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Summary
From decomposition method for operators, we consider a Newton-Steffensen iterative scheme
for approximating a solution of nonlinear Fredholm integral equations with non-differentiable
Nemystkii operator. By means of a convergence study of the iterative scheme applied to this
type of nonlinear Fredholm integral equations, we obtain domains of existence and uniqueness of
solution for these equations. In addition, we illustrate this study with a numerical experiment
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1 INTRODUCTION
The various types of integral equations are importantmathematical tools for describing knowledgemodels that appear in different areas of applied
science. Because of extensive application of integral equations and not having the exact solutions in many cases, numerical solution of integral
equations has attracted researcher’s attention to develop numerical method for approximating solution of these equations. For example, we can
consider different Fredholm-type integral equations (18, 19, 27) , Volterra-Fredholm integral equations (20, 25, 14), nonlinear Fredholm integro-
differential equations (21), systems of Fredholm-Volterra integral equations (22), etc.
In this paper, we consider a special case of nonlinear Fredholm integral equation ((13, 24, 27))

x(s) = f(s) + λ

b∫
a

K(s, t)N (x)(t) dt, s ∈ [a, b], (1)

where λ ∈ R, −∞ < a < b < +∞, the function f(s) is continuous on [a, b] and given, the kernel K(s, t) is a known continuous function in
[a, b] × [a, b], the Nemytskii operatorN : Ω ⊆ C ([a, b]) → C ([a, b]), whereΩ is a nonempty open convex domain in C ([a, b]), given byN (x)(t) =

N(x(t)), where N is a known continuous but non-differentiable function in R and x is a solution to be determined in C ([a, b]), where C ([a, b])

denotes the space of continuous real functions in [a, b].
These equations are related to boundary value problems for differential equations, since they can be reformulated as two-point boundary

value problems or elliptic partial differential equations with nonlinear boundary conditions (6, 27). Moreover, these equations appear in several
applications to real world: the theory of elasticity, engineering, mathematical physics, potential theory, electrostatics and radiative heat transfer
problems (3). As the Fredholm equations of form (1) cannot be solved exactly, we can use different numerical techniques to solve them. Some of
themwill be discussed below.
First, we can approximate a solution of (1) by applying directly an iterative scheme. If we pay attention to the iterative schemes that can be

applied, themethod of successive approximations plays an important role, aswe can see in (23, 29). Thismethod consists of applying the Fixed Point
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Theorem to the equation

x(s) = [Ψ(x)](s) with [Ψ(x)](s) = f(s) + λ

b∫
a

K(s, t)N (x)(t) dt (2)

and obtaining a sequence {xn = Ψ(xn−1)}n∈N that converges to a solution x∗(s) of (1). This technique has two problems: the sequence {xn}
converges slowly to x∗ and the condition required to the operator involved Ψ is very restrictive, since Ψ must be a contraction from a domain
to itself (26). As a consequence of both problems, other iterative schemes can be used, as for example, Whittaker-type methods (11), New-
ton’s method (10, 15), direct modifications of Newton’s method (24), Newton-type methods (16) or particular iterative schemes of high order of
convergence (8, 12).
Second, we can usually find techniques based on processes of discretization that transform the continuous problem given in (1) into a finite

dimensional problem. A procedure to achieve this consists of applying formulas of numerical quadrature that are used to approximate the integral
appearing in equation (1), so that systems of equations are then obtained, and finally solved (28). Another procedure for the discretization of the
problem consists on the application of the discrete collocation method (2, 6, 25), that consists of choosing a finite dimensional space of functions
that are possible candidates to be solutions of (1). An easy choice is polynomials of a certain degree. After that, a number of points in the interval
[a, b] are chosen and the polynomial chosen is forced to satisfy (1) in such points, so thatweobtain afinite dimensional problem that has to be solved.
Notice that different choices of the finite dimensional space have notably proliferated. Anothermethod that can be also included under this kind of
techniques, although with some differences, is the Adomian decomposition method (1, 7), which is a semi-analytical method that consists of using
the Adomian polynomials to approximate a solution of (1) by imposing that the Adomian polynomials satisfy equation (1).
Third, an interesting technique toapproximate a solutionof (1) is thehomotopyanalysismethod (3, 14), that provides ananalytical approximation

to the solution of (1) from an homotopy, so that a continuousmapping of an initial guess approximation to the exact solution of (1) is constructed.
On the other hand, observe that the equation (1) can be defined asH(x) = 0 forH : Ω ⊆ C ([a, b]) → C ([a, b]) where Ω is a nonempty open

convex domain inC ([a, b]) and

[H(x)](s) = x(s)− f(s)− λ
b∫
a

K(s, t)N (x)(t) dt, s ∈ [a, b]. (3)

It is well-known that Newton’s method,
xn+1 = xn −

[
H′(xn)

]−1H(xn), n ≥ 0; x0 ∈ Ω is given, (4)
is one of the most used iterative schemes to approximate a solution x∗ ofH(x) = 0. But this method has a serious shortcoming: the derivative
H′(x) has to be evaluated at each iteration. This makes the method not applicable to equations with non-differentiable operators. It is common to
approximate derivatives by divided differences (((4, 5, 9)) for obtaining derivative free iterative schemes. So, given an operatorD : Ω ⊆ C ([a, b])→
C ([a, b]), let us denote byL(Ω,C ([a, b])) the space of bounded linear operators fromΩ to C ([a, b]), an operator [x, y;D] ∈ L(Ω,C ([a, b])) is called
a first order divided difference for the operatorD on the continuous real functions x and y (x 6= y) if

