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ABSTRACT: Drug-induced torsade de pointes (TdP) is a life-threatening ventricular
arrhythmia responsible for the withdrawal of many drugs from the market. Although
currently used TdP risk-assessment methods are effective, they are expensive and prone to
produce false positives. In recent years, in silico cardiac simulations have proven to be a
valuable tool for the prediction of drug effects. The objective of this work is to evaluate
different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk
classifier. Cellular simulations were performed using a modified version of the O’Hara et al.
ventricular action potential model and existing pharmacological data (IC50 and effective
free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk
(51 positive). For each compound, four biomarkers were tested: Tx (drug concentration leading to a 10% prolongation of the action
potential over the EFTPC), TqNet (net charge carried by ionic currents when exposed to 10 times the EFTPC with respect to the net
charge in control), Ttriang (triangulation for a drug concentration of 10 times the EFTPC over triangulation in control), and TEAD
(drug concentration originating early afterdepolarizations over EFTPC). Receiver operating characteristic (ROC) curves were built
for each biomarker to evaluate their individual predictive quality. At the optimal cutoff point, accuracies for Tx, TqNet, Ttriang, and TEAD
were 89.9, 91.7, 90.8, and 78.9% respectively. The resulting accuracy of the hERG IC50 test (current biomarker) was 78.9%. When
combining Tx, TqNet and Ttriang into a classifier based on decision trees, the prediction improves, achieving an accuracy of 94.5%. The
sensitivity analysis revealed that most of the effects on the action potential are mainly due to changes in IKr, ICaL, INaL and IKs. In fact,
considering that drugs affect only these four currents, TdP risk classification can be as accurate as when considering effects on the
seven main currents proposed by the CiPA initiative. Finally, we built a ready-to-use tool (based on more than 450 000 simulations),
which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the
preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the
software used in this work are available at https://riunet.upv.es/handle/10251/136919.

1. INTRODUCTION

Drug-induced torsade de pointes (TdP) is a life-threatening
arrhythmia characterized by a gradual change in the amplitude
and twisting of the QRS complexes.1 It is one of the most
feared adverse drug reactions. In fact, several compounds,
without heart-related therapeutic indications, have been
withdrawn from the market due to their ability to induce
TdP.2 Thus, the evaluation of proarrhythmic risk is considered
an important public health problem and is receiving attention
from governments, regulatory authorities, and pharmacological
companies because of its socio-economic consequences.
In the 1990s, it was recognized that the induction of TdP

was highly correlated with the pharmacological blockade of the
human ether-a-̀go-go-related gene (hERG) channel (which
mediates the rapid component of delayed rectifier current, IKr)
and a prolongation of the QT interval.3 As a consequence, two
regulatory guidelines (S7B, non clinical guidance, and E14,
clinical guidance) were established by the International
Council on Harmonization (ICH) for cardiac risk assessment.
These protocols have been successful in preventing torsado-
genic drugs from being commercialized.4 However, by focusing
exclusively on hERG blockade and QT prolongation, they have
also contributed to discarding from the development pipeline a

large number of potentially useful compounds. Indeed, many
studies5,6 have shown that there are drugs, such as verapamil,
that produce a hERG block but do not lead to TdP. Other ion
currents have also been shown to influence the appearance of
TdP. Therefore, a more accurate method for the torsadogenic
risk assessment at the early stages of drug development, which
takes into account multichannel interactions, would be of
paramount importance for safety pharmacology.
Over the last years, biophysical models and computational

simulations have been widely used to improve the prediction of
drug cardiotoxicity. New international paradigms for the
proarrhythmic assessment of drugs, such as the Comprehen-
sive in vitro Proarrhythymia Assay (CiPA), consider that in
silico simulations of proarrhythmic effects for different
compounds have a key role in linking data from in vitro assays
to changes in cell behavior and are essential to improve
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arrhythmogenicity prediction.4,7 Numerous in silico classifica-
tions tools have been published,8−14 which have shown to
improve TdP risk assessment and are gradually becoming an
alternative to reduce animal experiments during the early
stages of drug development. These in silico evaluations are
based on performing different simulations (reported studies
use single-cell models, one-dimensional models, or even whole-
heart simulations) to calculate a set of features such as action
potential duration, diastolic calcium, or transmural dispersion
of repolarization, among others, and use them for TdP risk
discrimination. These strategies have demonstrated the
capability to make good predictions;8,15−17 however, there is
still space for improvement, since they still present some

limitations, such as a reduced number of compounds,
considering drug effects on just a small number of ion
channels, and usage of non updated biophysical models, among
others. Hence, the development of new TdP risk-assessment
methods based on in silico simulations can be of high interest.
In previous work, our group developed a method for the

early screening of drug-induced proarrhythmic risk. It consists
of four matrices that, taking into account blocking effects on
IKr, ICaL, and IKs, provide the value of an arrhythmogenic index
called Tx, predicting whether the drug is proarrhythmic.10 It
was successfully tested in 84 compounds, at that time, one of
the largest drug databases employed. The method was
implemented in the QT/TdP risk screen tool available on

Table 1. TdP-Risk Classification of the 109 Drugs Used in This Studya

aEach drug is color-coded according to its torsadogenic risk: red for class 1 (known risk of TdP), orange for class 2 (possible risk of TdP), yellow
for class 3 (conditional risk of TdP), green for class 4 (drugs with a lack of evidence of TdP). An asterisk indicates that the drug was not in the
CredibleMeds list and was assigned to a class according to the literature.
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the web-based InSilicoTrials.com platform (www.insilicotrials.
com) built in the Microsoft Azure cloud environment, in
compliance with the highest standards of security and privacy.
The aims of this study are (i) to improve our in silico classifier
for the assessment of TdP risk by taking into account the seven
ionic currents selected by the CiPA initiative due to their
important role in arrhythmogenesis (INa, INaL, IKr, Ito, ICaL, IK1,
and IKs), increase our database, define new effective
biomarkers, and use different machine-learning tools to achieve
a more reliable and robust prediction and (ii) to identify the
ionic currents that have the most significant impact on TdP
risk prediction. This will help in reducing the amount of in
vitro experiments necessary to characterize a drug and simulate
its effect, thus accelerating the process of drug development
and reducing the associated costs.

2. MATERIALS AND METHODS
2.1. Cellular In Silico Simulations. The electrophysio-

logical characteristics of human ventricular cells were simulated
using a modified version of the human endocardial ventricular
action potential (AP) model published by O’Hara et al.18 The
O’Hara et al. model is one of the most recent and used in silico
AP models.19,20 In fact, it was proposed by the CiPA initiative
as the starting point for the development of in silico tools for
regulatory decision-making.4 However, the O’Hara et al.
model18 still has some issues that should be addressed.21 In
this work, the model modifications include a modulation of five
channel conductances according to Dutta et al.,22 a
reformulation of the activation and inactivation gates of INa,
and a reduction of its conductance by 60%.20,23 The
modification in channel conductances was carried out, aiming
at better reproducing experimental data of drug effects. As
suggested by Dutta el al.,22 the following conductances were
scaled: IKr by 1.119, IKs by 1.648, IK1 by 1.414, ICaL by 1.018,
and INaL by 2.274. For further details about the equations
describing INa dynamics, see Table S1 in the Supporting
information.
Drug effects on the AP were simulated via the simple pore

block model, as in previous studies.9,10,16,24 Thus, the block
produced on each current was simulated by scaling the
channel’s maximal conductance (gi). This scaling factor was
calculated using the standard Hill equation (eq 1). In this work
we considered drug effects on the seven ionic currents selected
by the Ion Channel Working Group of the CiPA initiative for
playing the most important role in the generation of the AP
and cardiac arrhythmias (INa, INaL, IKr, Ito, ICaL, IK1, and IKs).
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where gi,drug is the maximal conductance of channel i in the
presence of the drug, D is the drug concentration, IC50,i is the
half-maximal response dose for that drug and current through
channel I, and h is the Hill coefficient indicating the number of
molecules of the drug that are assumed to be sufficient to block
one ion channel.
All simulations were carried out with a basic cycle length

(BCL) of 1000 ms and a stimulus of 1.5-fold the diastolic
threshold of amplitude and a duration of 0.5 ms. Measure-
ments of indices and biomarkers were done once the steady
state (after 1000 beats starting from controlno drug
steady-state initial values) was achieved.

