un � ( f(yn)
f(xn))

1
m

, hn � un
a1+a2un and

vn � ( f(zn)
f(yn))

1
m

, where a1 and a2 are free disposable real

parameters.
Furthermore, Zafar et al. [16] presented another

optimal eighth-order family using the weight function
approach as follows:

yn � xn −m
f(xn)
f ′(xn) ,

zn � yn −munH(un) f(xn)
f ′(xn) ,

xn+1 � zn − unvn(A2 + A3un)P(vn)G(wn) f(xn)
f ′(xn) , (6)

where A2, A3 are real parameters and weight functions
H,P,G : ℂ→ ℂ are analytic in the neighborhood of 0 with

un � ( f(yn)
f(xn))

1
m

, vn � ( f(zn)
f(yn))

1
m

and wn � ( f(zn)
f(xn))

1
m

.

It is clear fromtheabovediscussions that there are a very
small number of optimal eighth-order methods which can
handle the case of multiple zeros. Moreover, these type of
methodshavenot beendiscussed indeep till date. Therefore,
the main motivation of the current research work is to pre-
sent a new optimal class of iterative methods having eighth-
order convergence which exploit weight function technique
for computingmultiple zeros. Our proposed scheme requires

only four function evaluations ( f (xn), f ′(xn), f (yn) and f (zn)
per full iteration which is in accordance with the classical
Kung-Traub conjecture. Furthermore, we manifest that the
proposed methods have good stability characteristics,
reasonable errors in the estimation of multiple zeros.

Our presentation is unfolded in what follows. The new
eighth-order scheme and its convergence analysis is pre-
sented in Section 2. In Section 3, some special cases are
included based on the different choices of weight functions
employed at second and third substeps of the designed
family. In Section 4, numerical experiments and dynam-
ical analysis are included which illustrate the efficiency,
accuracy and stability of the scheme in comparison to other
methods proposed in the scientific literature. Finally,
Section 5 is devoted to some conclusions.
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2 Construction of the family

In this section, we intend to develop a new optimal eighth-
order scheme for multiple roots with known multiplicity
m ≥ 1. We here establish a main theorem describing the
convergence analysis of the proposed family. So, we pre-
sent the three-step scheme as follows:

yn � xn −mλn,

zn � yn −m( un

1 − un
)λnH(tn),

xn+1 � zn − unλn( vn
1 + α1vn + α2v2n

)(R(un) + P(wn)), (7)

where λn � f(xn)
f ′(xn) and theweight functionsH,R,P : ℂ→ ℂ are

analytic in the neighborhood of origin with un � ( f(yn)
f(xn))

1
m

,

tn � un
b1+b2un, vn � ( f(zn)

f(yn))
1
m

and wn � ( f(zn)
f(xn))

1
m

. Here, b1, b2, α1

and α2 are free disposable real parameters.
In Theorem 2.1, we demonstrate that how to construct

weight functions H, R and P so that the proposed scheme
(7) arrives at eighth order without consuming any addi-
tional functional evaluations.

Theorem 2.1. Assume that f : ℂ→ ℂ is an analytic function
in the region enclosing the multiple zero x � α with mul-
tiplicity m ≥ 1. Then, the iterative expression defined by
(7) has eighth-order convergence when it satisfies the
following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(0) � m,  H ′(0) � mb1,  R(0) � m − P(0),  R′(0) � 2m,

R″(0) � 6b2
1m − 2b1b2m + H″(0)

b2
1

,  α1 � −1,

R‴(0) �12b
3
1m−18b2

1b2m+6b1b
2
2m+(9b1 −6b2)H″(0)+H‴(0)
b3
1

,

P′(0) � 2m.

(8)

Proof. Let x � α be a multiple zero of f(x). Using Taylor’s
series expansion of f(xn) and f ′(xn) about α, we obtain

f(xn) � f (m)(α)
m!

emn (1 + c1en + c2e2n + c3e3n + c4e4n   

+ c5e5n + c6e6n + c7e7n + c8e8n + O(e9n)) (9)

and

f ′(xn) � f m(α)
m!

em−1
n (m + c1(m + 1)en

+ c2(m + 2)e2n + c3(m + 3)e3n + c4(m + 4)e4n
+ c5(m + 5)e5n + c6(m + 6)e6n + c7(m + 7)e7n
+ c8(m + 8)e8n + O(e9n)), (10)

respectively.Here, en � xn − α and ck � 1
k!

f (k)(α)
f ′(α) , k = 1, 2, 3,….

Using the above expressions (9) and (10) in the first
substep of (7), we get

yn − α � c1e2n
m

+ ( − (1 +m)c21 + 2mc2)e3n
m2

+ ∑
j�1

5
Γjej+3n + O(e9n),

(11)

where Γj � Γj(m,  c1,  c2,…,  c8) are given in terms ofm, c1, c2,
c3, …, c8 for 1 ≤ j ≤ 5. The explicit expressions for
the first two terms Γ1 and Γ2 are given by Γ1 � 1

m3

{3m2c3 + (m + 1)2c31 −m(3m + 4)c2c1} and Γ2 � 1
m4 {(m + 1)3

c41 − 2m(2m2 + 5m + 3)c2c21 + 2m2(2m + 3)c3c1 + 2m2(c22(m+
2) −2c4m)}.

Using again Taylor’s series expansion, we obtain

f(yn) � f (m)(α)e2mn ⎡⎢⎢⎣(c1m)m
m!

+ (2c2m − c21(m + 1))(c1m)men
c1m!

+(c1
m
)1+m 1

2m ! c31
(3 +3m +3m2 +m3)c41 −2m(2+3m{

+ 2m2)c21c2 + 4(−1 +m)m2c22 + 6m2c1c3}e2n     

+∑
j�1

5
Γ̄ jej+3n + O(e9n)] (12)

and

un � c1en
m

+ (2c2m − c21(m + 2))e2n
m2

+ γ1e
3
n + γ2e

4
n

+ γ3e
5
n + O(e6n),

(13)

where

γ1 �
1

2m3
[c31(2m2 + 7m + 7) + 6c3m2 − 2c2c1m(3m + 7)],

γ2 � −
1

6m4
c41(6m3 + 29m2+ 51m + 34) − 6c2c21m(4m2 + 16m[

+17) + 12c3c1m2(2m + 5) + 12m2(c22(m + 3) − 2c4m)],

γ3 �
1

24m5
− 24m3(c2c3(5m + 17) − 5c5m) + 12c3c21m

2(10m2[
+ 43m+49)+12c1m2{c22(10m2 + 47m + 53)
−2c4m(5m + 13)} − 4c2c31m(30m3 + 163m2 + 306m

+209) + c51(24m4 + 146m3 + 355m2 + 418m + 209)]. (14)

Now, using the above expression (14), we get
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tn � c1
mb1

en + ∑
4

i�1
Θjej+1n + O(e6n). (15)

where Θj � Θj(b1, b2,m, c1, c2,…, c8) are given in
terms of b1, b2, m, c1, c2, …, c8, where the two co-
efficients Θ1 and Θ2 are written explicitly as Θ1 �
− b2c21+b1((2+m)c21−2mc2)

m2b21
,  and Θ2 � 1

2m3b31
[2b2

2c
3
1 + 4b1b2c1((2 +m)c21

−2mc2) + b2
1{(7 + 7m + 2m2)c31 − 2m(7 + 3m)c1c2 + 6m2c3}].