[x, y;D](x− y) = D(x)−D(y). (5)
Therefore, asN is a non-differentiable operator thenH(x) is not either. So, if we want to apply Newton’s method to approximate a solution of the
equationH(x) = 0, if each step of Newton’s methodH′ is approximated by the divided difference of first order [x, x +H(x);H], the Steffensen’s
method is obtained. Stetffensen’s method has beenwidely studied ((4, 5, 9)) and its algorithm is{

x0 given inΩ,

xn+1 = xn − [xn, xn +H(xn);H]−1H(xn), n ≥ 0.
(6)

Themethod has quadratic convergence and the same computational efficiency as Newton’s method. Although, the iterative schemes using divided
differences in their algorithm have a drawback, the accessibility of these iterative schemes to the solution of the equation is poor (17), so that the
domains of starting points are reduced. However, this is one of the favorable features of Newton’s method (4). So, , this is the first main aim of this
paper, we try to improve the accessibility of Steffensen’s method. For this, we use the decomposition method. So, for the operatorH that defines
the equationH(x) = 0, we consider

H(x) = F(x) + G(x), (7)
where F ,G : Ω ⊆ C ([a, b])→ C ([a, b]), being F a Fréchet differentiable operator and G a continuous but non-differentiable operator. Then,
consider the Newton-Steffensen-type iterative scheme (17): x0 ∈ C ([a, b]) is given,

xn+1 = xn − (F ′(xn) + [xn, xn +H(xn);G])−1H(xn), n ≥ 0,
(8)
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that is applied as 

x0 ∈ C ([a, b]) is given,

(F ′(xn) + [xn, xn +H(xn);G])αn = −H(xn)

xn+1 = xn + αn, n ≥ 0.

The Newton-Steffensen-type method (8) improves greatly the accessibility of Steffensen’s method by approximating its domain of starting points
to that of Newton’s method (17). Moreover, as we have already indicated above, a fundamental problem in the application of Newton’s method is
the fact that the operatorH is non-differentiable, so that we cannot obtainH′ to do the iterates. However, this technique of decomposition of the
operatorH plays a key role for the equationH(x) = 0. On the other hand, the Newton-Steffensen-type method (8) improves the approximations
of solutions of equations defined from non-differentiable operators. In this case, there are two advantages of (8): first, the differentiable part of
the operator is considered in the optimal situation, namely F ′(xn); and second, for the non-differentiable part, iteration (6), is considered with
[xn, xn +H(xn);G], which has quadratic convergence and the same efficiency as Newton’s method. In addition, as we see, we obtain an efficient
iterative scheme to solve the equationH(x) = 0.
On the other hand, we have other two aims for the paper: drawing conclusions about the existence and uniqueness of solution of some integral

equations of type (1), from using the theoretical significance of the iterative scheme applied to solve (1), and approximating numerically a solution.
Section 2, is devoted to introduce Nemytskii operators and the use of them for applying the decomposition method. In Section 3 we study the

existence of solution x∗ of equation (1), obtaining recurrence relations for the sequence {xn}. In Section 4, the uniqueness domain is established.
Next, in Section 5 we apply the results to a nonlinear Fredholm integral equation, obtaining convergence radii and a numerical solution. Finally, we
perform a comparative study of the iterative scheme (8) with an already existing one andwe drove some conclusions.

2 PRELIMINARIES
To establish a proper notation for the study indicated in the introduction and developed in this work, we use the known Nemytskii operators. So,
from a function x ∈ Ω ⊆ C ([a, b]), we define the operatorN : Ω ⊆ C ([a, b]) → C ([a, b]) byN (x)(t) = N(x(t)), which is a Nemytskii operator.
Besides, from a function y ∈ C ([a, b]), we define the operatorK : C ([a, b])→ C ([a, b]) byK(y)(s) = λ

∫ b
a K(s, t)y(t) dt, which is a linear integral

operator with kernelK(s, t). Finally, as a consequence of both operators, equation (3) can bewritten as
[H(x)](s) = [(I −KN )(x)− f ](s)

withH : Ω ⊆ C ([a, b])→ C ([a, b]).
Now, as the Nemystkii operatorN is non-differentiable, since thatN is continuous but non-differentiable inR, we consider the Nemystkii oper-

atorsNi : Ω ⊆ C ([a, b])→ C ([a, b]), for i = 1, 2, such thatN = N1 +N2 withNi(x)(t) = Ni(x(t)), for i = 1, 2, whereN = N1 +N2 withN1 a
differentiable operator inR andN2 a continuous but non-differentiable operator inR. So,

[H(x)](s) = [(I −KN )(x)− f ](s) = [(I −K(N1 +N2))(x)− f ](s)

= [(I −KN1)(x)− f ](s)−KN2(x)(s).

Then, for applying the decomposition method of operatorH (17), we can considerH(x) = F(x) + G(x) for F(x)(s) = [(I − KN1)(x) − f ](s)

and G(x)(s) = −KN2(x)(s), with F ,G : Ω ⊆ C ([a, b]) → C ([a, b]), where F is a Fréchet differentiable operator and G is a continuous but
non-differentiable operator. So, we have:

F(x)(s) = x(s)− f(s)− λ
b∫
a

K(s, t)N1(x)(t) dt, s ∈ [a, b], (9)

and
G(x)(s) = −λ

b∫
a

K(s, t)N2(x)(t) dt, s ∈ [a, b], (10)

To continue, for applying themethod (8) to approximate a solution of equationH(x) = 0, wemust calculateF ′(x) and [x, x+H(x);G].
In first place, notice thatK′(x)z(s) = K(z)(s) and, taking into account (9), the first derivative ofF at x is then given by

[F ′(x)y](s) = y(s)− [(KN1)′(x)y](s) = y(s)−K(N ′1(x)y)(s)

= y(s)− λ
b∫
a

K(s, t)N ′1(x)y(t) dt,

whereF ′(x) : Ω ⊆ C ([a, b])→ C ([a, b].



