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1 INTRODUCTION

The integral transform method for solving deterministic mixed problems involving constant coefficient partial differential
equations is a well-known fertile method.1,2 The success of such approach is based on the exact solution of the ordinary
differential equation (ODE) for the transformed of the unknown of the original problem. Then, by applying the inverse
integral transform, the solution of the original problem is recovered. This classic approach has been extended for some
deterministic variable coefficients problems, even when the exact solution of the transformed problem is not available,
but representing such solution in terms of a theoretical fundamental set of solutions of the transformed ODE, and further
using numerical integration quadrature formulae to approximate improper integrals.3 In this variable coefficients case,
the success of the aforementioned approach relies upon the use of numerical integration methods for approximating the
evaluations of the inverse transform integrand at the points where the solution requires to be computed. Hyperbolic and
advection partial differential problems appear in many different fields related to engineering being the wave equation
its main model.4-8 Random behaviour appears in problems such as civil and electromechanical structures and structure
damage due to carbonation effects,9,10 earthquake risk analysis in geology and seismology,11 etc. In microwave drying
processes,12 electrical and chemical flows in soil,13,14 cardiology,15 optics,16 circuit systems with varying parameters.17

In microwave propagation in ferrite materials,18 the evaluation of microwave heating processes via the constant model
often leads to misleading results due to the complexity of the field distribution within the oven and the variation in
dielectric properties of the material with temperature, moisture content, density, and other parameters. Such problems
also appear in electromagnetic processing of materials at high power densities and in the analysis of multimode microwave
applications.19-21 The complexity of some of these problems and the uncertainties derived from measurement errors and
the appearance of material impurities suggest the consideration of random models where these uncertainties are regarded
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2 CASABÁN ET AL.

providing a more realistic mathematical representation of the physical phenomena. Probability theory and stochastic
processes (s.p.) are finding an increasing of applications in their interaction with other branches of mathematics.22-32

Here, we solve the following random time-dependent hyperbolic problem on an infinite spatial domain

utt(x, t) = c(t)uxx(x, t) ,−∞ < x < +∞ , t > 0 , (1)

u(x, 0) = 𝑓 (x) , −∞ < x < +∞ , (2)

ut(x, 0) = g(x) , −∞ < x < +∞ , (3)

where c(t) ≡ c(t;𝜔) ∶]0,+∞[×Ω → R is a s.p. verifying, in probability, the following positive condition

c(t) ≥ 𝛿 > 0 , almost surely (a.s.) , (4)

and 𝑓 (x) ≡ 𝑓 (x;𝜔) ∶ R×Ω → R and g(x) ≡ g(x;𝜔) ∶ R×Ω → R are s.p.’s. These random functions, c(t), f(x), and g(x), are
defined in a complete probability space, (Ω, ,P), satisfying certain hypotheses that will be specified later. Furthermore,
we consider that c(t), f(x) and g(x) depend on a finite degree of randomness (see Soong33, p37). For the sake of clarity in
the notation, and taking into account that the same results are available only with more complicated notation, we will
assume that c(t), f(x), and g(x) depend on a single random variable (r.v.), say A1 = A1(𝜔), A2 = A2(𝜔), and A3 = A3(𝜔),
respectively, all of them defined in (Ω, ,P), that is,

c(t) = c(t;A1) , 𝑓 (x) = 𝑓 (x;A2) , g(x) = g(x;A3).

Hereinafter, we will assume that A1, A2, and A3 are independent r.v.’s. Our approach, based on Lp(Ω) random calculus,
allows us to consider a wide class of uncertainty in the random inputs, c(t), f(x), and g(x), involved in the problem (1)-(3).
Indeed, most of contributions dealing with randomization of classical PDEs problems introduce uncertainty via particu-
lar families of s.p.’s whose sample trajectories are very irregular (like the important Wiener process, which is Gaussian).34

This treatment of uncertainties requires a special stochastic calculus, usually termed Itô calculus, that restricts the kind of
uncertainties to Gaussian ones. Although this approach is interesting, it does not permit to consider other types of uncer-
tainties (like Poisson, beta, and gamma), which may be crucial in practical applications and modelling. Our approach
allows us consider all these latter types of randomness including those Gaussian processes possessing regular sample
behaviour. This issue has been illustrated in the examples, where a variety of distinctive probabilistic distributions have
been assigned to the random inputs in problem (1)-(3). From a practical standpoint, our contribution proposes a double
approximation, based on the Störmer numerical scheme together with the Gauss-Hermite quadrature rule to construct
an approximation of the solution s.p. This double approximation turns out very useful to compute reliable approxima-
tions, by means of Proposition 2.1 (see Section 2), for both the mean and the variance of the solution. To the best of our
knowledge, this approach is completely new in the stochastic context.

This paper is organized as follows. Section 2 deals with some random Fourier exponential transform properties, random
differential equations, and random improper quadrature formulae of Gauss-Hermite type. Section 3 is addressed to apply
the random Fourier exponential method to the problem (1)-(3), including a double-approximation procedure. Firstly, one
obtains an abstract improper representation of the solution by successive application of the random exponential Fourier
transform and its inverse; see expression (25) below. Secondly, one applies random Gauss-Hermite quadrature formulae,
but as the evaluations of the integrand function involve unknown values of a fundamental set of solutions of the random
transformed ordinary differential equation, see (27)-(28) below, these theoretical values are approximated using random
Störmer-type methods. An algorithm is also included in this section. In Section 4, an illustrative numerical example is
included. Finally, in Section 5, conclusions are drawn.

2 PRELIMINARIES

This section is addressed to introduce some preliminaries, definitions, and results that will be required throughout this
paper. Further details about these preliminaries can be checked in Soong and Arnold.33,34 Let (Ω, ,P) be a complete
probability space, a complex random variable, 𝜂 ∶ Ω → C, is said to be of order p ≥ 1 (in short, p-r.v.), if E[|𝜂|p] < +∞,
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being E[·] the expectation operator. It can be shown that the set of all r.v.’s of order p,

LRV
p (Ω) = {𝜂 ∶ Ω → C∕E[|𝜂|p] < +∞}, 1 ≤ p < +∞,

endowed with the norm ||𝜂||p,RV =
(
E[|𝜂|p])1∕p

< +∞,

is a Banach space.34, p9 The convergence inferred by the || · ||p,RV-norm is usually referred to as the pth mean convergence.
More precisely, a sequence of r.v.’s {𝜂n ∶ n ≥ 0} in LRV

p (Ω) is pth mean convergent to the r.v. 𝜂 ∈ LRV
p (Ω), and it is denoted

as 𝜂n
||·||p,RV
−−−→
n→+∞

𝜂, if and only if ||𝜂n − 𝜂||p,RV = (E[|𝜂n − 𝜂|p])1∕p−−−→
n→+∞

0. A s.p. {x(t) ∶ t ∈  ⊂ R} is said to be a p-s.p., or a s.p.
of order p, if E[|x(t)|p] < +∞ for all t ∈  , ie, if for each t ∈  fixed, the r.v. x(t) is a p-r.v. From this norm, one infers the
concepts of p-continuity, p-differentiability, and p-integrability of a p-s.p. in a natural manner. The cases p = 2 and p = 4
corresponding to the so-called mean square and mean fourth convergence, respectively, play a major role in the study of
random differential equations.24,33,35

A key goal in dealing with random PDEs is to compute the main statistical properties of the solution s.p. via the expecta-
tion (mean) and the variance. However, in general, the exact solution s.p. of random problem (1)-(3) is not available, and
we must rely on approximations. In this regard, our approach, based on LRV

p (Ω)-random calculus, does have the following
advantageous property:

Proposition 2.1. (Soong33, Theorem 4.2.1) If {𝜂n ∶ n ≥ 0} is a sequence of r.v.’s in LRV
p (Ω) such that is ||·||p,RV–convergent

to 𝜂 ∈ LRV
p (Ω), then

E[𝜂n]
||·||p,RV
−−−→
n→+∞

E[𝜂], Var[𝜂n]
||·||p,RV
−−−→
n→+∞

Var[𝜂] .

