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Abstract Medical images may be corrupted by noise.

This noise affects the image quality and can obscure

important information required for accurate diagnosis.

Effectively apply filtering techniques can facilitate di-

agnosis or reduce radiation exposure. In this paper, we

introduce a parallel method designed to reduce mixed

Gaussian-impulse noise from digital images. The method

uses fuzzy logic and the fuzzy peer group concept. Im-

plementations of the method on multi-core interface

using the Open Multi-Processing (OpenMP) and on

graphics processing units (GPUs) using CUDA are pre-

sented. Efficiency is measured in terms of execution

time and in terms of MAE, PSNR and SSIM over medi-
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cal images from the mini-MIAS database and over Com-

puted Radiography (CR) images generated at differ-

ent exposure levels. These images have been contam-

inated with impulsive and/or Gaussian noise. Exper-

iments show that the proposed method obtains good

performance in terms of the above mentioned objective

quality measures. After applying multi-core and GPUs

optimization strategies, the observed time shows that

the new filter allows to remove mixed Gaussian-impulse

noise in real-time.

Keywords Filter design · Medical image processing ·
Fuzzy logic · Noise reduction

1 Introduction

Filtering methods, i.e. techniques to detect and reduce

noises, are essential in medical imaging (e.g., X-Rays,

Magnetic Resonance Imaging (MRI), Computer Tomog-

raphy (CT)) because the quality of the image can have

repercussions on the diagnosis of a disease (for example,

detecting microcalcifications in a mammogram). More-

over, noise reduction filters can be used to improve im-

ages when a reduced radiation dose is used [14,15]. This

fact is especially crucial in CT images in order to re-

duce the exposure to X-Rays because the amount of

radiation tends to be very high. Two specially common

types of noise are the impulsive noise and the Gaus-

sian noise. The impulsive noise is introduced during

the transmission process and the Gaussian during the

the acquisition process [2, 27]. A large number of al-

gorithms have been introduced to reduce either Gaus-

sian (see e.g. [9, 10, 19, 27, 29, 38]) or impulse noise (see

e.g. [3–5,21,23,30–34,39]). However, not all methods are

useful when images are contaminated simultaneously

with impulsive and Gaussian noise. A possible approach
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to address this problem is to perform consecutively two

filters to remove first Gaussian noise and then the im-

pulses, or vice versa. But, the use of two consecutive

methods could significantly reduce the computational

performance and therefore this approach could not be

feasible for real cases.

In [22] authors proposed a color image filter for the

removal of mixed Gaussian-impulse noise. This method,

named Fuzzy Peer Group Averaging Filter (FPGA),

used the fuzzy peer group concept. Experimental results

showed that this filtering technique exhibits competi-

tive results when processing color images compared to

other state-of-the-art methods but has not been tested

in the field of medical images. On the other hand, due

to the large size of high-resolution images, sequential

computers are not able to perform this algorithm in

real-time. Then, FPGA filter has demonstrated to ob-

tain satisfactory results in quality but is not applicable

for real-time processing. Nowadays parallel computing

is one of the most appropriate ways to obtain real-time

results or to reduce the computational time in all kind

of applications [7,43–45]. Moreover, due to the advances

in cloud computing technology [18, 20] it has become

possible to run parallel algorithms without much in-

house resources [42].

Due to these causes, in this work we introduce a

new parallel algorithm based on filters introduced in

[22] with the purpose of improving their computational

efficiency, so as to make them appropriate for real-time

processing.

We have analyzed this parallel algorithm program-

ming codes for multi-cores and GPUs, obtaining good

speedup results. A nearly linear speedup with the num-

ber of processors used has been achieved for multi-cores.

Nowadays, multi-cores and GPUs are widely available,

and then the introduced approach is a practical, and

efficient technique for real-time image processing. In

the experiments, we used the mammograms obtained

form the mini-MIAS database [37] and Computed Ra-

diography (CR) images generated at different exposure

levels. The filter performance has been evaluated us-

ing the Mean Absolute Error (MAE), Peak Signal to

Noise Ratio (PSNR), and the Structural Similarity In-

dex (SSIM) [27,41].

