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Abstract

We propose a methodology for the improvement of the parameter design that consists of the combination of
Random Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.
The first phase corresponds to the previous preparation of the data set by using normalization functions. In the
second phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called it
Multivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,
we obtained the optimal combination of parameter levels with the integration of properties of our modelling
scheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us to
compare and validate the virtues of our methodology versus other proposals involving Artificial Neural Networks
(ANN) and Simulated Annealing (SA).

Keywords: Artificial Intelligence, Genetic Algorithm, Random Forest, Artificial Neural Networks, Multivariate
Analysis.

Resumen

Proponemos una metodologia para la mejora del diseno de parametros que consiste en la combinaciéon de Random
Forest (RF) con Algoritmos Genéticos (GA) en 3 fases: normalizacién, modelizacién y optimizacién. La primera
fase corresponde a la preparacion previa del conjunto de datos mediante funciones de normalizaciéon. En la segunda
fase, disefiamos un esquema de modelizaciéon ajustado a multiples caracteristicas de calidad, que hemos llamado
Multivariante Random Forest (MRF) para la determinacién de la funcién objetivo. Finalmente, en la tercera
fase se obtiene la combinacién Optima de los niveles de los pardmetros mediante la integracién de propiedades
dadas por nuestro esquema de modelizacion y las desirabibity functions en el establecimiento del correspondiente
GA. Dos casos ilustrativos nos permiten comparar y validar las virtudes de nuestra metodologia versus otras
propuestas que involucran Redes Neuronales Artificiales (ANN) y Simulated Annealing (SA).
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1 Introduction

The robust design technique’s proposed by Taguchi have to goal controllable input variables (control
factor) of a system, so that its outputs (response variables) stay as close as possible to their correspond-
ing target values and whit minimum variability, even in the presence of noise factor, which cannot be
controlled [5]. Then, to accomplish those goal robust design use two methods: Tolerance design and
parameter design. The first design seeks determine how much variability of the input parameter to the
system will be allowed. Parameter design is a procedure which tries to reduce variability at a low cost
[1]. All this is known as Quality Engineering with strengths but also limitations [21]

The demands of the current market involve more complex processes where multiple quality characteristics
are usually considered. In these cases, the Taguchi methodology is limited [32]. In the literature some
proposals for the improvement of the design of parameters for multi-response cases can be found, among
the most recent ones, the following are found: Castillo et al [9] who proposed a modification to the function
of desirability of Harrington E. [II] for optimize multiple answers but it is limited to non-differentiable
cases. Su and Tong [26] proposed a method based on Principal Component Analysis (PCA), where the
set of original responses is transformed into uncorrelated sets and subsequently optimized, Antony, J.
[2] adapts the loss function of Taguchi to the case of multiple responses by assigning weights to each
quality feature, Kim and Lin [I8] present a modification of the desirability function (exponential) in the
modelling of multiple responses and later Hsu et al [4] used those exponential functions in combination
with ANNs for simultaneous optimization of the broadband tap coupler optical. Sarajit and Susanta
[23] proposed to adjust multiple regression models to each quality characteristic separately to obtain the
mean and variance estimate that will later allow to maximize the weighted signal-to-noise (SN) ratio;
combining Taguchi’s ideas with multiple regression techniques, Koksoy [22] considers each response as
independent and uncorrelated for use the MSE criterion (Mean Squared of Error) in each response, but
in real terms this is unlikely and Canessa et al [5] propose a Pareto genetic algorithm to finds the pareto
frontiers of solutions to problems of robust design in multiobjetive systems.

All those previous proposals demonstrated great abilities in their respective illustrations and constitute
great contributions for the improvement of the design of parameters. However, from a practical point of
view, those approaches are complicated to apply and can only obtain the best solution from a specified
set of levels of the control factors, ie they are unable to achieve an optimal combination of control factors
when having continuous values [17].

Other proposals show the power of meta-heuristic and data mining techniques to solve problems involving
continuous type factors through the work of Chang and Chen [16], Hou et al [12], Hsu et al [13], Huang
and Hung [20], Su et al and [7]. More recently Chang[15] proposed the combination of ANN with SA for
the case of multiple quality features as an extension of Su and Chang work’s [6]. The ANNs are powerful
techniques in the recognition of input/output patterns, but they are unstable in some cases and costly in
the consumption of computational resources. Chang and Chen [I7] modify the previous proposal, they
recommend using GA instead of SA for the optimization.

Finally, Villa-Murillo et al [30] provides the Forest-Genetic method as a complete and statistically robust
alternative for improving parameter’s design, firstly considering experiment with a single quality charac-
teristic as response variable [29] and later generalized to cases with multiple quality characteristic. This
latter case is the objective of this article, which we called Multivariate Forest-Genetic Method, where
we proposal an schema for design at Multivariate Random Forest to determine the objective function
and using its properties in combination with desirability functions to drive the Genetic Algorithm into
efficient optimization at the parameter levels.

This paper is organized as follows: in section 2 a review of the related works including brief description of
the Classifications and Regression Trees as a base to the Multivariate Regression Tree and Random Forest
are presented. This section also describes the operating process of the Genetic Algorithms and Desirability
functions. Section 3 describes our proposal in 3 phases: normalization, modelling and optimization.
Finally, in section 4 the effectiveness of the proposed approach with 2 illustrative examples is demonstrated
and conclusions are provided in section 5.
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2 Related works

2.1 Multivariate regression tree, Random Forest and Genetic Algorithms

The Classifications and Regression Trees (CART), defined for Breiman at 1984, consists of a recursive
division of N cases on which a response variable Y and a set of predictors X are observed. Such partition-
ing procedure is known as regression tree when the response variable is numerical, and as classification
tree when the response variable is categorical. [25]. For univariate responses, regression CART uses the
exhaustive search method to select the splitting variable at each node. It considers binary split of the
form X < a, so the method simultaneously finds covariate X and point a to minimize some node impurity
criterion.

