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Abstract

A fractional forward Euler-like method is developed to solve initial value problems with uncer-
tainties formulated via the Caputo fractional derivative. The analysis is conducted by using the
so-called random mean square calculus. Under mild conditions on the data, the mean square
convergence of the numerical method is proved. This type of stochastic convergence guarantees
the approximations of the mean and the variance of the solution stochastic process, computed
via the aforementioned numerical scheme, will converge to their corresponding exact values.
Furthermore, from this probability information, we calculate reliable approximations to the first
probability density function of the solution by taking advantage of the Maximum Entropy Prin-
ciple. The theoretical analysis is illustrated by two examples.

Keywords: Fractional differential equations with randomness, Random mean square calculus,
Random mean square Caputo fractional derivative, Random numerics, Maximum Entropy
Principle.

1. Introduccion and motivation1

Engineers and scientists have developed new models formulated via fractional differential2

equations. These models have been applied in a wide range of areas including viscoelasticity3

and viscoplasticity problems, to study polymers and proteins, to analyze the dynamics of trans-4

mission of ultrasound waves, to deal with human tissue under mechanical loads, etc., [1, 2, 3, 4].5

When they are applied to describe the dynamics of physical phenomena on the basis of sam-6

pled data, the parameters of fractional differential equations (coefficients, forcing/control terms,7

initial/boundary conditions) need to be fixed. This is usually done by assigning a nominal or8

averaged value (estimate), thus deterministic, to each model parameter. Although this is of-9

ten accepted, in the context of modelling it is more natural to interpret parameters of fractional10

differential equations as random variables or stochastic processes rather than constants and deter-11

ministic functions, respectively. These facts make modelling with random fractional differential12
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equations more appropriate than considering deterministic fractional differential equations.13

Random ordinary and random fractional differential equations have been theoretically develoed14

and applied in the last decades to deal with errors and uncertainties [5, 6, 7] and [8, 9, 10, 11, 12,15

13, 14, 15, 10, 13, 14, 16, 17], respectively.16

In this paper, we deal with random fractional initial value problems (IVP) of the form17 { (
C Dα

a+ X
)

(t) = f (X(t), t), t ∈ [a, b], 0 < α ≤ 1,
X(a) = X0,

(1.1)

where
(
C Dα

a+ X
)

(t) := 1
Γ(1−α)

∫ t
a (t − u)−αX′(u) du is the random mean square Caputo fractional18

derivative of order α of the stochastic process X(t) (see [18] and references therein). Henceforth,19

we will work in an underlying complete probability space (Ω,F ,P) and in the Hilbert space20

(L2(Ω), ‖ · ‖2) of second-order random variables defined by21

L2(Ω) =
{
X : Ω −→ R : E[X2] < +∞

}
, ‖X‖2 =

(
E[X2]

)1/2
.

The norm ‖·‖2 is inferred from the inner product 〈X,Y〉 = E [X Y], X,Y ∈ L2(Ω), being E [·] the22

expectation operator. Since the existence of E[X2] entails that E[X] does, and the variance can23

be expressed in terms of these two first moments, V[X] = E[X2]−E[X]2, every random variable24

with finite variance belongs to L2(Ω). Given T ⊂ R, if X(t) ≡ {X(t)(ω) : t ∈ T , ω ∈ Ω} is25

a second-order random variable for every t ∈ T , then X(t) is termed a second-order stochastic26

process. These kind of random variables and stochastic processes are met in the most physical27

problems involving randomness. The convergence inferred by the ‖·‖2-norm is referred to as28

mean square convergence. Throughout this paper, the initial condition, X0 is assumed to be29

second-order random variable, i.e., X0 ∈ L2(Ω). Additionally, we will assume that the function f30

defining the right-hand side of fractional differential equation (1.1), i.e. f : S × [a, b] → L2(Ω),31

S ⊆ L2(Ω), satisfies the following conditions:32

H1: f is mean square Lipschitz, that is, there exists κ > 0 such that

‖ f (X, t) − f (Y, t)‖2 ≤ κ ‖X − Y‖2 , X,Y ∈ L2(Ω),

H2: f satisfies the mean square modulus of continuity property, i.e.,

lim
h→0

W(S , h) = 0 W(S , h) = sup
X∈S⊆L2(Ω)

sup
|t−t′ |≤|h|

∥∥∥ f (X, t) − f (X, t′)
∥∥∥

2 , S bounded.