This work is organized into four sections. Section

2 explains the proposed parallel noise reduction algo-

rithm, experiments are shown in Section 3, and the

conclusions are presented in Section 4.

2 Parallel Noise Reduction Method

Let consider the color image A defined as a mapping

Z2 → Z3. That is, the image is given by a matrix A of

Fig. 1 Image domain decomposition: Distributed image on
4 cores

size M×N consisting of pixels xi = (xi(1), xi(2), xi(3)),

indexed by i, that gives the position of the pixel on the

image domain Ω. The vector components xi(`), for i =

1, 2, ...,M ×N and ` = 1, 2, 3, which are quantified into

the integer domain, represent the RGB color channel

values.

Let W be a filtering window of n×n pixels centered

at pixel x0. And let xi ∈ W, i = 1, . . . , n2 − 1 rep-

resent the neighbor pixels of x0. The parallel method

proposed in this paper uses the fuzzy peer group con-

cept according to [22] and uses a fuzzy metric. With

the purpose of describing the parallel method, we split

the image domain Ω into P subdomains {Ωi}Pi=1, being

P the number of computation elements. This domain

decomposition satisfies

Ωi ⊂ Ω,
⋃

i=1,2,...,P

Ωi = Ω, and Ωi ∩Ωj = ∅ for i 6= j.

Fig. 1 presents an example of the decomposition em-

ployed in the numerical experiments. In this case, the

image is distributed into four subdomains. In order to

process pixels in the inner border of the subdomains,

each computing element needs some additional pixels.

Then we consider an overlapping domain decomposi-

tion of the image. Fig. 2 illustrates an overlapping and

a non-overlapping domain decomposition for four sub-

domains. For the overlapping domain decomposition,

we define Ωwi , i = 1, ..., P ; an extension of Ωi where

ω is a non-negative integer determining the size of the

overlapping region. Computing element i processes pix-

els in domain Ωi, but using pixels in domain Ωwi . Ω is

equal to the integer part of n/2, where n×n is the size

of the filtering window. Then, in order to remove the

impulses a fuzzy rule based scheme is used. This proce-

dure employes the fuzzy peer group definition. In order
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Fig. 2 Overlapping domain decomposition for four subdo-
mains

to reduce Gaussian noise, we performed a fuzzy averag-

ing among the pixels of the fuzzy peer group. Algorithm

1 and Fig. 3 show the parallel filtering algorithm and

the corresponding flowchart. The following paragraphs

explain the steps of the algorithm.

Require: Image A, domain decomposition {AΩk}Pk=1,
Fσ, Ft.

Ensure: Filtered image.
1: for k = 1, . . . , P , in parallel do
2: for xi pixel in AΩk do
3: Impulses detection:
4: Compute CFR2(xi) :
5: Processor k calculates:
6: m̂ = arg maxm∈NW

CFR1(m)
7: CFR2(xi) = CFR1(m̂)
8: if CFR2(xi) ≥ Ft then
9: pixel xi is not an impulse

10: else
11: Impulses reduction:
12: xi is impulse and it is replaced by VMFout

13: end if
14: Gaussian Noise Smoothing:

15: xout =
∑m̂
j=0

FP
xi
m̂

(x(j))x(j)∑m̂
j=0

FP
xi
m̂

(x(j))
.

16: end for
17: end for
Algorithm 1: Parallel denoising method.

The concept of peer group [17] is based on the or-

dering of the neighbor pixels considering its similarity

to the central pixel x0. Let S be a convenient similarity

measure [27] between two pixels. Pixels xi ∈W are or-

dered in a descending order based on their similarity to

x0. Then, an ordered set W ′ = {x(0), x(1), . . . , x(n2−1)}
is obtained, such that S(x0, x(0)) ≥ S(x0, x(1)) ≥ · · · ≥

Image pixel x

Compute CFR2(x)

CFR2(x) ≥ Ft
x is

impulse-
free

x is
impulsive

x is replaced
by VMFout

over impulse-
free neighbours

Gaussian Noise
Smoothing

Stop

yes

no

Fig. 3 Flowchart describing the filtering algorithm.