2.2. Drugs Data Set. In this work, we assessed the
proarrhythmic risk of 109 drugs using derived features
(parameters obtained from biophysical models and explained
in detail in Section 2.3). For these compounds, the ground
truth was taken from CredibleMeds.25 CredibleMeds classi-
fication is based on an extensive search of both the literature
and public databases, which is continuously updated in light of
new evidence and is recognized by the clinical community.
This database defines four drug-induced TdP risk categories:

class 1, compounds that prolong the QT interval and are
clearly associated with a known risk of TdP, even when taken
as recommended; class 2, compounds with a possible risk of
TdP; class 3, drugs associated with TdP but only under certain
conditions (excessive dose, interactions, patients with patho-
logical conditions, etc.); and class 4, drugs with a lack of
evidence to be placed in any of the other classes. The
classification of the 109 drugs studied in this work is provided
in Table 1. In this work, for the purpose of developing binary
classifiers, we grouped together classes 1 and 2 as TdP+ and 3
and 4 as TdP−.
Ajmaline, tedisamil and azimilide are not included in the

CredibleMeds classification, but they were included in class 1
according to Mirams et al.,16 Romero et al.,10 and Fermini et
al.7 Other drugs (marked with an asterisk in Table 1) that are
not included in CredibleMeds and with a lack of evidence of
TdP were considered as class 4 (as in Romero et al.10).
For each of these 109 drugs, IC50 values and Hill coefficients

(h) for INa, INaL, IKr, Ito, ICaL, IK1, and IKs and human effective
free therapeutic plasma concentration (EFTPC) were obtained
from either public databases, like DrugBank, DailyMed, or
PubChem, or the scientific literature, always avoiding data
extracted from Xenopus oocytes. EFTPC values were used
directly from the source (when available) or calculated taking
into account the protein-bound fraction and the peak plasma
concentrations (see Supporting information, Table S2). When
multiple IC50 were presented, we considered that all published
data represented a distribution of values affected by a random
error. To deal with that variability and summarize this
distribution in a robust value, the value at the center of the
distribution was selected (i.e., the median value). For the Hill
coefficient, we took the one associated with the median IC50
value chosen. In those cases when no IC50 value were found,
the block of the corresponding channel was not considered in
our simulations. When several EFTPC values where found, we
considered the worst-case scenario by selecting the value for
the highest dose. The EFTPC, IC50, and Hill coefficient values
for the 109 drugs are listed in the Supporting information,
Table S2.

2.3. Torsadogenic Indices. In recent years, various
“derived features” have been proposed for the assessment of
drug proarrhythmicity. Derived features are parameters or
indices obtained from biophysical computational models and
have proven to be promising metrics to provide a mechanism-
based classification of compounds. Furthermore, they have the
potential to lead to a replacement of animal experiments in the
early phases of drug development.26 In Parikh and
colleagues,24,26 a brief review of the in silico arrhythmogenic
biomarkers proposed over the last years can be found. In this
work, we have studied four different torsadogenic indices (see
Figure 1).

2.3.1. Tx. This arrhythmogenic index was proposed by
Romero et al.10 and tested in 84 drugs, providing a
classification accuracy of 88%. It is defined as the ratio
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between the concentration of a drug that provokes a 10%
prolongation of the action potential duration at 90%
repolarization (APD90) in control conditions and the
EFTPC. Therefore, a high Tx value means that the
concentration needed to increase APD90 by 10% is much
higher than the EFTPC and thus the drug is safe. In Figure 1A,
AP in control conditions (black line) and AP with a 10%
APD90 prolongation due to drug effects are shown. It can be
seen that safe drugs (such as loratadine, plotted in green) have
a greater Tx value than proarrhythmic drugs (such as ibutilide,
plotted in red) because their effect on APD prolongation is
weak and the concentration needed to prolong APD90 by 10%
is much higher.

T
D
EFTPCx

APD 10%=
[ ] ↑

(2)

2.3.2. TqNet. This index is based on the concept of qNet (net
charge) that was proposed in Dutta et al.15 qNet is calculated
as the area under the curve traced by the net current (Inet =

ICaL+ INaL+ IKr + IKs + IK1 + Ito) during a whole beat. This index
was able to separate with accuracy the 12 training CiPA drugs
into the desired target groups. In addition, Li et al.5 used the
qNet value averaged across 1−4 × Cmax and successfully
predicted the TdP risk of 16 test compounds.5 Here, we define
TqNet as the ratio between the net charge carried by Inet when
exposed to 10 times the EFTPC with respect to the net charge
in control conditions (eq 3). For a given drug, a TqNet near 1
means that the net charge at 10 times the EFTPC is very
similar to the net charge at control conditions. Values higher
than 1 indicate an increase in repolarization reserve, and
therefore safety;27 on the contrary, low values of TqNet are
associated with a higher propensity of TdP. In Figure 1B, the
net current for the last beat under 10 times the EFTPC
concentration of loratadine (low-risk drug) is plotted in green
and the net current under 10 times the EFTPC concentration
of ibutilide (high-risk drug) in red. It can be observed that
torsadogenic drugs have less net charge with respect to control
condition and consequently smaller TqNet. Ten times the
EFTPC concentration was chosen to distinguish drug effects
without being an excessively high dose.

T
qNet

qNetqNet
at10 EFTPC

control
= ×

(3)

2.3.3. Ttriang. This index is the ratio between triangulation
(APD90−APD30) for a drug concentration of 10 times EFTPC
and triangulation in control (eq 4). Similar to that of TqNet,
values near 1 mean that the triangulation at 10 times the
EFTPC is practically equal to triangulation at control
conditions. However, in this case, as torsadogenic drugs
produce more changes in the morphology of AP and prolong
its duration, its Ttriang is expected to be greater than 1.
Specifically, higher Ttriang means that the drug affects more in
the repolarization phase, originating a lower repolarization
reserve, which is related to the development of TdP.27 In
Figure 1C, changes in AP at 10 times the EFTPC of loratadine
and ibutilide are represented. Ibutilide has a greater impact on
the AP, producing a longer triangulation, while loratadine
effects on AP at that concentration are negligible, being equal
to those of the AP control.

T
(APD APD )

(APD APD )triang
90 30 at 10 EFTPC

90 30 control
=

−
−

×

(4)

2.3.4. TEAD. This index measures the likelihood to develop
an early afterdepolarization (EAD), which is thought to be a
key determinant for TdP development.28 It is defined as the
ratio between the drug concentration needed to originate an
EAD or a repolarization failure and the EFTPC (eq 5). Thus,
the lower the TEAD, the higher ability of the drug to induce
EADs or repolarization failures and the more dangerous the
drug. An EAD was defined as any event with a positive voltage
gradient (dV/dt > 0ms) after 100 ms from the beginning of the
AP. It was considered that there was a repolarization failure
when the membrane voltage at the end of the beat was higher
than the resting membrane voltage (Vm > −40 mV). The
stimulation protocol for the generation of EADs and
repolarization failures was similar to that used by Viswanathan
and Rudy:29 for a given drug concentration, 999 stimuli at a 1
Hz BCL were simulated, then a 2000 ms pause was taken, and
an extra stimulus was applied. The drug concentration was
gradually increased from EFTPC until an EAD appeared or
until 105 times the EFTPC. If no EAD appeared at this