4 M.A. Hernández-Verón ET AL

In second place, taking into account (10), given the continuous real functions x and y (x 6= y), we define [x, y;G] : Ω ⊆ C ([a, b])→ C ([a, b]with

[x, y;G](u)(s) = −λ
b∫
a

K(s, t)[x, y;N2](t)u(t) dt,

we consider [x, y;N2] : R→ Rwith

[x, y;N2](t) =


N2(x(t))−N2(y(t))

x(t)− y(t)
if t ∈ [a, b] such that x(t) 6= y(t),

0 if t ∈ [a, b] such that x(t) = y(t).

So, for the continuous real functions x and y (x 6= y), obviously [x, y;G] ∈ L(Ω,C ([a, b])) and
[x, y;G](x− y) = G(x)− G(y).

Then, [x, y;G] is a first order divided difference for the operator G : Ω ⊆ C ([a, b])→ C ([a, b]).

3 DOMAINOF EXISTENCEOF SOLUTION
This section concerns with the study of the semilocal convergence of iterative scheme (8). The analysis of the semilocal convergence is based on
demanding conditions to the initial approximations, from certain conditions on the operatorH, and provide the conditions required to the initial
approximations that guarantee the convergence to a solution x∗ of the equationH(x) = 0 . From the semilocal convergence of iterative scheme
(8), we draw conclusions about the existence of a solution x∗.
We shall show the semilocal convergence of iterative scheme (8) based on the following conditions:

(I) N isK0-Lipschitz continuous operator such that
‖N (x)−N (y)‖ ≤ K0‖x− y‖, where x, y ∈ Ω ⊆ C ([a, b]) and K0 > 0. (11)

(II) N ′1 is aK1-Lipschitz continuous operator such that
‖N ′1(x)−N ′1(y)‖ ≤ K1‖x− y‖, where x, y ∈ Ω ⊆ C ([a, b]) K1 > 0. (12)

(III) [−,−;N2] is an operator such that
‖[x, y;N2]− [u, v;N2]‖ ≤ L+K2 (‖x− u‖+ ‖y − v‖) , where x, y, u, v ∈ Ω ⊆ C ([a, b]), (13)

K2 > 0 and L > 0.

As first step, from the previous conditions we easily obtain the following result:
Lemma 1. Under conditions (I)–(III)we obtain the following items:

(i) H is Lipschitz continuous operator such that
‖H(x)−H(y)‖ ≤ (1 + λMK0)‖x− y‖, where x, y ∈ Ω ⊆ C ([a, b], (14)

withM = maxs∈[a,b]
∫ b
a |K(s, t)| dt.

(ii) F ′ is a Lipschitz continuous operator such that
‖F ′(x)−F ′(y)‖ ≤ λMK1‖x− y‖, where x, y ∈ Ω ⊆ C ([a, b], (15)

(iii) [−,−;G] is an operator such that
‖[x, y;G]− [u, v;G]‖ ≤ λM (L+K2 (‖x− u‖+ ‖y − v‖)) , (16)

for pairs of distinct functions (x, y), (u, v) ∈ Ω× Ω.
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3.1 Main result
At this point we have established in Lemma 1 the bounding conditions for the operators we use in our iterative proccess. Now, our aim is to perform
the semilocal convergence study for setting the domain of existence of the solution. First of all, we give the main result, but in order to prove it, we
have to analyze the well definition of iterative process (8) by starting from any suitable guess and obtain the relations that verify the iterates.
Theorem 1. LetH be a nonlinear operator,H : Ω ⊆ C ([a, b]) −→ C ([a, b]), defined on a nonempty open convex domainΩ, withH(x) = F(x) +

G(x), whereF is a Fréchet differentiable operator and G is a continuous but non-differentiable operator. Suppose that conditions (I)–(III) are satisfied
and consider x0 ∈ Ω verifying thatA0 = F ′(x0) + [x0, x0 +H(x0);G] has inverse with ‖A−1

0 ‖ ≤ β. Let ||H(x0)|| ≤ α, η = βα, and h = λMβ.
If the equation

t =

1 +
f(a0)b0

1− e(t)
(1−d(t))(1−2d(t))

 η, (17)

has at least one positive real root and the smallest positive real root, denoted byR, satisfies
B(x0, R) ⊂ Ω, η < R, and a < 1

2
, (18)

where
d(t) = h(L+ (K1 +K2(3 + λMK0))t),

e(t) = h(L+ (
1

2
K1 +K2)η +K2(α+ (1 + λMK0)t)),

f(t) =
1

1− t
,

a0 = d(η), b0 = e(0),

a = d(R), b = e(R),

(19)

then, the sequence {xn} generated by the iterative process given by (8), converges to a solution x∗ of the equationH(x) = 0, verifying that xn, x∗ ∈
B(x0, R), for all n ∈ N.
In order to clarify the proof of this main theorem, we give the following lemmaswhere we analyze the iterative process step by step.
Lemma 2. Under conditions of Theorem 1 the value ofR obtained from (17) verifies

(i) f(a)f(2a)b < 1

(ii) R =

[
1 +

f(a0)b0

1− f(a)f(2a)b

]
η,

(iii) R >
[
1 + f(a0)b0

(
1 + f(a)f(2a)b+ (f(a)f(2a)b)2 + . . .+ (f(a)f(2a)b)n−1

)]
η, ∀n ≥ 1.