S(x0, x(n2−1)), where x(0) = x0. Then, according to the

concept of peer group [17], the peer group P(m,x0) of

m+ 1 pixels associated with x0 is given by the set

P(m,x0) = {x(0), x(1), . . . , x(m)}. (1)

In [22], a fuzzy logic algorithm is presented to com-

pute the best number of pixels m̂ in a peer group. The

fuzzy peer group for the central pixel x0 in a window W

according to [22] is given by the fuzzy set FP(m̂, x0)

determined on the set {x(0), x(1), . . . , x(m̂)} and defined

by the membership function FP x0

m̂ = S(x0, x(i)).

Then, the best number m̂ of pixels of P(m,x0) is

determined as the number m ∈ NW = {1, 2, . . . , n2−1}
which maximizes the certainty of the Fuzzy Rule FR1.
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Fig. 4 Membership function (4) used to compute the cer-
tainty of Hx0(x(i)) is large

Fuzzy Rule FR1: Certainty for m to be the best number

of pixels in P(m,x0)

IF “xm is similar to x0” and the accumulated similarity

for x(m) is large

THEN “the certainty for m to be the best number of

pixels for P(m,x0) is high”.

CFR1(m) represents the certainty of the Fuzzy Rule

FR1 for m. Then, CFR1(m) is calculated for each num-

ber m ∈ NW and the m maximizing the certainty is

selected as the best number m̂ of pixels in P(m,x0),

i.e., m̂ = arg maxm∈NWCFR1(m).

The certainty of ”xm is similar to x0” is determined

by the membership function Cx0 given by the similarity

function

Cx0(x(i)) = S(x0, x(i)), i,= 0, 1 . . . , n2 − 1. (2)

The accumulated similarity for x(m), represented by

Hx0(x(m)), is given by

Hx0(x(i)) =

k=i∑
k=0

S(x0, x(k)), i ∈ {0, 1, . . . , n2 − 1}. (3)

Then, the certainty of “Hx0(x(m)) is large” is deter-

mined by the membership function µx0 (see Fig. 4) de-

fined by

µx0(x(i)) = −
(Hx0(x(i))− 1)(Hx0(x(i))− 2n2 + 1)

(n2 − 1)2

i = 0, 1, . . . , n2 − 1. (4)

As conjunction operator, the product t-norm was

used, and therefore no defuzzification was needed. There-

fore, CFR1(m) = Cx0(x(m))µ
x(0)(x(m)).

The fuzzy similarity function employed was

S(xi, xj) = e−
‖xi−xj‖
Fσ i, j = 0, . . . , n2 − 1 (5)

where ‖ · ‖ is the Euclidean norm and Fσ denotes a pa-

rameter that will be analyzed in Section 3. This func-

tion has been chosen because it is a fuzzy metric [12,13],

and this type of fuzzy metrics has been demonstrated

to be convenient for fuzzy image processing [3, 22–24].

The similarity S is valued in the interval [0, 1], and

S(x0, xi) = 1 if and only if x0 = xi.

Moreover, a fuzzy rule is employed to detect im-

pulses (step 3 in Algorithm 1).

Fuzzy Rule FR2: Certainty for pixel x0 not to be an

impulse

IF “Hx0(x(m̂)) is large” and “x(m̂) is similar to x0”

THEN “x0 is not an impulse”.

With the purpose of calculating the certainty of

Fuzzy Rule FR2, represented by CFR2, the certainty

of “Hx0(x(m̂)) is large” is given by µx(0) (4), and the

certainty of “x(m̂) is similar to x0” is determined by Cx0

(2). As conjunction operator, the t-norm product is em-

ployed, and therefore CFR2(x0) = Cx0(x(m̂))L
x0(x(m̂)).

This certainty is already computed since CFR2(x0) =

CFR1(m̂), and therefore, it is not needed additional

computation. If CFR2 satisfies

CFR2(x(0)) ≥ Ft (6)

then x0 is not an impulse, else x0 is corrupted with

impulsive noise and it is substituted by VMFout [1]. Ft
denotes a threshold parameter valued in the interval

[0, 1] which will be analyzed in Section 3.

