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Abstract—Personal Sound Zones (PSZ) systems aim to render
independent sound signals to multiple listeners within a room by
using arrays of loudspeakers. One of the algorithms used to pro-
vide PSZ is Weighted Pressure Matching (wPM), which computes
the filters required to render a desired response in the listening
zones while reducing the acoustic energy arriving to the quiet
zones. This algorithm can be formulated in time and frequency
domains. In general, the time-domain formulation (wPM-TD) can
obtain good performance with shorter filters and delays than the
frequency-domain formulation (wPM-FD). However, wPM-TD re-
quires higher computation for obtaining the optimal filters. In this
article, we propose a novel approach to the wPM algorithm named
Weighted Pressure Matching with Subband Decomposition (wPM-
SD), which formulates an independent time-domain optimization
problem for each of the subbands of a Generalized Discrete Fourier
Transform (GDFT) filter bank. Solving the optimization indepen-
dently for each subband has two main advantages: 1) lower compu-
tational complexity than wPM-TD to compute the optimal filters;
2) higher versatility than the classic wPM algorithms, as it allows
different configurations (sets of loudspeakers, filter lengths, etc.) in
each subband. Moreover, filtering the input signals with a GDFT
filter bank (as in wPM-SD) requires lower computational effort
than broadband filtering (as in wPM-TD and wPM-FD), which
is beneficial for practical PSZ systems. We present experimental
evaluations showing that wPM-SD offers very similar performance
to wPM-TD. In addition, two cases where the versatility of wPM-SD
is beneficial for a PSZ system are presented and experimentally
validated.

Index Terms—Personal audio, sound zones, subband filtering.

I. INTRODUCTION

P ERSONAL Sound Zones (PSZ) systems aim to render
different audio signals to different users within a room with

minimum leakage between them [1], [2]. To achieve it, an array
of loudspeakers and a set of filters (one per loudspeaker and
user) are used. The goal of PSZ algorithms is to find the optimal
filters for the system. Usually, the term bright zone denotes the
region where an audio signal is rendered, and dark zone the
region where the sound level is minimized [3].

Manuscript received February 26, 2020; revised June 11, 2020 and July 31,
2020; accepted September 3, 2020. Date of publication September 11, 2020;
date of current version September 30, 2020. This work was supported by Grants
RTI2018-098085-B-C41 (MCIU/AEI/FEDER, UE), RED2018-102668-T and
PROMETEO/2019/109. The work of Vicent Molés-Cases has been supported
by Spanish Ministry of Education under Grant FPU17/01288. The associate
editor coordinating the review of this article and approving it for publication
was Prof. Stefania Cecchi. (Corresponding author: Vicent Molés-Cases.)

The authors are with the Institute of Telecommunications and Multimedia Ap-
plications, Universitat Politècnica de València, Valencia 46022, Spain (e-mail:
vimoca3@iteam.upv.es; gpinyero@iteam.upv.es; mdediego@dcom.upv.es;
agonzal@dcom.upv.es).

Digital Object Identifier 10.1109/TASLP.2020.3023628

Several techniques can be used to obtain the filters for
the system, such as beamforming [4], [5], soundfield synthe-
sis [6], [7], energy cancellation approaches [8], [9], or hy-
brid approaches [10], [11]. Among these, the hybrid technique
Weighted Pressure Matching (wPM) [12] exhibits a compro-
mise between the performance obtained with two different
techniques, namely, Pressure Matching (PM) [13] and Acoustic
Contrast Control (ACC) [3]. On the one hand, PM is a soundfield
synthesis approach that aims to render a target response in the
bright zone, but does not offer control over the energy in the dark
zone [13]. On the other hand, ACC is an energy cancellation
approach whose goal is to minimize the energy in the dark
zone, but it can not synthesize a target response in the bright
zone [3]. Instead, wPM offers the possibility to both render a
target response in the bright zone while keeping control over the
energy in the dark zone. To do so, the authors in [12] proposed
a novel cost function in which a weighting parameter is used to
balance the components of the cost functions for PM and ACC.

Originally, wPM was proposed as a frequency-domain ap-
proach (wPM-FD), i.e., the optimal filter coefficients are com-
puted independently for a set of control frequencies, and then,
the time-domain filters are obtained by windowing the Inverse
Discrete Fourier Transform (IDFT) of the optimal filter coeffi-
cients [14]. Later, the authors in [15] proposed a formulation of
wPM in time-domain (wPM-TD), in which the time-domain
filters are directly obtained by solving a single optimization
problem. In general, the performance of both techniques is
very similar when long filters are used, however, wPM-TD
outperforms wPM-FD for short filters [15]. Moreover, wPM-FD
requires a modelling delay of about half the filter length to assure
the causality of the filters, while shorter delays can be selected
for wPM-TD [15]. This is specially important for applications
where low latency is required, e.g., two-way telecommunication
applications. However, the computational demands for solving
the optimization are significantly higher with wPM-TD, as it
involves the inverse of a large matrix. The higher complexity
is not an important limitation for static PSZ systems, where the
filters can be computed off-line. However, it is an important
aspect for dynamic PSZ systems where the location of the zones
may change over time [16] or when the characteristics of the
input signal are taken into account [17], as the filters must be
often recomputed. Consequently, an algorithm offering similar
performance to wPM-TD but with a lower computational com-
plexity could be very useful for certain applications. Recently,
the authors in [18] proposed an iterative algorithm to efficiently
obtain the solution for wPM-TD. However, its convergence rate
is related to a set of parameters, which can lead to a high
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Fig. 1. (a) Diagram of a FIR filter q. (b) Subband approximation of the FIR filter q using a GDFT filter bank.

number of iterations if not selected properly (and there is few
intuition in how to select them). Thus, we propose in this article a
non-iterative algorithm with lower computational demands than
wPM-TD.

An important aspect of PSZ systems in real-world scenarios
is that long filters must be used to compensate for the room
reverberation [19]. Such long filters require high computational
complexity to filter the input signals, which in some cases can be
unaffordable for real-time applications [20]. The computational
demands can be lowered using filter-bank structures [21], as
the filtering can be performed efficiently for each subband at
a lower sampling rate. The authors in [22] proposed to use
Quadrature Mirror Filters (QMFs) with non-uniform subbands,
where a frequency-domain approach is used to obtain the filters
for each subband. Particularly, the authors formulate the opti-
mization problem for each subband by using the Room Impulse
Response (RIR) filtered with the analysis filters of the filter bank.
This approach is limited to frequency-domain optimizations,
as the effect of the analysis filters in the RIR would produce
a frequency weighting in a time-domain optimization, which
would degrade the performance in the edges of the subbands.
Then, this approach can be used to reduce the computational
complexity of the filtering operation, but still presents the same
limitations as wPM-FD (i.e., longer filters and delays) because
the optimization for each subband is solved in the frequency-
domain.