This property allows us to guarantee that the expectation and the variance of our approximations will converge to the
exact ones. This is a distinctive property of the LRV

p (Ω) convergence that do not have other types of stochastic convergence,
unless restrictive conditions are imposed. In Example 2 (see Section 4), we have taken advantage of this crucial property
to compute reliable approximations for both the mean and the variance of the solution stochastic process, since in that
example, a closed-form solution is not available.

The following result allows us to obtain the mean square derivative of the product of two mean fourth differentiable
s.p.’s, and it will play a key role later

Proposition 2.2. (Soong35, Lemma 3.14) Let {w(t) ∶ t ∈  } and {z(t) ∶ t ∈  } be 4-s.p.’s having fourth derivatives
dw(t)

dt
and dz(t)

dt
, respectively. Then w(t) z(t) is m.s. differentiable at t ∈  and

d
dt
(w(t)z(t)) = dw(t)

dt
z(t) + w(t)dz(t)

dt
.

Additionally to the definition of || · ||p,RV-integrable s.p. y(v) defined in the space LRV
p (Ω), we will use the concept of|| ·||p,RV absolutely integrable s.p. Namely, a s.p. 𝑦(v) ∈ LRV

p (Ω) is said to be || ·||p,RV absolutely integrable s.p. if the following
deterministic integral

∫
+∞

−∞
||𝑦(v)||p,RV dv (5)

exists and is finite. If 𝑦(v) ∈ LRV
p (Ω) is || · ||p,RV absolutely integrable s.p., then its random exponential || · ||p,RV Fourier

transform is defined by

Y (𝜉) ∶= 𝔉[𝑦(v)](𝜉) = 1√
2𝜋 ∫

+∞

−∞
𝑦(v) exp(−i𝜉v)dv, 𝜉 ∈ R, i = +

√
−1,

where this random integral defines a s.p. {Y (𝜉) ∶ 𝜉 ∈ R} in the Banach space (LRV
p (Ω), || ·||p,RV). If y(v) is || ·||p,RV absolutely

integrable s.p., it is clear that it admits a random || · ||p,RV Fourier transform since

∫
+∞

−∞
||𝑦(v) exp(−i𝜉v)||p,RV dv ≤ ∫

+∞

−∞
||𝑦(v)||p,RV | exp(−i𝜉v)|dv = ∫

+∞

−∞
||𝑦(v)||p,RV dv < +∞,
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where we have used that | exp(−i𝜉v)| = 1 and that y(v) is || · ||p,RV absolutely integrable s.p.; hence, by (5), the last integral
is finite. In Casabán25, p5926, it is proved the extension the following well-known properties of the Fourier transform

𝔉[𝑦′(v)](𝜉) = i𝜉 𝔉[𝑦(v)](𝜉), 𝔉[𝑦′′(v)](𝜉) = −𝜉2 𝔉[𝑦(v)](𝜉) , (6)

to the random framework provided that the involved random || · ||p,RV derivatives exist and y(v), y′ (v) and y′′ (v) are || · ||p,RV
absolutely integrable s.p.’s. These properties will be used later.

In order to formalize our study, besides the above Banach space of complex random variables having absolute moments
of order p, (LRV

p (Ω), || · ||p,RV), we will also need the following Banach space, (LSP
p (R × Ω), || · ||p,SP) where

LSP
p (R × Ω) =

{
𝑓 ∶ R × Ω → C∕ ∫

+∞

−∞

(
E
[|𝑓 (v)|p])1∕pdv < +∞

}
=
{
𝑓 ∶ R × Ω → C∕ ∫

+∞

−∞
||𝑓 (v)||p,RV dv < +∞

}
,

(7)
and ||𝑓 ||p,SP = +

(
∫

+∞

−∞
||𝑓 (v)||p,RV dv

)1∕p

, 1 ≤ p < +∞.

Notice that the elements of LSP
p (R × Ω) are || · ||p,RV absolutely integrable s.p.’s (see (5)). Observe that if 𝑓 ∈ LSP

p (R × Ω),
then the expectation E [|𝑓 (v)|p] exists and is finite for every v ∈ R fixed (otherwise would not make sense the definition
of the space LSP

p (R × Ω) given in (7)). Hence, for every v ∈ R fixed, f(v) is a r.v. of the space LRV
p (Ω).

Lemma 2.3. Let us consider the matrix s.p.

W(t) =
[

w11(t) w12(t)
w21(t) w22(t)

]
, t ∈  ,

where  ⊂ R and entries wij(t), 1 ≤ i, j ≤ 2, are assumed to be continuous in the || · ||2p,RV norm and satisfying the
following condition

∃ 𝜖 > 0 such that E
[
(wi,𝑗(s))2p] < +∞, ∀s ∈]t − 𝜖, t + 𝜖[ , 𝜖 > 0, i, 𝑗 ∶ 1 ≤ i, 𝑗 ≤ 2 , p ≥ 1, ∀t ∈  . (8)

Let
Z(t) =

[
z11(t) z12(t)
z21(t) z22(t)

]
, t ∈  ,

be a matrix s.p. satisfying

Z(t)W(t) = W(t)Z(t) = I2 , ∀t ∈]t0 − 𝛿, t0 + 𝛿[ , t0 ∈  , 𝛿 > 0 , (9)

where I2 denotes the identity matrix of size 2. Then the entries of Z(t), that is, the entries of the inverse matrix of W(t) in a
neighbourhood of t0, are given by

z11(t) =

|||| 1 w12(t)
0 w22(t)

||||||w21(t) w22(t) || , z12(t) =

|||| 0 w12(t)
1 w22(t)

||||||||w11(t) w12(t)
w21(t) w22(t)

||||
,

z21(t) =

||||w11(t) 1
w21(t) 0

||||||||w11(t) w12(t)
w21(t) w22(t)

||||
, z22(t) =

||||w11(t) 0
w21(t) 1

||||||||w11(t) w12(t)
w21(t) w22(t)

||||
,

(10)

