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Abstract 15 

A classical hydraulic jump of Fr1=6 and Re1= 210,000 was characterized using the Computational Flu id  16 

Dynamics (CFD) codes OpenFOAM and FLOW-3D, whose performance was assessed. The results were 17 

compared to experimental data from a physical model designed for the purpose. The most relevant 18 

hydraulic jump characteristics were investigated, including hydraulic jump efficiency, roller length , free 19 

surface profile, distributions of velocity and pressure and fluctuating variables. The model outcome was  20 

also compared to previous results from the literature. It was found that both CFD codes represent with  21 

high accuracy the hydraulic jump surface profile, roller length, efficiency and sequent depths ratio, 22 

consistently with previous research. Some significant differences were found between both CFD codes 23 

regarding velocity distributions and pressure fluctuations , although in general results are in good 24 

agreement with experimental and bibliographical observations. This makes models of these 25 

characteristics suitable for engineering applications involving design and optimization of energy 26 

dissipation devices. 27 
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INTRODUCTION  29 

Hydraulic jumps are the sudden transition from supercritical to subcritical regime in open-channel flows . 30 

This phenomenon is characterized by its high complexity, with large turbulent fluctuat ions, in tense air 31 

entrainment and significant energy dissipation. Despite the chaotic nature of hydraulic jumps , they are 32 

frequently classified according to their approaching Froude number (Fr1), which establishes a relationship 33 

between flow inertial and gravity forces:  34 

𝐹𝑟𝑖 =
𝑢𝑖

√𝑔𝑦𝑖
                                                                                                                                    (1) 35 

where ui is the depth-averaged velocity, g the gravity acceleration and yi the water depth. Accord ing to  36 

Hager (1992), hydraulic jumps are considered stable for Fr1 values ranging from 4.5 to  9.0. Higher Fr1 37 

values produce unstable and choppy jumps, prone to flow detachment and bubble and  s pray fo rmat ion 38 

(Hager 1992), whereas lower Fr1 values lead to undular jumps, characterized by lower efficiencies and 39 

formation of waves (Wang and Chanson 2015a, Liu et al. 2004, Chanson and Montes 1995, Chow 1959). 40 

The Reynolds number, relating flow inertial and viscous forces, also plays a crucial role when mode ling 41 

flows at laboratory scale (Chanson 2009, Chanson and Gualtieri 2008). In fact, this non-dimensional 42 

number affects significantly the validity of the extrapolation of laboratory results to large size p ro totype 43 

hydraulic structures, due to the possible occurrence of scale effects. Reynolds numbers mus t  be h igh 44 

enough to ensure model-prototype similarity (Heller 2011, Hager and Bremen 1989): 45 

𝑅𝑒𝑖 =
𝑢𝑖𝑦𝑖


                                                                                                                                     (2) 46 

where  is the kinematic viscosity. The above mentioned complexity of hydraulic jumps lies on its 47 

inherent characteristics, being turbulence itself the most remarkable feature associated to  s uch s ingular 48 

flow phenomenon (Jesudhas et al. 2018).  Large-scale turbulence is found inside the roller and also at the 49 

hydraulic jump free surface, but also microscopic turbulent velocity fluctuations take p lace with in  the 50 

body of the hydraulic jump. Turbulent processes occur in a range of spatial scales and play a determinant  51 

role in the entrainment and transport of air (Jesudhas et al. 2016, Wang and Chanson 2015b). The effect  52 

of inflow conditions on air entrainment process was first reported by Resch and Leutheusser (1972), who  53 

addressed the turbulent structure of the hydraulic jump. Years later, Chanson and Brattbeg (2000), 54 
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Chachereau and Chanson (2011) and Zhang et al. (2013) conducted a series of experiments that allowed 55 

characterizing the air-water structure of the hydraulic jump according to the inflow conditions. The study 56 

by Chanson and Brattberg (2000) can be considered as the first systematic experimental study of air-water 57 

flow properties in the hydraulic jump. Chachereau and Cahnson (2011) worked with several inflow 58 

Froude numbers to define the shape of the free surface profile, whereas Zhang et al. (2013) focus ed  on 59 

the fluctuating nature of the impingement perimeter. 60 

The influence of Fr1 in the air content of hydraulic jumps was investigated by  Gualt ieri and  Chanson 61 

(2007). These authors conducted an experimental study on the effect of Fr1 on air entrainment. They 62 

covered Froude numbers from 5.2 to 14.3 showing that, at a fixed distance from the jump toe, the 63 

maximum void fraction increases with the increasing inflow Froude number. Witt et al. (2015) also 64 

studied this Froude number affection, by the means of CFD techniques. They were able to satisfactorily  65 

model velocity profiles, average void fraction and Sauter mean diameter, when compared with 66 

experimental data. Wu et al. (2018) also studied the inflow conditions and their affection to the air 67 

entrainment in the hydraulic jump, through an experimental campaign conducted in a hydraulic jump 68 

aeration basin. Cheng et al. (2017) investigated about the velocity distributions, using nonintrusive 69 

Particle Image Velocimetry (PIV) techniques, for a wide range of Froude numbers. In addition, Toso and  70 

Bowers (1988) and Mossa (1999) studied the relationship between turbulence structure and pressure and 71 

velocity fluctuations in hydraulic jumps. Toso and Bowers (1988) focused on extreme pressures, whereas 72 

Mossa (1999) experimented with several hydraulic jumps to investigate their oscillating characteris tics 73 

and cyclic mechanisms. Chachereau and Chanson (2011) and Zhang et al. (2013) studied turbulent 74 

fluctuations and how they interfere on the hydraulic jump shape, presenting important findings on their 75 

characteristic frequencies and their length and time scale. These authors focused  on the free-surface 76 

profile, while Wang and Chanson (2015a) analyzed the position of the jump toe  and it s  fas t and s low 77 

fluctuations. In both cases, the inflow conditions, and particularly the Fr1, were paid  s pecial at tent ion . 78 

Furthermore, Jesudhas et al. (2018) demonstrated the three-dimensional nature of the flow developed in  79 

the hydraulic jump. In this research, an inflow Froude number of 8.5 was considered to resolve the 80 

internal turbulent structure of the classical hydraulic jump. However, the complex interaction between the 81 

physical processes involved in hydraulic jumps, places our knowledge far from a full understanding of the 82 

phenomenon (Wang and Chanson 2015a, Wang and Chanson 2015b). 83 
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Hence, the satisfactory modeling process of hydraulic jumps remains an importan t challenge in  many  84 

aspects. Regarding physical modeling, most of previous works focus on the meas urement o f external 85 

macroscopic variables, although some of them use intrusive techniques to obtain more detailed 86 

experimental data sets (Bayón and López-Jiménez 2015, Zhang et al. 2013). Alternatively, numerical 87 

methods, and in particular Computational Fluid Dynamics (CFD) applications, represent an  in teresting 88 

and useful approach to fill the gap in the modeling process of hydraulic jumps (Viti et al. 2019, Bayón  et  89 

al. 2016, Bayón and López-Jiménez 2015, Castillo et al. 2014). A very significant research effort has 90 

been devoted to develop this kind of methods during recent years. In this respect , Langhi and Hosoda 91 