Multivariate Regression Tree (MRT) is a direct extension of CART. Its result are trees with the terminal
nodes are composed of subgroups that minimize the sum of squares intra-group, by the next partition
phase is defined by the threshold of the explanatory variables [§]. Each descendant node will depend
directly on the threshold marked by the previous node, this makes it sensitive to the variations that can
be created in the determination of the training and test sets. A determinant point in the formation of
the nodes corresponds to the mean of the responses within each group; i.e., very different scales between
the response variables will also noticeably affect the structure of the tree.

Dine et al [10] proposed a method for the construction of MRT by creating substitute variables resulting
from the grouping of response variables of the same type, highlighting the benefits of this method only
for descriptive purposes and leaving open the study for predictive cases because of the variability that
entails the construction of a single tree. This variability significantly affects stability statistics of the
modelling process and even create problems of over-adjustment.

Random Forest (RF) is based on the construction of trees of prediction through the use Bootstrap and
Bagging, which makes the process stable [3]. No single tree is generated, a large number of trees are
generated without pruning. These trees are constructed from bootstrap samples with replacement for a
correct the prediction error and have an independent sample for each tree, called Out-of-Bag predictions.
So, the observations that are not part of the bootstrap sample or subsample, respectively, are referred to
as Out-of-Bag (OOB) observations and can be used for estimating the prediction error and performance
of RF. This is justified since approximately one-third of the original sample is excluded from each sample
generated by bootstrap. Finally, for each division of a node, a set of variables of a previously established
size is selected and the selection of the division variable is restricted to that set. Remember that in
CART, the best variable of the total set is selected. In this way, greater tree variability is included
and the dependence of the result with past divisions is minimized. We note that, RF is a univariate
methodology, but we have explained it in this section because it is the starting point for the design of
our modelling strategy, defined as MRF.

The Genetic Algorithms (GA) are adaptive methods inspired by the biological theory of evolution for-
mulated by Darwin in the middle 19th century. GA ideas are transferred to optimization problems quite
naturally. The feasible solutions of a specific problem correspond to the members of a particular species,
where the fitness of each member is measured by the value of the objective function. The current popu-
lation in each iteration (generation) consists of a set of test solutions that are the living members of the
species. Some of the younger members of the population (the fittest members) survive adulthood and
become parents (randomly matched) who will have children (new test solutions) that would have some
of the characteristics (genes) of the parents. As the fittest members of the population are more likely
to become parents, GA tends to create improved populations in each generation. Sometimes mutations
occur, so that new generations can adopt characteristics that are not possessed by parents. These mu-
tations help the GA to explore a part of the feasible region, perhaps better, than previously considered.
Finally, the survival of the fittest individual leads GA to a test solution (the best of all considered) closer
to optimal.
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2.2 Desirability functions

Commonly, when multiple responses are handled simultaneously as quality characteristics, quality mea-
sures may have different importance, different measurement scales or can be mutually opposed measures.
All this hinders their simultaneous management. Harrington [I1] provides a mathematical solution to
these types of problems by transforming the estimated response vector Y into a function d; (e.g., the i-th
estimaded response vector), defined as a desirability function. This is a value between 0 and 1, which
increases as much as the desirability of the response increases, then form a composite function D defined
as the geometric mean of the d;. The objective of optimization for the parameter design is to find the
set of independent variables that maximize the value of D.

Many proposals have arisen around the functions of exponential desirability among which are Kim and Lin
[18], Hsieh et al [19], Wu and Yeh[31] and Chang [I4] who makes a slight modification to Wu’s proposal[31].
More recently Sujarit and Susantal27] extend the concept of desirability function for ordinal response
variables. Such proposals have as a common factor the classification of the functions of desirability
according to the quality characteristic of the vector Y as alternatives to the measures of performance
proposed by Taguchi. The present work adopts the approach of Chang [14], who defines the functions of
desirability based on three response types as follows.

Nominal is better (NTB) type with upper specifications limit (USL) and lower specification limit
(LSL), the desirability function of the d value denoted by dN 7B
) (1)

Small is better (STB) type with USL, the desirability function of the d value denoted by dZSTB

N, _ pmax
77 —ewp (- (14 22U )
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Larger is better (LTB) type with LSL, the desirability function of the d value denoted by d-75

78— exp (—exp (1)) 3)

Yi

Where y*™ and y;"** correspond to the maximum and minimum limits in each case.

3 Proposed approach

The proposed methodology, which is called Multivariate Forest-Genetic Method, consists of 3 phases:
normalization, modelling and optimization. We assume a dynamic multi-response problem defined as:

Y = f; (M, Xy, Z1) + €iji (4)

Where f; (M;, Xy, Z;) denotes the function between the ijkl-th vector response Y and the corresponding
j-th combination of signal factor M, k-th level of control factor X and the I-th level of the vector noise Z.
Finally €5z represents an error term.

Normalization phase

The initial phase comprises the preparation of the data set by the normalization function (5) recom-
mended by Villa-Murillo[29], to minimize the present variability. In addition, our methodology may be
an alternative in the use of ANNs as a technique for establishing the relation input/outputs, so for the
purpose of numerical comparisons is important the equality of scales in the dataset.
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Table 1: Metric of modelling for RFM

0 —0 — mi
Bw)=4_ with oy =2 (5)
TTon—y7 other cases maxr — min
exp(—y’)

Modellig phase

The modelling phase comprises the MRF design, which starts with the unification of the response vector
Y, considering modelling metrics that will be defined by the multiple quality characteristics for each
combination of parameters and will have as final product the estimation of the responses through a
sequence of univariate regression trees and the allocation of weights. We propose the study of several
metrics considering the possible quadratic effects or correlations existing in Y. Table 1 presents such
functions, assuming a response vector Y = (y1, ..., ) for each i-th observation.

The study of these functions will lead to algorithms MRFp, (p = 1,...,7), i.e the Multivariate Ran-
dom Forest for each P, metric, with (p = 1,...,7), Table 1. Each study begins with the adjustment
of the MRT and the calculation of the corresponding RM SEyrr (Root Mean Square Error of the ad-
justed Multivariate Random Tree), and finalizes with the choice of the algorithm that provides the lowest
RMSE to guarantee the greatest robustness in the modelling phase. For the MRT setting the parame-
ters minsplit, minbucket y cp must be determined, as well as your RMSE that we will call RM SEr;ce, -
Where minsplit is the minimum number of observations at each node, minbucket is the minimum number
of observations at the terminal nodes and cp is the complexity parameter. To adjust M RFp,, we must
define the number of trees to be assembled (1) and the number of variables present in each division
(mtry), this last parameter must be optimized by a preliminary study of the OOB error rate (out of bag
error rate).