Proof. As wij(t), 1 ≤ i, j ≤ 2, are continuous in the 2p-norm and verifying condition (8), then by proposition 3 of
Casabán et al,26 it is guaranteed that the determinant of matrix s.p. W(t) is continuous in the p norm. Hence, there
exists t0 ∈  and 𝛿 > 0, such that

det (W(t)) ≠ 0 , ∀t ∈]t0 − 𝛿, t0 + 𝛿[ .
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Therefore, W(t) is invertible in ]t0 − 𝛿, t0 + 𝛿[, for each 𝜔 ∈ Ω fixed. Let us denote Z(t) = (W(t))−1, t ∈]t0 − 𝛿, t0 + 𝛿[
arbitrary but fixed satisfying (9), ie,

w11(t)(𝜔) z11(t)(𝜔) + w12(t)(𝜔) z21(t)(𝜔) = 1 ,
w21(t)(𝜔) z11(t)(𝜔) + w22(t)(𝜔) z21(t)(𝜔) = 0 ,

}
(11)

w11(t)(𝜔) z12(t)(𝜔) + w12(t)(𝜔) z22(t)(𝜔) = 0 ,
w21(t)(𝜔) z12(t)(𝜔) + w22(t)(𝜔) z22(t)(𝜔) = 1 ,

}
(12)

Applying the Cramer’s rule for each realization 𝜔 ∈ Ω of systems (11)-(12), one gets (10).

2.1 Random differential equations and random improper integrals
For the sake of clarity in the presentation of results of the next sections and in order to help the reader, in this section, we
summarize and adapt some results related to the analytic and numerical solutions of random differential equations and
integrals.

Consider the random second-order initial value problem

x′′(t) + a(t)x(t) = 0 , t > 0 ,
x(0) = x0 ,

x′(0) = x1 ,

⎫⎪⎬⎪⎭ (13)

where a(t) is a s.p. and x0, x1 are r.v.’s with properties to be determined later. It is known that problem (13) is equivalent
to the linear first-order vector problem

Y ′(t) = L(t)Y (t) , t > 0 ,
Y (0) = Y0 ,

}
(14)

where
Y (t) =

[
x(t)
x′(t)

]
, L(t) =

[
0 1

−a(t) 0

]
, Y (0) =

[
x0

x1

]
. (15)

If the system (14)-(15) is p regular (with p = 2) in the sense of definition 3 of Casabán et al,27 then the random fun-
damental matrix solution ΦL(t; 0) exists, is invertible, and it and its inverse Φ−1

L (t; 0) both lie in L2×2
2 (Ω). Moreover, they

are two-differentiable (ie, mean square differentiable). Hence, let {𝜑1, 𝜑2} be the fundamental set of solutions of scalar
random problem (13) satisfying

𝜑1(0) = 1 , 𝜑′
1(0) = 0 ,

𝜑2(0) = 0 , 𝜑′
2(0) = 1 .

Then the unique solution of problem (13) can be written in the form

x(t) = 𝜑1(t)x0 + 𝜑2(t)x1 . (16)

In terms of data a(t), the property of two-regularity of problem (14)-(15) is satisfied if

a(t) is a 4-s.p. differentiable, and there exists 𝛿 > 0 such that a(t) ≥ 𝛿 > 0 a.s. (17)

Dealing with random numerical solutions, note that a way to approximate (16) is to approximate numerically 𝜑1(t) and
𝜑2(t) using some random multistep methods.24 The structure of Equation (13) suggests the use of a random Störmer-type
method for solving initial value problems of the form

𝜑′′
1 (t) + a(t)𝜑1(t) = 0 , 𝜑1(0) = 1 , 𝜑′

1(0) = 0 ,

𝜑′′
2 (t) + a(t)𝜑2(t) = 0 , 𝜑2(0) = 0 , 𝜑′

2(0) = 1 .

For the sake of completeness, we recall the following Störmer’s two-step formula

𝑦n+2 − 2𝑦n+1 + 𝑦n = h2𝑓n+1, n ≥ 0,
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where
𝑓n+1 = 𝑓 (tn+1, 𝑦n+1), tn+1 = (n + 1)h, h > 0,

for a second-order differential equations of the type

𝑦′′(t) = 𝑓 (t, 𝑦(t)), 𝑦(0) = 𝜂, 𝑦′(0) = 𝜂′, 0 ≤ t ≤  ,

see Henrici36, p. 291 and Jódar and Pérez.3
It is well known (see, for instance, Farlow1 and Jódar and Pérez3), that when using a integral transform approach for

solving partial differential equations models, the solution is expressed via improper integrals related to the corresponding
inversion formulae linked to the integral transform used in the corresponding problem. Thus, in the random framework,
it is suitable to have such a tool to take advantage of its key properties such as the good approximation with very few
evaluations of the integrand function using appropriate quadrature rules; see Davis and Rabinowitz37 and Delves and
Mohamed.38

Let 𝔥(𝜉) be s.p. lying in LSP
2 (R × Ω), then

J = J[𝔥] = ∫
+∞

−∞
𝔥(𝜉) exp

(
−𝜉2) d𝜉 < ∞ , (18)

i.e., stochastic integral J is m.s. convergent. Note that taking an event 𝜔 ∈ Ω, the sampled integral associated to (18)

J(𝜔) = J[𝔥](𝜔) = ∫
+∞

−∞
𝔥(𝜉;𝜔) exp

(
−𝜉2) d𝜉 , 𝜔 ∈ Ω ,

is well-defined and convergent for all 𝜔 ∈ Ω, see appendix 1 of Soong.33 Now, we can use Gauss-Hermite quadrature
formula of degree N,37,38 and then we consider the approximation

JG-H
N [𝔥](𝜔) =

N∑
𝑗=1

𝜌𝑗 𝔥(𝜉𝑗,H;𝜔) , 𝜌𝑗 =
2N+1N!

√
𝜋(

H′
N(𝜉𝑗,H)

)2 , 1 ≤ 𝑗 ≤ N , 𝜔 ∈ Ω , (19)

where 𝜉j,H are the roots of the deterministic Hermite polynomial, HN, of degree N.

3 RANDOM INTEGRAL-DIFFERENTIAL NUMERICAL APPROXIMATIONS

In this section, we proceed to generate the approximations of the random time-dependent partial differential initial value
problem (1)-(3). Let us assume that problem (1)-(3) admits a solution s.p. u(·, t) such that it and its partial derivatives
ux(·, t), ut(·, t), uxx(·, t), and utt(·, t), regarded as functions of the active variable x, lie in LSP

p (R × Ω).
Let t > 0 be fixed and let

U(t)(𝜉) = 𝔉 [u(·, t)] (𝜉) .
By applying Fourier transform to both sides of Equation (1) and using the properties of Fourier transform and derivatives,
see (6), one gets

d2

dt2 (U(t)(𝜉)) + 𝜉2 c(t)U(t)(𝜉) = 0 , t > 0 , (20)

U(0)(𝜉) = F(𝜉) , d
dt

(U(0)) (𝜉) = G(𝜉) . (21)

The associated linear first-order vector problem of (20)-(21) is given by (14)-(15), where

Y (t) =
[

U(t)(𝜉)
U ′(t)(𝜉)