(2018) modeled a hydraulic jump with an unsteady Reynolds-Averaged Navier-Stokes (RANS) approach, 92 

obtaining satisfactory results for the free surface profile, velocity distributions and turbulence, whereas 93 

Ma et al. (2011), used both, a RANS and a Detached Eddy Simulation (DES) model in their simulations . 94 

These authors proved that both methods were capable to provide the void fraction profiles in  the lower 95 

shear layer region. Caisley et al. (1999) used the software FLOW-3D to reproduce a hydraulic jump in  a 96 

canoe chute. Bayón and López-Jiménez (2015), Witt et al. (2015) and Romagnoli et al. (2009) accurately 97 

modeled a hydraulic jump using the free source code OpenFOAM. These models approached a series o f 98 

classical hydraulic jump variables such as the sequent depths ratio, the efficiency, the roller length and the 99 

free surface profile, providing good accuracies when compared with previous studies. Furthermore, 100 

Bayón et al. (2016) performed a detailed analysis of a hydraulic jump comparing the behavior o f two  of 101 

the most widely used codes: FLOW-3D and OpenFOAM. These authors studied the free surface p rofile 102 

of a classical hydraulic jump, together with the sequent depths ratio, the energy dissipation efficiency and 103 

the roller length. They also analyzed the averaged velocity field as well as the maximum velocity  decay 104 

and the maximum backward velocities in the hydraulic jump roller. The results showed that bo th  codes 105 

were able to successfully model the hydraulic jump phenomenon, despite some difficulties arose fo r the 106 

roller region. They also found that a quasi-periodic behavior could be observed for certain variables such 107 

as the toe or the roller end locations. It should be outlined, though, that numerical models st ill p res ent  108 

some limitations to accurately reproduce certain hydraulic phenomena, as stated by Blocken and Gualtieri 109 

(2012). Consequently, the support of experimental data is crucial, and therefore physical modeling 110 

remains indispensable for a rigorous study of complex flows such as the hydraulic jump  (Valero  et  a l . 111 

2019, Liu et al. 2018, Wang and Chanson 2015b). 112 
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Following the lines of Bayón et al. (2016), the aim of this research was to implement a hydraulic jump 113 

three-dimensional model in order to assess the suitability of two of the most widely spread CFD codes in  114 

hydraulic engineering applications, namely the commercial software FLOW -3D and the open source 115 

platform OpenFOAM. All results derived from both CFD platforms cited were systematically contrasted 116 

and validated using experimental data. More specifically, and for this purpose, an open-channel physical 117 

model was developed to adequately reproduce the required hydraulic jump, at the Hydraulics Laborato ry 118 

of the Universitat Politècnica de València (UPV). Additionally, results from CFD modeling were 119 

compared to previous experimental works available in the literature. The case study was designed in 120 

terms of the inflow Froude (Fr1) and Reynolds (Re1) numbers. The first parameter (Fr1) was  s et  taking  121 

into account one of the most important engineering applications of hydraulic jumps, i.e., the flow energy  122 

dissipation in stilling basins (Padulano et al. 2017, Tajabadi et al. 2017). The USBR (Peterka 1964) states 123 

that hydraulic jumps with Fr1 numbers between 4.5 and 9 provide the most efficient energy dissipation. In 124 

this case, and for the numerical models presented herein, a value of Fr1=6 was adopted. Concerning the 125 

second non-dimensional number (Re1), its choice is also very relevant due to the known limitat ions  o f 126 

physical models concerning scale effects. Although such scale effects depend on several factors, 127 

modeling the hydraulic jump with a high Reynolds number minimizes them (Heller 2011, Hager and 128 

Bremen 1989), thus providing a more reliable extrapolation of laboratory experiments. To th is end , t he 129 

case study analyzed herein was set up to ensure a high Reynolds number (Re1=210,000). This makes the 130 

present research the natural continuation of Bayón et al. (2016), where a low-Reynolds number was 131 

analyzed employing a similar methodological basis . Hence, Bayón et al., (2016) stated that the low 132 

Reynolds number (Re1=30,000) used for their study might prevent from extrapolating their results to 133 

prototype scale structures. The present research increased the Re1 according to the guidelines p resen ted 134 

by Heller (2011), and also extended the experimental campaign, using improved instrumentation and 135 

measuring velocity profiles and streambed pressures. In terms of the Froude number, the same value was 136 

used (Fr1=6), which falls in the previously mentioned optimal range for energy d issipat ion  purposes 137 

(Peterka, 1964). Gathering information to characterize a hydraulic jump that can be extrapolated to 138 

prototype scale is crucial for the adaptation of existing energy dissipation structures to  new s cenarios, 139 

with more demanding conditions than those considered in their design. 140 

NUMERICAL MODEL 141 
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The research presented herein assessed the performance of two CFD codes comparing  their ou tcome 142 

when modeling the same hydraulic jump, particularly in high Reynolds Number conditions. On  the one 143 

hand, version 11.0 of FLOW-3D, a commercial software package developed by FlowScience, Inc., was  144 

used. FLOW-3D works with a number of methods to model the free surface depending on the case, all o f 145 

them derived from the Volume Of Fluid (VOF) as originally presented by Hirt and Nichols (1981), and  146 

has been widely used in hydraulic engineering applications since its release (Dong et al. 2019, Valero and 147 

Bung 2016, Caishui 2012, Sarafaz and Attari 2011, Ho and Riddette 2010). On the other hand , the case 148 

study was also modeled with OpenFOAM version 6, a CFD open platform freely available. OpenFOAM, 149 

which contains a number of C++ libraries and applications to achieve the numerical resolution of 150 

continuum mechanics problems (Weller et al. 1998), has also an important experience in  s uccessfu lly  151 

modeling hydraulic engineering problems (Teuber et al. 2019, Fuentes-Pérez et al. 2018, Bayón  2017). 152 

FLOW-3D and OpenFOAM, both based on the Finite Volume Method (McDonald 1971), were 153 

systematically compared trying to avoid bias. To this end, all model parameters were  s et  up  similarly , 154 

when possible. All discretization schemes, including those of advection  equat ions, are s econd-order 155 

accurate. Regarding the run times, they are difficult to compare in this case since FLOW-3D simulat ions 156 

were run in a work station (where the commercial license was valid for) and OpenFOAM simulations 157 

were run in the university’s HPC cluster. That makes computational times hardly comparable. 158 

Flow equations and general settings 159 

CFD codes base their results on the Navier-Stokes equations, which describe, in their general fo rm, the 160 

motion of a fluid. The characteristics of the analyzed case allowed using the equations in their fo rm for 161 

incompressible fluids. Furthermore, FLOW-3D and OpenFOAM employ the Finite Volume Method 162 

(FVM) for the spatial discretization of the conservation laws.  163 

∇𝒖 = 0                                                                                                                                         (3) 164 