Optimization phase

The optimization phase, based on GA, consists of the integration of the desirability functions and the
measures the importance of variables thrown by MRF for the design of the genetic operators. We con-
sider that a dynamical system can be treated as a static multi-target system [28], which allows us to
establish the desirability functions defined in (1), (2) and (3) as our performance (PMs) according to the
respective response types, where y%‘in, y;;* represents the lower and upper limits of specification of the
i-th response in the j-th level of signal factor, k-th leven of control factor and l-th of noise factor.(Table

2).

Harrington [I1] defines one Overall Performance Index (OPI) to evaluate the performance of quality
responses simultaneously. This index is defined as the geometric mean of the quality responses in their
corresponding desirability function as presented in @ and that we incorporate into our GA as our fitness
evaluation function.
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Table 2: PMs according to the type of response quality
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Where d; represents the desirability value in the j-th vector Y, with (j =1, ..., 7).

The optimization phase is initiated by randomly forming n chromosomes. These chromosomes are formed
by (2 4 p) gen, the signal factor M;, (j = 1,...,s), the noise factor Z;, (I = 1,...,n) and the vector of k
control factor Xy, (k= 1,...,p) in normalized scale.

We used the crossing of a point but assigning weights to the genes of the vector of control factors X by the
measure the importance of the variables given by the M RFp,. In this way, we increased the probability
of crossing the chromosomes around the genes of greater importance in the design. The weight of each
gene is defined by equation , where I, represents the importance by k-th gen in M RFp,, (k =1, ...,p).

- g

p
> Iy
k=1

PC =

For the rate and type of mutation used, we propose a complete scheme consisting of 2 mutation rates,
considered with and without gene replacement, in 4 different functions. We propose 2% and 5% as
a mutation rate, which directly influences the number of mutated genes in each generation. We then
studied the possibility that the same gene may or may not be mutated in different generations, which we
have defined as mutation with or without replacement. Finally we define 4 mutation functions m(g) that
determine the search field of the algorithm: the function m;(g) and my(g) are non-uniform mutations
designed to alter the gene within the range of X, ms(g) and my4(g) are uniform mutations that could
allow, in some cases, for the algorithm to search outside of the range of X. The functions are presented
in table @, where g is the gene to mutate in the corresponding chromosome and ¢pin, gmae the minimum
and maximum values of the gene in the population.

M RFp, has its basis in CART, so any new observations (chromosome) will be adjusted in the limits of
the corresponding node. This limits the GA in its exploratory task. So, considering that the crossing
operation corresponds to a genetic exchange between chromosomes and that in M RFp, the genes are
represented by nodes, we assign as response value to the new chromosomes the interpolation between
those nodes in the gene of greater weight of the chromosome. The above is summarized in equation
where ¢, ¥ Up, are the prediction of the i-th mother and the i-th father coming from M RFp, . Finally,
9pi> Gm,; and gp, are the values of the i-th father, i-th mother and the i-th children with the highest weight
in the model M RFp,,.
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Table 3: Mutations functions

mi(g) = g+ 9(0.10) ¢ < gmax
g other cases

_ )9—9(0.10) 9> gmin
ma(g) =
g other cases

ms(g) =g+ 1
ma(g) =g —1
th _ Ym; (gpi - ghi) — Ypi (gmi - ghi) (8)
9p; — 9m;

Figure [1] shows the schema of the our approach and the procedure of each phase is described below.

Normalization phase

Initialization: Normalize the data set with

Modeling phase

Step 1: Adjust MRT and calculate RM SFEypr

Step 2: Adjust and train M RFp, algorithms as follows:

Do p =14 wheret=1,2,...,7
Apply the function Pp in the vector Y

Adjust T'ree p, using the set of data obtained in the previous step to determine minsplit, minbucket,
cp and M RSEryee,

Adjust RFMp,, by determining (n¢y..) and (mtry)
Randomly divide the sample into train and test set

Train the M RFp, model with training set and obtain the predictions of the test responses
using this model

Step 3: Vp, calculate RM SEpgFy, from the predictions obtained in test by M REFpy. If MRS Eryeep, <
RMSEnRFp, g0 back to the step 2, Otherwise go to the step 4

Step 4: Calculate f* = argmin(RMSEyRrF,,), this is, the algorithm M RFp, that gives the lowest
RMSE.

Optimization phase

Step 5: Do z=b

Use M RFp, to calculate the vector Y = (G1y ey Gr)

Apply equation for the assignment of the weight of importance to each gene
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Ajusted MRT

Experimental data Normalization

Calculate (RMSEMRT)

Apply in each nth observation Create an initial population
1 of solutions
P(Y), Y={yny)
v ¥
Execute regression tree train. Calculate the predicted
Caleul responses for MRF
alculate (RMSETW)
l v
Calculating weights of variables
Calculate OPI value
Ajusted MRF Fixed mutation function
(0., mtry) ¥
Selectchromosomes
Execute MRF train. whose response is greater — [¢—
that the median OPI
Calculate (RMSEMRF) T
No Execute the AG operator

;, RMSE, < RMSE, 5, ?

No

;. Is OPla maximun ?