Proof. This Lemma follows obviously, (i) and (ii) by definition of R, taking into account for (i) that η < R, and substituting in (17) the values of
parametersa0, b0, aand b. To prove (iii), note that in secondpart of relation (ii)appears the sumof a geometric sequence of positive ratiof(a)f(2a)b <

1, for (i). �

Lemma 3. Under conditions of Theorem 1 and by denoting a−1 = 0, an = a and bn = b for all n ≥ 1, the following assertions hold for n ≥ 1,
(I1) ∃A−1

n , such as ||A−1
n || ≤ βf(an+1), and ||A−1

n A0|| ≤ f(an+1).

(I2) ||xn+1 − xn|| ≤ bn−1f(an+1)f(2an−2)||xn − xn−1||.

(I3) ||xn+1 − xn|| ≤ (bf(a)f(2a))n−1||x2 − x1||.

(I4) ||xn+1 − x0|| ≤
[
1 + f(a0)b0(1 + f(a)f(2a)b+ (f(a)f(2a)b)2 + . . .+ (f(a)f(2a)b)n−1)

]
η.

(I5) xn+1 ∈ B(x0, R).

Proof. We prove this lemma by an induction procedure.
We start analyzing the first steps. For n = 1we have by hypothesis that ∃A−1

0 , so x1 is well defined and is obtained:
||x1 − x0|| ≤ ||A−1

0 H(x0)|| ≤ ||A−1
0 ||||H(x0)|| ≤ βα = η

now by (18), we have that x1 ∈ B(x0, R).
When n = 2, first of all we need to obtain the existence ofA−1

1 , so by using bounds obtained in Lemma 1we have
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||I −A−1
0 A1|| ≤ ||A−1

0 ||||A0 −A1||

≤ ||A−1
0 ||

(
||F ′(x1)−F ′(x0)||+ ||[x1, x1 +H(x1);G]− [x0, x0 +H(x0);G]||

)
≤ β (λMK1||x1 − x0||+ λM(L+K2(||x1 − x0||+ ||x1 − x0||+ ||H(x1)−H(x0)||)))

≤ h (L+ (K1 +K2(2 + (1 + λMK0)))||x1 − x0||)

≤ h(L+ (K1 +K2(3 + λMK0))η) = a0

By (18), we have a0 < a < 1, then by applying Banach Lemmawe have that ∃A−1
1 . It also fulfills these bounds:

||A−1
1 || ≤ βf(a0)

||A−1
1 A0|| ≤ f(a0)

(20)

so x2 is well defined and it is derived:

||x2 − x1|| = ||A−1
1 H(x1)|| ≤ ||A−1

1 A0||||A−1
0 H(x1)|| (21)

We use the expression of the iterative scheme (8) to deduce:
A−1

0 H(x1) = A−1
0 − (x1 − x0)−A−1

0 H(x0)

= A−1
0 (F(x1) + G(x1))− (x1 − x0)−A−1

0 (F(x0) + G(x0))

= A−1
0 (F(x1)−F(x0))− (x1 − x0) +A−1

0 (G(x1)− G(x0))

=

x1∫
x0

(A−1
0 F

′(z)− Id)dz +A−1
0 (G(x1)− G(x0))

= A−1
0

x1∫
x0

(F ′(z)−A0)dz +A−1
0 (G(x1)− G(x0))

= A−1
0

x1∫
x0

(F ′(z)−F ′(x0)− [x0, x0 +H(x0;G)])dz +A−1
0 ([x1, x0;G](x1 − x0))

= A−1
0

x1∫
x0

(F ′(z)−F ′(x0))dz +A−1
0 ([x1, x0;G]− [x0, x0 +H(x0);G])(x1 − x0)

Then, by taking norms and using bounds obtained in Lemma 1we get

||A−1
0 H(x1)|| ≤ ||A−1

0 ||
[

1

2
λMK1||x1 − x0||2 + λM(L+K2(||x1 − x0||+ ||H(x0)||))||x1 − x0||

]
≤ h

(
1

2
K1||x1 − x0||+ L+K2(||x1 − x0||+ ||H(x0)||)

)
||x1 − x0|| (22)

≤ h
(
L+ (

1

2
K1 +K2)η +K2α

)
||x1 − x0|| = b0||x1 − x0||

Therefore, going back to (21) and using (20) and (22)we get

||x2 − x1|| ≤ f(a0)b0||x1 − x0||

So, by using (18) it is obvious that f(a0)b0 < 1, then we we get that

||x2 − x1|| < ||x1 − x0|| ≤ η

||x2 − x0|| ≤ ||x2 − x1||+ ||x1 − x0|| ≤ (f(a0)b0 + 1)η < R

and so by using Lemma 3 it follows that x2 ∈ B(x0, R).
We have to perform another step before establishing the recurrence, so for n = 3 in order to apply Banach Lemmawe need the following:
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||I −A−1
0 A2|| ≤ ||A−1

0 ||||A2 −A0||

≤ ||A−1
0 ||

(
||F ′(x2)−F ′(x0)||+ ||[x2, x2 +H(x2);G]− [x0, x0 +H(x0);G]||

)
≤ βλM (K1||x2 − x0||+ (L+K2(||x2 − x0||+ ||x2 − x0||+ ||H(x2)−H(x0)||)))

≤ λMβ(L+ (K1 +K2(2 + (1 + λMK0)))||x2 − x0||)

< h(L+ (K1 +K2(3 + λMK0))R) = a

Again, by (18), as a < 1, then ∃A−1
2 and it verifies that:

||A−1
2 || ≤ βf(a)

||A−1
2 A0|| ≤ f(a).