In this article, we propose to use a Generalized Discrete
Fourier Transform (GDFT) filter bank [23] to perform the filter-
ing operation using a set of subband filters. To obtain the filters,
we propose the Weighted Pressure Matching with Subband
Decomposition (wPM-SD) algorithm, which formulates an in-
dependent time-domain optimization problem for each subband.
To avoid the undesired frequency weighting produced by the
analysis filters of the filter bank, we propose to formulate the
optimization using the subband components of the RIR obtained
with the algorithm presented in [24]. Using a time-domain opti-
mization for each subband offers several advantages with respect
to the approach presented in [22], as shorter filters and delays. We
show by experimental validation that the performance obtained
by wPM-SD can be approximately equal to the one showed
by wPM-TD (the validity of the approximation depends on
the prototype filter selected for the filter bank). Solving the
optimization independently for each subband can significantly
decrease the required computational complexity, as the matrix
that must be inverted for each subband is significantly smaller
than with wPM-TD. Also, the computational demands to filter
the input signals are lower than with wPM-TD, as the filtering for
each subband is performed at a lower sampling rate. Moreover,
as the optimization is independently solved for each subband, the

proposed algorithm offers a versatility that wPM-TD lacks, since
different sets of loudspeakers, microphones, and filter lengths
can be selected for each subband.

The article is structured as follows. Section II studies the
subband decomposition of a Finite Impulse Response (FIR)
in its subband components for a GDFT filter bank. Section III
reviews the wPM-TD algorithm. Section IV presents the novel
wPM-SD algorithm. Section V presents experimental results
to show the performance of the proposed algorithm. Finally,
Section VI summarizes the main conclusions.

Notation: Throughout this article matrices and vectors are rep-
resented by upper and lower case boldface letters, respectively,
(·)T stands for transpose, (·)H stands for conjugate transpose,
‖ · ‖ for vector 2-norm, subindex ↓ N denotes downsampling
by a factor N , ∗ denotes the discrete convolution operation, Z
denotes the set of all integers, I denotes the identity matrix, δ(n)
denotes the unit impulse, and �·� denotes the ceiling function.

II. SUBBAND DECOMPOSITION

In this section, we study the decompostion of a FIR filter in
its subband components using a GDFT filter bank. The main ad-
vantage of GDFT filter banks is that a computationally efficient
implementation is possible for fractional oversampling [23], i.e.,
for 0 < (N/K) ≤ 1 (being N the resampling factor and K the
number of subbands).

Fig. 1(b) illustrates a GDFT filter bank with K subbands,
where u(k) and v(k) denote the analysis and synthesis filters
for the k-th subband, respectively. In the following, we focus
on the case with even number of subbands.1 The analysis and
synthesis filters are single-sided responses (i.e., with complex
coefficients), and are obtained by modulating a low pass proto-
type filter p(n) of length Lp and bandwidth 2π/K as

u(k)(n) = p(n)ej
2π
K (k+ 1

2 )n, (1)

v(k)(n) = p(Lp − 1− n)e−j 2π
K (k+ 1

2 )n, (2)

for 0 ≤ n ≤ Lp − 1 and 0 ≤ k ≤ K − 1. The analysis and syn-
thesis filters in the positive and negative spectrum are complex
conjugates, i.e., u(k)(n) = (u(K−1−k)(n))∗ ∀k and v(k)(n) =
(v(K−1−k)(n))∗ ∀k. Then, only K/2 subbands must be pro-
cessed, as the other subbands are their complex conjugates. From
(2), it follows that the synthesis filters are time-reversed and
conjugated versions of the analysis filters.

1For a GDFT filter bank, K can be either even or odd. For K even, the K/2
subbands in the positive and negative spectrum are complex conjugates. For K
odd, the (K − 1)/2 subbands in the positive and negative spectrum are complex
conjugates and the subband in the center of the spectrum is unique.
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Given a FIR filter denoted by q with length Lq , the main
goal of the subband decomposition is to find the set of subband
components q(k) for a GDFT filter bank such that the systems
in Fig. 1(a) and Fig. 1(b) are equivalent. We consider that both
systems are equivalent when S(z) = ρQ(z)z−τf , where Q(z)
is the z-transform of q, S(z) is the z-transform of the overall
response of the filter bank including the subband components
q(k), τf is a delay produced by the filter bank, and ρ is an
arbitrary amplitude scaling. Equality between both systems is
only achieved when an ideal low pass filter is used as prototype
filter [24]. For the case with non-ideal prototype filter, the
equality can only be assumed approximately. However, it is
shown in [24] that the approximation error can be negligible
if the following conditions are fulfilled:

1) Negligible reconstruction error, i.e.,

K/2−1∑
k=0

	
{
U (k)(z)V (k)(z)

}
≈ ρz−τf , (3)

2) Negligible aliasing level in the subbands, i.e.,

N−1∑
i=1

U (k)(zΦi
N )V (k)(z) ≈ 0, ∀k, (4)

where z = ejω for 0 ≤ ω < 2π,Φi
N = e−j 2πi

N , andU (k)(z) and
V (k)(z) are the z-transforms of u(k) and v(k), respectively. For
a GDFT filter bank, (3) is achieved if the prototype filter is a
root-Nyquist filter [24]. Regarding (4), it must be noticed that
low values of (N/K) and high values of Lp assure low aliasing
levels, but require a higher computational effort. Therefore, a
compromise between (N/K) and Lp must be reached such that
(4) is fulfilled while still benefiting from a reduction of the
computational complexity (as we will show in Section V-B).