]
, L(t) =

[ 0 1
−𝜉2c(t) 0

]
, Y (0) =

[
F(𝜉)
G(𝜉)

]
. (22)

As we shown in Section 2, the random fundamental matrix solution of problem (14) via (22) exists and hereinafter we
will denote it by

ΦL(t; 0)(𝜉) =
[
𝜑1(t, 𝜉) 𝜑2(t, 𝜉)
𝜑′

1(t, 𝜉) 𝜑′
2(t, 𝜉)

]
,
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where {𝜑1(t, 𝜉), 𝜑2(t, 𝜉)} are the fundamental set of solutions of differential equation of (20) verifying

𝜑1(0, 𝜉) = 1 , 𝜑′
1(0, 𝜉) = 0 ,

𝜑2(0, 𝜉) = 0 , 𝜑′
2(0, 𝜉) = 1 . (23)

Due to ΦL(0; 0)(𝜉) = I2, there is a neighbourhood of t = 0, denoted by  (0), where there exists the inverse of ΦL(t; 0)(𝜉)
given by

Φ−1
L (t; 0)(𝜉) =

[
z11(t, 𝜉) z12(t, 𝜉)
z21(t, 𝜉) z22(t, 𝜉)

]
.

The entries of Φ−1
L (t; 0)(𝜉), t ∈  (0), are the solutions of the algebraic system

ΦL(t; 0)(𝜉)Φ−1
L (t; 0)(𝜉) = I2 .

By Lemma 2.3, the entries of Φ−1
L (t; 0)(𝜉) are given by

z11(t, 𝜉) =
𝜑′

2(t, 𝜉)
D(t, 𝜉)

, z12(t, 𝜉) =
−𝜑2(t, 𝜉)

D(t, 𝜉)
, z21(t, 𝜉) =

−𝜑′
1(t, 𝜉)

D(t, 𝜉)
, z22(t, 𝜉) =

𝜑1(t, 𝜉)
D(t, 𝜉)

,

where
D(t, 𝜉) = 𝜑1(t, 𝜉)𝜑′

2(t, 𝜉) − 𝜑′
1(t, 𝜉)𝜑2(t, 𝜉) , t ∈  (0).

Let us assume c(t) verifying condition (17), as 𝜑1(t, 𝜉), 𝜑2(t, 𝜉) are twice mean square differentiable, then the solutions
of (20), (23) also lie in LRV

4 (Ω) (see Prop. 2.2), and thus, D(t, 𝜉) lies in LRV
2 (Ω). By the properties of a fundamental set of

solutions of Equation (20) (see Calbo et al39), it follows that

U(t)(𝜉) = 𝜑1(t, 𝜉)F(𝜉) + 𝜑2(t, 𝜉)G(𝜉). (24)

By the random inverse Fourier transform and (24), it follows that the formal solution s.p. of problem (1)-(3) is given by

u(x, t) = Re

[
1√
2𝜋 ∫

+∞

−∞
U(t)(𝜉) exp(i𝜉x)d𝜉

]
= 1√

2𝜋
Re
[
∫

+∞

−∞

{
𝜑1,𝑗(t, 𝜉)F(𝜉) + 𝜑2,𝑗(t, 𝜉)G(𝜉)

}
exp(i𝜉x)d𝜉

]
= 1√

2𝜋 ∫
+∞

−∞

{
𝜑1,𝑗(t, 𝜉)F(𝜉) + 𝜑2,𝑗(t, 𝜉)G(𝜉)

}
cos(𝜉x)d𝜉 ,

(25)

for t ∈  (0) and x ∈ R, and being F(𝜉) and G(𝜉) the respective Fourier transforms of initial conditions f(x) and
g(x) of problem (1)-(3). Notice that we have introduced the subindex j in (25) for the fundamental set of solutions
{𝜑1,j(t, 𝜉), 𝜑2,j(t, 𝜉)}. The first approximation solution process turns out by applying the Gauss-Hermite quadrature
formula of degree N, see end of Section 2,

JG-H
N (u(x, t)) = 1√

2𝜋

N∑
𝑗=1

𝜌𝑗
{
𝜑1,𝑗(t, 𝜉H𝑗

)F(𝜉H𝑗
) + 𝜑2,𝑗(t, 𝜉H𝑗

)G(𝜉H𝑗
)
}

cos(x𝜉H𝑗
) exp(𝜉2

H𝑗
) , (26)

where 𝜌j are defined by (19) and 𝜉H𝑗
are the roots of the deterministic Hermite polynomial, HN, of degree N. Note that

𝜑1,𝑗(·, 𝜉H𝑗
) and 𝜑2,𝑗(·, 𝜉H𝑗

) are the exact solutions of problems

𝜑′′
1,𝑗(t) + 𝜉2

H𝑗
c(t)𝜑1,𝑗(t) = 0 , 𝜑1,𝑗(0) = 1 , 𝜑′

1,𝑗(0) = 0 , 𝑗 = 1, … ,N , (27)

𝜑′′
2,𝑗(t) + 𝜉2

H𝑗
c(t)𝜑2,𝑗(t) = 0 , 𝜑2,𝑗(0) = 0 , 𝜑′

2,𝑗(0) = 1 , 𝑗 = 1, … ,N . (28)

As (27) and (28) are non-autonomous problems (ie, c(t) changes with time), their corresponding solutions𝜑1,𝑗(·, 𝜉H𝑗
) and

𝜑2,𝑗(·, 𝜉H𝑗
), respectively, are not known, in general. Thus, we use our second approximation strategy by solving numerically
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problems (27)-(28) with a random Störmer-type method. We denote by

S1(t, h, 𝑗) = S
[
𝜑1,𝑗(t, 𝜉H𝑗

)
]
, S2(t, h, 𝑗) = S

[
𝜑2,𝑗(t, 𝜉H𝑗

)
]
, ∀𝑗, 1 ≤ 𝑗 ≤ N , (29)

the approximate values of
{
𝜑1,𝑗(t, 𝜉H𝑗

)
}N
𝑗=1 and

{
𝜑2,𝑗(t, 𝜉H𝑗

)
}N
𝑗=1, respectively, at time point t using a Störmer method with

stepsize h.

3.1 Algorithm for computing the random double approximation and its expectation
and standard deviation
The following approximation procedure can we written for the random double numerical approximation of u(x, t), given
by (25), at a fixed point (x, t).

Step 1. Select the degree N of the Hermite polynomial HN(·) and obtain the j roots, 𝜉H𝑗
, of HN(·) for 1 ≤ j ≤ N. Compute

the weights 𝜌j using (19).
Step 2. Evaluate cos

(
x𝜉H𝑗

)
for 1 ≤ j ≤ N .

Step 3. Select a stepsize h > 0 and compute the approximations S1(t, h, j) and S2(t, h, j) for all 1 ≤ j ≤ N, defined in (29),
using the random Störmer method, described in Section 2.1, for random IVP’s (27) and (28), respectively.