Figure 1. Studied arrhythmogenic indices. Curves corresponding to
simulations in control conditions are represented in black; red curves
represent AP under effects of a high-proarrhythmic-risk drug
(ibutilide), while green ones represent effects under a low-
proarrhythmic-risk drug (loratadine). (A) Tx index. The AP under
drug effects with an APD90 10% longer than the control APD90 is
represented. Traces for low- and high-risk drugs are overlapped, but
the concentration needed to achieve a 10% APD90 prolongation is
much higher in the case of the low-risk drug and thus Tx is much
greater. (B) Charge carried by Inet. The area under the Inet curve for
the last beat when the low-risk drug is applied at a concentration of 10
times the EFTPC is plotted in green. The area under the INet curve for
the high-risk one is plotted in red. (C) Ttriang index. APs under 10
times the EFTPC are traced for a torsadogenic drug and for a
nontorsadogenic drug. Ibutilide (high risk) has a greater impact on
the AP, producing a longer triangulation. Loratadine (low risk) and
control curves are coincident because the effect of loratadine at those
concentrations on the AP is negligible. (D) TEAD index. AP curves at
the dose generating EAD are represented. When the high-risk drug is
applied at 20 times the EFTPC, it provokes an EAD (positive voltage
gradient during the repolarization phase). For the low risk drug, there
is no EAD even at 105 times the EFTPC.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00201
J. Chem. Inf. Model. 2020, 60, 5172−5187

5175

https://pubs.acs.org/doi/10.1021/acs.jcim.0c00201?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00201?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00201?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00201?fig=fig1&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00201?ref=pdf


concentration, the TEAD was considered 105. Traces of AP at
drug concentrations producing EADs are shown in Figure 1D.
An EAD can be observed when ibutilide is applied at 20 times
the EFTPC (red line), while in the case of loratadine (green
line), even at 105 times the EFTPC, there is no EAD (although
it increases APD with respect to the controlblack line).

T
D

EFTPCEAD
EADs=

[ ]
(5)

All indices were analyzed for the last beat in simulations of
1000 beats.
2.4. Sensitivity Analysis. One of the objectives of this

work is to determine the currents that have more influence on
the prediction of cardiotoxicity. In this sense, we performed a
sensitivity analysis following a similar methodology to that
proposed by Britton et al.30 Briefly, first, we generated a
population of 1000 virtual drugs. We considered the virtual
drugs affecting the seven most arrhythmogenic currents
according to the CiPA initiative (INa, INaL, IKr, Ito, ICaL, IK1,
and IKs). Thus, a virtual drug consists of a set of seven scale
factors (one for each ionic current) between ±60%. This range
includes the vast majority of inhibition or enhancement effects
that drugs usually have at therapeutic concentrations. The
parameter sets of scaling factors were obtained using Latin
hypercube sampling (LHS). After running simulations with the
virtual drugs, the biomarkers were computed, and the partial
correlation coefficients (PCC) method was applied, relating
the indices to the currents. As they are virtual drugs and their
EFTPCs are not known, the biomarkers calculated were
surrogates of the four indices proposed. They were APD90 (a
surrogate of Tx), TqNet_mod (qNet at the effect of the virtual
drug over the qNet control, as EFTPC was not known), and
Ttriang_mod (triangulation at the effect of the virtual drug over
the triangulation control).
We also tested the other two methodologies to perform the

sensitivity analysis. After a population of virtual drugs using a
log-normal distribution of scaling factors between ±60% was
obtained, the simulations were run and the biomarkers
computed. In one case, partial least square (PLS) regression
using the NIPALS algorithm31 was applied, and, in the other, a
multiple linear regression32 was performed.
Based on the results of this analysis, the proarrhythmic

indices were recalculated, taking into account only the currents
with a greater impact. These biomarkers were used to build
new torsadogenic drug classifiers to study how the
proarrhythmic prediction changed.
2.5. Torsadogenic Drug Classifier. Finally, we combined

Tx, TqNet, and Ttriang indices into a unique classifier to analyze
whether the classification performance improves. The in silico
TdP risk classifier was built using MATLAB (Mathworks Inc.,
Natwick, MA). First, a 9-fold cross-validation was applied. The
original dataset (109 compounds) was randomly split into nine
sets, and in each iteration, one of the sets (12 compounds) was
left out as test series while the remaining nine sets (97
compounds) were used as training series. A classification
decision tree was built using the training set in each iteration,
thus yielding nine classification trees. For each decision tree,
the maximum number of splits allowed was four. To obtain the
output of the binary risk classifier, a majority voting
technique33 between the prediction of each decision tree was
applied.

3. RESULTS
3.1. Predictive Performance of the Arrhythmogenic

Indices. The value of each arrhythmogenic index for the 109
drugs studied in this work was calculated. The receiver
operating characteristic (ROC) curves of the indices Tx
(black), TqNet (red), and Ttriang (blue) are shown in Figure
2A. This figure also depicts the ROC curve for two metrics

based on results from the hERG assay, which is currently used
as a surrogate marker of TdP risk according to ICH S7B
guidelines. These two metrics are pIC50 hERG (−log IC50
hERG) and hERG IC50/EFTPC. It can be observed that the
ROC curves for Tx, TqNet, and Ttriang are similar, with the areas
under the curve (AUCs) being 0.94, 0.94, and 0.93,
respectively. All of them are greater than the AUC for the
metrics based on IC50 hERG, which are 0.90 for IC50 hERG/
EFTPC and 0.82 for pIC50 hERG tests.
Figure 2B shows the confusion matrices for Tx, TqNet, Ttriang,

and IC50 hERG/EFTPC indices at the optimal cutoff points,
which is the threshold that achieves the nearest point to the
upper-left corner of the ROC curve, where sensitivity and
specificity are maximal. The optimal cutoff points were 8 for
Tx, 1.19 for Ttriang, 0.88 for TqNet, and 39 for IC50 hERG/
EFTPC. It can be highlighted that Tx, TqNet, and Ttriang tests led
to very similar accuracies (around 90%), again higher than the
performance of the pIC50 hERG and IC50 hERG/EFTPC tests.
At the optimal cutoff point for the Tx test, 48 out of the 51
(94% specificity) torsadogenic drugs (class 1 and class 2, see
Table 1) and 50 of the 58 (86% sensitivity) nontorsadogenic

Figure 2. (A) ROC curves for Tx (black), TqNet (red), Ttriang (blue),
pIC50 hERG (green) and IC50 hERG/EFTPC (orange). The dashed
line indicates the performance of a model that does not discriminate.
(B) Confusion matrices for the arrhythmogenic indices at the optimal
cutoff point (where sensitivity and specificity are maximal). Columns
(TdP+ and TdP−) indicate the actual classification of the compounds
(Table 1), and rows (+ and −) indicate the prediction made by the
index studied. The cutoff points are 8 for Tx, 1.19 for Ttriang, 0.88 for
TqNet, and 39 for IC50 hERG/EFTPC. True positives rates (TPR),
true negatives rates (TNR), and accuracies (Acc) are also shown.
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drugs (classes 3 and 4) were correctly classified. The
performance for the decision TqNet < 0.88 was as follows: a
specificity (true negative rate) of 93% and a sensitivity (true
positive rate) of 90%, leading to an accuracy of 91.7%. The
Ttriang test classified correctly 48 proarrhythmic and 51
nonproarrhythmic compounds, which corresponds to a
sensitivity of 94% and a specificity of 88%. Regarding the

metrics based on IC50 hERG, the accuracy obtained with the
threshold IC50 hERG/EFTPC < 39 was 87.2%, classifying
correctly 48 proarrhythmic compounds and 47 nonproar-
rhythmic compounds. For the test pIC50 hERG (not shown in
the figure), at the optimal cutoff point (pIC50 hERG > 5.8), the
resulting accuracy yielded 78.9%. With this test, 18 TdP+

Figure 3. TdP risk classification of the 109 compounds with different proarrhythmic indices at the optimal cutoff point. The criterion was that
drugs with hERG IC50/EFTPC < 39, Tx < 8, TqNet < 0.88, and Ttriang > 1.19 were predicted as torsadogenic. Class 1 and 2 compounds are
considered unsafe drugs, while class 3 and 4 compounds are considered safe drugs.
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drugs were considered as nontorsadogenic (65% of sensitivity)
and five TdP− as torsadogenic (91% specificity).
Note that results for TEAD were not included in this figure for

the sake of clarity, as it was the index that performed the worst.
Its performance was slightly lower than that of the pIC50
hERG, yielding an AUC of 0.80 and an accuracy at the optimal
cutoff point of 78.9%. The resulting sensitivity was 73% (14
false-positive drugs) and the specificity was 85% (nine false-
negative drugs).
Figure 3 shows the value of the indices IC50 hERG/EFTPC,