𝜕𝒖

𝜕𝑡
+ 𝒖 ∙ ∇𝒖 = −

1

𝜌
∇𝑝 + ∇2𝒖 + 𝒇𝒃                                                                                             (4)                                            165 

where u is velocity, t is time,  is density, p is pressure and 𝒇𝒃 represents the body forces, namely, gravity 166 

and surface tension. Time derivatives were discretized adjusting automatically the time-step length 167 

according to the Courant number. This enhances model efficiency by reducing computational t imes  and  168 

minimizing numerical divergence risk. 169 
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Free surface modeling 170 

When modeling two immiscible fluids, FLOW-3D and OpenFOAM base their strategies on the Volume 171 

Of Fluid (VOF) method (Hirt and Nichols  1981), which employs an additional variable named Fraction of 172 

Fluid (F) that represents the proportion of each mesh element occupied by one fluid or another (0 is air, 1 173 

is water). The following expression is used to compute the evolution of F throughout the domain: 174 

𝜕𝐹

𝜕𝑡
+ ∇ ∙ (𝒖𝐹) = 0                                                                                                                        (5) 175 

The VOF method covers the transport of other properties (e.g. ξ) by means of weighted averages, 176 

according to the value of F in each mesh element: 177 

𝜉 = 𝜉𝑤𝑎𝑡𝑒𝑟𝐹 + 𝜉𝑎𝑖𝑟 (1 − 𝐹)                                                                                                         (6) 178 

The VOF approach, as described above, leaves an unresolved question: defining a neat fluid interface in  179 

regions where F values are between 0 and 1. OpenFOAM works around this problem by  in t roducing  a 180 

fictional velocity term to Eq. 5 (𝛻 · (𝑢̅𝑐 𝐹[1− 𝐹])). This summand adds a fictional velocity in the 181 

direction of the largest gradient of F, which tends to “compress” the air-water interface, as  depicted in  182 

Bayón et al. (2018). In regards with FLOW-3D, under a two-fluid approach, this code s imultaneously  183 

solves a set of conservation equations  for each phase separately. For fluids greatly differing in their 184 

densities and separated by a thin interface, such as the ones presented in this research, a free-slip velocity 185 

condition at the interface is recommended. By adding this condition, the momentum coupling could  be 186 

improved. Furthermore, a mechanism was added to help close up partial voids and add interface 187 

sharpening to preserve the free surface and improve its tracking. This so-called F-packing mechanis m 188 

works by creating small negative divergences in internal fluid cells. 189 

Air entrainment 190 

Aeration is a crucial phenomenon in highly turbulent air-water flows. Eddies and free surface fluctuations 191 

cause air entrapment, thus forming bubbles in the hydraulic jump body (Xiang et al. 2014). The presence 192 

of air affects the momentum transfer as it modifies the flow macroscopic density, adds compressib ility , 193 

increases its depth and induces volume bulking (Chanson 2013, Favley 1980). Consequently, an accurate 194 

approximation to the air entrainment phenomena becomes an important issue when modeling a hydraulic 195 

jump. Along the same lines, it is worth considering that water droplets and air bubbles may show a 196 
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characteristic length scale below the mesh size, making its tracking considerably difficult (Bayón et  a l . 197 

2016, Valero and Bung 2015; Lobosco et al. 2011). 198 

Air entrainment could be modeled by establishing a balance between stabilizing forces (gravity and 199 

surface tension) and destabilizing forces (turbulence). This allows a continuous estimation of the rate at  200 

which air enters the flow. However, multiple input parameters are needed for such detailed modeling 201 

process. Besides, calibration and validation of these parameters is also necessary.  Instead of that, for this  202 

particular study in which aeration and void fraction distributions were not analyzed, an entirely Eulerian  203 

method with two fluids, similar to the one referred by Bayón et al. (2016), was used as a modeling 204 

approach. Hence, both fluids were allowed to mix in the same cell, but locating the free s urface where 205 

F=0.5. Nevertheless, no additional equations were used for droplet and bubble dynamics.  206 

Turbulence modeling  207 

Modeling turbulence is one of the key aspects of CFD applications. At high Reynolds numbers, the 208 

natural instabilities that occur within the flow lead to swirling structures of different scales. Ideally, 209 

velocity and pressure fluctuations derived from turbulence would be resolved to their lower scale through 210 

the so-called Direct Numerical Simulation (DNS) approach. However, this is not practical in most applied 211 

cases, due to computer memory and processing time limitations. Therefore, the majority of CFD 212 

applications incorporate a turbulence model to describe and quantify the effects of turbulence on the mean 213 

flow characteristics. The Large Eddy Simulation (LES) method is based on the direct res olu tion o f the 214 

largest turbulent structures and the modeling of those below a certain scale. Generally, this is an accurate 215 

approximation to reality, but still unaffordable for most engineering applications (Bayón et al. 2016, 216 

Spalart 2000). Finally, the Reynolds Averaging of the Navier-Stokes Equations (RANS) is probably  the 217 

most popular approach for engineering problems. RANS models find closure to the turbulence p roblem 218 

by averaging the so-called Reynolds stresses and adding supplementary variables related to the turbulen t 219 

viscosity and their respective transport equations. There are different turbulence models according to the 220 

number of additional transport equations used to solve the closure problem. Two-equation models are the 221 

most frequent option, as they are able to provide a full description of turbulence in  terms  of t ime and  222 

length scales and hence reproduce a wide range of flows (Pope 2000). 223 

For the CFD models set up in the present study, a two equation RNG k- turbulence model (Yakhot et a l , 224 

1992) was used. The RNG k- approach applies statistical methods to the derivation of the averaged 225 
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equations for two turbulence quantities: turbulent kinetic energy (k) and its dissipation rate (). One of the 226 

advantages of this model is that usually provides better results when modeling swirling flows compared to 227 

the standard k- (Bombardelli et al. 2011, Kim and Baik 2004, Pope 2000, Bradshaw 1996, Speziale and  228 

Thangam 1992). The transport of k  and  was modeled by the following two equations: 229 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌𝜀                                                                 (7) 230 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + 𝐶1𝜀

𝜀

𝑘
𝑃𝑘 − 𝐶2𝜀𝜌

𝜀2

𝑘
                                                  (8) 231 

where xi is the coordinate in the i axis,  is dynamic viscosity, t is turbulent dynamic viscosity and Pk  is  232 

the production of TKE. Finally, the terms σk, σε, C1ε and C2ε are parameters whose values are given in 233 

Yakhot et al. (1992). 234 

Geometry and meshing 235 

The spatial domain subject of the present study consisted of a horizontal rectangular channel where a 236 

classical hydraulic jump takes place. The simplicity of the geometry favored the use of a structured mesh. 237 