(23)

So x3 is well defined and we can obtain the following inequality

||x3 − x2|| ≤ ||A−1
2 A0||||A−1

0 A1||||A−1
1 H(x2)||. (24)

Now, we need to bound ||A−1
0 A1||, just applying Lema 1 we have:

||I −A−1
1 A0|| ≤ ||A−1

1 ||||A1 −A0||

≤ βf(a0)λM(L+ (K1 +K2(3 + λMK0)))η = f(a0)a0

but from (18) and a0 < 1
2
is easy to obtain that f(a0)a0 < 1, then by Banach Lemma it is established:

||A−1
0 A1|| ≤

1

1− f(a0)a0
=

1− a0
1− 2a0

=
f(2a0)

f(a0)
(25)

But, also with a similar reasoning that the one used before for bounding ||A−1
1 H(x1)||, now we have

||A−1
1 H(x2)|| ≤ ||A−1

1 ||(
1

2
λMK1||x2 − x1||2 + λM(L+K2(||x2 − x1||+ ||H(x1)||))||x2 − x1||)

< f(a0)h(L+ (
1

2
K1 +K2)η +K2(||H(x0)||+ (1 + λMK0)||x1 − x0||))||x2 − x1||

< f(a0)h(L+ (
1

2
K1 +K2)η +K2(α+ (1 + λMK0)R))||x2 − x1|| (26)

= f(a0)b||x2 − x1||,

where in the last inequality we have used that x1 ∈ B(x0, R) and ‖H(x1)|| ≤ ||H(x1)−H(x0)||+ ‖H(x0)||.
Now, coming back to (24) and using (23), (25) and (26), we obtain

||x3 − x2|| ≤ f(a)f(2a0)b||x2 − x1||,

from (18)we have that f(a)f(2a)b < f(a)f(2a0)b < 1, then,
||x3 − x2|| < ||x2 − x1|| < ||x1 − x0|| ≤ η.

On the other hand, by using Lemma 3
||x3 − x0|| ≤ ||x3 − x2||+ ||x2 − x0|| ≤ (f(a)f(2a0)bf(a0)b0 + f(a0)b0 + 1)η

≤ (1 + f(a0)b0(1 + f(a)f(2a)b)η < R

so we get x3 ∈ B(x0, R), having that (I1)− (I5) hold for all k = 1, 2.

Now by an induction procedure we assume that (I1) − (I5) hold for all k = 3, . . . , n − 1. Then, for completing the proof we have to obtain these
assertions for k = n.

First of all, we need to obtain the existence ofA−1
n , so we have
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||I −A−1
0 An|| ≤ ||A−1

0 ||||An −A0||

≤ ||A−1
0 ||

(
||F ′(xn)−F ′(x0)||+ ||[xn, xn +H(xn);G]− [x0, x0 +H(x0);G]||

)
≤ β (λMK1||xn − x0||+ (L+K2(||xn − x0||+ ||xn − x0||+ ||H(xn)−H(x0)||)))

≤ h(L+ (K1 +K2(2 + (1 + λMK0)))R) = a

Where in the last inequality we have used the induction hypothesis. Now, by (18), it follows that a < 1, then, by applying Banach Lemma we have
that ∃A−1

n and also fulfills these bounds:
||A−1

n || ≤ βf(a)

||A−1
n A0|| ≤ f(a)

So xn+1 is well defined and with the same reasoning than for previous steps we obtain

||xn+1 − xn|| ≤ ||A−1
n A0||||A−1

0 An−1||||A−1
n−1H(xn)||. (27)

Now, the bound forA−1
0 An−1 is having as in previous steps, so it follows

||I −A−1
n−1A0|| ≤ ||A−1

n−1||||An−1 −A0|| ≤ βf(a)a

but from (18) and a < 1
2
it is given vthat f(a)a < 1, then by Banach Lemma it is established:

||A−1
0 An−1|| ≤

1

1− f(a)a
=

1− a
1− 2a

=
f(2a)

f(a)

But, also with a similar reasoning that we have used before and by the induction procedure we obtain
||A−1

n−1H(xn)|| ≤ ||A−1
n−1||(

1

2
λMK1||xn − xn−1||2 + λM(L+K2(||xn − xn−1||

+ ||H(xn−1)||))||xn − xn−1||)

< f(a)h(L+ (
1

2
K1 +K2)η +K2(||H(x0)||+ (1 + λMK0)||xn−1 − x0||))||xn − xn−1||

< f(a)b||xn − xn−1||

so coming back to (27)we obtain
||xn+1 − xn|| ≤ f(a)f(2a)b||xn − xn−1||

from (18)we have that f(a)f(2a)b < 1, then,
||xn+1 − xn|| < ||xn − xn−1|| < · · · < ||x1 − x0|| ≤ η.

Moreover, by using the induction for (I3)we have:
||xn+1 − xn|| ≤ bf(a)f(2a)||xn − xn−1|| ≤ (bf(a)f(2a))n−1||x2 − x1|| ≤ (bf(a)f(2a))n−1f(a0)b0η

As a consequence we get,
||xn+1 − x0|| ≤ ||xn+1 − xn||+ ||xn − x0||

≤ (bf(a)f(2a))n−1f(a0)b0η + 1 + f(a0)b0[f(a)f(2a)b+ (f(a)f(2a)b)2

+ . . .+ (f(a)f(2a)b)n−2
]
η

≤
[
1 + f(a0)b0(f(a)f(2a)b+ (f(a)f(2a)b)2 + . . .+ (f(a)f(2a)b)n−1)

]
η < R

so we deduce that xn+1 ∈ B(x0, R) and the induction procedure is completed. �

After proving these Lemmas we are in conditions of stating the main result established in Theorem 1, that now we write in the same terms but
just in an abbreviated formwithout specifying again the values of the parameters, (19).