Tx, TqNet, and Ttriang for the 109 drugs and the torsadogenic risk
classification of these compounds using four different criteria
to consider a drug as torsadogenic: IC50 hERG/EFTPC < 39,
Tx < 8, TqNet < 0.88, and Ttriang > 119. According to the IC50
hERG/EFTPC test, cilostazol and donepezil, which are class 1
compounds (compounds with a known risk of TdP), and
tamoxifen (class 2 compound) were predicted as safe drugs.
For safe drugs, the IC50 hERG/EFTPC test misclassified five
class 3 drugs (propafenone, ranolazine, quinine, metronidazole,
and fluvoxamine) and six class 4 drugs (verapamil, mexiletine,
cibenzoline, linezolid, ceftriaxone, and phenytoin). It is worth
noting that Tx, TqNet, and Ttriang indeces misclassified as
nontorsadogenic (false negative) the same two class 1
compounds, namely, cilostazol and donepezil, as well as
tamoxifen, a class 2 compound (compounds with a possible
risk of TdP). They also misclassified as torsadogenic the same
two class 3 compounds (fluvoxamine and propafenone) and
the same class 4 compound (cibenzoline). In addition, Tx and
Ttriang both misclassified metronidazole, quinine, and ranola-
zine (class 3 compounds), and the class 4 compound
verapamil. Tx and TqNet misclassified doxorubicin, a class 4
drug. TqNet also misclassified as non torsadogenic class 2 drugs:
ritonavir and saquinavir.
3.2. Sensitivity Analysis. Next, we wanted to analyze

which of the seven CiPA currents have more effect on the
electrophysiological characteristics of the AP. We simulated the
effect of a population of 1000 virtual drugs and applied the
partial correlation coefficients (PCC) method, as described in
Section 2.4, to estimate the association between the
arrhythmogenic indices and the seven currents. The effects
of these virtual drugs on the AP and on the intracellular
calcium transient are shown in Figure 4A,B. Control APs and
calcium transients are plotted with a thick black line. It can be
observed that some drugs shorten the AP, while others prolong
it. For the intracellular calcium dynamics, it can also be
observed that some drugs increase the amplitude of the
calcium transient, while others decrease it. Thus, with this
population of virtual drugs, we can represent a wide variety of
pharmacological effects.
The PCC values for each current and biomarker are plotted

in Figure 4C. For APD90, the currents that have a higher PCC
value are: IKr (−0.97), INaL (0.74), ICaL (0.60), and IKs (−0.54).
The IK1 coefficient is −0.47, and the other coefficients are
lower than 0.14. For the Ttriang_ mod index, the currents with
more influence are IKr (−0.96), IK1 (0.63), INaL (0.56), and ICaL
(−0.35). In this case, the PCC value for IKs is −0.25, for INa is
−0.18, and for Ito is −0.11. For TqNet_mod, the higher PCC
values are for IKr (0.98), INaL (−0.98), ICaL (−0.91), and INa
(0.89). The other values are below 0.62, which is the IKs
coefficient. It should be noted that the effects of Ito on the
three biomarkers are practically negligible. If we add the three
coefficients of each current in absolute value to represent the
global relevance of each current in the value of the biomarkers,

the currents yielding the highest values are IKr (2.91), INaL
(2.27), ICaL(1.85), and IKs (1.41). Thus, these results suggest
that the currents that are globally more relevant to predict the
torsadogenic effects of a drug are IKr, ICaL, INaL, and IKs. It is
true that the coefficient of INa for TqNet_mod is higher than the
IKs PCC coefficient, but for the other biomarkers, the influence
of INa is smaller than the influence of IKs. For Ttriang_mod, the IK1
PCC coefficient is also higher than the IKs PCC coefficient, but
again, for the other biomarkers, IKs is more relevant.
In the Supporting information, the results of the sensitivity

analysis using a multivariable linear regression (Figure S1) and
the PLS method (Figure S2) are shown. Both methods obtain
very similar coefficient values. It can be observed that the sign
of the biomarker-ion current dependency (positive or
negative) is the same with both sensitivity methods. In
addition, the currents that have greater influence (greater value
of the addition of three absolute values of the coefficients) are
the same: IKr, INaL, ICaL, and IKs. Therefore, according to our
results, it can be deduced that regardless of the method used,
qualitatively the same results are obtained. That is, the currents
with the most significant global influence on TdP risk
prediction biomarkers are IKr, ICaL, INaL, and IKs.

3.3. Binary Torsadogenic Risk Classifiers. To improve
the power of prediction, we combined Tx, TqNet, and Ttriang into
a unique classifier. As described in Section 2.5, using the three
proarrhythmogenic indices as inputs, we built nine decision
trees. Each decision tree consisted of a maximum of four cutoff
points. The cutoff points were calculated specifically for each
decision tree, aiming to achieve optimal performance. Two of
the nine decision trees that constitute this classifier are
represented in Figure 5. The remaining decision trees are
shown in Figure S3. For each drug, each tree takes several
decisions and makes a prediction. For example, in tree 1
(Figure 5), the TqNet index is evaluated first. If it is less than
0.91, then the next step is to evaluate Ttriang. Depending on

Figure 4. Results of sensitivity analysis. (A) Effects of the 1000 virtual
drugs on the action potential. The black line represents the control
AP. (B) Effects of the 1000 virtual drugs on intracellular calcium
dynamics. The black trace corresponds to the control calcium
transient. (C) PCC values of each of the seven CiPA drugs for APD90
(blue), Ttriang_mod (red), and TqNet_mod (green).
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whether Ttriang is greater or smaller than 1.009, the tree predicts
that the drug is safe or torsadogenic. On the contrary, if the
drug has a TqNet greater than 0.91, the other branch of the tree
should be followed. Thus, after evaluating TqNet, Tx is studied.
Whether it is greater than 14.2, then the drug is safe. If not,
Ttriang has to be finally evaluated to decide if the drug will be
safe or dangerous. The rest of the trees make a prediction in a
similar way. Finally, the overall prediction of the classifier is
made according to what has been the most voted class (safe or
unsafe) among the nine decision trees.
The performance of this classifier is summarized in the first

line of Table 2. The accuracy achieved by this classifier is
94.5%, which misclassifies only six drugs. The false negatives
were donepezil, a class 1 drug, and ritonavir and saquinavir,
two class 2 drugs, while the false positives were two class 3
drugs (fluvoxamine and propafenone) and one class 4
compound (cibenzoline). It should be noted that these drugs
were also misclassified when using Tx, TqNet, and Ttriang

individually as predictors.
Based on the sensitivity analysis, we also studied how the

proarrhythmic prediction changed when simulating and
calculating the biomarkers, assuming that drugs affected less
currents (the ones with greater impact according to the
sensitivity analysis). Thus, biomarkers were recalculated in two
different ways: considering that drugs affect only IKr, ICaL, and
IKs and considering drug effects only on IKr, ICaL, and INaL. This

strategy was adopted because one of the objectives of the work
is to provide a ready-to-use tool with the precalculated
arrhythmogenic indices, implying a large amount of
simulations combining blockade of three currents (see Section
3.4). Combining the blockade of four currents exponentially
increases the number of possibilities and simulations to be
performed. The performance of the four arrhythmogenic
biomarkers (including also TEAD) depending on the affected
currents considered is shown in Table S3. In general, it can be
observed that when considering effects on less currents, the
loss of accuracy is very small (less than 2%). In some cases,
when simulating the effects on IKr, INaL, and ICaL, the accuracy
obtained is the same as when considering effects on the seven
currents. On the other hand, considering that drugs have
effects on IKr, INaL, and ICaL provides better results than
considering IKr, IKs, and ICaL. This is consistent with the
sensitivity analysis, since INaL has a greater influence than IKs.
With the new biomarker values, two more decision-tree-

based classifiers were built. In addition, we built a third
classifier that combined as input biomarkers calculated in both
ways. That means, for example, that two different Tx values are
considered in the tree, one calculated considering effects on IKr,
ICaL, and IKs and another Tx calculated, taking into account
drug effects on IKr, ICaL, and INaL. In Table 2, we can see how
the classification performance changes depending on the
currents considered to calculate the biomarkers. As expected,

Figure 5. Two of the nine decision trees that constitute the binary TdP risk classifier. Each tree takes several decisions and makes a prediction. The
final output of the classifier is obtained by taking into account the most voted class (safe or unsafe) among the nine decision trees.