Funcién Objetivo
MRF

Obtain the optimal
parameter design

Figure 1: The schema of the Multivariate Forest-Genetic algorithm

e Transform the set of chromosomes with their corresponding predictions to the initial scale. So
it is formed the initial population. We will call the population a, , so the initial population
z =bis call a, = a, where ayp; is the chromosome i-th of the b population

Step 6: Evaluation Calculate the by PMs each response type of vector Y according to the table
and OPI measure with equation @

Step 7: Selection Calculate the median OPI (We will call OPT ), and Select all chromosomes with
values greater than (/)\P/I This selection will be called a;, with a;, = {abi ; OPI (ap;) > 5\JPI}

e Crossing: To determine randomly the factor of vector X as crossing point and make cross Va;,

e Mutation: in all a;, use the function m(g) (table [3) or the mutation of genes with ¢ rate
mutation and the ¢ replacement factor

e Prediction for the new generation: Va;, calculate the responses vector Y with equation

Step 8: Replacement The union of the parent chromosomes ay; and the children a;, with his Y will
form the new generation. This is ap; = ap; U a;n-

Step 9: Convergence Calculate OPI, .. If max[OPI (ap;)] < OPI (ap;), do z = b+ 1 and go back
the step 7. Otherwise go at step 10

Step 10: Obtain the optimal combination of levels of the control factor X and its corresponding mul-
tiresponse.
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4 Numerical examples

Two case studies are considered in order to perform an exhaustive numerical analysis. We considered the
first case as a pilot, then the results obtained are extend for the second case study and thus, to verify
the virtues and deficiencies of the proposed methodology. These cases correspond to studies adopted by
Chang in the year 2008[15] and 2001[17]. This cases consist of 3 variable responses (y1,y2,y3), obtained
by simulating Monte Carlo and considering the method of Park and Yum|24], where the objective is
the simultaneous optimization of the 3 responses under the quality characteristics DLB, DNB and DSB
respectively.

4.1 Parameter control

All the procedures and routines used in the design of our algorithms have been programmed with R
Language (version 2.13.1) where it has been necessary to use some libraries and adjust the control
parameters of the modelling algorithms. All these are presented bellow.

e Adjusted MRT :minsplit= 10, minbucket= 2, ¢cp=0.0001, xval= 10, library mvpart, version 3.1-46
e Adjusted CART: minsplit= 10, minbucket= 2, ¢p=0.0001, xval= 10, library rpart, version 1.4-0

e Adjusted MRF: library randomForest version 4.5-33, nr,... = 1000, estimation of RMSE through
OOB no pruning criterion is established between trees.

These parameters are common for the two case studies, with the exception of mtry parameter because
this depends on the data set.

4.2 Example 1

The data set are presented under an orthogonal matrix Lig with 6 control factors X = (z1, z2, 23, T4, T5, Tg)-
The data set are show in table[d] Signal factor has 3 levels M; = 10, M> = 20 and M3 = 30, Noise factor
has 2 levels N7 y Nay. The specification values of the 3 responses are shown in table

In order to make the comparison with the work present by Chang [15], the data is randomly divided into
two sets. The training set consists of 185 observations and the test set with 31 observations.

4.2.1 Normalization and modelling phase

Function is used for the normalization of the data. Figure [2| shows the RMSE values obtained by the
initial MRT, MRF and ANN, where Pp, (p =1, ...,7) represents the 7 metric of the table[l| and (7-13-3),
(8-12-3) the best ANN architecture presented in the works of Chang (2006) [I4] and Chang (2008)[15].

It can be noted in figure that P; is totally inefficient in obtaining the RMSE, with values higher
than given by MRT. For this reason it is excluded as a modelling metric and of the figure where Ps
is observed with the lowest RMSE values in training and test set. Notice how the highest RMSE values
correspond the 2 ANN architectures compared to all the metrics used.

Table [6] also shows the RMSE obtained from MRT and MRF, where the objective is the determination
of the algorithm that provides the lowest RMSE, ie f* = argmin(RMSERrpy,,). For this we defined
in the table the measure P% as the progress of the values obtained in each MRF algorithm versus the
initially adjusted MRT, observing the training and test sets. A possible quadratic effect on the data leads
a lower RMSE values in the P, ,P; and P5 functions, and consequently a better performance of MRF:
70.60%, 63.19% and 63.43% in training set and 42.81% 32.53% and 35.27% in test set. In contrast, P;
obtains a RMSE close to P,, 69.68% in training but less than Py and Ps in test, This translates to an
over-adjustment of the model RFMpy,. Then RF Mp, is chosen as the modelling scheme, since it presents
the smaller RMSE and the smaller discrepancies between the training and test sets.

Table [7] compares the RMSE of REMpy with the obtained by Chang (2006)[14] and Chang (2008)[15].
Note that our modelling proposal gets a RMSE 5 times lower in 1000 interactions versus 3000 and 4500
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Table 4: The experimental data. Example 1
Responses