3 Experimental Results

We have coded two parallel implementations. One on

multi-core with OpenMP [11, 25] and the second using

CUDA [8] on GPUs. OpenMP is an application pro-

gramming interface (API) that supports multi-platform

shared memory parallel programming in languages For-

tran, C or C++, on most operating systems. CUDA is

an API that allows to use a CUDA-enabled GPU for

parallel programming. CUDA works with programming

languages such as Fortran, C or C++, and moreover

supports programming frameworks such as OpenACC

and OpenCL. We developed experiments using three

different machines:

– Multi-core: Intel Xeon CPU E5320 (8 cores), 1.86

GHz, 42 GB RAM, Linux Ubuntu 16.04.4.

– GPU 1: NVIDIA Tesla K20 GPU with 5 GB of

GDDR5 on-board memory, 2496 processor cores,

706 MHz processor core clock and 208 GB/sec mem-

ory bandwidth.
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– GPU 2: NVIDIA Tesla V100 GPU with 32 GB of

HBM2 on-board memory, 5120 processor cores, 1230

MHz processor core clock and 897 GB/sec memory

bandwidth.

Two different sets of images were used in the experi-

ments:

– Images from the mini-MIAS database,

– Computed Radiography (CR) images generated at

different exposure levels.

Different real mammograms obtained from the mini-

MIAS database [37] were used in the experiments (see

Fig. 5). Moreover, a detail of each mammogram was

used in order to better perceive the performance of the

filtering technique (see Fig. 6). mdb001 corresponds to

a fatty-glandular breast with benign abnormalities and

well-defined/ circumscribed masses. mdb005 is a fatty

breast with benign abnormalities and well-defined/ cir-

cumscribed masses. mdb006 corresponds to a fatty nor-

mal breast and mdb248 is a fatty breast with benign

abnormalities and calcifications. Moreover, a chest of

a female Alderson RANDO R© was used. This phantom

consists in a synthetic human skeleton inside a mass

comparable to human soft tissue. This phantom is de-

signed to have levels of absorption similar to human

tissue exposed to a radiation dose. The phantom was

scanned with an AGFA imaging device at 1, 0.8, 0.6,

0.4 mAs using 70 and 80 kilovoltage (kV). Fig. 7 show

the phantom, and an example of a CR image obtained

at 80 kV and 0.4 mAs. A detail of the CR images, with

size of 501× 501 pixels, was used in the experiments.

These images have been contaminated with impul-

sive and/or Gaussian noise. The classical white additive

Gaussian noise [27] has been used, and random-value

impulse noise [27] was considered. In order to evaluate

the filter efficiency we have used the commonly em-

ployed objective measures MAE, PSNR and the SSIM.

The MAE, and PSNR are defined as follows [27]:

MAE =
1

QMN

Q∑
k=1

MN∑
i=1

|oik − xik|,

PSNR = 20 log

 255√
1

QMN

∑Q
k=1

∑MN
i=1 (oik − xik)2

 ,

where M, N are te image dimensions, Q is the number

of channels of the image, oik is the component k of the

original pixel oi, xik is the component k of the noisy or

filtered pixel xi and i is the pixel position in the image.

The SSIM is defined as [41]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
.

where µx, µy, σx, σy, σxy are the local means, stan-

dard deviations, and covariance for images x, y, and

c1, c2 are two constants to stabilize the division with

weak denominator. MAE is used to evaluate detail preser-

vation, PSNR are used to evaluate noise reduction ca-

pability and the SSIM measures the similarity between

two images. For an efficient filter, it is expected to ob-

tain high PSNR and SSIM (the limit for SSIM is 1),

and low values for the other parameter MAE.

In order to tune in the parameters Fσ in (5) and Ft
in (6), the algorithm performance has been evaluated in

terms of PSNR as a function of Ft and Fσ, corrupting

images with different intensities of Gaussian and impul-

sive noise. The best results for Ft were achieved tak-

ing Ft = 0.85 when p ∈]0.05, 0.1] and Ft = 0.15 when

p ∈]0, 0.05]. For Fσ the best results were obtained for

Fσ = 480 when σ ∈]5, 10] and Fσ = 100 when σ ∈]0, 5].