Table 2. Performance of the Binary TdP Risk Classifier Depending on the Way of Calculating the Biomarkers Used as Inputa

currents Acc. false negatives false positives

considered (%) (% sensitivity) (% specificity)

INa, INaL, Ito, IKr, ICaL, IKs, and IK1 94.5 3 (94%): 3 (95%):
donepezil, ritonavir, saquinavir fluvoxamine, propafenone, cibenzoline

IKr, ICaL, and IKs 92.7 1 (98%): 7 (88%):
cilostazol fluvoxamine, propafenone, quinine, ranolazine, cibenzoline, mexiletine, and verapamil

IKr, ICaL, and INaL 93.6 2 (96%): 5 (91%):
cilostazol, donepezil metronidazole, propafenone, quinine, ranolazine, and verapamil

IKr, ICaL, IKs, and IKr, ICaL, INaL 94.5 3 (94%) 3 (95%)
milostazol, donepezil, sotalol metronidazole, ranolazine, verapamil

aFour different classifiers have been built: one considering that drugs affect the seven CiPA currents; another considering effects on IKr, ICaL, and
IKs; another assuming effects on IKr, ICaL, and INaL; and another combining biomarkers calculated taking into account effects on IKr, ICaL, and IKs and
biomarkers assuming effects on IKr, ICaL, and INaL. The table indicates the accuracy of the classifier (Acc.), the false negatives, and the false positives.
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when only the effects on IKr, ICaL, and IKs or on IKr, ICaL, and
INaL were considered the accuracy of the classifier decreased, as
all of the available information was not used. However, this loss
of accuracy was remarkably very low. In fact, the accuracy of
the classifier that uses biomarkers calculated taking into
account drug effects on IKr, ICaL, and INaL was only 0.9% lower
than the accuracy of the classifier that takes into account the
seven CiPA currents. The accuracy of the classifier when taking
into account the effects on IKr, ICaL, and IKs decreased by 1.8%.
What is more surprising is that when combining biomarkers
obtained in both ways (ones considering IKr, ICaL and IKs, and
others considering IKr, ICaL, and INaL), the same level of
accuracy that when considering the seven currents was
achieved. In this case, the false negatives were the same,
while the false positives were two class 3 drugs (fluvoxamine
and ranolazine) and one class 4 compound (verapamil).
The performance of the classifiers depending on the

biomarkers used as inputs is summarized in the Supporting
information, Table S4. It can be observed that the maximum

accuracy was obtained when considering the four biomarkers
(Tx, TqNet, Ttriang, and TEAD) to build the classifier (95.4%).
However, the difference in performance when not considering
TEAD in the classifier is that just one more drug was
misclassified (94.5% accuracy). In addition, in this case, out
of the three false negatives, only one belongs to the class 1 of
CredibleMeds (known risk of TdP), while when including
TEAD into the classifier, the two false negatives are two class 1
drugs. For this reason, and because TEAD is a complex and
computationally expensive biomarker, which, as shown in
Section 3.1, has low predictive power as an individual
predictor, TEAD was not included in the preparation of the
ready-to-use tool (see Section 3.4 for more details). For the
other combinations of biomarkers, it can be observed that the
accuracy fell slightly. It should also be noted that considering
the effect on only three currents (IKr, ICaL, and INaL or IKr, ICaL,
and IKs) hardly affected the performance of the classifier.
Furthermore, when combining biomarkers obtained in both
ways (ones considering IKr, ICaL and IKs, and others considering

Figure 6. Precomputed matrices for the following arrhythmogenic indices: Tx (A and B), TqNet (C and D), and Ttriang (E and F). As an example of
their usage, four drugs (two TdP+ and two TdP−) have been represented in each matrix: ibutilide (red circle), disopyramide (red triangle),
loratadine (green circle), and diltiazem (green triangle). The axis represents the logarithm of the ratio of the drug concentration to the IC50 of each
channel (log([D]/IC50)). (A and B) Three-dimensional (3D) representation of the surface (blue striped) corresponding to Tx = 8. Torsadogenic
drugs are on the left of this surface and safe drugs stay on the right of the surface. (C and D) 3D representation of the surface (blue striped)
corresponding to TqNet = 0.88. Again, torsadogenic drugs are on the left of this surface. (E and F) 3D representation of the surface (red striped)
corresponding to Ttriang = 1.19. Torsadogenic drugs are on the left of this surface, where blockades are higher.
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IKr, ICaL, and INaL), the same level of accuracy that when
considering the seven currents was achieved.
3.4. Precomputed Arrhythmogenic Indices. To facili-

tate the prediction of the potential proarrhythmic risk of a wide
range of drugs without carrying out time-consuming
simulations, Tx, TqNet, and Ttriang were precomputed for a
large combination of IKr, ICaL, IKs, and INaL block values (the
most relevant currents according to the sensitivity analysis)
and concentrations.
As mentioned above, combining biomarkers calculated

taking into account the effects on IKr, ICaL, and IKs with
biomarkers calculated taking into account effects on IKr, ICaL,
and INaL improves the accuracy of a classifier. Indeed, its
performance is very similar to that of the classifier that uses
biomarkers calculated assuming effects on the seven CiPA
currents.
For this reason, for each of the three biomarkers, we

constructed two matrices, one in which the biomarker was
calculated using a combination of drug concentrations over the
IC50 of IKr, ICaL, and IKs and another were the currents blocked
were IKr, ICaL, and INaL. Therefore, 492 536 simulations of drug
effects on the isolated endocardial myocytes were run with a
BCL of 1000 ms, varying the ratios of the drug concentration
to the IC50 of each considered ion channel (IKr, IKs, and ICaL in
one case and IKr, INaL, and ICaL in the other case). The
logarithm of ratios of the drug concentration to the IC50 of
each considered ion channel (IKr, ICaL, IKs, and INaL) ranged
from −3 to 1.5, with a 0.1 step increment. Note that if we had
tried to calculate the biomarkers for all possible combinations
of the four currents, the number of simulations would have
amounted up to more than 8 000 000 simulations. In addition,
the representation of the results would have been more
complex.
Figure 6 shows the six matrices calculated. The matrix in

panel A provides the Tx for a given combination of IKr, ICaL,
and INaL blockades. The stripped surface corresponds to the
combination of blockades leading to Tx = 8. Panel B shows the
Tx matrix depending on IKr, ICaL, and IKs blockades. Panels C
and D display the matrices for TqNet. Panels E and F display the
matrices for Ttriang. The surfaces represented in each matrix
correspond to the optimal cutoff point for each biomarker as
an individual predictor (TqNet = 0.88, Ttriang = 1.19, see Section
3.1 for more details). These surfaces were represented only as a
proof of concept, and different surfaces could have been
represented. In each matrix, four drugs have been represented
as an example: ibutilide (red circle), disopyramide (red
triangle), loratadine (green circle), and diltiazem (green
triangle).
The matrices can be used for two different purposes. On the

one hand, they can be used to quickly predict whether an
existing drug, for which all pharmacological data are known, is
likely to produce TdP at its EFTPC. On the other hand, in the
case of a drug candidate, they may be useful to help determine
the TdP risk at a given concentration.
As an example, for a prediction based exclusively on Tx, we

know that the threshold Tx = 8 is the one that best separates
TdP+ drugs from TdP− drugs. Therefore, for a well-
characterized drug, if we calculate the blockade of IKr, ICaL,
INaL, and IKs (i.e., log (EFTPC/IC50)), we can use this matrix
directly, without the need to run any simulation, to locate the
drug in 3D plots like the ones represented in Figure 6A,B to
know the associated Tx. We can see that torsadogenic
compounds like ibutilide (red circle) and disopyramide (red