The authors in [24] show that for a GDFT filter bank fulfilling
(3) and (4), the subband components q(k) that make the systems
in Fig. 1(a) and Fig. 1(b) approximately equivalent are given by

q(k)(n) = min
q(k)(n)

{∑
n∈Z

∣∣∣u(k)
↓N (n) ∗ q(k)(n)− q̌(k)(n)

∣∣∣2}, (5)

where u
(k)
↓N is the downsampled analysis filter of length Lp↓ =

�Lp/N� for the k-th subband, and q̌(k)(n) is the analysis com-
ponent of q(n) of length Lq̌ = �(Lq + Lp − 1)/N� for the k-th
subband, which is defined as

q̌(k)(n) =
(
u(k)(n) ∗ q(n)

)
↓N

. (6)

Then, the length of the subband component q(k) is given by

L′
q = Lq̌ − Lp↓ + 1 =

⌈
Lq + Lp − 1

N

⌉
−
⌈
Lp

N

⌉
+ 1. (7)

From (5), we can see that the optimal subband component
minimizes the mean square error between the analysis compo-
nent (6) and the subband output when feeding the filter bank
with δ(n). Also, it is important to highlight that the subband
components have complex coefficients because the analysis and
synthesis filters are single-sided. Now, if we define

q(k) =
[
q(k)(0) . . . q(k)(L′

q−1)
]T

,

q̌(k) =
[
q̌(k)(0) . . . q̌(k)(Lq̌−1)

]T
,

U(k) =

⎡⎢⎢⎢⎢⎣
u
(k)
↓N (0) . . . u

(k)
↓N (Lp↓−1) 0 . . . 0

0
... Toeplitz

0

⎤⎥⎥⎥⎥⎦
T

,

we can re-write (5) as

q(k) = min
q(k)

{∥∥U(k)q(k) − q̌(k)
∥∥2}

= ((U(k))HU(k))−1(U(k))H q̌(k). (8)

In (8), the term ((U(k))HU(k))−1(U(k))H performs the decon-
volution of the downsampled analysis filter and the analysis
component for the k-th subband. Then, this term removes from
the subband component any frequency weighting produced by
the analysis filter. Thus, using the subband components ob-
tained with (8) for the formulation of an inverse problem in
time-domain does not lead to any frequency weighting. This is
an important advantage with respect to the approach presented
in [22], where the analysis components (6) are used to define
the optimization problem, and consequently, an undesired fre-
quency weighting that degrades the performance is produced if
the optimization is formulated in time-domain.

Finally, it is important to notice that (8) requires to compute
K/2 different matrix inversions to obtain the K/2 subband
components. Next, we derive a novel solution that only requires
one matrix inversion. We start by re-writing U(k) as

U(k) = F
(k)
1 PF

(k)
2 , (9)

where F
(k)
1 and F

(k)
2 are diagonal matrices of size Lq̌ and L′

q ,
respectively, which are defined as

F
(k)
1 = Diag

([
ej

2πN
K (k+ 1

2 )0, . . . , ej
2πN
K (k+ 1

2 )(Lq̌−1)
])

,

F
(k)
2 = Diag

([
e−j 2πN

K (k+ 1
2 )0, . . . , e−j 2πN

K (k+ 1
2 )(L′

q−1)
])

,

and P is the convolution matrix of the downsampled prototype
filter of size Lq̌ × L′

q , which is defined as

P =

⎡⎢⎢⎢⎢⎣
p↓N (0) . . . p↓N (Lp↓−1) 0 . . . 0

0
... Toeplitz

0

⎤⎥⎥⎥⎥⎦
T

.

Now, we can use (9) to re-write (8) as

q(k) =
(
F

(k)H

2 PTF
(k)H

1 F
(k)
1 PF

(k)
2

)−1
F

(k)H

2 PTF
(k)H

1 q̌(k)

= F
(k)H

2

(
PTP

)−1
PTF

(k)H

1 q̌(k). (10)

Equation (10) has the key property that the real matrix
(PTP)−1PT is common to all subbands, so only one matrix
must be inverted for computing all the subband components. In
Section IV, we will use (10) to obtain the subband components
of the RIR required by the proposed wPM-SD algorithm.
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Fig. 2. Model of a PSZ system using FIR broadband filters.

III. WEIGHTED PRESSURE MATCHING

Let us consider a PSZ system formed by an array of L
loudspeakers and M = Md +Mb control points, where Mb and
Md are the number of control points used to spatially sample
the bright and dark zones, respectively. The system aims to
render a given audio signal in the bright zone while keeping
the interference in the dark zone as low as possible. To achieve
it, the audio signal is filtered through a FIR filter denoted by gl
prior to be fed to the l-th loudspeaker. Fig. 2 shows the system
model. From now on, we denote B and D as the sets of control
points for the bright and dark zones, respectively.

Next, we describe the model used for the time-domain for-
mulation of wPM. Usually, the design of PSZ algorithms for
static systems does not consider the characteristics of the audio
signal [25]. Therefore, the following model deals with impulse
responses rather than signals. Thus, let us define hm,l as the
Lh-length Room Impulse Response (RIR) between the l-th
loudspeaker and the m-th control point, and gl as the Lg-length
FIR filter for the l-th loudspeaker. We define the cascade impulse
response for the m-th control point as

xm(n) =

L−1∑
l=0

hm,l(n) ∗ gl(n), (11)

and the vector with the non-zero samples of xm(n) as

xm =
[
xm(0) . . . xm(Lg + Lh−2)

]T
=

L−1∑
l=0

Hm,lgl, (12)

where gl = [gl(0), . . . , gl(Lg−1)]T , and

Hm,l =

⎡⎢⎢⎢⎢⎣
hm,l(0) . . . hm,l(Lh−1) 0 . . . 0

0
... Toeplitz

0

⎤⎥⎥⎥⎥⎦
T

,

with dimensions (Lh + Lg−1)× Lg . Furthermore, a vector
containing the non-zero samples of the cascade impulse response
in all the control points is defined as

x =
[
xT
0 , . . . ,x

T
M−1

]T
= Hg, (13)

where g = [gT
0 , . . . ,g

T
L−1]

T , and

H =

⎡⎢⎢⎣
H0,0 . . . H0,L−1

...
...

...
HM−1,0 . . . HM−1,L−1

⎤⎥⎥⎦ .

Similarly, the vector containing the target impulse response
for all control points is given by

d =
[
dT
0 . . . dT

M−1

]T
, (14)

where

dm =
[
dm(0) . . . dm(Lh + Lg−2)

]T
, (15)

and dm(n) is the target response for the m-th control point.
Once the model is presented, we describe the Weighted Pres-

sure Matching algorithm with time-domain formulation (wPM-
TD) proposed by [15]. This algorithm aims to find the optimal
filters g that minimize the following cost function

J(g) = ‖W (x− d)‖2 + λ ‖g‖2 , (16)

whered is usually selected such that the target in the dark zone is
zero, i.e.,dm = 0 ∀m ∈ D. Also, λ is a regularization parameter
that constraints the energy of the filters [26]. The weighting
matrix W can include the effects of the time, frequency, and
spatial weighting [18], but we focus in the case with spatial
weighting only for the sake of simplicity. Then, we define W
as a block diagonal matrix, i.e., W = Diag{W0, . . . ,WM−1},
formed by diagonal submatrices of size Lh + Lg − 1, which are
defined as

Wm =

⎧⎨⎩
√

μ
Md

I m ∈ D√
1−μ
Mb

I m ∈ B
,

where parameter μ is a weighting term that is used to balance
the solution, e.g., high values of μ put more effort in minimizing
the mean energy in the dark zone whereas low values of μ put
more effort in minimizing the Mean Square Error (MSE) with
respect to the target response in the bright zone. Then, (16) offers
a balanced solution between minimizing the mean energy in the
dark zone and the MSE in the bright zone. Using (13), we can
reduce the cost function to

J(g) = gTHTWTWHg − 2gTHTWTWd+ λgTg, (17)

where the term dTWTWd has been omitted because has no
effect on the optimization. Finally, the optimal solution that
minimizes (17) is

g =
(
HTWTWH+ λI

)−1
HTWTWd. (18)

Equation (18) presents two main drawbacks: 1) it requires the
inversion of a matrix of size (L·Lg)× (L·Lg), which for some
cases can be computationally unfeasible; 2) the optimization is
broadband, so does not offer the versatility to select different
configurations for different frequency bands (which in some
cases could be beneficial). Next, we propose a novel algorithm
that overcomes these limitations.