Step 4. Evaluate the initial conditions, F(𝜉H𝑗
) and G(𝜉H𝑗

) for 1 ≤ j ≤ N, given in (21).
Step 5. Compute the numerical approximation of the solution s.p. (25), which for convenience will be denoted by

uN,h(x, t), using (26)-(29),

uN,h(x, t) = 1√
2𝜋

N∑
𝑗=1

𝜌𝑗
{

S1(t, h, 𝑗)F(𝜉H𝑗
) + S2(t, h, 𝑗)G(𝜉H𝑗

)
}

cos(x𝜉H𝑗
) exp(𝜉2

H𝑗
) . (30)

Step 6. Assuming that input data s.p.’s c(t), f(x) and g(x) of the problem (1)-(3) are independent, to compute the
expectation of the approximation solution s.p. (30) using to the following expression

E
[
uN,h(x, t)

]
= 1√

2𝜋

N∑
𝑗=1

𝜌𝑗
{
E
[
S1(t, h, 𝑗)

]
E
[
F(𝜉H𝑗

)
]
+ E

[
S2(t, h, 𝑗)

]
E
[
G(𝜉H𝑗

)
]}

cos(x𝜉H𝑗
) exp(𝜉2

H𝑗
) . (31)

Step 7. Compute the standard deviation of the approximation solution s.p. (30) using the following expression

√
Var

[
uN,h(x, t)

]
=
√

E

[(
uN,h(x, t)

)2
]
−
(
E
[
uN,h(x, t)

])2
, (32)

where

E

[(
uN,h(x, t)

)2
]
= 1

2𝜋

N∑
𝑗=1

N∑
k=1

𝜌𝑗 𝜌k
{
E
[
S1(t, h, 𝑗)S1(t, h, k)

]
E
[
F(𝜉H𝑗

)F(𝜉Hk )
]
+

E
[
S2(t, h, 𝑗)S2(t, h, k)

]
E
[
G(𝜉H𝑗

)G(𝜉Hk )
]}

× cos(x𝜉H𝑗
) cos(x𝜉Hk ) exp(𝜉2

H𝑗
) exp(𝜉2

Hk
) . (33)

4 NUMERICAL EXAMPLES

This section is devoted to validate the theoretical results previously established by means of two examples. The first one
is a test problem, where exact expressions for both the mean and the standard deviation of the solution s.p. are available.
We are going to compute these two statistical moments, using our analytic-numerical double approximation, and then
checking the numerical values are close to the corresponding exact ones. In this test example, the diffusion coefficient c(t)
is constant, ie, a r.v., while in the second example, c(t) is a s.p. In this latter case, the convergence of approximations for
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the mean and the standard deviation is assessed via relative errors of consecutive approximations since no exact solution
is available.

4.1 Example 1
Let us consider the following particular problem of (1)-(3)

utt(x, t) = cuxx(x, t) , −∞ < x < +∞ , t > 0 ,

u(x, 0) = A exp
(
− x2

2

)
, −∞ < x < +∞ ,

ut(x, 0) = 0 , −∞ < x < +∞ ,

⎫⎪⎬⎪⎭ (34)

being c = c(𝜔), 𝜔 ∈ Ω, a r.v. with a beta distribution of parameters (3; 5), c ∼ Beta(3; 5), and A = A(𝜔), 𝜔 ∈ Ω, an
exponential r.v. of parameter 𝜆 = 2, A ∼ Exp(2). Hereinafter, we will assume that c and A are independent r.v.’s. It is
known that the solution of problem (34), called d’Alembert solution when both A and c are deterministic, is given by

u(x, t) = 1
2

A
{

exp
(
−(x − ct)2

2

)
+ exp

(
−(x + ct)2

2

)}
; (35)

see Myint-U and Debnath.2 In our context, both c and A are r.v.’s, and expression (35) must be interpreted as a s.p. Using
the independence between r.v.’s c and A, it can be seen that the expectation and the standard deviation of s.p. (35) are,
respectively, given by

E [u(x, t)] = 1
2
E [A]

{
E

[
exp

(
−(x − ct)2

2

)]
+ E

[
exp

(
−(x + ct)2

2

)]}
, t ≥ 0 , (36)

√
Var [u(x, t)] =

√
E
[
(u(x, t))2

]
− (E [u(x, t)])2

, t ≥ 0 , (37)

being

E
[
(u(x, t))2] = 1

4
E
[
A2] {

E
[
exp

(
−(x − ct)2)] + E

[
exp

(
−(x + ct)2)] + 2E

[
exp

(
−(x2 + c2t2)

)]}
, t ≥ 0 . (38)

In Figure 1, we have plotted the exact mean (plot (a)) and the exact standard deviation (plot (b)) over the domain
(x, t) ∈ [−5, 5] × [0, 0.5]. These statistical moments have been computed using expressions (36)-(38). From these plots,
we observe that the mean and the standard deviation behave similarly. They are symmetric with respect to the origin of
coordinates and outside the spatial domain [−5, 5] both tend to zero.

FIGURE 1 Plot (left): Surface of the expectation, E[u(x, t)], computed according to (36). Plot (right): Surface of the standard deviation,√
Var[u(x, t)], computed according to (37)-(38). Both statistical moment functions correspond to the exact solution s.p. (35) of the

problem (34) in Example 1, on the domain (x, t) ∈ [−5, 5] × [0, 0.5] and considering c ∼ Beta(3; 5) and A ∼ Exp(2) [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


10 CASABÁN ET AL.

In order to compute the first and second statistical moments of the approximation s.p. (30), we are going to follow
steps 1 to 7 of the algorithm shown in Section 3.1. Let us fix a degree N of the Hermite polynomial, HN(·), and let us obtain
its roots

{
𝜉H𝑗

∶ 1 ≤ 𝑗 ≤ N
}

and its weights 𝜌j, defined by (19). Now, we consider t = T > 0 fixed, and we choose the
time-step h > 0 such that the intermediate time instants are obtained by tm = mh, 0 ≤ m ≤ M, being M an integer.
Observe that T = Mh. Then we are going to compute the approximations {S1(t, h, 𝑗)}N

𝑗=1 and {S2(t, h, 𝑗)}N
𝑗=1 of problems

(27) and (28), being c(t) = c, c ∼ Beta(3; 5), by applying the Störmer’s two-step formula; see Section 2.1. However, in
this case, due to the zero value of the initial condition of problem (34), ut(x, 0) = 0, it does G(𝜉H𝑗

) = 0 in (30). Then it
will not be required to compute the approximations {S2(t, h, 𝑗)}N

𝑗=1 of (28). The Störmer’s two-step formula applied to the
N-problems of (27) requires two initial discrete conditions for initializing each of them. With this end, we write each one
the N-problems of (27) as a linear system of first-order

Φ′
𝑗(t) = 𝑗Φ𝑗(t) , Φ𝑗(t0) = Φ𝑗(0) =

[
1
0

]
, 1 ≤ 𝑗 ≤ N, with 𝑗 =

[
0 1

−𝜉2
H𝑗

c 0

]
, Φ𝑗(t) =

[
𝜑1,𝑗(t)
𝜑′

1,𝑗(t)

]
. (39)

Applying Euler method to (39), one obtains the following approximations, Φ̃𝑗(tn+1), of (39) for each j,

Φ̃𝑗(tn+1) = Φ̃𝑗(tn) + k𝑗 Φ̃𝑗(tn) , tn = nk , n ≥ 0 integer, k > 0 , 1 ≤ 𝑗 ≤ N ,

where taking n = 0 one gets

Φ̃𝑗(t1) =
[
𝜑̃1,𝑗(t1)
𝜑̃′

1,𝑗(t1)

]
= Φ̃𝑗(t0) + k𝑗 Φ̃𝑗(t0) =

[
1
0

]
+ k

[
0 1

−𝜉2
H𝑗

c 0

][
1
0

]
=

[
1

−k𝜉2
H𝑗

c

]
, 1 ≤ 𝑗 ≤ N .