Due to the fact that tn � un
b1+b2un � O(en), therefore, it

suffices to expand weight function H(tn) in the neighbor-
hood of origin by Taylor’s expansion up to fourth-order
term as follows:

H(tn) ≈ H(0) + H′ (0)tn + 1
2!
H″(0)t2n +

1
3!
H(3)(0)t3n

    + 1
4!
H(4)(0)t4n,

(16)

where H(k) represents the k-th derivative. By inserting the
expressions (9)–(16) in the second substep of scheme (7),
we have

zn−α �(m−H(0))c1
m2

e2n

+2m(m−H(0))b1c2−(H’(0)+(m+m2−2H(0)−mH(0))b1)c21(m3b1) e3n

+∑
s�1

5
Ωses+3n +O(e9n).

(17)

where Ωs�Ωs(H(0),H ′(0),H″(0),H(3)(0),H(4)(0),m,b1,

b2,c1,c2,…,c8), s�1,  2, 3,  4, 5.
It is clear fromerror equation (17) that in order to obtain

at least fourth-order convergence, the coefficients of e2n and
e3n must vanish simultaneously. That is possible only for the
following values ofH(0) andH′(0), which can be calculated
from the expression (17):

H(0) � m, H ′(0) � mb1. (18)

Substituting the above values ofH (0) andH′ (0) in (17), we
obtain

zn − α � (m(5 +m)b2
1 − H″(0) + 2mb1b2)c31 − 2m2b2

1c1c2

2m4b2
1

e4n

    +∑
r�1

4
Lres+4n + O(e9n),

(19)

where Lr � Lr(H″(0),H(3)(0),H(4)(0),m, b1, b2, c1, c2,…, c8),
r � 1,  2,  3,  4.

Now, again byusing the Taylor series expansion,wehave

f (zn)� f (m)(α)e4mn [2−m
m!

×⎛⎝(m(5+m)b2
1−H

″(0)+2mb1b2)c31 −2m2b2
1c1c2

m4b2
1

⎞⎠m

+∑
s�1

5
P̄sesn+O(e6n)], (20)

vn�
(m(5+m)b2

1−H
″(0)+2mb1b2)c21−2m2b2

1c2

2m3b2
1

e2n+γ0e3n

+O(e4n)
(21)

and

wn �
(m(5 +m)b2

1 − H″(0) + 2mb1b2)c21 − 2m2b2
1c1c2

2m4b2
1

e3n

+ γ1e
4
n + O(e5n),

(22)

where

γ0 �
1

6b3
1m4

(6b2
1b2m(5 + 2m) + 2b3

1m(19 + 15m + 2m2)[
− 6b2H″(0) + 3b1(2b2

2m − 5H″(0) − 2mH″(0))
+H‴(0))c31 − 12b1m(2b1b2m + b2

1m(5 +m)
−H″(0))c1c2 + 12b3

1m
3c3],

γ1 �
1

6b3
1m5

(6b2
1b2m(7 + 2m) + b3

1m(68 + 51m + 7m2)[
− 6b2H″(0) + 3b1(2b2

2m − 7H″(0) − 3mH″(0))H‴(0))c41
− 6b1m(6b1b2m + b2

1m(17 +m)
− 3H″(0))c21c2 + 12b3

1m
3c22 + 12b3

1m
3c1c3].

It is clear from equations (13) and (22) that un and wn

are of order en and e3n, respectively. Therefore, we can
expand weight function R(un) and P(wn) in the neighbor-
hood of origin by Taylor’s series expansion up to fourth-
order and third-order terms, respectively as follow:

R(un) ≈ R(0) + R′(0)un + 1
2!
R″(0)u2

n +
1
3!
R(3)(0)u3

n

      + 1
4!
R(4)(0)u4

n

(23)

and
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P(wn) ≈ P(0) + P′(0)wn + 1
2!
P″(0)w2

n +
1
3!
P(3)(0)w3

n. (24)

By using the expressions (9)–(24) in the last substep of the
proposed scheme (7), we have

en+1 �
(m −P(0) −R(0))c1((H″(0)−(m + 5)b2

1−2b1b2)c21−2mb2
1c2)

2b2
1m5

e4n

+ ∑
i�1

4
ψie

i+4
n + O(e9n),

(25)

where ψi � ψi(m, b1, b2, α1, α2,H(0),H ′(0),H″(0),H(3)(0),
P(0),P′(0),P″ (0), P(3)(0),R(0), R′(0),R″(0), R(3) (0), c1,
c2, …, c8), i = 1, 2, 3, 4.

For obtaining at least fifth-order convergence, we
need to choose R(0) = m − P(0). Further, substituting
R(0) = m − P (0) in ψ1 � 0, one can obtain

R′(0) � 2m. (26)

Now inserting R(0) = m − P(0) and R′(0) = 2m in ψ2 � 0, we
obtain the following relations

2b1b2α1m−α1H ′′(0)+b2
1((11+5α1)m+(1+α1)m2−R′′(0))�0

and 2b2
1m

2(α1 + 1) �0,
(27)

which further yields

α1 � −1,         R″(0) � 6b2
1m − 2b1b2m + H″(0)

b2
1

. (28)

By inserting the values of R(0), R′(0), R″(0) and α1 obtained
from the above equations in ψ3 � 0, we obtain the
following independent expressions

−6b2
1b2m(m + P′(0)) + 3b1(2b2

2m
2 + (m + P ′ (0))H ″ (0))

+m( − 6b2H″(0) + H‴(0)) + b3
1m(6m2 − 3m(−14 + P ′(0))