We compare the new method with other outstand-

ing filters which have been applied satisfactorily in med-

ical images: Non-linear Difussive Filter (NDF) [16], the

Fuzzy Peer Group Fuzzy Metric Filter (FPG) [3] and

the Peer Group-Fuzzy Non-linear Diffusion Filter (FPG-

NDF). The NDF filter belongs to a competitive class

of filters based on variational and partial differential

equations, such as the anisotropic diffusion [26], total

variation [28], and related works [16,40]. The FPG filter

is based on the peer group technique and fuzzy metric

[3,35]. The FPG-NDF filter is the combination of NDF

and FPG. In addition, the new filter has been compared

with two other outstanding methods specifically de-

signed to reduce mixed Gaussian-impulsive noise: SFMR

filter [6] and RLSF filter [36]. These filters have been im-

plemented setting the optimal parameters determined
by the corresponding authors.

Tables 1, 2 and 3 show, respectively, the MAE, PSNR

and SSIM performance for different intensities of Gaus-

sian and impulse noise including images corrupted only

with Gaussian noise (see Tables 1, 2 and 3 with p = 0)

and only with impulse noise (Tables 1, 2 and 3 with σ =

0). These results show that the new method presents

the best behavior in almost all experiments in terms

of the MAE, PSNR, and the SSIM measures. Only in

the case of images exclusively corrupted with impulsive

noise, the FPG filter specifically designed for impulses,

achieve a small advantage in terms of MAE. This im-

plies that the new method presents a better noise re-

duction and a better image details preservation. Val-

ues of these objective mesures show that the method

obtains a robust performance. Moreover, these results

support the effectiveness of the algorithm even to pro-

cess images contaminated only with Gaussian noise or

only impulsive noise. The same behavior can be ob-
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(a) mdb001 512×969 pixels (b) mdb005 512×960 pixels (c) mdb006 512×960 pixels (d) mdb248 660× 1024 pixels

Fig. 5 Test mammograms from mini-MIAS database [37]

(a) mdb001 400× 400 pixels (b) mdb005 400× 400 pixels (c) mdb006 400× 400 pixels (d) mdb248
150 × 150
pixels

Fig. 6 Details from test mammograms

(a) (b)

Fig. 7 (a) Female Alderson RANDO phantom; (b) CR (3730× 3062 pixels) from RANDO phantom at 70 kV and 1 mAs.
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served (see Tables 4, 5 and 6) for CR images generated

at different exposure levels.

From the visual point of view, by inspecting the de-

noised images in Fig. 8, it can be concluded that the

new filter obtains robust results improving the NDF,

FPG, FPG-NDF, RLSF and SFRF filters. It can be ob-

served that the RLSF method blurs image edges more

than the new filter, missing edges and small details. The

SFRF method does not eliminate impulses as effectively

as the proposed method. Figs. 9, 10, and 11 show that

the new technique efficiently detect and reduce impul-

sive noise as well as effectively smooth Gaussian noise

while preserving the quality of details and edges, be-

ing able to better appreciate the breast abnormalities.

Even small details are preserved as the microcalcifica-

tions in Fig. 11. The same behavior can be seen in the

CR images for the different exposure levels (Figs. 12

and 13). We designed both the serial code and paral-

lel code and then compared the execution time. Fig. 1

presents an example of the image decomposition em-

ployed in the experiments using 4 cores. In the imple-

mentation on GPU the kernel was configured in three

phases illustrated in Fig. 14. Each phase cannot start

until the previous phase is terminated. To assure this

synchronization, the threads are synchronized after the

impulsive noise detection phase and after the impulsive

noise removing. On the GPU, the kernel was designed

so that each thread processed one pixel.

To quantify parallel performance, parallel speedup

SP is computed as:

SP =
Tseq
TP

(7)

where Tseq is the computational time of the sequen-

tial algorithm and TP is the computational time of the

parallel method. We compare the parallel algorithm on

Multi-core and GPU with the sequential one running

on Multi-core.