In order to initialize the Störmer’s two-step formula applied to (27) for 1 ≤ j ≤ N, we take the approximate value
𝜑̃1,𝑗(t1) = 1. Then we solve the following N-discrete problems

⎧⎪⎨⎪⎩
𝜑̃1,𝑗(tm+2) − 2 𝜑̃1,𝑗(tm+1) + 𝜑̃1,𝑗(tm) = −h2 𝜉2

H𝑗
c 𝜑̃1,𝑗(tm+1) , 0 ≤ m ≤ M − 2 , tm = mh , 1 ≤ 𝑗 ≤ N ,

𝜑̃1,𝑗(t0) = 𝜑̃1,𝑗(0) = 1 ,
𝜑̃1,𝑗(t1) = 1 .

(40)

For each j, 1 ≤ j ≤ N, discrete problem (40) admits the following explicit solution

𝜑̃1,𝑗(tm) =
1√

−4 · 106 + c 𝜉2
H𝑗

106−m
{
−
√

c 𝜉H𝑗

(
2 · 106 − c𝜉2

H𝑗
−
√

c 𝜉H𝑗

√
−4 · 106 + c𝜉2

H𝑗

)m

+
√

−4 · 106 + c𝜉2
H𝑗

(
2 · 106 − c𝜉2

H𝑗
−
√

c𝜉H𝑗

√
−4 · 106 + c𝜉2

H𝑗

)m

+
√

c 𝜉H𝑗

(
2 · 106 − c𝜉2

H𝑗
+
√

c 𝜉H𝑗

√
−4 · 106 + c𝜉2

H𝑗

)m

+
√

−4 · 106 + c𝜉2
H𝑗

(
2 · 106 − c𝜉2

H𝑗
+
√

c𝜉H𝑗

√
−4 · 106 + c𝜉2

H𝑗

)m}
, ∀m ≥ 0 . (41)

Note that, in the general context described in (29), S1(t, h, 𝑗) = S
[
𝜑1,𝑗(t, 𝜉H𝑗

)
]

corresponds with 𝜑̃1,𝑗(tm) of (4.1). Expres-
sion (4.1) allows us direct computation of any term for the sequence of approximations 𝜑̃1,𝑗(t2), 𝜑̃1,𝑗(t3), … . In our case,
for computing the solution in t = T = 0.25 considering, for example, h = 0.05, it is sufficient to take m = 5 in (4.1); that
is, M = 7. This calculation must be carried out for each value of j, 1 ≤ j ≤ N.

Using expressions in steps 6 and 7 of the algorithm of Section 3.1, in Figures 2 and 3, we have plotted the first and
second moments of the numerical solution s.p. (30), E[uN,h(xi, t)] and

√
Var[uN,h(xi, t)], respectively. These moments have

been compared with the corresponding exact ones, E[u(xi, t)] and
√

Var[u(xi, t)], respectively, at t = T = 0.25, for different
degrees N of the Hermite polynomials: N = {3, 5, 8}. It is observed that the approximations improve as the degree N
increases. Computations have been carried out by Mathematica software version 11.0.0.0 for Mac OS X x86 (32-bit, 64-bit
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FIGURE 2 Comparative graphics of the expectations in the final
time t = T = 0.25 on the spatial interval 0 ≤ x ≤ 1.5 in Example 2:
The expectation of the exact solution s.p., E[u(xi, t)], (36), vs the
expectations of the approximation solution s.p., E[uN,h(xi, t)], (31),
using several degrees N of the Hermite polynomial, N = {3, 5, 8} for
the stepsize h = 0.05 in Equation (40) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Comparative graphics of the standard deviations in the
final time t = T = 0.25 on the spatial interval 0 ≤ x ≤ 1.5 in
Example 1: The standard deviation of the exact solution s.p.,√

Var[u(xi, t)], (37)-(38), vs the standard deviations of the
approximation solution s.p.,

√
Var[uN,h(xi, t)], (32)-(33), using several

degrees N of the Hermite polynomial, N = {3, 5, 8}, for the stepsize
h = 0.05 in Equation (40). [Colour figure can be viewed at
wileyonlinelibrary.com]

Kernel) Intel Core i7, 2.8-GHz 4 kernels. Regarding computational time for the approximations of the mean and the
standard deviation have been 0.48982 s and 108.923045 s, respectively. These timings correspond to the most expensive
scenario; that is, T = 0.5, h = 0.05, and N = 8. Therefore, the proposed method is computationally cheap.

In Tables 1 and 2, we show, for T = 0.25 and T = 0.5, respectively, the numerical values of the relative
errors for the approximate expectation (31), RelErr

[
E[uN,h(x, t)]

]
, and the approximate standard deviation (32)-(33),

RelErr
[√

Var[uN,h(x, t)]
]
, using the following expressions

RelErr
[
E[uN,h(x, t)]

]
=
|||||E[u(x, t)] − E

[
uN,h(x, t)

]
E[u(x, t)]

||||| , RelErr
[√

Var[uN,h(x, t)]
]
=
||||||
√

Var[u(x, t)] −
√

Var[uN,h(x, t)]√
Var[u(x, t)]

|||||| .
(42)

These values have been computed using (40) for some stepsize, h = {0.025, 0.05, 0.1, 0.25, 0.5}, and considering dif-
ferent values for the degree of the Hermite polynomials N = {3, 5, 8}. Because the symmetry with respect to the origin of
coordinates and the fast trend to zero of first and second moments shown in Figure 1, we have chosen the spatial points
xi = {0.6, 0.7, 0.8, 0.9, 1} in order to compare exact and approximate values via relative errors. In Table 1, we have col-
lected the relative errors for the mean and the standard deviation, and we can observe that approximations are quite good
as N increases and h decreases. In Figures 2 and 3, it can be observed this behaviour for the stepsize h = 0.05. In Table 2,
it is shown a similar behaviour for t = 0.5 and stepsizes h = {0.05, 0.1, 0.5}.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


12 CASABÁN ET AL.

TABLE 1 Relative errors of the expectations and the standard deviations of the approximation solution
s.p., E[uN,h(xi, t)], (31), and

√
Var[uN,h(xi, t)], (32)-(33), respectively

RelErr
[
E[uN ,h(xi , t =𝟎 . 𝟐𝟓)]

]
RelErr

[√
Var[uN ,h(xi , t =𝟎 . 𝟐𝟓)]