−15P′(0) − R(3)(0)) � 0,

6b3
1m

2(P′(0) − 2m) � 0,

(29)

which further gives

R‴(0) �
12b3

1m − 18b2
1b2m + 6b1b

2
2m + 9b1H″(0) − 6b2H″(0) + H(3)(0)

b3
1

,

P′(0) � 2m. (30)

Finally, using equations (26)–(30) in (7), one can get the
following error equation:

en+1� 1

48m10b6
1

c1((2b1b2m+b2
1m(m+5)−H″(0))c21[

− b2
1m

2c2)] (24b3
1b2α2m2(5+m)+36b2

2mH″(0)(
+6α2H″(0)2+12b2

1m(2b2
2(3+α2)m−α2(5+m)H″(0))

−12b1m(2b3
2m+2b2(3+α2)H″(0)−H‴(0))

−12b2mH‴(0)+mH(4)(0)+b4
1m(2(134+75α2)m

+12(7+5α2)m2+(8+6α2)m3−R(4)(0)))c41
−24b2

1m
2(2b1b2α2m+b2

1m(7+m+α2(5+m))
−α2H″(0))c21c2+24b4

1α2m
4c22+24b4

1m
4c1c3)e8n+O(e9n).

(31)

The consequence of the above error analysis is that the
proposed scheme (7) acquires eighth-order convergence
using only four functional evaluations (viz. f(x

n
), f ′(x

n
), f(y

n
)

and f(z
n
)) per full iteration. This completes the proof.

2.1 Some special cases of the proposed
class

In this section, we will discuss some interesting special
cases of our proposed class (7) by assigning different forms
of weight functions H(tn), R(un) and P(wn) employed at
second and third step, respectively.
(1) Let us consider the following optimal class of eighth-

order methods for multiple roots where polynomial
weight functions are chosen satisfying the conditions
appearing in Theorem 2.1:

yn � xn −mλn,

zn � yn −m( un
1 − un

)λn[1 + tnb1

     + 1
2
t2nH ″(0) + 1

3!
t3nH

(3)(0) + 1
4!
t4nH

(4)(0)],
xn+1 � zn−un( vn

1−vn+α2v2n
)λn[m+2mun

+6b
2
1m−2b1b2m+H″(0)

2b2
1

u2
n

+12b
3
1m−18b2

1b2m+6b1b
2
2m+(9b1−6b2)H″(0)+H(3)(0)
6b3

1

u3
n

+R
(4)(0)
24

u4
n+2mwn+P

″(0)
2

w2
n+

P(3)(0)
6

w3
n], (32)

where λn� f(xn)
f ′(xn), b1, b2, α2, H″(0), H(3)(0), H(4)(0), R(4)(0),

P″(0) and P(3)(0) are free parameters.
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Sub cases of the given scheme (32):
(1) Let us consider H″(0) = H(3)(0) = H(4)(0) = R(4)(0) =

P″(0) = P(3)(0) = 0 in expression (32), we obtain

yn � xn −mλn,

zn � yn −m( un

1 − un
)λn[1 + tnb1],

xn+1 � zn −mun( vn
1 − vn + α2v2n

)λn
[1 + 2un + 3b1 − b2

b1
u2
n +

2b2
1 − 3b1b2 + b2

2

b2
1

u3
n + 2wn]

(33)

(2) Moreover, a combination of rational functions produce
another optimal eighth-order scheme as follows:

yn � xn −mλn,

zn � yn −m( un
1 − un

)λn[1 + tnb1],

xn+1 � zn − un( vn
1 − vn + α2v2n

)λn
[ k1 + k2un

1 + k3un + k4u2
n

+ τ1 + wn + w2
n

1 + τ2wn
],

(34)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 � m − P(0),

k2 � (−2b21+b1b2+b22)m2+(8b21+2b1b2−2b22)mP(0)+(2b21−3b1b2+b22)P(0)2
b1((b1+b2)m+(3b1−b2)P(0)) ,

k3 �
−4b2

1m − b1b2m + b2
2m − (2b2

1 − 3b1b2 + b2
2)P(0)

b1(b1m + b2m +(3b1 − b2)P(0)) ,

k4 �
(5b2

1 − b2
2)m

b1(b1m + b2m +(3b1 − b2)P(0)),

τ1 � P(0),

τ2 � 1 − 2m
τ1

.

(35)

(3) Now, we suggest another rational function forms of
weight functions satisfying the conditions as follow:

yn � xn −mλn,

zn � yn −m( un

1 − un
)λn[1 + tnb1],

xn+1 � zn − un( vn
1 − vn + α2v2n

)λn[1 + ρ1un + ρ2u2
n

ρ3 + ρ4un

       + l1 + (l1 + 2m)wn

1 + wn
],

(36)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1 �
4b2

1m + b1b2m − b2
2m + (2b2

1 − 3b1b2 + b2
2)P(0)

b1(3b1 − b2)(m − P(0)) ,

ρ2 �
(5b2

1 − b2
2)m

b1(3b1 − b2)(m − P(0)),

ρ3 �
1

m − P(0),

ρ4 �
−2b2

1 + 3b1b2 − b2
2

b1(3b1 − b2)(m − P(0)),

l1 � P(0).

(37)

Remark 2.1.Furthermore, it is important to note thatweight
functions H (tn), R (un) and P (wn) play a significant role in
the construction of eighth-order schemes. Therefore, it is
customary to display different choices of weight functions,
provided they must satisfy all the conditions in Theorem
2.1. Hence, we havementioned above some special cases of
new eighth-order schemes (33), (34) and (36) having simple
body structures so that they can be easily implemented in
the numerical experiments.

3 Dynamical analysis

In order to arrange this analysis, we apply our proposed
families on the nonlinear function p(z) = (z− a)m(z− b)m, with
two multiple roots of multiplicitym. This is the most simple
nonlinear function containing two m-multiple roots and,
although the results cannot be directly extrapolated to any
nonlinear function, several analysis on different nonlinear
problems confirm, in the numerical section, these results.

Firstly, we recall some dynamical concepts that we use

in this paper (see, for example, [17]). Let R : ℂ̂→ ℂ̂ be a

rational function, where ℂ̂ is the Riemann sphere, the orbit

of a point z0 ∈ ℂ̂ is defined as:

{z0,  R(z0),  R2(z0) ,…,  Rn(z0),…}, (38)

where Rk denotes the k-th composition of the map R with
itself.

We analyze the phase plane of themapR by classifying
the starting points from the asymptotic behavior of the
orbits. In these terms, a point z0 is called fixed point of R if
R(z0) = z0; it is a periodic point of period p > 1 if Rp(z0) = z0
and Rk(z0) ≠ z0, for k < p.