The paper is organized as follows. Section 2 addresses the relation between the IVP (1.1) and33

a random Volterra integral equation. Sections 3 and 4 are devoted to formulate the random frac-34

tional forward Euler-like numerical scheme and to prove its mean square convergence, respec-35

tively. In Section 5, we give explicit approximations of the mean, the variance and the covariance36

obtained by the random numerical scheme. Section 6 presents an approach to approximate the37

first probability density function of the solution stochastic process to the random fractional IVP38

(1.1) based on the Maximum Entropy Principle. Section 7 presents several illustrative examples.39

Conclusions are drawn in last section.40
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2. Relation between the random fractional differential and integral equations41

As it has been previously pointed out, the aim of the paper is to construct mean square42

approximations to the solution stochastic process to the random fractional IVP given by (1.1).43

To this end, we will first study the mean square solution of the following random integral equation44

X(t) = X0 +
1

Γ(α)

∫ t

a
(t − s)α−1 f (X(s), s) ds, t ∈ [a, b], 0 < α ≤ 1, (2.1)

and its connection with the solution of the random fractional IVP given by (1.1). In the following,
the operator Jαa+ : L2(Ω)→ L2(Ω) is defined as

Jαa+ (X(t)) :=
{

1
Γ(α)

∫ t
a (t − s)α−1X(s)ds if 0 < α ≤ 1

X(t) if α = 0,

for each t ∈ [a, b], see [1, p. 13]. From hypotheses H1 and H2, we know that f (X(t), t) is mean45

square continuous for t ∈ [a, b], hence f (X(t), t) is also mean square uniformly continuous in46

t ∈ [a, b], i.e, there exists M > 0 such that ‖ f (X(t), t)‖2 ≤ M, for t ∈ [a, b]. As a consequence,47 ∥∥∥∥∫ t
a (t − s)α−1 f (X(s), s) ds

∥∥∥∥
2
≤ M

∫ t
a (t − s)α−1 ds = M(t − a)α/α and hence, since X0 ∈ L2(Ω),48

using the triangular inequality in (2.1), we derive that X(t) ∈ L2(Ω). Additionally, notice that49

from the fractional differential equation with α = 1, since f (X(t), t) is mean square continuous50

for t ∈ [a, b], we deduce that X′(t) is of class C1([a, b]) in the mean square sense, thus X(t) is51

mean square uniformly continuous in t ∈ [a, b], which guarantees the integral operator Jαa+ (X(t))52

is well-defined. Using this operator and defining Z(t) := f (X(t), t) ∈ L2(Ω) for each, t ∈ [a, b],53

the integral equation in (2.1) reads54

X(t) = X0 + Jαa+ (Z(t)), t ∈ [a, b], 0 < α ≤ 1. (2.2)

The next result establishes a relationship between the solutions of the integral equation given55

by (2.2) and the IVP given by (1.1). To prove it, first we need the following auxiliary result.56

Lemma 2.1. Let α, β ≥ 0. If Y(t) is mean square continuous on [a, b], then for each t ∈ [a, b],

Jαa+ (Jβa+ (Y(t))) = Jα+β
a+ (Y(t)).

Proof. If α or β are zero, the identity is evident by the definition of the operator Jαa+ . Now, we
assume that α, β > 0. By definition of the operator Jβa+ , it follows that Jβa+ (Y(s)) := 1

Γ(β)

∫ s
a (s −

r)β−1Y(r) dr, for each s ∈ [a, b]. Now, for each t in [a, b],

Jαa+ (Jβa+ (Y(t))) =
1

Γ(α)

∫ t

a
(t − s)α−1Jβa+ (Y(s)) ds

=
1

Γ(α)

∫ t

a
(t − s)α−1

(
1

Γ(β)

∫ s

a
(s − r)β−1Y(r) dr

)
ds

=
1

Γ(α)
1

Γ(β)