IV. WEIGHTED PRESSURE MATCHING WITH SUBBAND

DECOMPOSITION

In this section, we propose to use a GDFT filter bank with
K subbands to perform the filtering operation for each of the
loudspeakers in the PSZ system. Then, rather than using a
broadband filter gl for each loudspeaker, we use a set of subband
filters g

(k)
l , 0 ≤ k ≤ K−1. Additionally, we propose a novel

algorithm to compute the optimal subband filters. We show in
Fig. 3(a) the system model used, where the filtering required by
the PSZ system is performed in the subbands of the filter bank
and the output of the filter bank is convolved with the RIR. It
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Fig. 3. (a) Model of a PSZ system using a GDFT filter bank. (b) Equivalent model using the subband components of the RIR.

is important to mention that the subband filter g(k)l has complex
coefficients (contrary to the broadband case, where gl has real
coefficients), but only K/2 subband filters must be computed
for each loudspeaker due to the hermitian symmetry (assuming
that K is even2).

Now, let us denote h
(k)
m,l as the k-th subband component

of hm,l obtained with the subband decomposition procedure
described in Section II. Specifically, we need to replace the
generic response q used in Section II by response hm,l, and

use (10) to obtain the subband component h(k)
m,l of length L′

h =

�(Lh + Lp − 1)/N�−�Lp/N�+ 1. Then, the authors in [24]
show that the system models in Fig. 3(a) and (b) are approxi-
mately equivalent if conditions (3) and (4) are fulfilled. The main
advantage of the system in Fig. 3(b) is that the subsystems for
each subband can be considered independent, so the optimiza-
tion problem can be solved independently for each subband.
This fact is important because not only provides computational
improvements to solve the optimization, but also offers higher
versatility than the broadband case (18) because it allows us
to use different configurations for each subband. For example,
different sets of loudspeakers and different filter lengths can be
used in each subband.

First, we start by formulating the time-domain model for each
subband of Fig. 3(b). For the sake of simplicity, we assume in
this section that all subbands use the same set of loudspeakers,
and that all the subband components g(k)l have the same length
(denoted by L′

g). Then, the cascade impulse response for the
k-th subband is defined similarly to (13) as

x(k) = H(k)g(k), (19)

where g(k) = [(g
(k)
0 )T , . . . , (g

(k)
L−1)

T ]T with g
(k)
l =

[g
(k)
l (0), . . . , g

(k)
l (L′

g−1)]T , and

H(k) =

⎡⎢⎢⎣
H

(k)
0,0 . . . H

(k)
0,L−1

...
...

...

H
(k)
M−1,0 . . . H

(k)
M−1,L−1

⎤⎥⎥⎦ ,

2For the odd case ((K − 1)/2) + 1 subband filters must be computed.

with

H
(k)
m,l =

⎡⎢⎢⎢⎢⎣
h
(k)
m,l(0) . . . h

(k)
m,l(L

′
h−1) 0 . . . 0

0
... Toeplitz

0

⎤⎥⎥⎥⎥⎦
T

.

Similarly, we can define the target impulse response for the
k-th subband as

d(k) =
[
(d

(k)
0 )T . . . (d

(k)
M−1)

T
]T

, (20)

where

dm =
[
d
(k)
m (0) . . . d

(k)
m (L′

h + L′
g−2)

]T
, (21)

and d(k)m is the k-th subband component of dm, which is obtained
with the subband decomposition described in Section II.

Now, we propose the Weighted Pressure Matching with Sub-
band Decompositon (wPM-SD) algorithm to obtain the optimal
subband filters g(k)l . For each subband k, the optimal coefficients
g(k) minimize the following cost function

J(g(k)) = ‖W(x(k) − d(k))‖2 + λ‖g(k)‖2. (22)

Similarly to the wPM-TD case, the weighting matrix W can
include the effects of the time, frequency, and spatial weighting,
but only the spatial weighting is considered in the following.
Then, we define W as a block diagonal matrix, i.e., W =
diag{W0, . . . ,WM−1}, formed by diagonal submatrices of
size L′

h + L′
g−1, which are defined as

Wm =

⎧⎨⎩
√

μ
Md

I m ∈ D√
1−μ
Mb

I m ∈ B
.

Finally, the optimal solution for the k-th subband is given by

g(k) = (H(k)HWTWH(k) + λI)−1H(k)HWTWd(k). (23)

Solution (23) requires the inversion of a matrix of size
(L·L′

g)×(L·L′
g), which is approximately N times smaller than

the matrix that needs to be inverted with wPM-TD, leading to
important computational savings (as we will show in Section V-
B). It is important to mention that wPM-SD requires the subband
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Fig. 4. Layout used for the experimental validation, where and denote
control and validation points, respectively.

decomposition of the RIR using (10), which could require addi-
tional computational load. However, only one matrix inversion
is required to compute the subband components for all the
microphones, loudspeakers, and subbands, so its computational
cost is not significant. Moreover, although we have assumed that
the same weighting matrixW and the same regularization factor
λ are used for all subbands, different values could be selected
for each subband. Also, different number of loudspeakers and
filter lengths can be used for each subband. Finally, we have
assumed that the same algorithm is used to obtain the optimal
filters for all subbands (in our case wPM), however, the subband
formulation allows us to use different algorithms for different
subbands (as for example ACC, which could be beneficial for
very low frequencies [27]). In conclusion, wPM-SD can not
only offer a reduction of the computational cost with respect to
wPM-TD, but also greater versatility, as it allows to use different
setups for different subbands.

V. RESULTS

In this section, the proposed algorithm is evaluated and com-
pared with wPM-FD and wPM-TD. First, we define the experi-
mental setup and the metrics used for the evaluations. Next, the
algorithms are compared using the defined metrics. Finally, we
present two practical examples showing how to benefit from the
versatility of wPM-SD.