Moreover, a fixed point ofR, z0, is called attracting if |R′
(z0)| < 1, or superattracting if |R′ (z0)| = 0; it is repulsive if |R′
(z0)| > 1 and parabolic if |R′ (z0)| = 1.
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Indeed, when R depends also on one or several pa-

rameters, then
∣∣∣∣R′(z0, α1,…, αk)

∣∣∣∣ is not an scalar, but a

function of αi, for i = 1, 2, …, k. Then,
∣∣∣∣R′(z0, α1,…, αk)

∣∣∣∣ is
called stability function of thefixed point and it gives us the
character of the fixed point in terms of the value of αi, for
i = 1, 2, …, k.

On the other hand, let us also remark that when fixed
points are found such that they are not equivalent to the
roots of the polynomial p(z), then they are called strange
fixed points.

The basin of attraction of an attractor α is defined as:

A(α) � {z0 ∈ ℂ̂ : Rn(z0)→ α,  n→∞}. (39)

The Fatou set of the rational function R, is the set of

points z ∈ ℂ̂ whose orbits tend to an attractor (fixed point,

periodic point or infinity). Its complement in ℂ̂ is the Julia
set, J (R). So the basin of attraction of any fixed point
belongs to the Fatou set and the boundaries of these basin
of attraction belong to the Julia set.

Now, we are going to study the qualitative behavior of
the rational functions related to the different special cases
applied on low-degree polynomials. When class (33) with
b1 = 1 and b2 = −2 is applied on polynomial p(z), a rational
function Op (z) is obtained, depending on the parameter of
the class and also depending on themultiple roots a and b.
To get a simpler operator, we use the conjugacy map (see
the work of P. Blanchard in [17]) given by the Möbius
transformation

M(z) � z − a
z − b

, M−1(z) � zb − a
z − 1

,

with properties:

M(∞) � 1, M(a) � 0, M(b) � ∞,

that yields a rational function that, being conjugated to Op

(z) (and therefore, with equivalent dynamical behavior),
does not longer depend on a and b:

M1(z, α2) � z8
N1(z, α2)
D1(z, α2),

being

N1(z, α2) � 35 + 48z + 167z2 + 216z3 + 327z4

     + 344z5 + 322z6 + 248z7 + 157z8

     + 80z9 + 31z10 + 8z11 + z12

     + (1 + z)8α2

and

D1(z, α2) � 1 + 8z + 31z2 + 80z3 + 8z11

     (6 + α2) + 8z5(31 + α2)
      + z12(35 + α2) + z4(157 + α2)
     + 14z6(23 + 2α2) + 8z9(27 + 7α2)
     + 8z7(43 + 7α2) + z10(167 + 28α2)
      + z8(327 + 70α2).

Let us remark that this rational operator does not even
depend on the multiplicity m.

On the other hand, when the class described as Case 2,
(34) (form = 2), is applied on p (z) and the resulting rational
function is conjugated by a Möbius transformation, the
following operator is obtained:

M2(z, α2) � z8
N2(z, α2)
D2(z, α2),

where two polynomials of degree 14 appear in both
numerator and denominator,

N2(z,  α2) � 14 + 52z + 107z2 + 176z3 + 235z4

      + 280z5 + 306z6 + 304z7 + 278z8

      + 224z9 + 152z10 + 88z11 + 40z12

      + 12z13 + 2z14 + 2(1 + z)4(1 + 2z
      + 3z2 − 2z3 + 3z4 + 2z5 + z6) α2

and

D2(z, α2) � 2 + 12z + 40z2 + 88z3 + 2z14(7 + α2)
      + 2z4(76 + α2) + 4z13(13 + 3α2)
      + 4z5(56 + 3α2) + 8z9(35 + 4α2)
      + 4z11(44 + 13α2) + 4z7(76 + 13α2)
      + z12(107 + 34α2) + z6(278 + 34α2)
      + z10(235 + 44α2) + z8(306 + 44α2).

Finally, is the family defined as Case 3 (36) is applied
on polynomial p(z), after a conjugation by theMöbiusmap,
the rational function

M3(z, α2) � z8
N3(z, α2)
D3(z, α2),

is obtained, being

N3(z, α2) � (1 + z2)2(31 + 108z + 245z2 + 435z3

     + 601Z4 + 682Z5 + 648Z6 + 516Z7

     + 347Z8 + 189Z9 + 83Z10 + 28z11 + 5z12

     + (1 + z)4(5 + 8z + 16z2 + 29z3 + 20z4

     + 29z5 + 16z6 + 8z7 + 5z8) α2

and

D3(z, α2) � 5 + 28z + 93z2 + 245z3 + z16(31 + 5α2)
     + z4(518 + 5α2) + 4z15(27 + 7α2)
     + 7z13(93 + 23α2) + 3z6(475 + 26α2)
     + z5(922 + 28α2) + 5z11(332 + 71α2)
     + 5z9(463 + 71α2) + z14(307 + 78α2)
     + z7(1903 + 161α2) + z12(1122 + 269α2)
     + z8(2244 + 269α2) + z10(2095 + 384α2).

Let us remark that it does not depend on themultiplicitym.
In what follows, the dynamical properties of rational
functions Mi(z, α2), i = 1, 2, 3, will be analyzed.

By solving equation Mi(z, α2) � z, i = 1, 2, 3, the fixed
points of the respective rational function are obtained.
Among them, z = 0 and z � ∞, coming from the roots of the
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polynomial previous to the Möbius map. The asymptotic
behavior of all the fixed points plays a key role in the sta-
bility of the iterativemethods involved, as the convergence
to fixed points different from the roots means an important
drawback for an iterative method; so, we proceed below
with this analysis.

Remark 3.1. A direct result of the Möbius transformation
applied on these rational functions (and also those ob-
tained by applying any other iterative method on p (z)) is
the conjugacy by the inverse,

1
Mi(z, α2) � Mi(1z, α2),   i � 1, 2, 3.

Immediate consequences of this property are:

(a) If z* is a fixed point of Mi(z, α2), i = 1, 2, 3, that is
Mi(z*, α2) � z*, i = 1, 2, 3, then also its conjugate 1/ z* is,
Mi(1/z*, α2) � 1/z*.

(b) z= 1 is always an strangefixed point ofMi(z, α2), i = 1, 2,
3, except maybe for some specific values of the
parameter that simplify the operator.

(c) Given two conjugate fixed points, both have the same
character, as their stability function coincide,

M ′
i(1/z*, α2) � M′

i(z*, α2),   i � 1, 2, 3.