No. | N Y1 Yo Y3

M; =10 My =20 M; =30 M; =10 Ms =20 Ms =30 My =10 | M2 =20 | M3 =30
1 N1 | 61.6 78.2 | 128.0 | 106.0 | 230.6 | 226.9 | 7.4 72 1167 (132 23724119 19|46 |37 |76] 46
N2 | 70.8 57.1 | 137.3 | 160.3 | 282.2 | 2525 | 9.1 | 10.2 | 22.8 | 17.8 | 26.2 | 26.7 | 2.0 | 2.1 | 3.9 | 4.8 | 4.7 | 4.3
2 N1 | 88.3 93.6 | 175.2 | 181.5 | 259.7 | 304.5 | 10.1 | 88 | 23.4 | 226 | 29.6 | 30.3 | 1.8 | 2.0 | 4.0 | 2.8 | 6.0 | 3.3
N2 | 729 727 | 174.0 | 145.5 | 258.4 | 214.6 | 8.7 9.2 1191 | 241|314 (305 |19 ]22|38|35]6.7]6.1
3 N1 | 80.8 81.1 | 154.3 | 157.4 | 238.1 | 237.8 | 10.8 | 10.5 | 20.1 | 20.9 | 30.6 | 324 | 1.0 | 3.2 | 44 | 54 | 81 | 6.7
N2 | 772 83.3 | 167.1 | 159.0 | 251.8 | 257.9 | 10.6 | 10.9 | 21.8 | 23.7 | 30.5 | 32.7 | 1.4 | 2.6 | 3.8 | 3.9 | 8.0 | 2.7
4 N1 | 659 71.3 | 179.2 | 151.5 | 196.1 | 221.6 | 7.6 72 | 153 | 14.8 | 225 | 222 | 1.7 | 22 | 41|49 |59 | 6.0
N2 | 83.7 | 784 | 135.6 | 177.0 | 246.9 | 291.8 | 8.1 7.6 | 141|147 1219 | 21.8 |21 |26 |36 |33|77]6.9
5 N1 | 794 88.6 | 121.9 | 151.6 | 248.8 | 245.1 | 11.9 | 12.7 | 25.6 | 25.7 | 36.6 | 35.7 | 2.0 | 2.1 | 2.7 | 3.8 | 4.8 | 5.8
N2 | 678 87.3 | 113.6 | 141.3 | 171.5 | 244.7 | 10.5 | 11.8 | 25.8 | 26.2 | 39.1 | 33.1 | 2.6 | 1.7 | 4.1 | 3.6 | 5.5 | 5.2
6 N1 | 90.5 87.0 | 161.8 | 169.4 | 286.9 | 236.5 | 10.2 | 10.2 | 23.7 | 21.8 | 32.0 | 32.8 | 1.8 | 2.2 | 2.5 | 4.1 | 49 | 54
N2 | 87.6 87.8 | 160.7 | 163.9 | 231.4 | 288.7 | 10.7 | 11.2 | 22,5 | 20.0 | 34.2 | 28.0 | 1.2 | 2.0 | 4.0 | 44 | 6.6 | 3.1
7 N1 | 80.9 74.7 | 165.9 | 163.4 | 232.2 | 246.4 | 11.7 | 12.1 | 23.3 | 23.3 | 33.5 | 32.7 | 19| 1.6 | 5.2 | 5.1 | 6.6 | 5.3
N2 | 69.9 78.7 | 141.7 | 159.1 | 260.4 | 239.7 | 11.6 | 11.6 | 22.0 | 22.5 | 33.8 | 34.0 | 1.9 | 1.7 | 3.6 | 5.1 | 5.8 | 5.1
8 N1 | 923 717 | 185.7 | 154.3 | 233.1 | 240.5 | 8.3 84 | 169 | 185 | 28.1 | 273 | 28 | 1.5 | 34 | 34 ] 6.2 | 3.7
N2 | 1048 | 894 | 216.1 | 173.0 | 340.6 | 308.9 | 8.2 6.1 | 185 | 15.1 | 29.1 | 21.1 | 1.8 | 2.2 | 4.1 | 43 ] 9.0 | 5.0
9 N1 | 928 59.8 | 130.7 | 142.2 | 257.3 | 266.0 | 8.6 9.7 | 173 | 184 | 309 | 31.5 | 23 | 1.7 | 45| 5.1 | 74 | 6.5
N2 | 821 87.0 | 175.1 | 138.2 | 161.4 | 2744 | 8.2 84 | 186 | 18.0 | 31.3 | 309 | 22 | 1.2 | 40| 4.0 | 7.2 | 6.7
10 | N1 | 86.0 | 100.0 | 179.1 | 175.4 | 246.9 | 244.9 | 6.9 6.6 | 1568 | 164 | 222 | 249 | 1.7 | 1.7| 39| 58 | 5.2 | 84
N2 | 819 91.2 | 190.8 | 137.8 | 293.5 | 227.1 | 8.3 72 | 143|166 | 23.1 | 242 | 21 | 1.8 39|48 |45 | 8.0
11 | N1 | 76.3 78.2 | 140.0 | 154.7 | 264.1 | 260.1 | 9.5 9.2 | 279|254 |323|338 |10 |17 |41]|40]39|56
N2 | 67.1 76.0 | 169.5 | 1754 | 239.2 | 251.8 | 10.8 | 12.2 | 23.6 | 204 | 26.8 | 29.2 | 2.1 | 2.3 | 5.0 | 4.6 | 6.7 | 4.5
12 | N1 | 914 81.8 | 160.1 | 167.2 | 238.5 | 197.2 | 11.8 | 10.5 | 22.9 | 259 | 36.9 | 36.8 | 2.1 | 1.9 | 4.0 | 3.7 | 74 | 6.2
N2 | 85.1 63.8 | 123.8 | 166.4 | 233.5 | 242.0 | 11.6 | 11.5 | 22.1 | 226 | 325 | 319 | 1.6 | 09 | 42 | 4.1 | 2.1 | 6.9
13 | N1 | 879 82.5 | 146.5 | 167.0 | 2124 | 222.2 | 10.1 | 10.3 | 19.9 | 22.2 | 27.1 | 27.7 | 2.0 | 2.3 | 5.0 | 4.7 | 6.7 | 7.3
N2 | 574 78.5 91.6 | 182.3 | 250.3 | 207.3 | 10.6 | 10.1 | 20.1 | 19.2 | 27.8 | 24.6 | 2.2 | 2.1 | 4.5 | 4.7 | 74 | 6.2
14 | N1 | 88.1 78.1 | 156.7 | 170.1 | 239.1 | 215.2 | 12.1 | 10.0 | 24.1 | 20.2 | 28.0 | 35.6 | 1.7 | 2.1 | 3.8 | 3.3 | 7.2 | 4.9
N2 | 817 | 75.7 | 140.2 | 127.8 | 241.4 | 211.7 | 11.3 | 11.8 | 23.3 | 24.4 | 32.1 | 389 | 1.8 | 2.7 | 3.1 | 3.8 | 4.9 | 4.7
15 | N1 | 101.8 | 78.2 | 168.3 | 180.8 | 240.6 | 235.2 | 10.2 | 7.6 | 149 | 194 | 26.9 | 195 | 1.7 | 2.2 | 53 | 3.6 | 5.0 | 7.5
N2 | 804 76.5 | 206.7 | 222.6 | 325.1 | 285.2 | 8.7 72 1168 | 141 ] 26.6 | 25.1 | 22 | 1.9 | 4.8 | 2.6 | 3.8 | 5.5
16 | N1 | 774 75.4 | 171.7 | 159.0 | 201.3 | 219.7 | 10.4 | 10.6 | 20.7 | 22.2 | 344 | 30.0 | 1.9 | 2.3 | 3.1 | 4.2 | 5.8 | 3.3
N2 | 720 69.5 | 189.1 | 168.6 | 254.3 | 237.3 | 11.1 | 10.9 | 20.6 | 21.4 | 30.5 | 314 | 2.1 | 1.6 | 4.1 | 48 | 5.4 | 6.9
17 | N1 | 714 69.2 | 145.0 | 152.5 | 223.8 | 218.7 | 8.8 84 | 19.0 | 13.8 | 26.2 | 24.1 | 1.5 | 2.1 | 3.8 | 4.4 ] 6.9 | 4.2
N2 | 770 70.5 | 1584 | 154.0 | 2184 | 224.1 | 9.2 9.0 | 16.7 | 174 | 271 | 26.2 | 1.6 | 1.8 | 3.7 | 44 | 4.6 | 4.2
18 | N1 | 828 67.8 | 183.7 | 175.5 | 276.1 | 254.4 | 10.7 | 9.2 | 19.8 | 20.1 | 27.3 | 31.0 | 25 | 22 | 3.1 | 34 | 77|74
N2 | 85.2 92.0 | 154.4 | 157.6 | 249.3 | 286.1 | 11.3 | 7.7 | 19.3 | 22.6 | 294 | 26.6 | 1.6 | 1.6 | 3.9 | 4.7 | 6.0 | 7.3