A. Setup and Metrics

The experimental evaluations have been carried out in the
laboratory of Audio and Communications Signal Processing
of the Institute of Telecommunications and Multimedia Appli-
cations (iTEAM). The room presents a reverberation time of
T60 = 0.18 s and its dimensions can be found in [28]. Fig. 4
shows the layout used for the evaluations, which includes two
arrays of speakers (shown in Fig. 5). Array 1 is formed by
8 two-way speakers with frequency range 100–20000 Hz and
an inter-element distance of 18 cm. Therefore, the highest fre-
quency that can be rendered without spatial aliasing is around
1.9 kHz [29], which is too low for most applications. Array 2 is
formed by 8 speakers with frequency range 800–20000 Hz and
an inter-element distance of 5 cm. Thus, its highest aliasing-free
frequency is around 5 kHz, but the size of its speakers and its

Fig. 5. Arrays of loudspeakers used for the experimental validation.

Fig. 6. Block diagram of the signal processing used in the PSZ system.

aperture limits its performance for low frequencies. Thus, using
both arrays can assure a frequency range of 100–5000 Hz with-
out aliasing and with good performance. The system considers
two zones, where the left and right zones are the bright and
dark zones, respectively (as shown in Fig. 4). The zones are
spatially sampled by using a grid of 8×8 microphones with an
inter-element distance of 5.5 cm. Different sets of RIRs are used
to compute and to evaluate the filters, i.e., the RIRs in the control
points (hm,l) and in the validation points (h̃m,l). The RIRs were
measured using the swept-sine technique [30] with a sampling
frequency of 44100 Hz, and then downsampled to 14700 Hz. In
all cases, equal effort is used to minimize the error in the bright
zone and the energy in the dark zone, i.e., μ = 0.5.

The block diagram of the system used for the evaluations is
shown in Fig. 6. The diagram includes the FIR cross-over filters
zLP and zHP with cut-off frequency fc = 1.9 kHz, length 61
samples, and delay τc = 30 samples (which have been designed
using Matlab’s fir1() function with a Kaiser window with shape
factor 1.7). These filters avoid driving the speakers at frequen-
cies where either spatial aliasing or inefficient radiation occurs.
Thus, array 1 operates at frequencies below fc, and array 2 at
frequencies above fc. Then, we can compute the optimal filters
for each array independently. We use hm,l for l = 0, . . . , 7 in the
optimization for array 1, and hm,l for l = 8, . . . , 15 for array 2.
The target response in the optimization for array i is selected as

dm(n) =

{
hm,li(n− τd) m ∈ B

0 m ∈ D , (24)

i.e., null response for the dark zone, and the RIR of the li-th
loudspeaker for the bright zone, where li is the reference loud-
speaker for array i (with i = 1, 2). Specifically, l1 and l2 are
the indices of the fourth loudspeaker in array 1 and the third
loudspeaker in array 2, respectively (as shown in Fig. 5). For
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Fig. 7. Magnitude response of the analysis filters in the positive spectrum for
the selected GDFT filter bank.

wPM-TD and wPM-SD, the target includes a modelling delay
of τd = 350 samples (i.e., 23.8 ms). For wPM-FD, a modeling
delay of τd = Lg/2 is required to assure causality. The optimal
filters for array i are applied to the input signal in the “Filtering
Array i” block in Fig. 6, which performs broadband filtering
for wPM-TD and wPM-FD, and subband filtering for wPM-SD.
It is important to mention that both arrays could be optimized
together in the band 1–1.9 kHz (as the aperture of array 2 is long
enough to operate in such frequencies). However, we decided not
to use array 2 in this range because we observed that it requires
high effort levels, which could damage its speakers.

For wPM-SD, we use a GDFT filter bank with K = 30 sub-
bands, resampling factor N = 22, and prototype filter of length
Lp = 150 (obtained using the method proposed in [31] with
γ = 0.005). The magnitude of the analysis filters in the positive
spectrum is shown in Fig. 7. The filter bank used presents a Re-
construction Error [23] of −77.04 dB and a Signal-To-Aliasing
Ratio [23] of 46.45 dB. Then, we can assume that conditions (3)
and (4) are fulfilled. The selected filter bank produces a delay of
τf = 149 samples.

For wPM-FD, the optimal filter coefficients are computed for
a set of Lh + Lg−1 control frequencies using the optimization
proposed in [12]. After that, an IDFT of size Lh + Lg−1 is used
to obtain the time-domain responses, which are truncated using
a Hanning window of size Lg to obtain the filters (similarly to
the procedure described in [32]).

It is worth mentioning that we do not solve the optimization
for all control frequencies/subbands for wPM-FD/wPM-SD. For
wPM-FD, the optimization is only solved for frequencies below
fc for array 1, and above fc for array 2. For wPM-SD, it is
only solved for subbands 0-3 for array 1, and for subbands
4-14 for array 2. In the other control frequencies/subbands,
the filter coefficients are set to 0. Thus, we avoid driving the
arrays at frequencies outside their operation bandwidth. Then,
the cross-over filters are not really needed for wPM-SD and
wPM-FD, as the sound zones filters already attenuate the energy
at frequencies outside the operation bandwidth of the arrays.
This is an advantage of wPM-SD and wPM-FD with respect
to wPM-TD for PSZ systems using multiple arrays, as the
cross-over filters add further delay to the system. However, in
the following we use the cross-over filters for evaluating all the
algorithms in order to make a fair comparison between them (as
we assure that the performance differences are not caused by the
effects of the cross-over filters).

Next, we present the metrics used for evaluating the algo-
rithms. First, the mean energy in the validation points of the

bright and dark zones [25] at frequency f is

Pb(f) =
1

Mb

∑
m∈B

∣∣X̃m(f)
∣∣2, (25)

Pd(f) =
1

Md

∑
m∈D

∣∣X̃m(f)
∣∣2, (26)

respectively, where X̃m is the Discrete Time Fourier Transform
(DTFT) of the cascade impulse response for the m-th validation
point (x̃m). The cascade impulse response includes the contri-
butions of both arrays and it is obtained by feeding the system
in Fig. 6 with δ(n). The second metric is the acoustic contrast
(AC) [3], which is related to the level of acoustic isolation
between zones and it is defined as

C(f) =
Pb(f)

Pd(f)
. (27)

The third metric is the Normalized Mean Square Error (NMSE)
for the validation points in the bright zone [11], which is defined
as

ε(f) =

∑
m∈B

∣∣X̃m(f)− D̃m(f)
∣∣2∑

m∈B
∣∣D̃m(f)

∣∣2 , (28)

where D̃m(f) is the target transfer function for the m-th valida-
tion point, and it is defined as