This is the case of the conjugate fixed points z = 0 and
z � ∞ coming from the roots of the polynomial p(z) pre-
vious to the Möbius map; they have the same asymptotic
behavior. Indeed, as they are roots of Mi(z, α2), i = 1, 2, 3,
of multiplicity four, it can be concluded that

Mi
′ (0, α2) � Mi

′ (∞, α2) � 0, i = 1, 2, 3 and, therefore, they
are superattracting fixed points. This is in concordance
with the proven eighth-order of convergence of the pro-
posed class of iterative methods.

3.1 Stability of strange fixed points

Firstly, in order to study the stability of the strange fixed
points of M1(z, α2), we calculate its first derivative and
evaluate it at every fixed point. Its stability function gives
us information about the asymptotic behavior of the point.
In our case, the stability of other fixed points than z = 0 or
z � ∞ depends on the value of parameter α2. We start this
analysis with the strange fixed point coming from the
divergence of the original method, z = 1. From this rational
function, the following result can be stated.

Theorem 3.1. Rational function M1(z, α2) has z = 1 as an
strange fixed point if α2 ≠ −31

4 . So, z = 1 is attracting if

∣∣∣∣α2 − 737
60

∣∣∣∣ < 17
15, superattracting if α2 � −12, parabolic if∣∣∣∣α2 − 737

60

∣∣∣∣ � 17
15 and repulsive in other cases.

Proof. From the nature of Möbius transformation, z = 1 is a
fixed point of the resulting rational function (except for
specific values of the parameters that canmake the rational
function simpler). By definition, its stability is directly
deduced from the derivative of the rational operator: The
character of z = 1 is given by the stability function

∣∣∣∣M ′
1(1, α2)

∣∣∣∣ � ∣∣∣∣∣∣∣ − 16
12 + α2

31 + 4α2

∣∣∣∣∣∣∣.
and then the thesis of the theorem is straightforward.

The relevance of this result is related with the role of
z = 1 in Möbius map: as M(∞) � 1, z = 1 in the conjugate
operator corresponds to the divergence of the original
one. So, an attracting or parabolic behavior derives in
divergent behavior of the iterative process, and it must be
avoided.

According to Theorem 3.1, there exists an infinite set
of iterative methods in the original family (33) whose
behavior on p(z) does not include the divergence.

It can be checked that rational function M2(z, α2) is
simplified for the specific value of parameter α2 � −227

32 , that
is, z = 1 (coming from the divergence of the original
method) is not an strange fixed point of M2(z,−227

32) as is
stated in the following result.

Theorem 3.2. Rational function M2(z, α2) has z = 1 as
an strange fixed point if α2 ≠ −227

32 . In this case, z = 1 is
attracting if

∣∣∣∣α2 − 5917
480

∣∣∣∣ < 157
120, superattracting if α2 � −12,

parabolic if
∣∣∣∣α2 − 5917

480

∣∣∣∣ � 157
120 and repulsive in other cases.

Regarding Case 3, the following result sets the
asymptotic behavior of the divergence (z = 1) depending on
the value of the parameter.

Theorem 3.3. Rational function M3(z, α2) has z = 1 as an
strange fixed point if α2 ≠ −1959

272 . In this case, z = 1 is
attracting if

∣∣∣∣α2 + 3351
272

∣∣∣∣ < 87
68, superattracting if α2 � −12,

parabolic if
∣∣∣∣α2 + 3351

272

∣∣∣∣ � 87
68 and repulsive in other cases.

The rest of strange fixed points of these rational func-
tions and their stability (depending on their respective
parameters) play also an important role in the general
analysis of our class. As the stability of strange fixed point
z = 1 has already been studied (see Theorems 3.1, 3.2 and
3.3), and z = 0 and z � ∞ are superattracting due to the
eighth-order of convergence of the family, we focus our-
selves in the calculation and analysis of the stability of the
rest of strange fixed points.
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Proposition 3.1. The strange fixed points of M1(z, α2)
different from z = 1 are

s1+i (α2) �
s1i(α2) +

����������
s1i(α2)2 − 4

√
2

    � 1
s1i − (α2), i � 1, 2,…, 9,

being s1i(α2), i = 1,2,…,9 the roots of the nineth-degree
polynomial r1(t) � t9 + t8 + 31t7 + 112t6 + (297 + α2)t5 + (539
+ 9α2)t4 +(826 + 37α2)t3 +(1145 + 92α2)t2 +(1439 + 154α2) t+
1500 + 182α2. From these 19 strange fixed points, only four
can be attracting, two in a big area included in
[−500, −200] × [−100, 100] and other four in region [−20,
20] × [−20, 20], as can be seen in Figure 1(a). Moreover, if
z � −3257

95 , the strange fixed points different from z = 1 are 16,
being complex two-by-two conjugated.

The proof of this result, being numerical, is similar to
those made in the previous subsection, by analyzing the
value of the stability function of each one of the conjugate
strange fixed points. Now, we present the corresponding
result for rational function M2(z, α2).
Proposition 3.2. Rational functionM2(z, α2) has as strange
fixed points (different from z = 1) to

s2+i (α2) �
s2i(α2) +

����������
s2i(α2)2 − 4

√
2

     � 1
s2i− (α2), i � 1, 2,…, 10,

being s2i(α2), i = 1,2,…,10 the roots of the 10th-degree
polynomial r2(t) � 2t10 + 14t9 + 34t8 + 16t7 + (−68 + 2α2)t6+
(−98 + 14α2)t5 + (12 + 36α2)t4 + (64 + 28α2)t3 + (−12 −44α2)
t2 + (−23 − 96α2)t − 48α2. From these 20 strange fixed points,
four of themcanbeattracting ina small area included in [−10,
10] × [−10, 10], as can be seen in Figure 1(b). Moreover, if
z � −1309

96 , the strange fixed points different from z = 1 are 18,
being complex two-by-two conjugated.

Regarding the rational function associated to Case 3,
the stability of its strange fixed points different from z = 1 is
stated in the following result.

Proposition 3.3. Rational functionM3(z, α2) has as strange
fixed points (different from z = 1) to

s3+i (α2) �
s3i(α2) +

����������
s3i(α2)2 − 4

√
2

     � 1
s3i − (α2), i � 1, 2,…, 11,

being s3i(α2), i = 1, 2, …, 11 the roots of the 11th-degree
polynomial r3(t) � 5t11 + 33t10+ 71t9 + 41t8 + (−25 + 5α2)t7+
(−2 + 33α2)t6 + (30 + 76α2)t5 + (12 + 69α2) t4 + (5+ 23α2)t3+
(8 + 14α2)t2 + (4620 + 4α2)t − 8α2. From these strange fixed
points, three can be attracting in small regions of [−20,
20] × [−20, 20] and another one can be attracting in a small
area inside [350, 360] × [−10, 10]. The union of the stability
functions of these strange fixed points appear in Figure 1(c).