∫ t

a

(∫ s

a
(t − s)α−1(s − r)β−1Y(r) dr

)
ds. (2.3)

As for each t ∈ [a, b] fixed, the triangle 4 = {(s, r) : a ≤ s ≤ t, a ≤ r ≤ s} can also be written57

as 4 = {(s, r) : r ≤ s ≤ t, a ≤ r ≤ t}, the above double mean square integral over 4 on the58

right-hand side of (2.3) is59

1
Γ(α)

1
Γ(β)

∫ t

a

∫ t

r
(t−s)α−1(s−r)β−1Y(r) ds dr =

1
Γ(α)

1
Γ(β)

∫ t

a
Y(r)

(∫ t

r
(t − s)α−1(s − r)β−1 ds

)
dr.

3



The substitution τ = t − s yields60

Jαa+ (Jβa+ (Y(t))) =
1

Γ(α)
1

Γ(β)

∫ t

a
Y(r)

(∫ t−r

0
τα−1(t − τ − r)β−1 dτ

)
dr.

A second substitution v = τ
t−r implies

Jαa+ (Jβa+ (Y(t))) =
1

Γ(α)
1

Γ(β)

∫ t

a

(∫ 1

0
vα−1(t − r)α+β−1(1 − v)β−1dv

)
Y(r) dr.

Since
∫ 1

0 vα−1(1 − v)β−1dv =
Γ(α)Γ(β)
Γ(α+β) one gets,61

Jαa+ (Jβa+ (Y(t))) =
1

Γ(α + β)

∫ t

a
(t − r)α+β−1Y(r) dr = Jα+β

a+ (Y(t)).

�62

Theorem 2.2. Let X(t) be a mean square solution of the integral equation given by (2.1), where63

f (X(t), t) satisfies hypotheses H1 and H2. Then, X(t) is a mean square solution of the random64

fractional IVP (1.1).65

Proof. As above, define Z(t) := f (X(t), t). Hence, from the integral equation in terms of the66

operator Jαa+ , we derive67

X(t) − X0 = Jαa+ (Z(t)), t ∈ [a, b], 0 < α ≤ 1. (2.4)

As 0 < α ≤ 1, β := 1 − α ≥ 0 . By applying the operator J1−α
a+ to both sides of the equation (2.4)68

and using Lemma 2.1 we obtain69

J1−α
a+ (X(t) − X0) = J1−α

a+

(
Jαa+ (Z(t))

)
= J1

a+ (Z(t)) . (2.5)

Notice that, in view of hypotheses, we have used that Z(t) is mean square continuous on [a, b].70

Furthermore, by property (5) of mean square integrals in [19, p. 103], this also entails that71

J1
a+ (Z(t)) is mean square differentiable on (a, b). Hence, using (2.5) one gets72

d
dt

(
J1−α

a+ (X(t) − X0)
)

=
d
dt

(
J1−α

a+ (X(t))
)
−

d
dt

(
J1−α

a+ (X0)
)

=
d
dt

(
J1

a+ (Z(t))
)
. (2.6)

Now, we compute the mean square derivatives d
dt

(
J1−α

a+ (X0)
)

and d
dt

(
J1−α

a+ (X(t))
)
. First, note that

J1−α
a+ (X0) =

1
Γ(1 − α)

∫ t

a
(t − s)−αX0 ds =

X0(t − a)1−α

(1 − α)Γ(1 − α)
,

so73

d
dt

(
J1−α

a+ (X0)
)

=
X0(t − a)−α

Γ(1 − α)
. (2.7)

Next, J1−α
a+ (X(t)) = 1

Γ(1−α)

∫ t
a (t − s)−αX(s) ds. Now, since X(t) is mean square integrable and

f (t, s) = (t − s)−α is almost everywhere continuous in (t, s) ∈ [a, b] × [a, b], the mean square
Leibniz rule yields

d
dt

(
J1−α

a+ (X(t))
)

=
1

Γ(1 − α)

∫ t

a
(−α)(t − s)−α−1X(s) ds.
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By using the mean square integration by parts formula, one gets

d
dt

(
J1−α

a+ (X(t))
)

=
1

Γ(1 − α)