triangle) fall to the right of this surface, meaning that their Tx is
lower than 8. Conversely, nontorsadogenic compounds, like
loratadine (green circle) and diltiazem (green triangle), fall to
the right of the stripped surface. Therefore, their Tx is higher
than 8. We can perform a similar approach for the other
matrices, based on the cutoff value for each biomarker, so that
we can observe that arrhythmogenic drugs are at one side of
the surface and safe drugs at the opposite. More accurate
predictions can be made using the evaluations of the decision-
tree based classifier and combining the different matrices.
In the case of new compounds, as the EFTPC is unknown,

these matrices can be used to find an estimation of the
maximum safe concentration. For this purpose, an initial
estimation of the maximum concentration has to be provided
instead of the EFTPC, together with the IC50s. For these
values, the precomputed matrices will provide a set of indices.
They can be compared to the cutoff point of each of the
decision trees of the classifiers to obtain a set of conditions that
must be accomplished to classify the drug as a safe compound.
Then, if a certain biomarker, for example, Tx, does not
accomplish the conditions because it is lower, the concen-
tration should be decreased. On the contrary, if the Tx index is
higher than the decision stated by the classifier, that means that
the maximum safe concentration could be higher. If instead of
Tx, a different index is considered, the procedure would be
similar: increase or decrease the concentration to meet the
conditions. Thus, to find a maximum safe concentration, the
process must be repeated for several concentrations until the
biomarkers are as near as possible to the cutoff point.
Matrices are available online on the public repository of the

Polytechnic University of Valencia (RIUNET, https://
riunet.upv.es/handle/10251/136919). Another advantage of
these matrices is that by having the value of biomarkers
available for a wide variety of drugs, new classification
strategies can be proposed.

4. DISCUSSION
4.1. Main Findings. In this work, we present a new

classifier for the evaluation of drug-induced torsadogenic risk
during early stages based on three in silico biomarkers: Tx,
TqNet, and Ttriang. Our main findings are (i) any of these
arrhythmogenic indices, which collect the influence of relevant
factors on the development of TdP, perform better than the
current preclinical surrogate marker of TdP risk (hERG IC50).
(ii) When combining these arrhythmogenic indices into a
classifier, the quality of the classification improves, showing
better accuracy. The resulting accuracy of the binary classifier
is 94.5%, misclassifying only six drugs out of 109.
Misclassifications using the hERG block criterion were 23
(an accuracy of 78.9%). It should be noted that our classifiers
were developed using 109 drugs and effects on seven ionic
currents, being, to the best of our knowledge, one of the largest
sets of drugs used in arrhythmogenic risk assessment. (iii)
Considering drug effects on just four currents (IKr, ICaL, INaL,
and IKs), the ones with a greater impact on the biomarkers
according to the sensitivity analysis, TdP risk classification can
be as accurate as when taking into account the blockade of the
seven currents of the CiPA initiative. This may allow
experiments to be carried out, focusing on those most
important currents, accelerating the drug development process
and saving significant costs. (iv) Finally, this study also
provides a ready-to-use tool available online based on more
than 450 000 simulations of the electrophysiological activity of
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ventricular cells. This tool consists of six matrices that contain
the value of the three biomarkers for a wide range of IKr, ICaL,
INaL, and IKs blockades. This allows a quick assessment of the
cardiotoxicity of existing drugs and helps in predicting the
maximum safe free plasma concentration of new drugs that
prevents TdP appearance.
4.2. Arrhythmogenic Indices. TdP risk-assessment

methodologies based exclusively on the hERG block show
low performance.6,10,34 Indeed, when applying the pIC50 hERG
test (TdP+: pIC50 hERG >5.8) to the 109 compounds studied
in this work, the resulting sensitivity was 65% (18 false
positives), the specificity was 91% (five false negatives), and
the accuracy was 78.9%. This is in close agreement with
previous studies10,17,35 proposing classifications based on the
hERG block that achieved accuracies around 70−80%. In
2003, Redfern et al.36 proposed the ratio of the hERG IC50
over the maximum EFTPC as an improvement over the hERG
IC50 index. They observed that a safety factor of 30 could
provide a good torsadogenic risk prediction for 52 drugs. This
metric has also been used in other studies as a current state-of-
the-art measure.16 In this study, in close agreement with
Redfern et al.,36 the cutoff point obtained for hERG IC50/
EFTPC was 39 and also showed better performance than
simply hERG IC50. Nevertheless, in comparison, all of the in
silico biomarkers proposed in this study (with the exception of
TEAD) presented a higher performance, reducing the number of
misclassified drugs.
The classification based on the analysis of EADs, which

performed similar to pIC50 hERG, was not as predictive as the
other in silico indices. Parikh et al.26 also studied an EAD
metric and observed a poor performance compared to other
metrics, such as qNet. The reasons for the poor performance of
the EAD biomarker might include inaccurate development of
EADs in the used ionic model, as EADs are highly dependent
on the ventricular cardiomyocyte model, or the need to test
EADs on coupled cells/tissue models.26 The influence of the
model on the development of EADs can be highlighted in
Passini et al.13 In their work, they built a population of models
by modifying some conductances of the O’Hara model within
a physiological range. This way, they could cover a wider
biological variability than just with a single AP and thus EADs
obtained good accuracy as a biomarker for TdP risk. Another
problem related to the O’Hara’s model, which can explain the
poor performance of EADs as a biomarker, is that it does not
reproduce well the negative inotropic effect observed
experimentally when simultaneously blocking INa and INaL
Recently, Tomek et al.37 published a model aiming to better
reproduce this inotropic effect. Using the Tomek et al. model
or other AP models will obviously result in the different
performance of EADs as biomarkers (and also the performance
of the other biomarkers), but this does not reduce the validity
of the results presented in this work.
In a previous work,10 we showed that the prediction of TdP

risk could be improved with the Tx index. In that study, Tx was
calculated taking into account the effects of drugs on IKr, IKs,
and ICaL and when applied to 84 compounds, it exhibited an
accuracy of 87%. Here, considering drug effects on four
currents to calculate Tx and applying this test to more drugs
(109 drugs), the resulting accuracy was 89.9%. The threshold
was the same in both works (Tx < 8 for TdP+ compounds).
Therefore, this demonstrates that Tx is a robust and effective
biomarker that can successfully be used for TdP risk
evaluation.

As in previous recent studies,5,15,26 TqNet provided the most
accurate proarrhythmic prediction among the four biomarkers.
It should be said that Dutta et al.15 correctly classified 100%
using the qNet metric, but the data set studied was composed
only the 12 CiPA training drugs. Here, when evaluating it with
a larger set of drugs, its performance decreases. This is in
accordance with Li et al.5 results, where it is shown that qNet
performance also decreases when considering the total 28
CiPA compounds. Note that TqNet and qNet at 10×EFTPC
perform equally, as TqNet is qNet divided by a constant (qNet
at control conditions). The advantage of using TqNet is that it is
a relative measure, which makes it independent of the model
used. We chose 10×EFTPC because it is a concentration that
produces significant drug effects without being an excessively
high concentration. Ttriang is also a relative metric that
quantifies changes with respect to control conditions, which
is an advantage with respect to triangulation. To the best of our
knowledge, Ttriang has not been used previously as an in silico
classifier; however, it shows a performance very similar to that
of previous TdP risk classification studies. Mirams et al.8

assessed the performance of the prediction of the thorough QT
assay in 34 drugs, obtaining 88% accuracy, 71% sensitivity, and
100% specificity. Lancaster and Sobie12 have also evaluated
arrhythmia risk combining multichannel block simulation of 68
drugs with statistical analysis and machine-learning techniques,
achieving 89.5% accuracy, 95.9% sensitivity, and 81.1%
specificity. Kramer et al.17 observed that the TdP risk
prediction provided by the comparison of the blocking
potencies between IKr and ICaL was drastically better than the
prediction obtained by the hERG assay in 55 drugs (90.9%
accuracy, 96.9% sensitivity, and 86.2% specificity). Parikh et
al.24 proposed a novel classifier that combined direct features
(IC60 hERG) and 13 derived features. It provided an accuracy
of 83% when tested in a merged data set of 197 drugs (some
drugs were repeated as they were simulated using different
drug models). Passini et al.38 achieved an accuracy of 90%
evaluating TdP risk of 40 drugs by measuring the shortening of
the electromechanical window and repolarizations abnormal-
ities. Li et al.5 showed that their torsade metric score, which is
the qNet value averaged across 1−4 × Cmax taking into account
drug effects on the currents IKr, INa, INaL, and ICaL, could
successfully predict the TdP risk of the 16 CiPA compounds,
outperforming other in silico metrics such as APD90 or APD50
and diastolic Ca2+ concentration. Recently, Zhou et al.39 used
the TdP risk score, a metric that summarizes repolarization
abnormalities among a population of cardiomyocytes, to study
how different prediction outcomes were, depending on the
input data (IC50 and the Hill coefficient). This metric
demonstrated good performance, showing an accuracy
superior than to 80% on two different drug data sets.
In addition, we showed that combining Tx, TqNet, and Ttriang