The union of the respective stability functions of all the
strange fixed point for each rational function M1(z, α2),
M2(z, α2) and M3(z, α2), can be observed in Figure 1

3.2 Dynamical planes

The dynamical plane associated to a value of the param-
eter, that is, obtained by iterating an element of the family
under study, is generated by using each point of the com-
plex plane as initial estimation (we have used a mesh of
800 × 800 points). We paint in blue the points whose orbit
converges to infinity, in orange the points converging to
zero (with a tolerance of 10−3), in other colors (green, red,
etc.) those points whose orbit converges to one of the
strange fixed points (all fixed points appear marked as a
white star in the figures if they are attracting or by a white
circle if they are repulsive). Moreover, a point appears in
black if it reaches the maximum number of 200 iterations

Figure 1: Union of stability functions of all the strange fixed points of the rational functions under study.
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without converging to any of the fixed points. The routines
used appear in [18].

From these results, several stable elements can be
selected from the rational class of iterative methods: those
corresponding to values of parameter α2 where there no
exist attracting strange fixed nor periodic points. The
dynamical planes corresponding to some of them can be
seen at Figure 1. In Figure 2(a), the case of Q3 null is pre-
sented, whose main characteristic is the existence of
several poles of the rational function, giving as a result
”flowers” of slower convergence.

In a similar way, by means of the previous analysis,
some elements can be selected as unstable members of the
rational class of iterativemethods. In Figure 3 some of them
are presented, as in Figure 3(a), where the basin of
attraction of z = 1 appears in green, being superattracting
for this value of α2. The case of Figure 3(b) corresponds to
two simultaneously attracting strange fixed points
s13

± (−400) � −0.6036 ± 0.7973i, whose basins of attraction
appear in green and yellow color. Finally, Figure 3(c)
is related to the value α2 � 13.35 − 15.5i, lying in the

complex area where s1+7(13.35 − 15.5i) � −1.0421 + 1.8229i
and s17

− (13.35 − 15.5i) � −0.2364 − 0.4135i are simulta-
neously attracting.

Now, the corresponding analysis of the basins of
attraction different from those of z = 0 and z � ∞ corre-
sponding to M2(z,  α2) for different values of α2 leading to
stable or unstable behavior is given below.

In Figure 4, the dynamical planes associated to the
same values of parameter α2 are used, as they also corre-
spond to the wide are of the complex plane where all the
strange fixed points are repulsive. In all of them, only two
basins of attraction appear, corresponding to z = 0 and
z � ∞, that is, to the original roots of polynomial p(z).

Figure 5 corresponds to the dynamical planes obtained
for several values of α2 where the strange fixed points are
superattracting, as it is the case of z = 1 for α2 � −12
(Figure 5(a)), or attracting s3±(2.4) = −0.8554 ± 0.5180i, that
appear with their own basins of attraction in Figure 5(b)
or s2+3(3.25 + 1.25i) � −0.7669 + 1.0356i and s23− (3.25+
1.25i) � −0.4618 − 0.6236i that are simultaneously attract-
ing for α2 � 3.25 + 1.25i, see Figure 5(c).

Figure 3: Dynamical planes corresponding to unstable performance of M1(z,α2).

Figure 2: Dynamical planes corresponding to stable performance of M1(z, α2).
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Finally, we present the dynamical planes associated to
M3(z, α2), confirming the previous analysis of the stability
of its strange fixed points.

The samevalues ofα2 canbeused to visualize the stable
performanceofM3(z, α2) inwide areas of the complexplane
(see Figure 6). Regarding the unstable cases, we can see in
Figure 7 the dynamical plane corresponding to the value of

α2 assuring the behavior of z = 1 (original divergence of the
method) as superattracting fixed point (Figure 7(a)), or
those which result in strange attracting fixed points, as
s2+2(354) � −1.4169 and s22

− (354) � −0.7058 that are
simultaneously attracting for α2 � 354 (see Figure 5(b)) or
s2±(−6.5) = −0.6203 ± 0.7844i, that appear with their own
basins of attraction in Figure 5(c).

Figure 4: Dynamical planes corresponding to stable performance of M2(z, α2).

Figure 5: Dynamical planes corresponding to unstable performance of M2(z,α2).

Figure 6: Dynamical planes corresponding to stable performance of M3(z, α2).

M. Kansal et al.: A stable class of modified Newton-like methods 11



4 Numerical experiments

In this section, we will check the computational
aspects of the following proposed methods: expres-
sion (33) for (b1 � 1,  b2 � −2,  α2 � −3), family (34) for(b1 � 1,  b2 � −2,  α2 � −3,  P(0) � τ1 � 1

2) and expression (36)
for (b1 � 1,   b2 � −2,   α2 � −3,  P(0) � l1 � 1

2) denoted by

MM1, MM2 and MM3, respectively, comparing them with
some already existing techniques.

In this regard, we consider several test functions
coming from real life problems which are mentioned in
examples 4.1 to 4.6. We compare our proposed
methods with optimal eighth-order method (5) given

by Behl et al. [15] for Q(hn) � m(1 + 2hn + 3h2n) and

G(hn, tn) � m(1+2tn+3h2n+hn(2+6tn+hn)
1+tn ) and the method (6) given

by Zafar et al. [16] taking H(un) � 6u3n − u2n + 2un + 1,

P(vn) = 1 + vn and G(wn) � 2wn+1
A2P0

for (A2 = P0 = 1). We denote

these methods by OM and ZM, respectively. We also
compare our proposed methods with family of two-point
sixth-order method given by Geum et al. in [13], out of them
we choose the case 2A, which is given by:

yn � xn −m
f(xn)
f ′(xn) ,  m > 1,

xn+1 � yn − [ m + b1un

1 + a1un + a2sn + a3snun
] f(yn)

f ′(yn) , (40)

where un � ( f(yn)
f(xn))

1
m

, sn � ( f ′(yn)
f(xn))

1
m−1

, b1 � 2m
m−1, a1 � −2m(m−2)

m−1 ,

a2 = 2(m − 1) and a3 = 3.
Finally, we compare themwith the non-optimal family

of sixth-order methods based on weight function approach
presented by the same authors Geum et al. [14], out

of them we consider the case 5YD, which is defined as
follows:

yn � xn −m
f(xn)
f ′(xn) ,  m ≥ 1,

wn � xn −m[(un − 2)(2un − 1)
(un − 1)(5un − 2)] f(xn)

f ′(xn) ,

xn+1 � xn −m[ (un − 2)(2un − 1)
(5un − 2)(un + vn − 1)] f(xn)

f ′(xn) . (41)

We denote methods (40) and (41) by GK1 and GK2,
respectively.