(
X(a)(t − a)−α +

∫ t

a
(t − s)−αX′(s) ds

)
. (2.8)

By definition,
(
C Dα

a+ X
)

(t) = 1
Γ(1−α)

∫ t
a (t − s)−αX′(s) ds. Taking into account (2.7), (2.8) and the

initial condition X(a) = X0 of IVP (1.1), we deduce d
dt

(
J1−α

a+ (X(t))
)

= d
dt

(
J1−α

a+ (X0)
)
+
(
C Dα

a+ X
)

(t),
which implies

d
dt

(
J1−α

a+ (X(t))
)
−

d
dt

(
J1−α

a+ (X0)
)

=
(
C Dα

a+ X
)

(t). (2.9)

On the other hand, by the right-hand side of equation (2.6) and applying of [19, property (5),
p.103], since Z(t) = f (X(t), t) is mean square continuous, one gets

d
dt

(
J1

a+ (Z(t))
)

=
d
dt

(∫ t

a
Z(s) ds

)
= Z(t) = f (X(t), t). (2.10)

Finally, d
dt

(
J1−α

a+ (X(t))
)
− d

dt

(
J1−α

a+ (X0)
)

= d
dt

(
J1

a+ (Z(t))
)
, from (2.9) and (2.10) it follows that74 (

C Dα
a+ X

)
(t) = f (X(t), t), which means that X(t) is a mean square solution of the random fractional75

IVP (1.1). �76

3. Numerical approximations to the random fractional IVP77

This section is devoted to construct reliable discrete approximations to the solution stochastic
process of the random fractional IVP (1.1). Suppose that X(t) is a second-order stochastic process
such that satisfies the random integral equation given by (2.1), hence, according to Th. 2.2, it
also satisfies IVP (1.1). Define the mesh {tn : n ≥ 0} as t0 := a and tn := t0 + nh, being
h = (b − a)/M > 0, for a positive integer M that satisfies that tM = b. Let n be any positive
integer such that 0 ≤ n ≤ M. Evaluating (2.1) at tn, one gets

X(tn) = X0 +
1

Γ(α)

∫ tn

a
(tn − s)α−1 f (X(s), s) ds

= X0 +
1

Γ(α)

n−1∑
j=0

∫ t j+1

t j

(tn − s)α−1 f (X(s), s) ds, tn ∈ [a, b], 0 < α ≤ 1. (3.1)

Now, taking the following approximation∫ t j+1

t j

(tn − s)α−1 f (X(s), s) ds ≈
∫ t j+1

t j

(tn − s)α−1 f (X(t j), t j) ds, j = 0, 1, . . . , n − 1

in (3.1), we obtain an approximation Xn to the second-order random variable X(tn), formally
representing the true solution of the random fractional IVP (1.1) at the time t = tn, defined as

Xn = X0 +
1

Γ(α)

n−1∑
j=0

∫ t j+1

t j

(tn − s)α−1 f (X j, t j) ds

= X0 +
hα

αΓ(α)

n−1∑
j=0

[
(n − j)α − (n − ( j + 1))α

]
f (X j, t j), tn ∈ [a, b], 0 < α ≤ 1, (3.2)

5



where in the last step we have substituted the value of
∫ t j+1

t j
(tn − s)α−1 ds, which is well-defined78

since the resulting exponent is α > 0.79

4. Error analysis80

To study the mean square convergence of the random numerical scheme given by equation81

(3.2), we introduce the sequence of errors en defined as e0 = 0 and en = Xn − X(tn), n = 1, ...,M.82

We will prove that for each t = tn fixed, the limh→0 ‖en‖2 = 0, which means that the scheme83

given by equation (3.2) is mean square convergent for every t := tn in [a, b]. Now, consider the84

last expression of X(tn) in equation (3.1) and the first expression of Xn in equation (3.2). By85

subtracting X(tn) from Xn, we find86

en =
1

Γ(α)

n−1∑
j=0

∫ t j+1

t j

[
f (X j, t j) − f (X(s), s)

]
(tn − s)α−1 ds.