According to Biswas and Strawn (1998) and Hirsch (2007), models using these meshes generally provide 238 

a better accuracy than those using unstructured meshes and their generation algorithms are fas ter and  239 

show a lower complexity degree. In addition, structured meshes have associated a more regular access to 240 

memory and consequently the latency during simulations is lower (Keyes et al. 2000). Finally, numerical 241 

diffusivity in free surfaces tends to be reduced when modeling multiphase flows with topologically 242 

orthogonal meshes (Bayón and López-Jiménez 2015).  243 

Unstructured meshes show multiple advantages such as  their capability to refine selectively regions where 244 

important gradients of the flow variables are expected (Kim and Boysan 1999). Besides, their arb it rary  245 

topology can not only adapt better to complex geometries, but also produce fewer closure issues (Bis was 246 

and Strawn 1998). However, given the above mentioned simplicity of the geometry  o f the case under 247 

study, none of the advantages of unstructured meshes constituted a significant improvement. Therefore, a  248 

structured rectangular hexahedral mesh was used. In the meshing process, areas where there was no flow 249 

were cropped and a cell refinement in those other areas where higher flow gradients were expected  was 250 

carried out, looking for efficiency in the simulation process without affecting the results (Figure 1). Thus, 251 

two different cell sizes were used, being the cell size relation between them 1:2, for the three space 252 
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coordinates (i.e. 1:2 relation for Δx, Δy and Δz). The mesh elements size was determined through a mes h  253 

convergence analysis, which is developed in forthcoming sections. 254 

 Boundary conditions 255 

Boundary conditions were set up so that the hydraulic jump took place within the modeled channel 256 

stretch. Consequently, a supercritical flow inlet and a subcritical flow outlet were imposed. The 257 

appropriate value of Fr1 was ensured with a constant flow depth at the inlet (y1) and the corresponding 258 

velocity value computed according to Eq. 1. A subcritical boundary condition was imposed to the outlet , 259 

varying its flow depth (y2) iteratively in order to place the hydraulic jump on the desired position. In 260 

respect with the inlet variables for the RANS model, namely k  and ɛ, they were set to small values 261 

arbitrarily so that they developed as the simulation progressed, since their initial value wa s  unknown. 262 

Furthermore, the wall roughness was neglected in consistence with the small roughness of the materials  263 

of the experimental device walls and streambed (glass and PVC, respectively). A high Reynolds number 264 

wall function was imposed to the solid contours, thus allowing a significant  s av ing in  computat ional 265 

costs. In order for the function to operate properly, it must be ensured that the y
+
 coordinate of all 266 

elements in contact with solid boundaries remains below y
+
<300. The computation of y

+
 is based  on the 267 

non-dimensionalization of velocity profiles according to the shear velocity (uτ) proposed by von 268 

Kármán’s (1930) Law of the Wall: 269 

𝑦+ = 𝑦
𝑢𝜏

𝜈
                                                                                                                                     (9) 270 

𝑢+ =
𝑢

𝑢𝜏
                                                                                                                                      (10) 271 

EXPERIMENTAL SETUP 272 

The results obtained with the numerical models were compared, not only to previous s tudies, but  als o 273 

with the authors’ own experimental results. In order to carry out this comparison, an open channel, 274 

installed at the Hydraulics Laboratory of the Universitat Politècnica de València (UPV), was us ed. Th is  275 

rectangular-section channel is built with a PVC streambed and glass walls, and its dimensions are 10.00 276 

m long, 0.30 m wide and 1.00 m high. The inlet to the system is a pressure flow, with a transition between 277 

pressure and free surface flow right before the entrance of the channel. The channel pump allows 278 

discharges up to 140 l/s, enough to reproduce a wide range of Froude numbers. The flow rate was 279 
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controlled by an electromagnetic flow meter by SIEMENS © (SITRANS MAG 5100 W), able to measure 280 

flow rates between 1 m3/h and 2500 m3/h, with an uncertainty < 0.1%. The channel is also equipped with  281 

both, upstream and downstream sluice gates, which can be maneuvered to control the supercrit ical and  282 

subcritical flow depths. This experimental device was equipped with pressure and temperature  s ensors. 283 

The longitudinal axis of the channel streambed presents holes each 50 cm to host pressure sensors, which  284 

remain blocked when they are not in use to ensure the water tightness of the channel. Hence, p ressure 285 

transmitters could be located in multiple exchangeable positions all along the channel. These transmitters, 286 

with the corresponding software, allowed to record quick and precise p ressure and  temperature data 287 

thanks to their piezoresistive transducer and microprocessor with 16 bit A/D converter.  288 

Velocities were measured using both an Acoustic Doppler Velocimeter (ADV) (Vectrino, Nortek) and  a 289 

Pitot tube (PASCO General flow sensor with Pitot tube). The ADV allows measuring the three 290 

components of the velocity vector in a point using the Doppler Effect. This device , which  offers data 291 

collection rates up to 200 Hz, is designed to cover a range of velocities from 3 cm/s to 4 m/s, in 292 

conditions where the signal is not affected by flow elements such as bubbles. In the presen t res earch, it  293 

was used to measure flow velocity distributions downstream of the hydraulic jump roller. A  back-flus h  294 

Pitot tube for velocities up to 10 m/s was employed to measure velocities larger than 4 m/s both upstream 295 

and within the hydraulic jump roller.  The roller length was measured using the stagnation point criterion: 296 

vertical profiles of average streamwise velocity were measured in several sections along the ro ller.  The 297 

point where velocity tends to zero (stagnation point) was identified in all of them. Finally, the intersection 298 

between the line joining all these points and the average free surface indicated the end of the roller 299 

position (Hager et al. 1990). 300 

In respect with the definition of the free surface profile in the physical model, different techniques were 301 

employed depending on the area where measures were taken. The use of a varied methodology to 302 

measure the hydraulic jump profile provides a deeper contrast, which in turn is relevant in  the analysis 303 

due to the high level of turbulence in the phenomenon, leading to a randomly variable free surface 304 

(Castro-Orgaz and Hager 2009). The instant and average free-surface profiles throughout the hydraulic 305 

jump were obtained from the experimental channel using digital image processing (DIP). An edge 306 

detection method based on a light intensity threshold allowed to identify air-water interfaces in videos o f 307 

the hydraulic jump profile recorded at 50 Hz with a resolution of 1280x720 px. The quality of the results 308 

was enhanced by applying perspective effect correction and filtering algorithms to remove the bias caused 309 
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by droplets, reflections and others. Free-surface position was also recorded at several po in ts along the 310 

hydraulic jump using HC-SR04 ultrasound distance meters connected to a Raspberry Pi 3 B+. In addition, 311 

point gauge measurements using limnimeters were conducted throughout the channel in order to contrast  312 

the DIP and ultrasound sensor results. Hence, the experimental campaign comprised not only the 313 

hydraulic jump roller, but also the flow upstream and downstream, with the purpose of achieving a 314 

characterization of the hydraulic jump as accurate as possible. 315 

It is important to remark that the flow under study is extremely complex. Thus, obtaining reliable 316 

measures of certain variables remains a challenging goal, given the available measuring devices and 317 

experimental limitations. According to Valero et al. (2019), even a perfectly sampled data s eries could  318 

still present uncertainties related to the limitations on the measuring time or the data acquisition rate. As a 319 

result of this, there was an unavoidable degree of uncertainty associated with the parameters studied in the 320 

experimental campaign. However, its design was made seeking for a reduction of this uncertainty, 321 

choosing appropriate measuring times and locations. In addition, the corresponding preliminary analyses 322 

were conducted, in order to discard anomalous data or those other values lacking of physical sense. 323 