in a binary classifier based on decision trees improves the
accuracy of risk classification up to 94.5%. In addition, this
level of performance can be achieved simulating effects only on
IKr, ICaL, INaL, and IKs, which are the currents with a greater
impact on the arrhythmogenic indices according to the
sensitivity analysis. These results are comparable or even
better than other more complex systems that perform 3D
simulations and comparable to in vitro experiments with cells
or whole hearts. Okada et al.14 simulated a total of 9075
electrocardiograms using a 3D whole-ventricle model for a
combination of blocks of IKr, INa, INaL, ICaL, and IKs. Using this
system, they evaluated 13 drugs, successfully classifying 92%.
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Lawrence et al.40 used the rabbit isolated Langerdorff heart
model to investigate the torsadogenic risk of 64 compounds
with an accuracy of 75%. Ando et al.41 recorded extracellular
field potentials from human iPSC-derived cardiomyocytes to
evaluate 60 drugs achieving a sensitivity of 81%, a specificity of
87%, and an accuracy of 83%.
We observed that there was a group of drugs that was

misclassified in all or in almost all cases. This indicates that the
model is not reproducing some drug effects correctly or that
experimental data might have some bias. There are
pharmacological aspects that were not considered in this
study mainly due to a lack of information, such as effects of
metabolites, accumulation of the compound in the myocar-
dium, channel trafficking inhibition, among others (all of them
not included in the electrophysiological model used). It has
been demonstrated that donepezil increased TdP incidence
not only by IKr block but also by the IKr trafficking
inhibition.42,43 Ritonavir and saquinavir, which are misclassi-
fied with the binary classifier, are known to inhibit major
isoforms of cytochrome P450,14 which metabolize many drugs,
including torsadogenic drugs such bepridil or quinidine. Thus,
rather than its arrhythmogenic capacity per se, its torsadoge-
nicity is due to the increase in the amount of other dangerous
drugs. Cilostazol inhibits phosphodiesterase 3 (PDE3), which
causes an increase in intracellular cAMP, Ca2+ dynamic
unbalance, and precipitation of EADs.44 Fluvoxamine has
been classified as a class 3 compound by CredibleMeds, so
here it was considered as TdP−. However, some clinical
studies45,46 reported that fluvoxamine, at therapeutic doses,
increases the risk of TdP induction. These authors recommend
that patients on fluvoxamine treatment should be monitored
closely for QT/QTc interval prolongation with serial ECG. For
propafenone, something similar occurred: it was classified as a
class 3 compound by CredibleMeds, but different studies47,48

alert about its TdP risk. In addition, in the American College of
Cardiology website, there is a black box warning stating:
“potentially fatal ventricular arrhythmias may occur with/
without QT prolongation and can lead to torsade de pointes”.
It is worth noting that for cibenzoline only two studies
reporting an IC50 IKr value were found and the difference
between these two values was more than an order of
magnitude. Therefore, its effect on IKr might have been
overestimated and therefore resulted in a false positive. In the
case of verapamil, the reason of its misclassification could be an
overestimation of IC50 IKr that produces such a blockade that
cannot be counteracted by the ICaL blockade to avoid
prolongation of the AP.19 Therefore, it seems that this
mechanism would require fine-tuning of the ICaL and IKr ratios.
Other authors have predicted the cardiac safety of

torsadogenic drugs simulating drug effects in isolated
endocardial cells of different species such as guinea pigs,9

dogs, or rabbits. Beattie et al.49 predicted the experimental
results of the rabbit left ventricular wedge assay using in silico
simulations of the QT prolongation of the rabbit left
ventricular wedge assay (78% accuracy). We chose a modified
version of the O’Hara et al.18 human ventricular AP model for
our simulations instead of models of other species to obtain
more accurate predictions of drug effects in humans.50 In fact,
compared to human cardiomyocytes, guinea pig cardiomyo-
cytes showed a lack of transient outward current (Ito) and a
large IKs and rabbit cardiomyocytes presented a small slow
delayed rectifier current (IKs) and TdP predisposition.51 In the
human ventricular AP model, we decided not to introduce the

dynamic-hERG model,52 which is the most updated version
recommended by the CiPA initiative for prediction of TdP,
because many drugs do not have the experimental data
necessary to model their effect and significantly increases the
computational cost without providing significant benefits for
the simulation of the effects of many drugs.19

4.3. Sensitivity Analysis. Our sensitivity analysis of the
virtual population of drugs identified critical ionic currents for
the variability of the different arrhythmogenic biomarkers
studied for TdP risk assessment. The sensitivity analysis was
performed using three different methods (see Section 2.4), and
the three methods identify the same currents as the most
influential: IKr, ICaL, INaL, and IKs.
In agreement with previous studies,8,18,20,23,26,53 IKr inhib-

ition and INaL and ICaL enhancement prolong APD90 and
increase triangulation. Parikh et al.26 also found that TqNet_mod
was more sensitive to changes in INaL and IKr. This relevant role
of INaL is in agreement with experimental results, indicating
that drug-induced enhancement of INaL can result in increased
TdP risk in the absence of the hERG block.54,55 Furthermore,
according to Parikh et al.,26 we have seen that some ion
channels that are thought to be important for drug-induced
TdP risk assessment and measured experimentally via in-vitro
ion-channel screening56 showed a minor influence on the
arrhythmogenic biomarkers. For example, the block of Ito had
no influence on most of the metrics. These facts suggest that
the experimental and in silico study of the effects of drugs on
IKr, INaL, ICaL, and IKs is more relevant than drug effects on Ito,
INa or IK1 for the assessment of TdP risk. Uncertainties in the
input parameters that are highly influential, such as
pharmacological data of the effects on the hERG channel,
result in lower confidence in the predicted TdP risk, while
errors in estimating less influential model parameters are better
tolerated by risk measurements. Thus, Costabal et al.53 showed
that the variability in the IKr block, the current with the greatest
sensitivity here, was primarily responsible for the uncertainty of
QT interval simulations. In this work, we have demonstrated
that using data from IKr, INaL, ICaL, and IKs, torsadogenicity
prediction is very similar to the results obtained using the
seven currents. Recently, Zhou et al.39 claimed that the
minimum set of ion channels needed to correctly assess TdP
risk were IKr, ICaL, and INa. One of the reasons that explain this
discrepancy between the minimum set of currents may be that
they only compared the prediction results when considering
drug effects on the seven currents, four (INa, INaL, IKr, and ICaL),
three (INa, IKr and ICaL), or one (IKr). Perhaps, if other
combinations of currents had been tested, another set of
currents would have also led to similar accuracy. In addition,
experimental data on INaL IC50 are only available for 25 of the
85 drugs studied. There are also very few data available for IC50
IKs. However, their results agree with this study in that not all
seven CiPA currents are necessary. Simulating drug effects on a
lower number of currents can achieve very accurate
predictions. Furthermore, in both studies, IKr and ICaL are a
fundamental requirement. Our study suggests that they should
be complemented with INaL or IKs to improve the accuracy of
the prediction.