Hence, applying [19, p.102] one gets87

‖en‖2 ≤
1

Γ(α)

n−1∑
j=0

∫ t j+1

t j

∥∥∥ f (X j, t j) − f (X(s), s)
∥∥∥

2 (tn − s)α−1 ds. (4.1)

To accomplish our task, we will find out a bound of the quantity
∥∥∥ f (X j, t j) − f (X(s), s)

∥∥∥
2 by using

the hypotheses H1 and H2 on f . Indeed,∥∥∥ f (X j, t j) − f (X(s), s)
∥∥∥

2 ≤
∥∥∥ f (X j, t j) − f (X(t j), t j)

∥∥∥
2

+
∥∥∥ f (X(t j), t j) − f (X(s), t j)

∥∥∥
2

+
∥∥∥ f (X(s), t j) − f (X(s), s)

∥∥∥
2

≤ κ‖e j‖2 + κ‖X(t j) − X(s)‖ + W(S , h).

The fundamental theorem of mean square calculus [19, p.104] together with property (3) in [19,88

p.102], imply ‖X(t j)−X(s)‖ =
∥∥∥∥∫ t j

s X′(r)dr
∥∥∥∥ ≤ h maxr∈[a,b] X′(r). Notice that here we have applied89

that f (X(t), t) is mean square continuous, hence X′(t) is mean square continuous, so mean square90

integrable. Therefore,91 ∥∥∥ f (X j, t j) − f (X(s), s)
∥∥∥

2 ≤ κ‖e j‖2 + γ(h), (4.2)

where γ(h) := κh maxr∈[a,b] X′(r) + W(S , h). Observe that limh→0 γ(h) = 0, since by hypothesis
H2, limh→0 W(S , h) = 0. Next, using the inequalities (4.1) and (4.2) we find

‖en‖2 ≤
1

Γ(α)

n−1∑
j=0

∫ t j+1

t j

(
κ‖e j‖2 + γ(h)

)
(tn − s)α−1 ds

=
κ

Γ(α)

n−1∑
j=0

‖e j‖2

∫ t j+1

t j

(tn − s)α−1 ds

+
γ(h)
Γ(α)

n−1∑
j=0

∫ t j+1

t j

(tn − s)α−1 ds. (4.3)

6



Observe that
∫ t j+1

t j
(tn − s)α−1 ds = hα

α

[
(n − j)α − (n − ( j + 1))α

]
and (n − j)α − (n − ( j + 1))α ≤ 1,

j = 0, 1, . . . , n−1, and so
∫ t j+1

t j
(tn− s)α−1 ds ≤ hα

α
. We will use the last inequality and the equality,

respectively, on the right-hand side of the last expression in the inequality (4.3). Indeed,

‖en‖2 ≤
κhα

αΓ(α)

n−1∑
j=0

‖e j‖2 +
γ(h)hα

αΓ(α)

n−1∑
j=0

[
(n − j)α − (n − ( j + 1))α

]
. (4.4)

Taking into account the value of the following finite telescopic sum
∑n−1

j=0
[
(n − j)α − (n − ( j + 1))α

]
=

nα and (tn − t0)α = (nh)α, from (4.4) it follows that

‖en‖2 ≤
κhα

αΓ(α)

n−1∑
j=0

‖e j‖2 +
γ(h)
αΓ(α)

(tn − t0)α.

Defining A(h) := κhα
αΓ(α) and B(h) := γ(h)

αΓ(α) (tn − t0)α, the above inequality reads

‖en‖2 ≤ A(h)
n−1∑
j=0

‖e j‖2 + B(h), n = 1, 2, . . . (4.5)

In the following deduction, the inequality given by (4.5) will be repeatedly used. Indeed,

‖e1‖2 ≤ A(h)‖e0‖2 + B(h),
‖e2‖2 ≤ A(h)‖e0‖2 + B(h) + A(h)‖e1‖2

≤ (1 + A(h))(A(h)‖e0‖2 + B(h)).

Let k be an integer such that 2 ≤ k < M. Suppose that

‖e j‖2 ≤ (1 + A(h)) j−1(A(h)‖e0‖2 + B(h)) (4.6)

holds for all integer j such that 1 ≤ j ≤ k. We will show that the inequality in (4.6) fulfils for
j = k + 1, that is

‖ek+1‖2 ≤ (1 + A(h))k(A(h)‖e0‖2 + B(h)).