CASE STUDY 324 

The comparison carried out between the CFD codes was based on a part icular cas e s tudy of a th ree-325 

dimensional classical hydraulic jump tested in the laboratory open flow channel above referred. 326 

Discharge in the channel was set to Q=0.063 m3/s (discharge per unit width: q=0.21 m2/s) and the 327 

supercritical flow depth was y1=0.05 m (u1=4.2 m/s). These values led to an inflow Froude number of 328 

Fr1=6, a Reynolds number of Re1= 210,000 and a Weber number of We1=12,058. The Weber number, 329 

proportional to the ratio of the inertial to surface tension forces is calculated as (Chanson 2006): 330 

𝑊𝑒𝑖 =
𝑢𝑖

2𝑦𝑖

𝜎
                                                                                                                               (11) 331 

where σ is the surface tension coefficient. Regarding the characteristics of the fluids, for water, the 332 

density and kinematic viscosity were respectively w=998 kg/m3 and w=10-6 m2/s, whereas for air 333 

a=1.184 kg/m3 and a=1.781-5 m2/s were used. The surface tension coefficient was σ=0.073 N/m. 334 

Mesh convergence analysis 335 



13 
 

A mesh convergence analysis was carried out on both CFD codes to determine the appropriate cell s ize 336 

for the case study. That ensures the independence of the numerical model results from the s ize o f cell 337 

implemented or, at least, quantifies the result numerical uncertainty. The analysis was conducted 338 

following the ASME’s criterion (Celik et al. 2008), using four different meshes and twenty one indicator 339 

variables (streamwise flow velocity at different points within the roller). The cell sizes tested in the 340 

different meshes were 1.67, 1.25, 1.00 and 0.71 cm, accomplishing the recommended approximate 341 

minimum ratio between coarsest and finest meshes of 1.3 (Celik et al. 2008). The data of FLOW-3D 342 

showed limited influence on results compared to OpenFOAM, as previously observed by  Bayón  et  a l . 343 

(2016). This smaller sensitivity made the mesh convergence analysis perform worse, so the best results 344 

were achieved by mesh size Δx=0.71 cm, with a mesh apparent order of p=1.96, near the model fo rmal 345 

order, and a grid convergence index of GCI=63.5%. The latter value indicates a large numerical 346 

uncertainty, in coherence with the reduced sensitivity to mesh refinement. OpenFOAM, on the contrary , 347 

showed a clearer convergence process, which normally makes more refined meshes necessary to achieve 348 

reliable results. Coherently, the best results were yielded by mesh size Δx=0.50 cm, with an apparent 349 

order of p=2.2, slightly above the model formal order, and a convergence index of GCI=11.6%. This 350 

significantly smaller GCI value indicates a clearer path to convergence and smaller levels  o f numerical 351 

uncertainty. However, the indicators for a mesh size Δx=0.71 cm were also satisfactory for OpenFOAM. 352 

Hence, prioritizing a similar model set up, this was the cell size used in both codes.  353 

Stability of the solution 354 

Given the chaotic nature of the flow studied, the variables describing the phenomenon were averaged in  355 

time windows long enough to ensure stationarity. To this end, it is important to run simulations un til the 356 

quasi-stationary state is reached, thus  allowing a proper statistical result averaging. In this respect, 357 

simulations were performed to attain the desired position of the hydraulic jump. After that, a  10-s econd 358 

simulation in which the variation on the fluid fraction in the domain is under 3.5% was used for averaging 359 

and the subsequent analysis. 360 

RESULTS AND DISCUSSION 361 

The observation of the simulations performed by both CFD codes showed that they were able to 362 

reproduce the studied phenomenon in a physically-consistent way. The hydraulic jump occurred in  the 363 

desired position and the macroscopic qualitative features, such as the subcritical and supercrit ical flow, 364 
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the high vorticity in the roller area, the gradual air detrainment downstream of the hydraulic jump toe, etc. 365 

were in good agreement with those expected for a classical hydraulic jump (Viti et al. 2019, Hager 1992). 366 

A thorough analysis of some of the characteristic variables of hydraulic jumps is conducted hereunder. 367 

Hydraulic jump characterization 368 

The sequent depths ratio obtained with the two CFD models employed was 7.46 for FLOW-3D and  7.50 369 

for OpenFOAM. The accuracies  obtained when comparing these values to the experimental results 370 

yielded with different techniques (DIP, limnimeters and ultrasound sensor) were 94.2, 96.4 and 96.4% for 371 

FLOW-3D and 94.7, 96.9 and 96.9% for OpenFOAM. Furthermore, using the expres sion proposed by 372 

Hager and Bremen (1989), which is based on the Bélanger equation (Bélanger 1841), the accuracies were 373 

96.5 and 97.0% respectively for FLOW-3D and OpenFOAM. It is important to highlight that for the 374 

physical model, the different techniques employed gathered high accuracies in the determination o f the 375 

sequent depths ratio compared to Hager and Bremen (1989). Overall, the results were qu ite s imilar fo r 376 

both CFD codes, in good agreement with the experimental results and Hager and Bremen (1989); 377 

although the accuracies were slightly lower for FLOW-3D. Regarding the hydraulic jump efficiency , as  378 

described by Hager (1992): 𝜂 = (1 − √2 𝐹𝑟1⁄ )
2
, FLOW-3D and OpenFOAM yielded an accuracy of 379 

99.0% and 99.3% respectively, whereas when comparing with the hydraulic jump physical model, the 380 

accuracy was 97.7% for FLOW-3D and 98.0% for OpenFOAM, in relation with the data gathered with  381 

limnimeters and ultrasound sensor; and 96.1% and 96.4% respectively for the DIP. High levels of 382 

accuracy for the hydraulic jump efficiency were expectable since this variable, which gives a measure o f 383 

the amount of energy dissipated in the hydraulic jump, is strongly correlated to the sequent depths ratio. 384 

Free surface profile 385 

The free surface profile is an important aspect of hydraulic jumps that has been widely studied in the past  386 

(Wang & Chanson 2015a, Castro-Orgaz & Hager 2009, Bakhmeteff & Matzke 1936). Figure 2 d is p lays 387 

the averaged dimensionless free surface profile for both CFD codes, along with results  from the 388 

experimental campaign and other authors’ data (Wang & Chanson 2015a, Bakhmeteff & Matzke,  1936). 389 

To obtain the dimensionless profile the following expressions were used: 390 

𝑋 =
𝑥−𝑥0

𝐿𝑟
                                                                                                                                    (12) 391 
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𝑌 =
𝑦−𝑦1