D̃m(f) =

{
e−j2πτf H̃m,l1(f) if f ≤ fc

e−j2πτf H̃m,l2(f) if f > fc
, (29)

in which H̃m,l(f) is the DTFT of h̃m,l, and l1 and l2 are the
indices of the reference speakers for array 1 and 2, respectively.
Also, a term that considers the delay is included in (29). For
wPM-TD and wPM-FD, this delay includes the modelling delay
used in the optimization and the delay of the cross-over filters,
i.e., τ = τc + τd. For wPM-SD, the delay of the filter bank is
also considered, i.e., τ = τc + τd + τf . The last metric is the
Array Effort (AE) [26], which is defined as

AE(f) =

∑15
l=0 |G′

l(f)|2
Er(f)

, (30)

where G′
l(f) is the DTFT of the signal fed to loudspeaker l

when driving the system in Fig. 6 with δ(n), and Er(f) is the
energy required by the reference loudspeaker to produce the
same energy in the bright zone as the PSZ system. Specifically,
l1 is the reference loudspeaker for f≤fc, and l2 for f>fc. To
improve the readability of the results, we use a third-octave
averaging [33] for all frequency-domain plots.

B. Comparison of wPM-TD, wPM-FD, and wPM-SD

Next, we compare wPM-TD, wPM-FD, and wPM-SD using
the setup and the metrics presented in Section V-A. For wPM-TD
and wPM-SD, we use λ = 2·10−3 and λ = 2·10−4 for arrays 1
and 2, respectively. This selection produces an array effort lower
than 2 dB in the range 100–5000 Hz. For wPM-FD, a search has
been carried out to find the regularization factor for each control
frequency that leads to the same array effort as wPM-TD. In the
following, we assume that whenLg is selected as the filter length
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Fig. 8. Comparison of the performance of wPM-TD ( ), wPM-FD ( ), and wPM-SD ( ) in terms of: (a) acoustic contrast, (b) normalized mean square
error, (c) mean energy of the cascade transfer function for the bright and dark zones, (d) array effort, and (e) regularization factor.

for the broadband algorithms (i.e., wPM-TD and wPM-FD), the
following relation is used to obtain the length of the subband
filters for wPM-SD:

L′
g =

⌈
Lg + Lp − 1

N

⌉
−
⌈
Lp

N

⌉
+ 1. (31)

This selection is motivated by the fact that the length of the
subband components of a FIR signal with length Lg is given by
(31), as studied in Section II.

We start by comparing the algorithms with Lg = 1500 for
wPM-FD and wPM-TD, andL′

g = 69 for wPM-SD. The Acous-
tic Contrast, the NMSE, the mean energy in each zone, the array
effort, and the regularization factor are shown in Fig. 8 as a
function of frequency. First, we would like to highlight that the
array effort (Fig. 8(d)) is almost identical for all the algorithms.
This means that the differences between the algorithms in terms
of acoustic contrast or NMSE are not achieved at the cost of
higher effort, and then, the comparison between algorithms
is fair. From Fig. 8, it is clear that the performance of the
algorithms is equal for frequencies above 2.2 kHz (where array
2 operates). The explanation is that long filters are not required
in these frequencies because the reverberation time of the room
in these frequencies is low (as we will see in Section V-D).
Then, the effective length of the filters in these frequencies
is shorter than the window used with wPM-FD, and so, the
truncation does not degrade the performance. At frequencies
near the cut-off frequency (i.e., 1.9 kHz), wPM-FD an wPM-SD
perform better than wPM-TD, being wPM-FD slightly superior
than wPM-SD. This phenomenon occurs because for wPM-FD
and wPM-SD the filter coefficients are set to 0 in the control
frequencies/subbands outside the frequency range of the arrays,
an consequently, the interference between arrays at frequencies

around 1.9 kHz is lower than with wPM-TD. The performance of
wPM-TD in these frequencies could be improved by increasing
the length of the cross-over filters. Also, we can see that wPM-
TD and wPM-SD offer a better performance than wPM-FD
for frequencies below 1 kHz. At certain frequencies, wPM-FD
offers 4 dB lower acoustic contrast and 3 dB higher NMSE than
wPM-TD and wPM-SD.

Now, we further study the performance in the range 100–
1000 Hz for array 1 (where greater differences were found
in Fig. 8). In particular, we study the influence of the filter
length in the performance of each algorithm. We plot in Fig. 9
the average acoustic contrast, NMSE, and array effort in the
band 100–1000 Hz as a function of the filter length. Also, we
plot in Fig. 9(d) the delay of the system. For wPM-TD and
wPM-SD, the performance converges at Lg = 1500, where an
average acoustic contrast of 16.1 dB and NMSE of−16.5 dB are
achieved. For wPM-FD, the performance converges to the same
values, but Lg = 3000 is required to achieve the convergence
(twice the length needed for wPM-TD and wPM-SD). Then, we
can see that the performance of the studied algorithms is nearly
the same if long enough filters are used. However, wPM-TD and
wPM-SD can achieve good performance even if shorter filters
are selected. Moreover, we can see in Fig. 9(d) that the delay
for wPM-TD and wPM-SD is constant, while it increases with
the filter length for wPM-FD. Then, wPM-TD and wPM-SD
not only can obtain good performance with shorter filters than
wPM-FD, but also with shorter delays. We can see from Fig. 8
that wPM-TD and wPM-SD are nearly identical in terms of
acoustic contrast, NMSE, and array effort, but wPM-SD requires
higher delay. Specifically, we have a delay τ = 36.0 ms for
wPM-SD and τ = 25.9 ms for wPM-TD. Still, the delay for
wPM-SD is significantly lower than for wPM-FD, which is
τ = 53.1 ms for Lg = 1500 and τ = 104.1 ms for Lg = 3000.
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Fig. 9. Comparison of the average performance of wPM-TD ( ), wPM-FD ( ), and wPM-SD ( ) in the frequency range 100–1000 Hz as a function of the
filter length in terms of: (a) acoustic contrast, (b) normalized mean square error, (c) array effort, and (d) system delay. In the x-axis, the number within the brackets
indicates the length of the equivalent subband filters (obtained with (31)).

Fig. 10. Measured computation time for different algorithms as a function
of the filter length. In the x-axis, the number within the brackets indicates the
length of the equivalent subband filters for wPM-SD (obtained with (31)).