Proof of Theorem 1:
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The iterative process is well defined as we have proved in the previous Lemma. So, in order to prove that {xn} is a Cauchy sequence we get

‖xn+m − xn‖ ≤
m∑
i=1

‖xn+i − xn+i−1‖ ≤
m∑
i=1

(bf(a)f(2a))n+i−2‖x2 − x1‖

≤
[
bf(a)f(2a))n−1 + (bf(a)f(2a))n + · · · (bf(a)f(2a))n+m−2

]
‖x2 − x1‖ (28)

≤
(bf(a)f(2a))n−1 − (bf(a)f(2a))n+m−1

1− bf(a)f(2a)
f(a0)b0η

where in the last inequality we have sum them terms of a geometric sequence of ratio bf(a)f(2a) < 1. So, we can conclude that {xn} is a Cauchy
sequence, and then it has a limit x∗. By takingm→∞we obtain an a priori error estimation:

‖xn − x∗‖ ≤
(bf(a)f(2a))n−1

1− bf(a)f(2a)
f(a0)b0η

and taking n = 0 in (28) andm→∞ and the characterization ofR in Lemma 3we have that ‖x∗ − x0‖ ≤ R and then x∗ ∈ B(x0, R).
Moreoverx∗ is a solution ofH(x) = 0 since ‖AnH(xn)‖ = ‖xn+1−xn‖, but this difference tends to zero and alsoA−1

n is bounded, so by using
that ‖H(xn)‖ ≤ ‖A−1

n ‖‖AnH(xn)‖, by the continuity ofH it follows thatH(x∗) = 0.

4 DOMAINOFUNIQUENESSOF SOLUTION
Concerning to the uniqueness of the solution x∗, we have the following result.
Theorem 2. Under conditions of Theorem 1, then, the solution x∗ is the unique solution of the equation H(x) = 0 in B(x0, S) ∩ Ω, being
S =

1− λMβ(L+K2α)

2λMβ(K1 +K2)
.

Proof. Let y∗ ∈ B(x∗, R) ∩ Ω andH(y∗) = 0. We then define the following operator

P =

1∫
0

F ′ (x∗ + t(y∗ − x∗)) dt+ [y∗, x∗;G]

and, using (ii) and (iii) of Lemma 1, we obtain
‖A−1

0 P − I‖ ≤ ‖A−1
0 ‖ ‖P −A0‖

≤ ‖A−1
0 ‖

 1∫
0

‖F ′ (x∗ + t(y∗ − x∗))−F ′(x0)‖ dt+ ‖[y∗, x∗;G]− [x0, x0 +H(x0);G]‖


≤ λMβ

K1(‖x∗ − x0‖+

1∫
0

t‖y∗ − x∗‖dt) + L+K2(‖y∗ − x0‖+ ‖x∗ − x0‖+ ‖H(x0)‖)



< λMβ (2(K1 +K2)S + L+K2α) .

By using Banach Lemma and the value ofS we have that it existsP−1 ∈ L(X,Y ) , and, by the identityP (y∗ − x∗) = 0, we deduce x∗ = y∗. �

5 NUMERICAL EXPERIMENT
Now, we present a numerical example where we illustrate all the above results. Themax-norm has been considered.
We consider a nonlinear integral equation of Fredholm, which can be used to describe applied problems in the fields of electro-magnetics, fluid

dynamics, in the kinetic theory of gases and, in general, in the reformulation of boundary value problems. So, we consider an equation of the form
given in (1). Then, to solve this equation, we apply the iterative scheme (8) to the operator equation (3).
Next, we consider f(s) = (1− 11λ

80
)s− 1

2
,K(s, t) = st andN (x)(t) = x(t)3 + |x(t)|.

So, we approximate a solution of the nonlinear integral equation of Fredholm of type (1) given by:

x(s) = (1−
11λ

80
)s−

1

2
+ λ

1∫
0

st
(
x(t)3 + |x(t)|

)
dt, a ≤ s ≤ b, (29)

By direct substitution of x∗(s) = s− 1
2
in the above equation we have that x∗(s) is a solution of (29).
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For applying the decompositionmethod (8), for the operator:

H(x)(s) = x(s)− (1−
11λ

80
)s+

1

2
− λs

1∫
0

t
(
x(t)3 + |x(t)|

)
dt, a ≤ s ≤ b, (30)

we consider
F(x)(s) = x(s)− (1−

11λ

80
)s+

1

2
− λs

1∫
0

t x(t)3 dt, s ∈ [a, b], (31)

and
G(x)(s) = −λs

1∫
0

t |x(t)| dt, s ∈ [a, b], (32)

such thatH(x) = F(x) + G(x).

5.1 Existence and uniqueness of solutions
At this point by takingΩ = B(0, 1) from (11), (12) and (13) we have for all x(t), y(t), u(t), v(t) ∈ Ω that:

‖N (x(t))−N (y(t)) ≤ ‖x(t)3 − y(t)3‖+ ‖|x(t)| − |y(t)|‖

≤
(
‖x(t)2 + y(t)2 − x(t)y(t)‖+ 1

)
‖x(t)− y(t)‖,

moreover,
‖N ′1(x(t))−N ′1(y(t))‖ ≤ ‖3(x(t)2 − y(t)2)‖ ≤ 3‖x(t) + y(t)‖‖x(t)− y(t)‖,

and finally,
‖[x(t), y(t);N2]− [u(t), v(t);N2]‖ ≤ ‖

|x(t)| − |y(t)|
‖x(t)− y(t)‖

‖+ ‖
|u(t)| − |v(t)|
‖u(t)− v(t)‖

‖

So, we deduce the value of the constans introduced in Section 3 in order to perform the study, these are,K0 = 4,K1 = 6,L = 2 andK2 = 0. Then,
we can apply Lemma 1 withM = 1/2 and by choosing a starting point x0(s), and λ = 1/11, we use, first, (30) for obtaining the value of α that can
be seen in Table 1 . Secondly, for obtaining the existence and bound ofA−1