In the numerical tests presented in Tables 1–6, we
have compared our methods with the known ones on the
basis of approximated zeros, residual error of the involved
functions, difference between the two consecutive itera-
tions, asymptotic error constants. In Tables 1–6, we
display the number of iteration indices (n), approxi-
mated zeros (xn), absolute residual error of the corre-
sponding function (|f (xn)|), error in the consecutive
iterations |xn + 1−xn|, computational order of convergence

ρ ≈ log|f(xn+1)/f(xn)|
log|f(xn)/f(xn−1)| ,  n ≥ 2, (the details of this formula can be

seen in [19]),
∣∣∣∣ xn+1−xn
(xn−xn−1)p

∣∣∣∣ (where p is either 6 or 8 corre-

sponding to the considered iteration function), the esti-

mation of asymptotic error constant η ≈ lim
n→∞

∣∣∣∣ xn+1−xn
(xn−xn−1)p

∣∣∣∣ at
the last iteration. We have maintained 4096 significant
digits of minimum precision to minimize the round off
error.

As mentioned in the above paragraph, we calculate
the values of all the constants and functional residuals
up to several number of significant digits but we display
the value of approximated zero xn up to 25 significant
digits although minimum 4096 significant digits are

Figure 7: Dynamical planes corresponding to unstable performance of M3(z,α2).
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available with us. The absolute residual error in the
function |f (xn)| and error in the consecutive iterations
|xn + 1 − xn| are displayed up to 2 significant digits with
exponent power which are mentioned in Tables 1–6.
Moreover, computational order of convergence is up to 5

significant digits. In addition, we also display
∣∣∣∣ xn+1−xn
(xn−xn−1)p

∣∣∣∣
and η up to 10 significant digits. From Tables 1–6, it can
be observed that the smaller asymptotic error constant
implies that the corresponding method converge faster
than the other ones. Although, it may happen in some
cases that the method have smaller residual errors and
smaller errors difference between two consecutive itera-
tions but have also larger asymptotic error constant. All
computations in numerical experiments have been car-
ried out with Mathematica 10 programming package us-
ing multiple precision arithmetic. Further, the meaning
of a(±b) is a × 10(±b) in Tables 1–6.

Example 4.1. (van der Waals equation of state):

(P + an2

V2
)(V − nb) � nRT ,

where a and b are explains the behavior of a real gas by
introducing in the ideal gas equations two parameters, a
and b (knownas van derWall’s constants), specific for each
gas. The determination of the volume V of the gas in terms
of the remaining parameters requires the solution of a
nonlinear equation in V

PV3 − (nbP + nRT)V2 + an2V − abn2 � 0.

Given the constants a and b of a particular gas, one can
find values for n, P and T, such that this equation has a
three roots. By using the particular values, we obtain the
following nonlinear function

f 1(x) � x3 − 5.22x2 + 9.0825x − 5.2675,

having three zeros and one of them is a multiple zero
α � 1.75 of multiplicity of order two and other one is a
simple zero α � 1.72. However, our desired root is α � 1.75.

Example 4.2. (Fractional conversion in a chemical reactor):

Let us consider the following expression (please, see
[20] for more details of this problem)

Table : Convergence behavior of different iterative methods on the test function f(x).

Methods n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn

(xn−xn−)
p

�
�
�
�

η

GK  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

GK  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

OM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

ZM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)
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f 2(x) � x
1 − x

− 5 log[0.4(1 − x)
0.4 − 0.5x

] + 4.45977. (42)

In the above expression, x represents the fractional con-
version of species A in a chemical reactor. Since, there is no
physical meaning of above fractional conversion if x is less
than zero or greater than one. In this sense, x is bounded in the
region0≤x≤ 1. Inaddition, our requiredzero (that is simple) to
this problem is α ≈ 0.757396246253753879459641297929.
Moreover, it is interesting to note that the above expression is
undefined in the region 0.8 ≤ x ≤ 1 which is very close to our
desired zero. Furthermore, there are some other properties to
this function which make the solution more difficult. The de-
rivative of the above expression is very close to zero in the
region 0 ≤ x ≤ 0.5 and there is an infeasible solution for
x = 1.098.

We can see that the new methods possess smaller re-
sidual error and difference between the consecutive ap-
proximations in comparison to the existing ones.
Moreover, the numerical estimation of the order of
convergence coincide with the theoretical one in all cases.
In Table 2, *means that the correspondingmethod does not
converge to the desired root.

Example 4.3. (Continuous stirred tank reactor (CSTR)):

In our third example, we consider the isothermal
continuous stirred tank reactor (CSTR) problem. The
following reaction scheme develops in the reactor (see [21]
for more details):

A + R→ B
B + R→ C
C + R→ D
D + R→ E,

(43)

where, componentsA andR are fed to the reactor at rates of
Q and q-Q respectively. The problemwas analyzed in detail
by Douglas [22] in order to design simple feedback control
systems. In the analysis, he gave the following equation for
the transfer function of the reactor:

KC
2.98(x + 2.25)

(s + 1.45)(s + 2.85)2(s + 4.35) � −1, (44)

where KC is the gain of the proportional controller. The
control system is stable for values of KC that yields roots of
the transfer function having negative real part. If we choose
KC = 0, we get the poles of the open-loop transfer function
as roots of the nonlinear equation:

Table : Convergence behavior of different iterative methods on the test function f(x).

Methods n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn

(xn−xn−)
p

�
�
�
�

η

GK  . * *
 * * * *
 * * *
 * * * *

GK  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

OM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

ZM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)
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f 3(x) � x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875

� 0

(45)

given as: x =−1.45,−2.85,−2.85, −4.35. So, we see that there
is one multiple root x = −2.85 with multiplicity 2.

Example 4.4. Let us consider another nonlinear test func-
tion from [3], which is given as follows:

f 4(x) � ((x − 1)3 − 1)50.
The above function has a multiple zero at x = 2 of multi-
plicity 50.