Table 5: The specifications for the responses. Example 1

Responses Y1 Y2 Y3
Bounds y;‘};n yJ“,‘; n yﬁax y?,‘fx
M, 55 7 13 3
M, 110 14 26 6
M3 165 21 39 9

Table 6: RMSE progress of M RFp, front MRT. Example 1

Function RMSE P%

Train Test  Train Test
MRT 0.0432 0.0584 - -
RFMp; 0.0131 0.0264 69.68  28.77
RFMps, 0.0127 0.0182 70.60 42.81
RFMpsz 0.0327 0.0429 24.31 0.51
RFMp, 0.0159 0.0242 63.19 32.53
RFMps 0.0158 0.0226 63.43 35.27
RFMpg 0.0236 0.0347 45.37  14.55

required for ANN in the training and in test set. In conclusion, our proposal allows a considerable saving
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Figure 2: Compared the RMSE in the metric and the ANN

of computational resources.

Table 7: Compared the RMSE in the MRF and ANN

. RMSE
Proposal Iteractions Training Test
Chang (2008)[14] 30000 0.0524 0.0601
Chang (2008)[15] 4500 0.0573  0.0595
RFMpo 1000 0.0127 0.0182

4.2.2 Optimization phase

400 chromosomes are randomly generated, whose structure is made up of a total of 8 genes: 6 corre-
sponds to the vector of control factors X = {x1,za, 23,24, 25,26}, 1 corresponds to the signal factor
M = {10,20,30} and 1 corresponds to the noise factor Z = {N7, No}. These chromosomes will be in
a normalized scale in order to calculate their corresponding responses with our model M RFps. The
objective of the present case is the simultaneous optimization of the response vector Y = {y1,92,y5}
under the quality characteristics DLTB, DNTB and DSTB correspondingly. Desirability functions (table
and OPI (equation @) are determined by the expression @D, which represented the fitness function
of the algorithm.

3 2~ ~min 3 max min

1 Y1jkl — U1y 1 200501 — (V57 + y53m)
OPI = exp | —exp —6 Z Z # + €Xp 6 Z Z . max ’ min
J=11=1 Y1 J=11=1 Yoj = — Y25
%
3 2 A max
1 Ysjikl + Y3,
exp [ — 1 + 6 ij (9)
j=11=1 Y3j

Table |8 shows the important values (I,x, k = 1,...,6) produced by M RFps and the weights assigned to
the genes for crosses are calculated by equation @

Table 8: Measure of importance and weight of the genes by M RFps. Example 1
Gen T Io T3 Ty Ty Te
Ik 0.403 0.602 0.398 0.464 0.436 0.459
Weight 0.146 0.218 0.144 0.168 0.158 0.166

Note that x5 is the gen with greater value of importance which will later determine the function of
the present case, this is show in .
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O, (02, = 224,) = D, (22, — 220,)
Yn, =
T2p, — T2y,

(10)

where ¥, ¥ Yp, represent the la prediction of i-th mother and i-th father coming of M RFpy; 22, , 22,
and 22, correspond of the gen value xy of i-th father, i-th mother and i-th children.

We propose as a mutation scheme the 2% and 5% rates, allowing the same gene to be mutated repeatedly
with 4 functions (table . All this produces 16 algorithms that were processed for 15 generations. As
all algorithms converge at the same OPI value after the first generation, then we have extracted this
chromosome with the aim of avoiding a local optimum and thus to explore further the behaviour of the
algorithms. So, 16 algorithms are processed again in 15 generations. Now all the algorithms found the
optimum after the fifth generation. We have taken the results of the fifth generation of each algorithm
and performed in respective analysis of variance (ANOVA), where the quadratic transformation of the
OPI response was necessary to fulfil the assumptions of the ANOVA. table [9] shows these result.

Table 9: ANOVA for mutations functions. Example 1

Main effects SS Gl MS F P-value
A: Reemp 0,0359505 1 0,0359505 2,20  0,1378
B: Rate 0,302677 1 0,302677 18,54  0,0000
C: Type 0,861467 3 0,287156 17,59  0,0000
Interactions

AB 1,44034 1 1,44034 88,23  0,0000
AC 0,282535 3 0,0941782 5,77  0,0006
BC 0,986153 3 0,328718 20,14  0,0000
Error 101,46 6215 0,0163251

Total 105,413 6227

Table [0 shows high significance in the rate of mutation, type of mutation and their interactions. So, we
used the Tukey HSD test at 95%. Figure |3| shows such test for the interaction type and mutation rate,
where the numbers 1,2, 3,4 represent the mutation functions mi(g), ma(g), ms(g) y ma(g) respectively.
The maximum OPI observed is mq(g) with 5%. Said scheme was adopted in the establishment of GA,
in addition we have decided to allow mutation with replacement in order to expand the GA search.