Table 7 presents the computational times for the

mammogram mdb006 (512 × 960 pixels) and Table 8

presents the computational time for the CR image (3730

× 3062 pixels) from RANDO phantom at 70 kV and

1 mAs (Fig. 7). The results show that a significant

speedup is achieved. In particular, the global efficiencies

achieved with respect to the sequential method were on

Multi-core about 93 − 100% for P = 2, 92 − 96% for

P = 4, 88 − 96% for P = 6 and 69 − 89% for P = 8,

depending on the image size. In the GPU 1 a large

speedup of 1000 units can been obtained. In the GPU

2, more powerful than GPU 1, a speedup exceeding 8300

units can be achieved. Similar results were achieved for

the other images. The times observed in Tables 7 and

8 show that the new method allows the processing of

large medical images in real time.

3.1 Application to the reduction of the radiation dose

in CR images

A methodology used to reduce the dose to patients in

X-ray computed radiography, consists in decreasing the

exposure (mAs) and then, filter the image with an ap-

propriate filter. In order to analyze the similarity with

a CR image of 1 mAs, we compute an estimation of the

standard deviation (SD) of the output of the new filter.

For this purpose we consider a detail of the CR images

with size 501× 501. Table 9 presents the SD values for

the CR images at 70 kV. It can be observed that the

SD values of the new filter are lower than those cor-

responding to the filters PFG-NDF, RLSF and SFRF

for all the cases. Moreover, these values are also lower

than the SD value of the original CR image at 1 mAs

(18.4855). This fact means that the images generated

by the new filter correspond to CR images with a higher

radiation dose than 1 mAs. Table 9 shows the same be-

havior for the CR images generated at 80 kV. Using

this property the new filter can be used to reduce the

radiation dose.

4 Conclusion

A parallel method based on fuzzy peer groups and fuzzy

logic has been presented to detect and reduce mixed

Gaussian-impulsive noise in medical images. The method

has been implemented on multi-cores using OpenMP

and GPUs using CUDA. The implementations have

been used to reduce the impulsive noise, Gaussian and

a mix of both of them on mammograms from the mini-

MIAS database and on CR images generated at differ-

ent exposure levels.The filter obtained robust results in

terms of the objective quality mesures MAE, PSNR and

SSIM. The parallel algorithm introduced demonstrated

a significant speedup, resulting in reduced computa-

tional times that make the new method appropriate for

real-time medical image processing. The method mini-

mizes the standard deviation for a CR image obtained

with low radiation exposure (mAs). In future works, we

will analyze the use of this technique to reduce other

types of noise present in medical images from CT, MRI,

US and PET.
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Table 4 MAE for noisy and filtered images. CR images generated at different exposure levels.

Noise MAE

Gaussian Impulsive Noisy FPG NDF FPG-NDF RLSF SFRF New filter

CR images at 70 kV with 0.4 mAs

σ = 10 p = 0 19.96 14.16 7.98 6.32 5.89 5.43 5.35
σ = 0 p = 0.1 13.02 0.16 8.22 0.71 1.78 1.53 0.81
σ = 10 p = 0.1 30.21 14.45 13.34 6.54 6.12 5.94 5.52

CR images at 80 kV with 1 mAs

σ = 10 p = 0 18.34 13.89 7.87 6.18 5.23 5.06 4.21
σ = 0 p = 0.1 12.92 0.15 7.98 0.70 1.56 1.48 0.72
σ = 10 p = 0.1 28.23 10.19 9.24 5.18 4.85 4.62 4.35

Table 5 PSNR for noisy and filtered images. CR images generated at different exposure levels.

Noise PSNR

Gaussian Impulsive Noisy FPG NDF FPG-NDF RLSF SFRF New filter

CR images at 70 kV with 0.4 mAs

σ = 10 p = 0 17.60 22.89 28.40 28.23 28.34 29.13 30.32
σ = 0 p = 0.1 16.52 41.45 26.86 39.87 40.67 41.23 42.78
σ = 10 p = 0.1 14.93 23.76 25.32 29.17 29.39 29.60 30.66

CR images at 80 kV with 1 mAs

σ = 10 p = 0 17.31 24.56 29.01 28.98 29.56 30.26 31.98
σ = 0 p = 0.1 16.45 42.12 25.35 41.23 42.23 43.21 45.35
σ = 10 p = 0.1 14.38 24.51 28.93 29.51 29.94 30.06 31.46
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Table 6 SSIM for noisy and filtered images. CR images generated at different exposure levels.