Next, we compare the computational demands of the algo-
rithms. For the comparison, we consider a single array (i.e., 8
speakers) where the optimization and the filtering are carried out
for all control frequencies/subbands for wPM-FD/wPM-SD. We
start by comparing the complexity of each algorithm for obtain-
ing the optimal filters. Two different approaches have been used
for wPM-TD: 1) computing the exact solution (18); 2) using the
iterative algorithm proposed in [18] with γ0 = 10−8, γ′ = 10,
sth = 0.1, and 300 iterations. For the iterative algorithm [18],
an exact number of operations can not be calculated because
each iteration requires different computations depending on
the scenario. Then, we measure the computation time of the
algorithms running in Matlab R2018a in an Intel Core i7-7700
processor at 3.60 GHz. The measurement has been computed as
the mean for 150 repetitions. For wPM-TD with exact solution,
wPM-FD, and wPM-SD, the function linsolve() has been used to
obtain the optimal solutions. The iterative algorithm in [18] has
been implemented using C language, and ran from Matlab using
a mex function. The main reason is that iterative algorithms are
computationally inefficient in Matlab [34]. We show in Fig. 10
the computation time of each algorithm as a function of the filter
length. The results for wPM-SD include the computation time re-
quired to obtain the subband components of the RIR. From these
results, we can see how obtaining the exact wPM-TD solution
is computationally very demanding, while wPM-FD requires
very low computation. The iterative algorithm [18] effectively
reduces the complexity for filter lengths longer than 1000 sam-
ples. However, its computation time is still significantly higher

Fig. 11. Mega FLOPs required for broadband filtering ( ), and subband
filtering ( ) as a function of the filter length for three different frame lengths
(Lf ). In the x-axis, the number within the brackets indicates the length of the
equivalent subband filters (obtained with (31)).

than the one for wPM-SD, which has lower computation time
than the exact wPM-TD solution for all the studied filter lengths.
As we discussed previously, the computational demands for
solving the optimization are not a key factor for static PSZ
systems, because the filters are computed offline. However, the
lower computational complexity of wPM-SD can be beneficial
in dynamic systems, where the filters are recomputed online
to take into account the mobility of the zones or the changing
statistics of the input signal.

A key aspect of all PSZ systems is the computational complex-
ity needed for filtering the audio signals, as it requires real-time
performance. Next, we compare the computational demands of
broadband filtering (for wPM-TD and wPM-FD) and subband
filtering with a GDFT filter bank (for wPM-SD). In Fig. 11, we
show the number of Floating Point Operations (FLOPs) required
to filter signals of 1470, 3675, and 7350 samples (i.e., frames
of 100, 250 and 500 ms) as a function of the filter length. We
considered an efficient broadband filtering using the Fast Fourier
Transform (FFT), and the efficient polyphase implementation
of the GDFT filter bank [23]. The results show that subband
filtering requires significantly lower number of FLOPS than the
equivalent broadband filtering. Thus, wPM-SD requires lower
computational demands than wPM-TD and wPM-FD. For ex-
ample, wPM-SD with L′

g = 69 (with performance nearly equal
to wPM-TD with Lg = 1500) requires lower number of FLOPs
than wPM-TD with Lg = 500. Then, wPM-SD can use longer
filters than wPM-FD and wPM-TD with lower computational
complexity. This is a great advantage for PSZ systems, as it
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Fig. 12. Mega FLOPs required to perform subband filtering of a signal of
3675 samples as a funtion of the prototype filter length for different filter
bank configurations. For each configuration, the length of the subband filters is
obtained with (31) (assuming thatLg = 1500). Also, the Mega FLOPS required
for the equivalent broadband filtering with Lg = 1500 are plotted.

allows to use very long filters with affordable computational
demands.

Actually, the computational benefits of subband filtering de-
pend on the selected filter bank configuration. To study this
dependence, we show in Fig. 12 the number of FLOPs required
by different configurations to filter a signal of 3675 samples.
For each configuration, the length of the subband filters L′

g

is obtained with (31) assuming that Lg = 1500. Results for
K = 20, 30, and 40 subbands are included. For each of these
values, two different resampling factors (N ) are used, offering a
fractional oversampling (N/K) of approximately 0.5 and 0.75.
Also, the number of FLOPs required for broadband filtering
with Lg = 1500 are included for comparison purposes. First,
we can see that a fractional oversampling of 0.5 does not offer
computational benefits with respect to broadband filtering. How-
ever, increasing the fractional oversampling to 0.75 significantly
reduces the computational complexity. The main reason is that,
for the same broadband filter length, a fractional oversampling
factor of 0.75 requires shorter subband filters than 0.5 (because
higher fractional oversampling factor implies higher N , and so,
smaller L′

g , as it can be seen in (31)). Also, we can see that
increasing the number of subbands reduces the computational
complexity when using the same fractional oversampling and
prototype filter length. Nevertheless, it is important to note that
the higher the number of subbands, the longer the prototype filter
required to fulfil condition (4) (leading to increased computa-
tional demands). Then, a compromise between number of sub-
bands, resampling factor, and prototype filter length is required
to obtain computation reductions. The selected configuration
in Section V-A with K = 30, N = 22, and Lp = 150 seems
a good choice, as leads to good performance with wPM-SD
and significantly lower computational demands than broadband
filtering.

From the presented results, we can conclude that the studied
algorithms can offer similar performance, but wPM-TD and
wPM-SD require shorter filters and delays than wPM-FD. Also,
we showed that the performance of wPM-SD and wPM-TD is
almost identical. However, wPM-SD leads to higher delay than
wPM-TD in benefit of lower computational demands (both for
solving the optimization and for filtering the input signals).

Fig. 13. Different subsets of loudspeakers for array 1.

TABLE I
INDICES OF THE SUBBANDS WHERE EACH SUBSET OF SPEAKERS IS USED

FOR EACH CONFIGURATION

C. wPM-SD with Different Loudspeaker Setup in Each
Subband

As we mentioned in Section IV, the versatility of wPM-SD
allows us to use different loudspeaker sets in each subband. Next,
we consider 3 different subsets of speakers for array 1 (shown
in Fig. 13), where subsets 1, 2, and 3 are formed by 8, 6 and
4 speakers, respectively. We evaluate the performance of four
different configurations for wPM-SD (shown in Table I), where
we limit the study to the range 100–1900 Hz (i.e., subbands
0–3). Specifically, configurations 1, 2, and 3 use subsets 1, 2,
and 3 in all subbands, respectively. Finally, configuration 4 is
a subband-dependent configuration where subset 2 is used in
subbands 1–3 and subset 3 in subband 0.