0,38 C ] Rate

[ 12

0,36 | 41 —s5
— 034F .
[a R [ ]
O o2 F .
03F .
0,28 E ]

1 2 3 4
Type

Figure 3: HSD Tukey for interactions Type-Rate

Chang[15] shows in his work the result obtained in comparison with the 5 best combinations obtained
in his previous work at 2006[14], where the proposal is based in ANN. In the table [10] we have decided
to present these results and add ours to determine numerically the validity of our proposal. As well as
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the Chang [15] proposal at 2008, we were able to explore intermediate values in the ranges of control
factors, which in cases of real applications could mean material savings. We exceeded the OPI value in
both works of Chang, which allows us to verify the efficiency of our proposal.

Table 10: The results of the implementation. Example 1
Approach Control factor values OPI
T T2 I3 Xy Is Te
Forest-Genetic 1.18 2.77 260 1.64 1.53 1.33 0.673122

Chang (2008)[15] 1.98 2.98 1.06 244 296 1.06  0.668877

Chang (2006)[14] 1 3 1 3 2 1 0.626443
1 3 1 2 1 1 0.617955
2 3 1 3 2 1 0.483897
2 3 1 2 1 1 0.482461
3 3 1 3 2 1 0.409331

4.3 Example 2

The data set are presented under an orthogonal matrix L;g, the control factor vector is defined as
X ={A,B,C,D,E, F} and the signal factor is defined with the levels M; = 0.1, My = 0.2 y M3 = 0.3.
The experiment was conduced with 2 replicates. The data set are show in table (12| and the specification
values for the 3 responses in the table In order to make the comparisons with the work presented
by Chang at 2011[17], the data set are randomly divided into two: the training set consisting of 92
observations and the test set with 16 observations.

Table 11: The specifications for the responses. Example 2

Responses Y1 Y2 Y3
B ounds yﬁln yﬂlﬂ yﬁax yﬁax
M, 4.8 0.6 1.4 28
My 9.6 1.2 2.8 56
M; 144 1.6 4.2 84

Table 12: Experimental data. Example 2

Responses
Y Y2 Y3

M; =0.1 My =02 Ms;=0.3 M; =0.1 My =0.2 Ms;=0.3 M; =0.1 My =02 Ms;=0.3

7.80 | 8.13 | 14.22 | 14.92 | 25.96 | 28.84 | 0.98 | 1.09 | 1.63 | 1.42 | 2.79 | 5.53 | 15.00 | 16.53 | 32.24 | 41.81 | 48.25 | 83.92
8.63 | 7.53 | 17.01 | 16.52 | 27.13 | 31.76 | 1.02 | 1.05 | 2.22 | 1.73 | 3.14 | 3.44 | 16.00 | 16.30 | 42.92 | 29.17 | 57.08 | 41.51
8.12 | 7.28 | 16.65 | 15.84 | 25.98 | 26.05 | 1.05 | 0.94 | 2.17 | 2.15 | 2.90 | 2.92 | 23.00 | 23.29 | 40.63 | 48.37 | 34.52 | 57.33
8.18 | 8.07 | 18.29 | 15.92 | 25.34 | 20.76 | 0.68 | 0.72 | 1.46 | 1.50 | 2.19 | 2.26 | 25.00 | 15.98 | 37.74 | 41.75 | 59.79 | 47.14
7.04 | 7.58 | 13.11 | 16.53 | 27.66 | 22.89 | 1.14 | 1.23 | 2.64 | 2.27 | 3.44 | 3.98 | 18.00 | 14.40 | 23.80 | 44.36 | 41.62 | 43.45
8.32 | 9.79 | 16.80 | 14.74 | 26.55 | 26.82 | 1.00 | 0.96 | 2.49 | 1.97 | 3.36 | 2.95 | 26.00 | 10.28 | 40.45 | 30.69 | 23.84 | 67.64
8.02 | 830 | 14.46 | 1542 | 25.74 | 23.10 | 1.22 | 1.20 | 2.29 | 2.39 | 3.18 | 3.29 | 28.00 | 19.68 | 40.57 | 50.66 | 61.05 | 72.99
6.36 | 8.24 | 18.23 | 17.48 | 20.24 | 28.28 | 0.73 | 0.86 | 1.43 | 2.13 | 2.11 | 2.18 | 12.00 | 26.70 | 31.01 | 32.74 | 82.76 | 66.55
9 |5.93 ]| 865 | 16.51 | 13.43 | 22.36 | 19.92 | 1.12 | 0.91 | 1.92 | 1.77 | 2.52 | 2.98 | 17.00 | 19.78 | 49.92 | 28.39 | 56.18 | 52.64
10 | 8.56 | 8.88 | 17.57 | 19.17 | 25.73 | 23.20 | 0.80 | 0.75 | 1.45 | 1.62 | 2.36 | 2.40 | 21.00 | 28.16 | 39.08 | 47.59 | 71.62 | 83.71
11 | 7.61 | 9.85 | 17.34 | 16.31 | 27.06 | 28.60 | 0.92 | 1.23 | 2.55 | 2.54 | 3.95 | 3.47 | 20.00 | 16.24 | 43.19 | 28.68 | 60.13 | 70.66
12 | 7.88 | 8.07 | 16.89 | 12.55 | 22.98 | 24.26 | 1.08 | 1.05 | 2.28 | 2.22 | 3.32 | 3.23 | 18.00 | 11.38 | 46.14 | 22.51 | 66.97 | 65.73
13 | 8.73 | 6.82 | 18.22 | 15.64 | 25.64 | 20.26 | 0.95 | 0.99 | 2.00 | 2.00 | 2.94 | 2.93 | 26.00 | 22.32 | 64.67 | 40.40 | 94.98 | 58.26
14 | 797 | 9.72 | 16.72 | 11.98 | 23.27 | 23.10 | 1.17 | 1.14 | 1.95 | 2.35 | 3.91 | 3.58 | 16.00 | 23.16 | 24.82 | 44.13 | 51.38 | 63.52
15 | 9.16 | 8.77 | 16.72 | 15.86 | 24.97 | 30.30 | 0.85 | 0.79 | 1.42 | 1.75 | 2.33 | 2.34 | 14.00 | 12.88 | 40.57 | 33.27 | 33.99 | 60.82
16 | 9.32 | 8.71 | 14.86 | 15.67 | 21.87 | 28.43 | 1.05 | 1.10 | 2.01 | 2.26 | 3.29 | 3.02 | 22.00 | 15.90 | 51.58 | 43.90 | 75.55 | 86.55
17 | 832 | 6.91 | 16.03 | 14.10 | 22.70 | 18.87 | 0.80 | 0.85 | 2.07 | 1.99 | 2.71 | 2.46 | 23.00 | 20.34 | 42.91 | 32.95 | 36.92 | 64.79
18 | 8.71 | 6.37 | 14.87 | 18.74 | 31.61 | 22.69 | 1.14 | 0.98 | 1.92 | 1.58 | 3.57 | 2.97 | 19.00 | 12.43 | 37.70 | 38.89 | 69.16 | 55.98