Table 4 shows the numerical results for this example. It
can be observed from the numerical tests showed in this
table that results are very good for all the methods, being
lower the residuals at the newly proposed methods.
Moreover, the asymptotic error constant (η) displayed in

the last column of Table 4 is large for the methods OM and
ZM in comparison to the other schemes.

Example 4.5. (Planck’s radiation law problem):

Now, we consider the following Planck’s radiation law
problem which calculates the energy density within an
isothermal blackbody and is given by [23]:

Ψ(λ) � 8πchλ−5

e
ch
λBT − 1

, (46)

where λ is the wavelength of the radiation, T is the absolute
temperature of the blackbody,B is the Boltzmann constant,
h is the Planck’s constant and c is the speed of light. We are
interested in determining wavelength λwhich corresponds
to maximum energy density Ψ(λ).

Further, Ψ′(λ) � 0 implies that the maximum value of
Ψ occurs when

Table : Convergence behavior of different iterative methods on the test function f (x).

Methods n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn

(xn−xn−)
p

�
�
�
�

η

GK  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(−)
 −. .(−) .(−) . .(−)

GK  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)

OM  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)

ZM  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)

MM  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)

MM  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)

MM  −. .(−) .(−)
 −. .(−) .(−) .(+) .(−)
 −. .(−) .(−) .(+)
 −. .(−) .(−) . .(−)
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ch
λBTe

ch
λBT

e
ch
λBT − 1

� 5. (47)

If x � ch
λBT, then (47) is satisfied when

f 5(x) � e−x + x
5
− 1 � 0. (48)

Therefore, the solutions of f5 (x) = 0 give the maximum
wavelength of radiation λ bymeans of the following formula:

λ ≈
ch
αBT

, (49)

where α is a solution of (48). Our desired root is
x = 4.9651142317442 with multiplicity m = 1.

The numerical results for the test equation f5 (x) = 0 are
displayed in Table 5. It can be observed that the new
methods MM1 and MM2 have small values of residual er-
rors and asymptotic error constants (η) in comparison to
the other methods when the accuracy is tested in multi-
precision arithmetic.

Example 4.6. (Global CO2 model by Bresnahan et al. [24] in
ocean chemistry):

In this example, we will discuss the global CO2 model
by Bresnahan et al. [24] in ocean chemistry (please, see [25]
for more details) which finally leads to the numerical so-
lution of a nonlinear fourth order polynomial in the
calculation of pH of the ocean. The effect of atmospheric
CO2 is very complex and varies with location of the ocean.
Therefore, Babajee [25] considered a simplified approach
based on the following assumptions:
(i) Only the ocean upper layer is considered (not the deep

layer).
(ii) Approximation of the ocean upper layer carbon dis-

tribution by perfect mixing so that spatial variations
are neglected.

As, CO2 dissolves in ocean water and undergoes a series
of chemical changes that ultimately leads to increased
hydrogen ion concentration, denoted as [H+] and thus acid-
ification. The problem was analyzed by Babajee [25] in order
to find the solution of the following nonlinear function:

p([H+]) � ∑
4

n�0
rn[H+]n, (50)

Table : Convergence behavior of different iterative methods on the test function f (x).

Methods n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn

(xn−xn− )
p

�
�
�
�

η

GK  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

GK  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

OM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

ZM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(+) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(−) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)

MM  . .(−) .(−)
 . .(−) .(−) .(−) .(+)
 . .(−) .(−) .(+)
 . .(−) .(−) . .(+)
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where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r0 � 2K0K1K2PtKB,
r1 � K0K1PtKB + 2K0K1K2Pt + KWKB,
r2 � K0K1Pt + BKB + KW − AKB,
r3 � −KB − A,
r4 � −1.

(51)

Here, K0, K1, K2, KW and KB are equilibrium constants.
The parameter A represents alkalinity which expresses the
neutrality of oceanwater and Pt is the gas phase CO2 partial
pressure. We assume the values of A = 2.050 and B = 0.409
taken by L & Gruber [26] and Bacastow and Keeling [27],
respectively. Furthermore, choosing the values of K0, K1,
K2, KW, KB and Pt given by Babajee [25], we obtain the
following nonlinear equation:

f 7 (x) � x4 −
2309x3

250
−
65226608163x2

500000
+ 425064009069x

25000

−
10954808368405209

62500000
� 0. (52)

The roots of f7 (x) = 0 are given by x = −411.452, 11.286,
140.771, 268.332. Our desired root is −411.452 having

multiplicity m = 1. Finally, we are interested to find the
solution x = [H+] of the above equation (52) to calculate the
pH of the ocean.

The numerical experiments of this example are given
in Table 6. The methods MM1, MM2 and MM3 have small
residual errors and asymptotic error constants as
compared to the other existing methods. The computa-
tional order of convergence for all methods coincides with
the theoretical ones in all cases.

5 Conclusions

In this paper, we have developed a wide general three-step
class of methods for approximating multiple zeros of
nonlinear functions numerically. Optimal iteration schemes
having eighth-order for multiple zeros have been considered
very seldom in the literature, so the presented methods may
be regarded as an advancement in the topic. Weight func-
tions based on function-to-function ratios and free parame-
ters are employed at second and third steps of the family
which enable us to achieve desired convergence order eight.

Table : Convergence behavior of different iterative methods on the test function f(x).

Methods n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn
(xn−xn−)

p

�
�
�
�

η

GK  . * *
 * * * *
 * * *
 * * * *

GK  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

OM  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

ZM  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

MM  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

MM  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)

MM  . .(−) .(−)
 . .(−) .(−) .(−) .(−)
 . .(−) .(−) .(−)
 . .(−) .(−) . .(−)
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In the numerical section,wehave incorporated variety of real
life problems to confirm the efficiency of the proposed
technique in comparison to the existing robust methods.
From the computational results, we find that the new
methods show better performance in terms of precision,
residual errors for the considered test functions f1−6(x).
Finally, we point out that the easy structure and high
convergence order of the proposed class, makes it not only
interesting from theoretical point of view but also in practice.
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Table : Convergence behavior of different iterative methods on the test function f (x).

Cases n xn |f(xn)| |xn +  − xn| ρ
�
�
�
�
xnþ−xn

(xn−xn−)
p

�
�
�
�

η

GK  − * *
 * * * *
 * * *
 * * * *

GK  − .(+) .(−)
 −. .(−) .(−) .(−) .(−)
 −. .(−) .(−) .(−)
 −. .(−) .(−) . .(−)

OM  − .(+) .(−)
 −. .(−) .(−) .(−) .(−)
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