Noise SSIM

Gaussian Impulsive Noisy FPG NDF FPG-NDF RLSF SFRF New filter

CR images at 70 kV with 0.4 mAs

σ = 10 p = 0 0.15 0.20 0.74 0.82 0.77 0.81 0.86
σ = 0 p = 0.1 0.11 0.86 0.28 0.85 0.74 0.87 0.95
σ = 10 p = 0.1 0.10 0.36 0.35 0.73 0.69 0.79 0.84

CR images at 80 kV with 1 mAs

σ = 10 p = 0 0.14 0.22 0.80 0.81 0.79 0.84 0.89
σ = 0 p = 0.1 0.12 0.89 0.29 0.82 0.74 0.88 0.98
σ = 10 p = 0.1 0.09 0.29 0.39 0.72 0.71 0.76 0.85

Table 7 Computational time (seconds) on Multi-core and GPUs. Image mdb006.

Noise Number of processors GPU 1 GPU 2
Gaussian Impulsive 1 2 4 6 8

σ = 5 p = 0 5.23 2.69 1.36 0.92 0.72 0.06429 0.00150
σ = 10 p = 0 5.38 2.70 1.36 0.96 0.73 0.07452 0.00151
σ = 5 p = 0.05 5.90 2.97 1.50 1.04 0.78 0.07870 0.00156
σ = 10 p = 0.1 6.31 3.17 1.65 1.12 0.85 0.06848 0.00154
σ = 0 p = 0.05 4.86 2.45 1.24 0.92 0.64 0.08130 0.00154
σ = 0 p = 0.1 5.17 2.60 1.36 0.92 0.69 0.08294 0.00155

Table 8 Computational time (seconds) on Multi-core and GPUs. Image RANDO phantom at 70 KV 1 mAs (3730 × 3062
pixels).

Noise Number of processors GPU 1 GPU 2
Gaussian Impulsive 1 2 4 6 8

σ = 5 p = 0 121.03 61.51 29.60 18.38 12.73 0.18304 0.01715
σ = 10 p = 0 124.51 61.74 29.60 19.31 12.96 0.18395 0.01727
σ = 5 p = 0.05 136.60 68.01 32.85 21.17 14.12 0.19010 0.02014
σ = 10 p = 0.1 146.12 72.66 36.34 23.03 15.75 0.14559 0.01752
σ = 0 p = 0.05 112.43 55.93 26.81 18.38 10.87 0.19657 0.01626
σ = 0 p = 0.1 119.63 59.42 29.60 18.38 12.03 0.20018 0.01656

Table 9 Standard deviation. Computed radiography images
at 70 KV.

0.4mAs 0.6 mAs 0.8 mAs 1 mAs

Original 29.2156 24.9404 24.5312 18.4855
FPG-NDF 21.9234 17.8742 17.4563 13.3467
RLSF 20.3504 16.8902 16.4156 12.1234
SFRF 20.1290 16.2784 16.0134 12.0212
New Filter 18.2351 15.7429 15.4429 11.9821
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(g) SFRF (h) New filter

Fig. 8 Filters output for visual comparison. Detail of mammogram mdb006 corrupted with σ = 10 Gaussian noise, p = 0.1
impulse.
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(a) Detail of original mammogram (b) Corrupted σ = 5 Gaussian, p = 0.05
impulsive

(c) Filtered mammogram

Fig. 9 Filter output for visual comparison. Detail of benign abnormality in mammogram mdb001

(a) Detail of original mammogram (b) Corrupted σ = 5 Gaussian, p = 0.05
impulsive

(c) Filtered mammogram

Fig. 10 Filter output for visual comparison. Detail of benign abnormality in mammogram mdb005

(a) Detail of original mammogram (b) Corrupted σ = 5 Gaussian, p = 0.05
impulsive

(c) Filtered mammogram

Fig. 11 Filter output for visual comparison. Detail of small region (150× 150 pixels) containing microcalcifications in benign
fatty mammogram mdb248
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(a) Original CR image (b) Corrupted σ = 10 Gaussian, p =
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(c) Filtered RLSF (d) Filtered SFRF (e) Filtered New filter

Fig. 12 CR images at 70 kV with 0.4 mAs.
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