In Fig. 14, we compare the performance of the four con-
figurations in Table I with L′

g = 69. We used λ = 2·10−3 for
configuration 1, and searched for the regularization factors that
lead to approximately equal filter energy than configuration 1
for the other configurations. From the results, it is obvious that
the best performance is achieved for configuration 1, where all
the available speakers in the array are used. The performance of
configuration 2 is quite similar for frequencies above 500 Hz,
with differences lower than 1 dB for the acoustic contrast and
NMSE with respect to configuration 1. However, this configura-
tion offers a noticeable worst performance for frequencies below
500 Hz. Probably, this degradation is produced because of the
shorter aperture of the array for configuration 2. On the contrary,
configuration 3 offers similar performance to configuration 1
for frequencies below 500 Hz (even though only 4 speakers are
used) but very bad performance for higher frequencies. This
bad performance is produced by the spatial aliasing, which
appears at lower frequencies for configuration 3 due to its
higher inter-element distance. Finally, it can be seen how using
configuration 4 (with 4 speakers in subband 0 and 6 speakers in
subbands 1–3) we can achieve a performance which is quite
close to configuration 1. Moreover, reducing the number of
speakers used in each subband allows us to further reduce the
computational demands. Concretely, configuration 4 requires
31.25% less filter taps than configuration 1 for subbands 0–3.
Then, selecting different loudspeaker sets for different subbands
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Fig. 14. Performance comparison for wPM-SD with loudspeaker configura-
tions 1 ( ), 2 ( ), 3 ( ), and 4 ( ) in terms of: (a) acoustic contrast,
and (b) normalized mean square error.

can be further used to reduce the computational demands in
cases where the computational resources are limited (at the
cost of worsening a little the performance in certain frequency
bands). Thus, we can conclude that, according to the desired
performance and to the available processing capabilities, the
flexibility of wPM-SD allows to select the most convenient
loudspeaker set for each subband.

D. wPM-SD with Different Filter Length in Each Subband

In PSZ systems, the length of the filters is related with the
reverberation time of the environment, which is frequency de-
pendent (being usually higher for lower frequencies [35]). For
wPM-TD and wPM-FD, the frequencies with higher reverbera-
tion time determine the length of the filter that must be used for
all the operation bandwidth. However, for wPM-SD the length
of the filters can be selected for each subband according to the
reverberation properties in that subband.

Next, we compare in Fig. 15 the performance of four dif-
ferent configurations for wPM-SD. We include three configu-
rations with the same filter length for all subbands, with L′

g =
34, 47, 69. Also, we show the results for a configuration with
subband-dependent filter length, whose details are shown in Ta-
ble II. For the configuration with L′

g = 69, we used λ = 2·10−3

for subbands 0–3 (i.e., for array 1) and λ = 2·10−4 for subbands
4–14 (i.e., for array 2). For the other configurations, we searched

Fig. 15. Performance comparison for wPM-SD withL′
g = 34 ( ),L′

g = 47

( ), L′
g = 69 ( ), and subband-dependent length ( ) in terms of: (a)

acoustic contrast, and (b) normalized mean square error.

TABLE II
FILTER LENGTH FOR EACH SUBBAND FOR THE SUBBAND-DEPENDENT

CONFIGURATION

for the regularization factors that lead to approximately equal
filter energy than with L′

g = 69. From Fig. 15, we can notice
that the best acoustic contrast and NMSE are achieved with
L′
g = 69, but L′

g = 34, 47 offer identical performance above
1 kHz. This fact indicates that long filters are not required above
1 kHz for the studied scenario. For frequencies between 500 Hz
and 1 kHz,L′

g = 34 offers worse performance thanL′
g = 69, but

L′
g = 47 leads to very similar results. Then, there is not benefit

from selecting a higher value than L′
g = 47 for this frequency

range. Also, the results show that long filters (as L′
g = 69) are

beneficial for frequencies below 500 Hz. Finally, we can see
that the subband-dependent configuration offers a performance
approximately equal to L′

g = 69 in the range 100–5000 Hz.
At this point, we study how wPM-SD with subband-

dependent filter length can reduce the computational demands.
We show in Table III the percentage of FLOPs required for
filtering the input signals using the configuration in Table II with
respect to subband filtering with L′

g = 69 and broadband filter-
ing with Lg = 1500. For an input signal of 1470 samples, the
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TABLE III
PERCENTAGE OF FLOPS REQUIRED BY SUBBAND FILTERING WITH

SUBBAND-DEPENDENT FILTER LENGTH WITH RESPECT TO SUBBAND

FILTERING WITH L′
g = 69 AND BROADBAND FILTERING WITH Lg = 1500

computational savings of the subband-dependent configuration
are 19.07% and 48.86% with respect to subband filtering with
L′
g = 69 and broadband filtering with Lg = 1500, respectively.

It is worth mentioning that these improvements are not obtained
at the cost of worse performance, as from the results presented
in this section and in Section V-B we know that wPM-SD
with subband-dependent length, wPM-SD with L′

g = 69, and
wPM-TD with Lg = 1500 offer almost identical performance.
Then, the versatility of wPM-SD to select the filter length for
each subband according to its reverberation properties can be
used to further reduce the computational complexity of a PSZ
system, with negligible performance degradation.

VI. CONCLUSION

In this article, we proposed the novel wPM-SD algorithm
to obtain the optimal subband filters for a PSZ system using
a Generalized Discrete Fourier Transform filter bank. The al-
gorithm is based on formulating an independent time-domain
optimization problem for each subband of the filter bank. To
do so, the algorithm makes use of the subband decomposition
algorithm proposed in [24], which is further optimized in this
article to reduce the required number of matrix inversions. We
presented experimental evaluations that confirm that wPM-SD
can perform approximately equal to wPM-TD, but with a small
increase in the system delay (produced by the filter bank).
However, the computational efforts required for computing the
optimal filters are significantly lower with wPM-SD. Also, the
evaluation results showed that wPM-SD and wPM-TD require
shorter filters and delays than wPM-FD. Moreover, one of the
advantages of wPM-SD with respect to wPM-TD and wPM-FD
is that it requires substantially lower computational complexity
to filter the input audio signals. Then, wPM-SD is preferred
over wPM-TD and wPM-FD for practical PSZ systems, where
usually limited computation resources are available and long
filters are needed. In addition, we showed that formulating and
independent optimization problem for each subband leads to
great versatility for a PSZ system, as different configurations
can be used for each subband. First, we presented experimental
results where wPM-SD is used with different sets of loud-
speakers for each subband. The results showed that reducing
the number of loudspeakers in certain subbands can be useful
to further reduce the computational complexity with only a
slight worsening of the performance. Finally, the versatility
offered by wPM-SD was further validated with experimental
results where subband-dependent filter length is used. The re-
sults showed that the performance is not degraded if short filters
are used for the subbands with short reverberation time. Then,
wPM-SD with a proper selection of the filter lengths for the

different subbands can contribute to reduce even more the com-
putational complexity of the PSZ system without performance
degradation.
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