𝑦2−𝑦1
                                                                                                                                   (13)     392 

where x0 is the hydraulic jump toe position, y1 and y2 the supercritical and subcritical flow depths and Lr 393 

the hydraulic jump roller length. Both numerical models were able to reproduce the free surface profile of 394 

the hydraulic jump as their profiles mostly fall between the ones proposed by Wang and Chanson (2015a) 395 

and Bakhmeteff and Matzke (1936). It can be remarked that there was a slight overestimation of Y in 396 

comparison with the Bakhmeteff and Matzke (1936) profile for X > 1, but this is in good agreement with  397 

the results reported in Hager (1992) and Bayón et al. (2016). Furthermore, the experimental profile 398 

obtained with DIP was in good agreement with the rest of the res ults but in general, tended to 399 

overestimate the flow depths. This overestimation can be consequence of the b ias  caused  by bubbles 400 

influencing the digital image treatment in a phenomenon where free surface turbulence and air 401 

entrapment play a significant role, and droplets and bubbles  are continuously expelled. Moreover, 402 

numerical models provided the free surface profile along the longitudinal axis of the hydraulic jump, 403 

whereas DIP techniques must take images from the side of the experimental channel and consequent ly, 404 

the free surface instant rotation around the X axis can affect the results. These factors would exp lain  the 405 

resulting overestimation of flow depths. In order to minimize these differences, further research is needed. 406 

Regarding the point measurements obtained with the ultrasound sensor, the res ults improve d as  they 407 

moved downstream from the hydraulic jump toe, until they achieved a high accuracy level for the 408 

subcritical regime. Consequently, it seems that high velocities, bubble and droplet ejection, and in tense 409 

free surface turbulence affected the sensor reliability. The coefficient of determination R
2
 (Bennet  et  a l . 410 

2013) was calculated to assess the accuracy of the numerical models. Hence, FLOW-3D achieved a value 411 

of R
2
=0.991 compared with Bakhmeteff and Matzke (1936), R

2
=0.956 compared with Wang and Chanson 412 

(2015a) and R
2
=0.943 in relation with the experimental results  (DIP), whereas for OpenFOAM the 413 

coefficients of determination were R
2
=0.996, R

2
=0.996 and R

2
=0.961 respectively. Taking in to  account  414 

that R
2
=1 indicates a perfect agreement, the models here presented were able to  reproduce  accurately 415 

enough the free surface profile of the hydraulic jump. 416 

Velocity profiles 417 

Velocity profiles in different positions along the hydraulic jump longitudinal axis were obtained, 418 

averaged and analyzed. Figure 3 a) shows that the maximum velocity decay from the hydraulic jump toe 419 

followed a similar trend in OpenFOAM and FLOW-3D, which is in good agreement with the expres sion 420 
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proposed by Hager (1992) and the experimental data. In the latter case, the trend showed a higher degree 421 

of variability, likely due to the possible bias suffered by the Pitot tube in the swirling region of the 422 

hydraulic jump. It is important to remark that to experimentally obtain the maximum velocity at a certain  423 

location, vertical profiles were measured along the hydraulic jump longitudinal axis. From these 424 

measures, the maximum streamwise velocity in each profile was extracted. The coefficient of 425 

determination (R
2
) was calculated for the CFD models in relation with Hager (1992), resulting in the 426 

highest accuracy for FLOW-3D (0.999), followed by OpenFOAM with a value of 0.992. For the 427 

maximum backward velocity, the differences between the models and the values reported by Hager 428 

(1992) increased (Figure 3 b)), probably as a result of the complex flow taking place in the area with 429 

recirculation. Hence, R
2
 was 0.928 for OpenFOAM and 0.618 for FLOW-3D compared to Hager’s 430 

results, whereas experimental data seemed to follow a trend closer to FLOW-3D res u lts. Bayón et  a l . 431 

(2016) also observed similar discrepancies between FLOW-3D, OpenFOAM and Hager (1992). The 432 

maximum and maximum backward velocity dimensionless values were obtained as stated by Hager 433 

(1992).  434 

In regards with the vertical velocity profiles  in the roller region, the information obtained from the 435 

numerical and the physical models was compared with the analytical expression proposed by 436 

McCorquodale & Khalifa (1983), which represents the mean velocity distribution using two d ifferen t 437 

functions that distinguish between inner and outer layer: 438 

𝑢 = 𝑢𝑚𝑎𝑥 (
𝑧

𝛿
)

1/7
; 0 ≤ 𝑧 ≤ 𝛿                                                                                                     (14) 439 

𝑢 = 𝑢∞ + 𝑢𝑡𝑒2.772(𝑧−𝛿 𝑦−𝛿⁄ )2
 ; 𝛿 < 𝑧 < 𝑦                                                                               (15) 440 

where u is the horizontal velocity, umax is the maximum horizontal velocity, which takes place at a 441 

height 𝑧 = 𝛿, u∞ is the horizontal component of the freestream velocity and 𝑢𝑡 = 𝑢𝑚𝑎𝑥 − 𝑢∞. The 442 

adjustment of this expression to the values obtained in the models allowed  presen ting d imensionless 443 

results, following the procedure found in Hager (1992) for the diffusion portion of the velocity profile, as  444 

shown in Figure 4. This figure also includes the theoretical dimensionless expression for velocity profiles 445 

in the hydraulic jump roller region proposed by Hager (1992): 446 

𝑈 = [𝑐𝑜𝑠(100𝑍)]2                                                                                                                    (16) 447 
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A general observation of Figure 4 shows a good agreement of the CFD models with the theoretical results 448 

proposed by Hager (1992), with a slightly steeper velocity decay in the velocity values fo r OpenFOAM 449 

compared to literature results. In respect with FLOW-3D, the analyzed profiles increased their differences 450 

with the theoretical expression as they approached the end of the hydraulic jump roller, where the velocity 451 

distribution proposed by Hager (1992) may not be strictly followed. In spite of th is , the p rofiles were 452 

almost coincident with the bibliographic results, at least until Z  0.6. For larger Z values , although the 453 

results still showed a satisfactory agreement with the expression by Hager, the differences slightly 454 

increased. This result implies that the ability showed by FLOW-3D to accurately reproduce the velocity 455 

field within the jump roller, diminished as the profiles approached the free surface. This is precisely the 456 

zone where backwards velocities gain importance, a fact that basically explains the differences found in  457 

Figure 3 b) between FLOW-3D, OpenFOAM and the bibliographic results. However, both numerical 458 

models accurately reproduced vertical velocity distributions along the hydraulic jump roller compared  to  459 

Hager (1992) with a R
2 coefficient of 0.984 for FLOW-3D and 0.978 for OpenFOAM.  460 

Regarding the experimental values, higher differences with the expression by Hager (1992) were 461 

observed. Firstly, as explained for FLOW-3D, the profile with the highest X value did not strictly fo llow 462 

the analytical expression, probably due to its proximity to the roller end section. For the rest of the 463 

profiles, despite the general good agreement observed for low Z values, the differences increased fo r Z > 464 