]
xi N h = 0.125 h = 0.05 h = 0.025 h = 0.125 h = 0.05 h = 0.025

3 1.09596e−02 1.09571e−02 1.09483e−02 1.22932e−02 1.22907e−02 1.22819e−02
0.6 5 5.83520e−03 5.83269e−03 5.82387e−03 7.16208e−03 7.15955e−03 7.15074e−03

8 3.47312e−03 3.47072e−03 3.46224e−03 4.79689e−03 4.79446e−03 4.78610e−03
3 2.22172e−02 2.22149e−02 2.22066e−02 2.32968e−02 2.32945e−02 2.32862e−02

0.7 5 6.44359e−03 6.44150e−03 6.43417e−03 7.50653e−03 7.50443e−03 7.49710e−03
8 2.81679e−03 2.81486e−03 2.80810e−03 3.87589e−03 3.87396e−03 3.86720e−03
3 3.40072e−02 3.40051e−02 3.39975e−02 3.47844e−02 3.47822e−02 3.47747e−02

0.8 5 6.65947e−03 6.65788e−03 6.65233e−03 7.41611e−03 7.41452e−03 7.40897e−03
8 2.02556e−03 2.02419e−03 2.01942e−03 2.77872e−03 2.77735e−03 2.77257e−03
3 4.56537e−02 4.56518e−02 4.56452e−02 4.60776e−02 4.60757e−02 4.60690e−02

0.9 5 6.29458e−03 6.29360e−03 6.29016e−03 6.70245e−03 6.70147e−03 6.69803e−03
8 1.09496e−03 1.09424e−03 1.09171e−03 1.50073e−03 1.50000e−03 1.49747e−03
3 5.62723e−02 5.62708e−02 5.62653e−02 5.62900e−02 5.62884e−02 5.62829e−02

1 5 5.15620e−03 5.15592e−03 5.15494e−03 5.17296e−03 5.17268e−03 5.17170e−03
8 2.60781e−05 2.60747e−05 2.60628e−05 4.27526e−05 4.27492e−05 4.27373e−05

Note. They have been computed by expressions (42) at t = 0.25 on the spatial points xi = {0.6, 0.7, 0.8, 0.9, 1}. Differ-
ent degrees N of the Hermite polynomial N = {3, 5, 8} and stepsizes h = {0.025, 0.05, 0.125} in Equation (40) have been
considered.

TABLE 2 Relative errors of the expectations and the standard deviations of the approximation solution
s.p., E[uN,h(xi, t)], (31), and

√
Var[uN,h(xi, t)], (32)-(33), respectively

RelErr
[
E[uN ,h(xi , t =𝟎 . 𝟓)]

]
RelErr

[√
Var[uN ,h(xi , t =𝟎 . 𝟓)]

]
xi N h = 0.25 h = 0.1 h = 0.05 h = 0.25 h = 0.1 h = 0.05

3 2.10946e−02 2.10921e−02 2.10832e−02 2.63078e−02 2.63053e−02 2.62964e−02
0.6 5 1.59189e−02 1.59163e−02 1.59074e−02 2.11057e−02 2.11031e−02 2.10942e−02

8 1.35331e−02 1.35307e−02 1.35221e−02 1.87077e−02 1.87053e−02 1.86967e−02
3 3.04145e−02 3.04122e−02 3.04039e−02 3.46852e−02 3.46828e−02 3.46745e−02

0.7 5 1.45144e−02 1.45123e−02 1.45049e−02 1.87191e−02 1.87170e−02 1.87096e−02
8 1.08585e−02 1.08566e−02 1.08498e−02 1.50481e−02 1.50461e−02 1.50393e−02
3 3.99147e−02 3.99125e−02 3.99049e−02 4.30559e−02 4.30537e−02 4.30461e−02

0.8 5 1.24107e−02 1.24091e−02 1.24035e−02 1.54688e−02 1.54672e−02 1.54616e−02
8 7.75031e−03 7.74894e−03 7.74413e−03 1.07945e−02 1.07930e−02 1.07882e−02
3 4.89067e−02 4.89048e−02 4.88981e−02 5.07188e−02 5.07169e−02 5.07102e−02

0.9 5 9.42510e−03 9.42411e−03 9.42066e−03 1.11690e−02 1.11680e−02 1.11645e−02
8 4.20930e−03 4.20858e−03 4.20604e−03 5.94419e−03 5.94346e−03 5.94092e−03
3 5.65010e−02 5.64994e−02 5.64939e−02 5.67745e−02 5.67729e−02 5.67674e−02

1 5 5.37380e−03 5.37352e−03 5.37254e−03 5.63404e−03 5.63376e−03 5.63278e−03
8 2.42565e−04 2.42562e−04 2.42550e−04 5.01473e−04 5.01469e−04 5.01457e−04

Note. They have been computed by expressions (42) at t = 0.5 on the spatial points xi = {0.6, 0.7, 0.8, 0.9, 1}. Different
degrees N of the Hermite polynomial N = {3, 5, 8} and stepsizes h = {0.05, 0.1, 0.25} in Equation 40 have been considered.

4.2 Example 2
Let us consider the following random wave equation of the type (1)-(3)

utt(x, t) = c(t)uxx(x, t) , −∞ < x < +∞ , t > 0 ,

u(x, 0) = A exp
(
− x2

2

)
, −∞ < x < +∞ ,

ut(x, 0) = B exp
(
− x2

2

)
, −∞ < x < +∞ ,

⎫⎪⎪⎬⎪⎪⎭
(43)



CASABÁN ET AL. 13

being c(t) = C(𝜔) t = C t, 𝜔 ∈ Ω, a s.p. with C a r.v. following a normal distribution of parameters (1; 0.1) and truncated in
[0.5, 1.5]; that is, C ∼ N[0.5,1.5](1; 0.5). Note that C satisfies condition (4). The random parameters A = A(𝜔) and B = B(𝜔),
𝜔 ∈ Ω are r.v.’s following an exponential distribution of parameter 𝜆 = 1, A ∼ Exp(1), and a beta distribution of parameters
(2; 3), B ∼ Beta(2; 3), respectively. Hereinafter, we will assume that A, B, and C are independent r.v.’s.