0 we calculate:
[A0y](s) =

[
(F ′(x0) + [x0, x0 +H(x0);G])y

]
(s)

= [(F ′(x0)y](s) + [[x0, x0 +H(x0);G])y](s)

= y(s)− λs
1∫

0

3tx0(t)2y(t) dt+ λs

1∫
0

t
|x0(t)| − |x0(t) +H(x0)(t)|

H(x0)(t)
y(t) dt

= y(s)− λs
1∫

0

t

[
3x0(t)2 dt−

|x0(t)| − |x0 +H(x0)(t)|
H(x0)(t)

]
y(t) dt = ω(s). (33)

From (33) we deduce that

‖I −A0‖ ≤ ‖λs
1∫

0

t

[
3x0(t)2 dt−

|x0(t)| − |x0 +H(x0)(t)|
H(x0)(t)

]
dt‖

and then for each starting guess x0(s)we obtain the boundmx0 such as:
‖I −A0‖ ≤ mx0 < 1,

so by applying Banach Lemmawe obtain the bound ofA−1
0 mentioned in Theorem 2:

β =
1

1−mx0
.

These values can be seen in Table 1 for different starting points. Once these bounds have been obtained we applied Theorem 2 for concluding the
radius of existence and uniqueness that can be also checked in Table 1 .
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x0(s) α β R S
s− 1/4 1/4 1.080845 0.333531 1.68863

(2s− 1)/4 1/4 1.028132 0.291515 1.77559
(4s− 1)/6 1/3 1.061859 0.454784 1.71896

TABLE 1 Semilocal convergence radii for different starting guesses and λ = 1/11.

5.2 A numerical solution
Now,we obtain a new algorithm to apply our iterative scheme as follows: from the development obtained in (33) we have: y(s) = A−1

0 ω(s), but, we
can consider y(s) = ω(s) + λsI where

I =

1∫
0

t

(
3x0(t)2 −

|x0(t)| − |x0(t) +H(x0)(t)|
H(x0)(t)

)
y(t) dt

If the last equality of (33) is multiplied by s
(

3x0(s)2 −
|x0(s)| − |x0(s) +H(x0)(s)|

H(x0)(s)

)
and integrated between 0 and 1, we obtain

I =

∫ 1
0 t
(

3x0(t)2 − |x0(t)|−|x0(t)+H(x0)(t)|
H(x0)(t)

)
ω(t) dt

1− λ
∫ 1
0 t

2
(

3x0(t)2 − |x0(t)|−|x0(t)+H(x0)(t)|
H(x0)(t)

)
dt
,

provided that λ
1∫

0

t2
(

3x0(t)2 −
|x0(t)| − |x0(t) +H(x0)(t)|

H(x0)(t)

)
dt 6= 1. Therefore,

y(s) = A−1
0 ω(s) = ω(s) + λ s

∫ 1
0 t
(

3x0(t)2 − |x0(t)|−|x0(t)+H(x0)(t)|
H(x0)(t)

)
ω(t) dt

1− λ
∫ 1
0 t

2
(

3x0(t)2 − |x0(t)|−|x0(t)+H(x0)(t)|
H(x0)(t)

)
dt
.

So, the application of the decompositionmethod (8) is given by the following algorithm:
• First step:Calculate:

H(xn)(s) = xn(s)− (1−
11λ

80
)s+

1

2
− λs

1∫
0

t
(
xn(t)3 + |xn(t)|

)
dt.

• Second step:Calculate:
An =

1∫
0

3txn(t)2H(xn)(t) dt, Bn =

1∫
0

t(|xn(t)| − |xn(t) +H(xn)(t)|) dt.

Cn =

1∫
0

t2
(

3xn(t)2 −
|xn(t)| − |xn(t) +H(xn)(t)|

H(xn)(t)

)
dt.

• Third step:Calculate:
Wn =

An −Bn
1− λCn

,

xn+1(s) = xn(s)−H(xn)(s)− λsWn.

In Tables 2 and 3 we can see the behavior of this algorithm thatwe apply by choosing different starting guesses and imposing as stopping criterion
‖xn+1(s) − xn(s)‖ ≤ 10−32.We work by using program Matlab 2016b working in variable precision arithmetic with 50 digits of mantissa. The
integrals for obtaining coefficientWn have been solved analytically.
Once the solutions for each iteration n have been obtained, we calculate different norms. The first column shows the difference between two

consecutive iterates, and the second column shows the norm between the solution obtained and the exact solution, x∗(s) = s − 1/2. In the last
two columnswe obtain the valueWn indicated in third step of the algorithm and the computational convergence order. As one can check quadratic
convergence is reached for all analyzed cases.

5.3 A comparative study
Finally, we are interested in comparing the numerical application of iterative scheme (8) with Steffensen’s method (6), which is the usually iterative
scheme used to solve non-differentiable equations. For this purpose, we use the algorithm described in Section 5.2 for obtaining the solution with
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n ‖xn(s)− xn−1(s)‖ ‖xn(s)− x∗(s)‖ Wn p

1 8.3916e-01 1.1806e-02 2.0941e-01
2 1.1803e-02 3.1641e-06 -2.0755e-03
3 3.1641e-06 2.2566e-13 -5.6440e-07 1.92873
4 2.2566e-13 1.1478e-27 -4.0253e-14 2.00093
5 1.1478e-27 4.8383e-53 -2.0475e-28 2
6 4.8827e-53 4.4389e-55 2.4884e-54 1.77501

TABLE 2 Errors for starting point x0(s) = s− 1/4 and tolerance 10−32.

n ‖xn(s)− xn−1(s)‖ ‖xn(s)− x∗(s)‖ Wn p

1 5.2375e-01 1.2354e-03 -6.6512e-02
2 1.2354e-03 3.4426e-08 -2.2003e-04
3 3.4426e-08 2.6714e-17 -6.1408e-09 1.73367
4 2.6714e-17 1.6086e-35 -4.7651e-18 2.00007
5 1.6086e-35 4.4342e-53 -2.8693e-36 2

TABLE 3 Errors for starting point x0(s) =
2s− 1

4
and tolerance 10−32.