4.4. Limitations of the Study. One of the strengths of
this work is the use of a large drug dataset including
information of seven ionic currents. However, the IC50 values
of some ionic currents of certain drugs were absent in the
literature or public repositories. For example, to the best of our
knowledge, the only work that provides information about INaL
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block potency is Crumb et al.,56 and they only studied 30
compounds. As illustrated above, INaL is one of the most
influential currents in TdP prediction, so having more
information about the blocking of INaL could improve the
performance of the classifiers proposed here. For Ito and IK1,
available IC50 data were also scarce. In these cases, similar to
previous studies,8,10,24 no block of these channels was assumed.
In addition, the IC50 and EFTPC values were consulted in
heterogeneous sources, which suggests that the experimental
conditions were very diverse and therefore there is also great
variability in the collected data. In fact, some authors57 have
found that the IC50 values of IKr can vary by 1 or 2 orders of
magnitude between different studies. Due to the lack of
standard protocols, dealing with multiple IC50 for a given
compound is a challenging task, which can be addressed in
different ways. We reduced sources of variability by obtaining
data from mammalian tissue registers when available and
always avoiding data extracted from Xenopus oocytes. In
addition, when multiple IC50 values were available for a given
drug, the median value was calculated. As recently demon-
strated by Zhou et al.,39 for compounds with multiple ion-
channel potencies, variations in the IC50 value can lead to
different in silico predictions. In this work, they studied
prediction divergencies using two different data sets: Crumb’s
data set56 and Kramer’s data set.17 They showed that the
accuracy when using Crumb’s values was slightly higher than
when using Kramer’s values. Here, we considered that the
published data represented a distribution of values affected by
a random error and the variability due to the experimental
conditions. Then, the most representative value considering
variability was the median as it is a robust estimator of the
central tendency of a data set, less sensitive to extreme values
than the average. Further studies on uncertainty quantification
will help us to better understand model’s tolerability of input
variability. In addition, standardization of experimental
protocols, with well-defined environmental conditions, could
help increase the model prediction accuracy, as it has been
highlighted by Li et al.5 Recently, Gomis-Tena et al.58 showed
that for some drugs, even maintaining the same experimental
conditions, IC50 value may vary, depending on the voltage-
clamp protocol used, and proposed the adoption of a three-
protocol IC50 assay to measure the potency to block hERG.
Here, similar to other studies,5 we used the cross-validation

method to validate TdP risk predictions, where for each
iteration some drugs are used as the training set and others as
the validation set. Recently, Li et al.59 proposed a new training-
validation strategy to validate TdP prediction models. They
proposed that the models should be validated by an external
set of drugs (“hidden” validation group), where experimental
data are not even collected for validation drugs during the
model training stage. In this sense, this strategy could be taken
into account in the future.
On the other hand, we simulated drug effects using the

simple pore block model, which assumes that the union
between a drug and a channel can occur in any channel
conformation and that the channel activity kinetics remain
unchanged after binding.60 This may be too simplistic and may
not capture adequately complex pharmacokinetic or pharma-
codynamic effects. For example, drug binding kinetics, which
were not considered in this work, have been related to
increased susceptibility to acquired long QT syndrome in the
presence of hERG channel kinetic abnormalities.52 Simulations
of hERG drug binding kinetics could have been modeled

through the recently introduced dynamic-hERG model.61,62

However, experimental parameters needed to simulate drug
effects are scarce because they are measured using complex
experimental protocols.24 This dynamic-hERG model needs
five more parameters to simulate the effects of a given drug,
and it has been proved that parameters such as Vhalf and Ku
contribute relatively little to the variation of qNet, APD90, and
[Ca2+]i peak.

19 In addition, using these models does not bring
benefits for many drugs as there are no significant changes in
the simulations.63

Our simulations do not consider other pharmacological
aspects such as drug−drug interactions, effects of active
metabolites, accumulation of drugs in cardiac tissues, effects on
the autonomic nervous system, protein binding alterations, etc.
Drug−drug interactions play a role in torsadogenic induction
of drugs such as clozapine and risperidone64 or domper-
idone.65 The incorporation of such aspects could have
enriched the results of this study. Unfortunately, further
experimental studies are needed to provide the data for all of
the compounds considered here to allow the simulation of
these phenomena. Nevertheless, it can be said that the levels of
accuracy obtained in this work suggest that the most relevant
biophysical processes contributing to the induction of TdP
have been correctly represented.
Another limitation of this work is that the results of the

classification depend largely on the information taken as
reference. Here, drugs were classified according to the
CredibleMeds database, which feeds from clinical data and is
well recognized by the scientific community. We have
considered class 3 (conditional risk drugs) as TdP−, since
we have focused on the individual pharmacological effects (not
interactions) on healthy cells and therefore we considered that
these special conditions did not take place and these drugs had
little probability of causing TdP. In addition, we have
considered the worst possible scenario, that is, the highest
EFTPC of those published. However, specific conditions such
as overdose can increase the arrhythmogenic potential of these
drugs. In this sense, we tested how the prediction of the TdP
risk classifier for class 3 compounds changed under therapeutic
doses or under overdose conditions (10×EFTPC). As
previously shown (Table 2), at 1×EFTPC, there is just one
class 3 drug (fluvoxamine) that is predicted by the decision-
tree-based classifier as TdP+, while in overdose conditions,
seven out of these 13 drugs increased their torsadogenicity and
were considered as TdP+: fluvoxamine and diphenhydramine,
metronidazole, paroxetine, quetiapine, solifenacin, and vor-
iconazole. Furthermore, some other drugs may change their
level of proarryhtmicity depending on the database. For
example, drugs such as astemizole, chlorpromazine, cisapride,
clarithromycin, domperidone, droperidol, terfenadine, pimo-
zide, or ondansetron, which are considered as high-risk drugs
according to CredibleMeds, belong to the group of
intermediate-risk drugs in the CiPA developing set. Ranolazine
and tamoxifen are intermediate risk drugs according to
CredibleMeds, but they are low risk accorging to the CiPA
set. In fact, Wisńiowska and Polak65 provided a large number
of drugs with contradicting classification among different
databases. Thus, different categorizations can lead to different
accuracies and performances of the TdP risk classifier. This
highlights the need for a standardized TdP risk drug
classification to obtain a wide database (ground truth) that
helps researchers to develop new tools for proarrhythmic risk
prediction.
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5. CONCLUSIONS

In this work, we describe a new in silico tool to study the effects
of a drug on the electrophysiological properties of a
cardiomyocyte and thus predict its proarrhythmic risk. Our
results highlight that in silico simulations considering the
EFTPC and the effects on ionic currents improve the
prediction of cardiotoxicity, in addition to the well-proven
influence of hERG IC50 (current TdP risk biomarker according
to S7B ICH guidelines) on the likelihood of TdP. We also
show that it is not necessary to simulate the drug effects on the
main seven ionic currents proposed by CiPA to have a good
prediction of the proarrhythmicity of a compound. With
experimental data of four currents (IKr, ICaL, INaL, and IKs, which
are the currents with a greater impact on the arrhythmogenic
indices according to the sensitivity analysis), TdP prediction
can be significantly accurate. In addition, we provide a ready-
to-use tool which can be used to estimate the maximum safe
free plasma concentration in the different phases of drug
discovery or to quickly assess the proarrhythmicity of a drug
with known EFTPC and IC50s. We believe that the usage of
such in silico tools as screening methods could be helpful to
accelerate the development of new drugs and reduce the costs
of cardiac safety screening in preclinical phases. In addition,
this approach has the potential to lead to a major replacement
of animal experiments in the early stages of drug development.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00201.

Equations of the activation (mss) and inactivation gates
(hss, hssp, and jss) at the steady state of the rapid Na+

current in the O’Hara et al. model and in the modified
version. IC50 values (nM), Hill coefficients, and effective
free therapeutic plasma concentration (EFTPC) (nM)
used to simulated the 109 drugs studied in this work.
Performance of the four arrhythmogenic biomarkers
depending on the currents on which the effect of the
drug is assumed: the seven CiPA currents; IKr, ICaL, and
IKs, or, IKr, ICaL, and INaL. Performance of the classifiers
depending on the biomarkers used as inputs. Results of
the sensitivity analysis with the multiple linear regression
method. Results of the sensitivity analysis applying the
PLS method. Decision trees that constitute the binary
TdP risk classifier based on Tx, TqNet, and Ttriang (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Beatriz Trenor − Centro de Investigacioń e Innovacioń en
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