0.5. The most probable explanation to such differences concerns the Pitot tube measurements reliab ility .  465 

It can be considered reliable in the bottom area of the jump, where air concentrations are relat ively  low, 466 

but its accuracy decreases significantly inside the highly aerated region, close to the free surface (W ang 467 

2014). This explanation is also suitable for the results observed in Figure 3 b), considering that the highest 468 

presence of bubbles within the hydraulic jump is generally associated to those areas where the maximum 469 

backwards velocities take place. 470 

Velocity profiles in the supercritical and the subcritical flow regime were also analyzed both for the 471 

numerical and the physical models. A comparison of these results with the analytical expression (Eq . 17) 472 

proposed by Kirkgoz and Ardiclioglu (1997) is shown in Figure 5. 473 

𝑢

𝑢∗ = 2.5 · ln(
𝑧𝑢∗


) + 5.5                                                                                                          (17) 474 
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where u* is the shear velocity, as estimated by the same authors . Values from the physical and the 475 

numerical FLOW-3D and OpenFOAM models were around the expected results according to the 476 

expression from Kirkgoz and Ardiclioglu (1997). On the one hand, for the supercritical regime, a quicker 477 

increase in the velocity values could be observed for the models when compared  with  b ib liograph ical 478 

results.  On the other hand, for the subcritical regime, the trends defined by the numerical models seemed  479 

to differ from the rest of the results. This was probably due to the proximity of the analyzed  s ect ions to 480 

the hydraulic jump roller (lower values of X). The roller affects these velocity profiles, so that they  were 481 

closer to bibliographical expressions referred to velocity profiles in this region, such as the above 482 

mentioned Hager (1992) velocity profile (Eq. 14). Therefore, Hager (1992) was the comparison s ource 483 

displayed for these profiles in Table 1. In the numerical models, profiles with higher X values were 484 

affected by the downstream boundary condition. Consequently, they were not analyzed. 485 

 Pressure 486 

An analysis of the pressures in the streambed was conducted for the numerical and experimental models . 487 

The averaged relative pressures along the hydraulic jump longitudinal axis were compared to 488 

observations from Toso and Bowers (1988) in a classical hydraulic jump with Fr1=5.67. Figure 6 a) 489 

shows a good agreement between the numerical models and the observations from Tos o and Bowers  490 

(1988), leading to a value of 0.995 of the coefficient of determination for FLOW-3D and 0.958 for 491 

OpenFOAM. The experimental results  showed a high variability and it was difficult to find trends or 492 

similarities with the numerical models or the bibliographical data. It is important to highlight that pressure 493 

transmitters are highly sensitive to solid particles carried in the flow, which could have affected the 494 

results. Apart from these values, pressure fluctuations, which are closely related to the turbulent nature o f 495 

the jump, were analyzed. To this end, the procedure proposed by Abdul Khader and Elango  (1974) was  496 

followed, decomposing pressure instant values into: 𝑝 = 𝑝̅ + 𝑝′, where 𝑝̅ is the average value and 𝑝′ is  497 

the fluctuating component. Hence, pressure fluctuations could be obtained as P/Pm, where: 498 

𝑃 =
√𝑝′2

𝑢1
2

2
⁄

                                                                                                                                    (18) 499 

𝑃𝑚 = 𝑎(1 + 𝑎𝐹𝑟1)                                                                                                                     (19) 500 
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with a=0.061 for the domain 4.7<Fr1<6.6. Figure 6 b) displays a distribution of the pressure fluctuat ions 501 

within the hydraulic jump. Results from both CFD models showed a similar trend  to  the observations 502 

made by Abdul Khader and Elango (1974) but with a lower value of the maximum fluctuations, followed  503 

by a slight overestimation of these fluctuations for X > 0.5. In terms of the position where the peak 504 

pressure fluctuations take place, the results from FLOW-3D and the experimental model were close to the 505 

observations made by Toso and Bowers (1988), which indicated a position around X=0.4 fo r th is  peak, 506 

whereas OpenFOAM was in the line of other bibliographical results which determined X=0.3-0.35 as  the 507 

position where the maximum pressure fluctuations occur (Spoljaric 1984, Abdul Khader and Elango 508 

1974). 509 

 Roller length 510 

As defined by Hager et al. (1990), the hydraulic jump roller marks the boundary between backward a nd 511 

forward flow, starting at the toe of the jump and ending at the surface stagnation point. In order to obtain  512 

the roller length, the stagnation point criterion, as described in previous sections, was applied for both the 513 

physical and the numerical models. Hager et al. (1990) carried out an extensive literature review on roller 514 

lengths, measured for different hydraulic jumps, and proposed the following expression to obtain it: 515 

𝐿𝑟 = 𝑦1 [−12 + 100 𝑡𝑎𝑛ℎ (
𝐹𝑟1

12.5⁄ )]                                                                                    (20) 516 

Furthermore, Wang and Chanson (2015a) proposed an expression based on their observations for 517 

hydraulic jumps with a value of the inflow Froude number between 1.5 and 8.5: 518 

𝐿𝑟 = 𝑦1[6(𝐹𝑟1 − 1)]                                                                                                                 (21) 519 

The hydraulic jump roller length for the FLOW-3D, OpenFOAM and physical models was 1.40 m, 1.59 520 

m and 1.57 m respectively, whereas a value of 1.63 m and 1.50 m was obtained using Eqs. (20) and (21). 521 

OpenFOAM appears to be more precise in the estimation of this parameter as it y ielded accuracies o f 522 

98.7%, 97.5% and 94.0% in comparison with the physical model and results from Hager et al. (1990) and  523 

Wang and Chanson (2015a) respectively, whereas for FLOW-3D these accuracies were 89.2%, 85.9% 524 

and 93.3%. Despite the differences, both models achieved an acceptable accuracy fo r th is parameter , 525 

which turns out to be crucial when modeling a hydraulic jump as it limits the region where the b iggest 526 

pressure and velocity fluctuations and the largest energy dissipation occur. Correct roller es t imat ion is  527 
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hence of utmost importance when designing energy dissipation structures where hydraulic  jumps  take 528 

place. Finally, a table summarizing the performance of the CFD models developed in this research in 529 

comparison with experimental data and bibliographical results is displayed (Table 1). 530 

CONCLUSIONS 531 

The hydraulic jump is known to be one of the most complex phenomena in fluid mechanics. The research 532 

here presented provides an insight on several structural properties of a hydraulic jump of Fr1=6 and 533 

Re1=210,000.  The definition of the phenomenon with these values of Fr1 and Re1 minimizes scale 534 

effects (Heller 2011) and thus, provides a reliable extrapolation of the experiments performed, which  are 535 

representative of the preferable hydraulic jumps taking place in stilling basins (Peterka 1964). The 536 

capability of the CFD codes OpenFOAM and FLOW-3D to model this hydraulic jump was assessed and 537 

contrasted with experimental data from a specifically designed physical model and bibliographical results 538 

from an extensive literature review. The most relevant conclusions obtained are stated below. 539 