Z,
©

0D U= W N
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4.3.1 Normalization and modeling phase

The present case study adopts the results obtained in case 1, i.e., we performed the numerical analysis
considering the metric P, in table[I] the normalization function fs and the parameter control defined in
4.0.1 subsection.

Table [13| compared the RMSE obtained of M RFpy with the best result presented by Chang at 2011[17]
based on ANN. Note that the differences between the RMSE for the training sets are not very large, but
in the test sets the differences are large. Our algorithm present less discrepancies between the RMSE of
the training and test sets compared to the results of Chang[I7] on this sets, which translates as a good
performance and statistical robustness. Finally, our yields were obtained with only 1000 interactions in
contrast to the 10000 required iterations in ANNs interactions, which gives us a clear advantage in terms
of the use of computational resources.

Table 13: Compared the RMSE in the MRF and ANN

. RMSE
Approach Iterations Train Tost
Chang (2011)[17] 10000 0.0479 0.0776
RFMpo 1000 0.0347 0.0346

4.3.2 Optimization phase

200 chromosomes are generated randomly, whose structure is formed by 7 genes, 6 genes correspond to
the vector of control factors X = {A, B,C, D, E, F'} and 1 gen correspond to the signal factor M = {0.1,
0.2, 0.3}. These chromosomes will be on a normalized scale in order to calculate their corresponding
responses with our predictive model M RFps. The objective of the present case study is the simultaneous
optimization of the response vector Y = {y1,y2,y3} under the quality characteristic DLTB, DNTB and
DSTB respectively. The desirability functions and measure OPI are determinate by equation and
represent the fitness function of the algorithm.

3 Amin ax min
1 = 1k — OF 1o (2025 — (9557 + y55™)
OPI = €xXp | —€exp _g Z % 1 €xp g Z . max ’ min
=1 Y1 15 =1 y2] y2j
1
+ 5’ ’
Usjk 35
exp [— [ 1+ = Z max J (11)
] 1

Note that, the difference between equations @[) and is that the present case study has no noise factor,
then a summation is suppressed.

Table[14]shows the measure of importance from the algorithm M RFps adjusted to the present case study.
B is observed as the most important gene and therefore with greater weight, so the prediction of new
chromosomes is established as shown in equation .

Table 14: Measure of importance and weight of the genes by M RFpy. Example 2
Gen A B C D E F
I 0.006 | 0.011 | 0.008 | 0.009 | 0.006 | 0.009

Weight | 0.013 | 0.024 | 0.017 | 0.020 | 0.013 | 0.011

i sz‘ (sz - th) — :l)pi (Bm1 - Bhl)

Bpi - Bmi
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where §,,, and g,, represent the prediction of the i-th mother and the i-th father from the RFMps.
By, , By, and By, correspond to the values for the gene B of i-th father, i-th mother and i-th children.

In consideration of the good results obtained in our pilot test, the mutation function m(1) is used (table
With the 5% rate and the replacement in mutation of the gene is allowed.

Chang[17] present the optimum OPI found through his optimization proposal in contrast to the maximum
OPI found exclusively with the PMs functions under the 18 combinations established in the matrix L1g.
They highlight the advantages of their proposal regarding the maximization of the OPI value and the
possibility of finding continuous values for the range of the control factors. Forest-Genetic adopts the
virtues of our MRF, resulting in a broader heuristic search (within and outside the established ranges)
with a special emphasis on the most important design at control factors, producing in this way an
improvement in the maximum value OPI. All this is show in the table

Table 15: The results of the implementation. Example 2
Combination of parameter
Method X B C D B i OPI
Forest-Genetic 1.66 | 3.06 | 2.42 | 2.21 | 1.48 | 2.86 | 0.8840978
Chang (2011)[17] | 1.85 | 2.99 | 2.97 | 1.00 | 1.86 | 1.00 0.753553
OPI through PMs 2 3 3 1 2 1 0.745636

The table above shows the OPI values found and their combinations in the vector X; note that between
others proposal and ours, the biggest differences are found in the OPI values and the levels at factors D
and F (D and F are the factors with greater weight in MRF according to the table .

5 Conclusions

Forest-Genetic has been schematic under the premises of statistical robustness and consumption of com-
putational resources. The use of normalization functions and RMSE as a statistic test allowed us to
minimize the variability present in the established models, we could also save computational resources
by minimizing the number of iterations necessary in the modelling and optimization phases. The main
virtues of the methods are summarized as follows.

e Forest-Genetic doesn’t suppose to have independence between factors, nor linearity of the factors
with the answers, therefore it is perfectly adjustable to cases with non-linear relations and presence
of correlations between factors

e Forest-Genetic was designed considering noise and signal factors, so it can be adjusted in cases of
absences or presence of such factors

e Forest-Genetic perfectly adjusts to continuous case and discrete case parameters, extending its real
application

e The modelling phase of Forest-Genetic is based on RF which minimizes the risk of model overloading
e Forest-Genetic allows the mutation scheme to be optimized

e The crossover scheme designed in the optimization phase allows Forest-Genetic the most efficient
direction in the search hyperplanes.
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