To obtain the expectation and the standard deviation of the approximation to the solution s.p. of problem (43), we follow
steps 1-7 of the algorithm from Section 3.1. Since, in this example, the second random initial condition of (43) is nonzero,
namely, ut(x, 0) = B exp

(
− x2

2

)
, we will have to compute the approximations {S1(t, h, 𝑗)}N

𝑗=1 and {S2(t, h, 𝑗)}N
𝑗=1, corre-

sponding to the two random IVP’s (27) and (28), respectively, using the random Störmer method described in Section 2.1
for parameters t = T, h, and N fixed. The two initial conditions required for initializing the Störmer’s two-step formula
can be computed in an analogous way as the one developed in Example 1. Then we will solve the following 2N-discrete
problems

⎧⎪⎨⎪⎩
𝜑̃1,𝑗(tm+2) − 2 𝜑̃1,𝑗(tm+1) + 𝜑̃1,𝑗(tm) = −h3 𝜉2

H𝑗
C (m + 1) 𝜑̃1,𝑗(tm+1) , 0 ≤ m ≤ M − 2 , tm = mh , 1 ≤ 𝑗 ≤ N ,

𝜑̃1,𝑗(0) = 1 ,
𝜑̃1,𝑗(t1) = 1 ,

(44)

and

⎧⎪⎨⎪⎩
𝜑̃2,𝑗(tm+2) − 2 𝜑̃2,𝑗(tm+1) + 𝜑̃2,𝑗(tm) = −h3 𝜉2

H𝑗
C (m + 1) 𝜑̃2,𝑗(tm+1) , 0 ≤ m ≤ M − 2 , tm = mh , 1 ≤ 𝑗 ≤ N ,

𝜑̃1,𝑗(0) = 0 ,
𝜑̃2,𝑗(t1) = h ,

(45)

where s.p., c(t) in (43) has been discretized in t as c(tm) = C tm = C mh. Unlike what happened in Example 1, now, there
is not available explicit solutions for discrete problems (44) and (45). Instead, fixed the time step h and the final time
instant (fixed station) t = T, we have symbolically computed for each j, the approximations {S1(T, h, j)} and {S2(T, h, j)}
by a loop for the integer m ∶ 0 ≤ m ≤ M − 2, so that T = Mh. Then the N values of the roots of the Hermite polynomial,{
𝜉H𝑗

∶ 1 ≤ 𝑗 ≤ N
}

, and its corresponding weights, 𝜌j, both defined by (19), are substituted into the symbolic expres-
sions {S1(T, h, j)} and {S2(T, h, j)}. Afterwards, we symbolically compute the approximations of both statistical moments,
the mean and the standard deviation, using (32)-(33). In Figure 4, we show the approximations of the mean and standard
deviation at the final time instant T = 0.5 on the spatial domain 0 ≤ x ≤ 1.5 because of the symmetry w.r.t. x = 0.
Computations have been carried out taking the time stepsize h = 0.1 in (44)-(45) and increasing the degree of Hermite
polynomials from N = 3 to N = 6. In both plots, we observe convergence as N increases. Timing was similar for the same

FIGURE 4 Plot (left): Comparative graphics of the expectations of the approximation solution s.p., E[uN,h(xi,T = 0.5)], obtained by (31).
Plot (right): Comparative graphics of the standard deviations of the approximation solution s.p.,

√
Var[uN,h(xi,T = 0.5)], obtained by (32)-(33).

Both statistical moment functions correspond to Example 2 for the final time T = 0.5 on the spatial interval 0 ≤ x ≤ 1.5. N = {3, 4, 5, 6}
denote the degrees of the Hermite polynomial and h = 0.1 is the time stepsize [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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computations shown in Example 1 for the choice T = 0.5, h = 0.05, and N = 8, specifically the approximations to the
expectation required 0.706975 s and to the standard deviation 106.273044 s. Since in this example the exact solution s.p. is
not available, in order to evidence the convergence of approximations, we will compute the relative errors for consecutive
approximations of the mean and the standard deviation using the expressions (46)-(47)

RelErr
[
E[uNiNi+1,h(x, t)]

]
=
|||||E

[
uNi,h(x, t)

]
− E

[
uNi+1,h(x, t)

]
E
[
uNi+1,h(x, t)

] ||||| , (46)

RelErr
[√

Var[uNiNi+1,h(x, t)]
]
=
||||||
√

Var[uNi,h(x, t)] −
√

Var[uNi+1,h(x, t)]√
Var[uNi+1,h(x, t)]

|||||| . (47)

In Figure 5, we have plotted both relative errors taking h = 0.1 and using different consecutive values of N, from 3 to 8.
One can observe that errors decrease as N increases all over the spatial domain 0 ≤ x ≤ 1.5. This graphical behaviour is
in full agreement with the results shown in Figure 4. To complete our numerical study, in Table 3, we show the figures
corresponding to the infinite norm on the all spatial domain at the time instant T = 0.5 by refining the time stepsize h,
from 0.1 to 0.05. We observe that the order of the relative errors does not change at the expense of decrease h.

FIGURE 5 Plot (left): Comparative graphics of the relative errors of consecutive approximate expectations (see (31)),
RelErr

(
E[uNiNi+1 ,h(xi,T = 0.5)]

)
, defined by (46). Plot (right): Comparative graphics of the relative errors of consecutive approximate standard

deviations (see (37)-(38)), RelErr
(√

Var[uNiNi+1 ,h(xi,T = 0.5)]
)
, defined by (47). Both graphics correspond to Example 2 for the final time

T = 0.5 on the spatial interval 0 ≤ x ≤ 1.5. The integers Ni, Ni+1, denote the consecutive degrees of the Hermite polynomial taking values in
the subset N = {3, 4, 5, 6, 7, 8} and h = 0.1 denotes the time stepsize [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Values of the
infinite norm, || · ||∞, of the
relative errors of consecutive
approximations for both the
expectation and the standard
deviation, of the approximation
solution s.p., defined by (46)
and (47), respectively, at the
final time instant T = 0.5 and
the spatial domain 0 ≤ x ≤ 1.5

h NiNi+1 ||RelErr
[
E[uNiNi+𝟏 ,h(xi , 𝟎 . 𝟓)]

]
||∞ ||RelErr

[√
Var

(
uNiNi+𝟏 ,h(xi , 𝟎 . 𝟓)

)]
||∞

0.1 {3, 4} 5.25122e−02 4.97772e−02
{4, 5} 1.16710e−02 1.09916e−02
{5, 6} 5.18969e−03 5.01280e−03
{6, 7} 2.35322e−03 2.18048e−03
{7, 8} 7.62877e−04 6.78741e−04

0.05 {3, 4} 5.22090e−02 4.94321e−02
{4, 5} 1.15993e−02 1.09020e−02
{5, 6} 5.16786e−03 4.98553e−03
{6, 7} 2.33510e−03 2.15811e−03
{7, 8} 7.54824e−04 6.68877e−04

Note. The time stepsizes h = 0.1 and h = 0.05 are considered and the consecutive degrees of Hermite polynomials lie
from 3 to 8.

http://wileyonlinelibrary.com
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5 CONCLUSIONS

In this paper, simple and efficient numerical methods for approximating time-dependent random hyperbolic partial dif-
ferential problems are introduced and applied. Once the numerical methods for solving numerical solutions of random 
ordinary differential equations were introduced in Cortés et al40 and the random Gauss-Hermite quadrature formulae 
are introduced here, the approximation of time-dependent partial differential problems proposed in Jódar and Pérez3 for 
the deterministic case can be extended in the random mean square sense. This fact opens a way to be extended to other 
type of problems even those of higher dimensions with the natural changes of considering multidimensional Fourier 
transformations41 and multidimensional quadrature formulae.37,42 In these problems, the integral transform method is 
applicable to. In spite of the inherent computational complexity of random problems, the approach is easy to be applied 
as it also happens in the study of deterministic problems. We close this section by highlighting an important advantage of 
our approach from a practical standpoint. The simple finite sum approximate stochastic process makes manageable the 
computational cost of statistical moments versus alternatives methods by taking advantage of quadrature rules.
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