The hydraulic jump efficiency and the sequent depths ratio were accurately reproduced by the CFD codes 540 

when compared to both, laboratory measurements and previous literature results . In  terms  of the free 541 

surface profile, the presence of bubbles and droplet ejection, combined with the intense free surface 542 

turbulence, introduced a degree of bias in the fluctuating profile. These affected particu larly  physical 543 

measurements (DIP and ultrasound sensors), which slightly overestimated depths in the profile.  544 

Meanwhile, both numerical codes yielded similar results, in good agreement with other research 545 

published on this topic (Wang and Chanson 2015a, Bakhmeteff and Matzke 1936).  546 

Concerning velocity distributions, a comprehensive analysis was carried out, including maximum velocity 547 

decay from the hydraulic jump toe, maximum backward velocity, and velocity profiles characterization in 548 

three different areas, namely, inner roller region, supercritical and subcritical flow regimes. Maximum 549 

velocity decay was successfully reproduced by both CFD codes. However, for the maximum backward  550 

velocity, significant differences were found. FLOW-3D results were closer to the experimental ones, 551 

whereas OpenFOAM was in better agreement with the results reported by Hager (1992). Regarding 552 

velocity profiles, the supercritical non-dimensional velocity distribution pattern was well reproduced  by 553 

both numerical codes, when compared to experimental results and also to the analytical profile proposed 554 

by Kirkgoz and Ardiclioglu (1997), with the highest R
2
 values reached by FLOW-3D in this case. On the 555 

other hand, there were significant discrepancies in the velocity profile patterns for the s ubcrit ical flow . 556 
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For this regime, OpenFOAM distributions showed an important curvature with a distinguis hed  relat ive 557 

maximum and FLOW-3D generated a profile closer to a uniform distribution, whereas experimental 558 

results provided almost linear profiles with maximum velocities close to the surface. These d ifferences 559 

could be explained by the different X-sections analyzed, which were chosen taking into account 560 

restrictions of both, the numerical and the experimental approach. In respect with the velocity 561 

distributions along the hydraulic jump roller, numerical outputs reached a high level of precis ion, when  562 

compared to Hager (1992). It should be pointed out that for both CFD codes, non-dimensional velocity 563 

profiles were almost coincident, no matter the chosen section inside the roller. On the contrary, 564 

experimental results variations were more relevant, depending on the X-section considered.  565 

Pressure distributions in the channel bed were very accurately reproduced by the numerical models, with  566 

results almost coincident with those reported by Toso and Bowers (1988). Regarding pressure 567 

fluctuations, which were quantified according to Abdul Khader and Elango (1974), OpenFOAM res ults 568 

were close to previous reported research on the topic, whereas FLOW-3D outputs showed a s ign ificant  569 

overestimation for sections X > 0.5. For the roller length estimation, which is a crucial matter in  s everal 570 

hydraulic jump applications, OpenFOAM outcomes were in good agreement with experimental res ults 571 

and previous research on the topic (Wang and Chanson 2015a, Hager et al. 1990) while FLOW-3D, even  572 

providing acceptable results, slightly underestimated this variable.  573 

The comparisons made showed that the numerical approach using FLOW-3D and OpenFOAM was  ab le 574 

to adequately reproduce the main structural properties of the hydraulic jump, although they failed  to  575 

represent some internal details with total accuracy. It is important to highlight that knowledge and 576 

understanding of the hydraulic jump at its different s cales remains limited and therefore, potential 577 

advances achieved with CFD techniques constitute a promising research line, which is worth developing. 578 

The research here presented concludes that the considered CFD codes can s uccessfully  complement 579 

experimental modeling and literature to analyze hydraulic jump characteristics on prototype s tructu res . 580 

Consequently, the yielded results may help to improve the performance of energy dissipation structures in 581 

dams. The adaptation of these structures to higher discharges than those considered in the design phase is  582 

in the spotlight, due to climate change effects and increasing society demands in terms of security. Hence, 583 

contributions to hydraulic jump modeling, as the ones presented in this research, are crucial to  face the 584 

challenge of energy dissipation structures adaptation. 585 
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FIGURE CAPTIONS 772 

 Fig. 1. Meshed domain and detail of the refined and coarse mesh blocks. Adapted from Bayón et 773 

al. (2019). 774 

 Fig. 2. Dimensionless free surface profile comparing FLOW-3D, OpenFOAM, Wang & 775 

Chanson (2015a), Bakhmeteff & Matzke (1936) and experimental results. 776 

 Fig. 3. Velocity analysis: a) Maximum forward velocity decay; b) Maximum backward velocity. 777 

 Fig. 4. Velocity profiles along the longitudinal axis in the hydraulic jump roller region. a) 778 

FLOW-3D. b) OpenFOAM. c) Experimental. 779 

 Fig. 5. Vertical velocity profiles along the longitudinal axis for the physical and the numerical 780 

models compared to Kirkgoz & Ardiclioglu (1997). a) Supercritical regime. b) Subcritical 781 

regime. 782 

 Fig. 6. Pressure analysis. a) Relative pressures along the hydraulic jump longitudinal axis 783 

comparing results from FLOW-3D, OpenFOAM, experimental model and Toso & Bowers 784 

(1988). b) Distribution of pressure fluctuations P/Pm for FLOW-3D, OpenFOAM, experimental 785 

model and Abdul Khader & Elango (1974). 786 
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TABLES 790 

Table 1. Summary table. Capability of the results obtained by the CFD models to represent the case 791 

study, compared to the experimental and bibliographical results. 792 

Variable Referred to FLOW-3D OpenFOAM Compared to  

Sequent depth Accuracy 94.2% 94.7% Exp. (DIP) 

  96.4% 96.9% Exp. (Limnimeters) 

  96.4% 96.9% Exp. (Ultrasound) 

  96.5% 97.0% Hager & Bremen (1989) 

Hydraulic jump efficiency  96.1% 96.4% Exp. (DIP) 

  97.7% 98.0% Exp. (Limnimeters) 

  97.7% 98.0% Exp. (Ultrasound) 

  99.0% 99.3% Hager (1992) 

Roller length  89.2% 98.7% Experimental 

  85.9% 97.5% Hager et al.(1990) 

  93.3% 94.0% Wang & Chanson (2015a) 

Free surface profile R
2 

0.943 0.961 Exp. (DIP) 

  0.991 0.996 Bakhmeteff & Matzke (1936) 

  0.956 0.996 Wang & Chanson (2015a) 

Maximum velocity decay  0.872 0.868 Experimental 

  0.999 0.992 Hager (1992) 

Maximum backward velocity  0.858 0.754 Experimental 

  0.618 0.928 Hager (1992) 

Velocity profiles in the roller  0.984 0.978 Hager (1992) 

Subcritical velocity profiles  0.979 0.973 Hager (1992) 

Supercritical velocity profiles   0.981 0.903 Kirkgoz & Ardiclioglu (1997) 

Pressure along the 

longitudinal axis 

 0.995 0.958 Toso & Bowers (1988) 
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