(8), when we split equation by decomposing operator H in F + G as it is expressed in (31) and (32). In order to apply Steffensen’s method, we
discretize the integral equation (30) by taking n = 20 and n = 40 subintervals in [0, 1] and using the Simpson quadrature to transform equation
(30) into a finite dimensional problem:
If we denote the nodes by S = (si), i = 1, ..., n + 1 and the approximations of x(si) by xi , then equation (30) is equivalent to the following

system of nonlinear equations:

xi = (1−
11λ

80
)si −

1

2
+ λsi

n+1∑
j=1

sjpj
(
x3j + |xj |

)
, i = 1, 2, . . . , n+ 1. (34)

whereP = (pj), j = 1, ..., n+ 1 are Simpson’s weights, given byP = 1
n+1

(1, 4, 2, . . . , 2, 4, 1).

Then, the system of nonlinear equations given in (34) is of the form
H(x) = x− (1−

11λ

80
)S −

1

2
+ λS(Pvx) = 0, H : Rn+1 −→ Rn+1, (35)

where
vx = (s1(x31 + |x1|), s2(x32 + |x2|), . . . , sn+1(x3n+1 + |xn+1|))T .

For applying Steffensen’smethodwe consider divided difference offirst order, (9), given by [u,v;H] = ([u,v;H]ij)
n+1
i,j=1 ∈ L(Rn+1,Rn+1), where

[u,v;H]ij =
1

uj − vj
(Hi(u1, . . . , uj , vj+1, . . . , vn+1)− Hi(u1, . . . , uj−1, vj , . . . , vn+1)) ,

u = (u1, u2, . . . , un+1)T andv = (v1, v2, . . . , vn+1)T .
We solve the discretized nonlinear problem obtained by using programMatlab 2016b working in variable precision arithmetic with 50 digits of

mantissa and iterating until the distance between consecutive iterates is less than the tolerance 10−32. Table 4 shows the number of iterations,
iter, the distance between the last iterates, ‖xn(s)− xn−1(s)‖ and the max-norm ofH(x) at the approximated solution, by taking different initial
guesses. We have omitted in Table 4 the value of the computational order of convergence because in all cases the quadratically convergence is
reachedwith same precision.
Finally, in order to compare the numerical results between both methods, (6) and (8), we obtain in Table 5 the distance between the numerical

approximation to the solution and the exact solution x∗(s) = s − 1/2. That is, for both methods we start by x0 = s − 1/4 and we stop when the
distance between two consecutive iterates is less than 10−32. Then, we call x(s) the solution obtained with the Steffensen’s method and y(s) the
solution with Newton-Steffensen’s method, obtained as has been exposed in Section 5.2, so, we can compare both of them with the exact solution
of the problem by evaluating these in some nodes. Results can be seen in Table 5 .
At thismomentwenotice that the solutiony(s)obtainedwith thenewalgorithmwedesign in Section5.2 is enormously better, but this is because

working asworking as shown throughout this paper allowsus not to discretizise theproblemwhen it is not differentiable,while Steffensen’smethod
does.
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Method Starting guess: x0 iter ‖xn(s)− xn−1(s)‖ ‖H(xn(s))‖

(s− 1)/4 6 4.4534e-44 2.2641e-58
(2s− 1)/4 5 2.7805e-34 2.8787e-58

Steffensen (4s− 1)/6 6 4.3374e-44 3.0641e-58
s+ 1/2 7 4.9825e-44 2.6811e-58

1 7 4.3497e-44 2.6659e-58
2 8 1.8644e-45 2.2194e-58

TABLE 4 Numerical results for solving equation (30) with λ = 1/11.

Steffensen, n = 20, (6) Steffensen, n = 40, (6) Newton-Steffenson, (8)
s ‖x∗(si)− x(si)‖ ‖x∗(si)− x(si)‖ ‖x∗(si)− y(si)‖
0.0 0 0 0
0.2 1.1746e-08 7.3386e-10 4.5244e-56
0.4 2.3493e-08 1.4677e-09 9.0468e-56
0.6 3.5239e-08 2.2016e-09 1.3573e-55
0.8 4.6985e-08 2.9354e-09 1.8098e-55
1.0 5.8731e-08 3.6693e-09 2.2622e-55

TABLE 5 Comparing different methods applied to nonlinear problem (30).

6 CONCLUSIONS
In this paper, we consider the Newton-Steffensen iterative scheme by using the decompositionmethod. Specifically, we apply this iterative scheme
for approximating a solution of nonlinear Fredholm integral equations with non-differentiable Nemystkii operator and to obtain domains of
existence and uniqueness of solution for these equations.
Finally, we apply the theoretical results obtained to a numerical experiment in order to show the applicability of the study. Moreover, we design

an algorithm in order to apply the Newton-Steffensen iterative scheme to approximate a solution of the nonlinear Fredholm integral equation with
non-differentiable Nemystkii operator considered. We observe that the numerical results obtained indicate the competitiveness of the proposed
development.
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