By using the inequality given by (4.5) and the induction hypothesis given by (4.6), one gets

‖ek+1‖2 ≤ A(h)‖e0‖2 + B(h) + A(h)
k∑

j=1

‖e j‖2

≤ (A(h)‖e0‖2 + B(h)) + A(h)
k∑

j=1

(1 + A(h)) j−1(A(h)‖e0‖2 + B(h))

= (A(h)‖e0‖2 + B(h))

1 + A(h)
k∑

j=1

(1 + A(h)) j−1

 .
Since (1 + A(h))k = 1 + A(h)

∑k
j=1(1 + A(h)) j−1,

‖ek+1‖2 ≤ (A(h)‖e0‖2 + B(h))(1 + A(h))k.
7



Then, it follows that

‖en‖2 ≤ (1 + A(h))n−1(A(h)‖e0‖2 + B(h)), (4.7)

for all integer n such that 1 ≤ n ≤ M. As limh→0 A(h) = limh→0 B(h) = 0, it follows from92

the inequality (4.7) that limh→0 ‖en‖2 = 0. This means that the scheme given by (3.2) is mean93

square convergent at the fixed number t = tn. In this case we say that the scheme is mean square94

convergent in the fixed station sense. The next result summarizes our findings.95

Theorem 4.1. With the previous notation, if the function f on the right-hand side of the random96

fractional IVP (1.1) satisfies conditions H1 and H2, then the random fractional forward Euler-97

like scheme given by (3.2) is mean square convergent to the solution of (1.1), for every t = tn :=98

a + nh ∈ [a, b].99

5. Statistical moments of the numerical approximations100

So far we have established sufficient conditions in order to guarantee the mean square con-101

vergence of the random fractional numerical scheme (3.2). In practice, apart from constructing102

approximations of random fractional differential equations it is also important to provide reli-103

able information related to the main statistical properties of such approximations. In particular, a104

main goal is the computation of the mean and the variance of the approximations to the solution105

stochastic process. This section is addressed to accomplish this target in the context of problem106

IVP (1.1).107

Taking the expectation operator, E [·], in expression (3.2) and using its linearity, we deduce
that the mean of the Xn is given by

E [Xn] = E [X0] + C(α)
n−1∑
j=0

an j(α)E
[
f (X j, t j)

]
, (5.1)

where C(α) = hα
Γ(α+1) and an j(α) = (n − j)α − (n − ( j + 1))α.108

Similarly, taking the covariance operator, Cov [·, ·], and using that it is bilinear, one gets that109

the covariance of Xn and Xm is given by110

Cov [Xn, Xm] = Cov

X0 + C(α)
n−1∑
j=0

an j(α) f (X j, t j) , X0 + C(α)
m−1∑
i=0

ami(α) f (Xi, ti)


= V[X0] + C(α)

m−1∑
i=0

ami(α)Cov
[
X0, f (Xi, ti)

]
+ C(α)

n−1∑
j=0

an j(α)Cov
[
f (X j, t j), X0

]
+ (C(α))2

n−1∑
j=0

m−1∑
i=0

an j(α)ami(α)Cov
[
f (X j, t j), f (Xi, ti)

]
.

(5.2)
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Letting m = n in (5.2), we obtain the variance of Xn,111

V [Xn] = V[X0] + 2C(α)
n−1∑
j=0

an j(α)Cov
[
X0, f (X j, t j)

]
+ (C(α))2

n−1∑
j=0

n−1∑
i=0

an j(α)ani(α)Cov
[
f (X j, t j), f (Xi, ti)

]
,

(5.3)

where112

Cov
[
X0, f (X j, t j)

]
= E

[
X0 f (X j, t j)

]
− E [X0]E

[
f (X j, t j)

]
, (5.4)

and113

Cov
[
f (X j, t j), f (Xi, ti)

]
= E

[
f (X j, t j) f (Xi, ti)

]
− E

[
f (X j, t j)

]
E

[
f (Xi, ti)

]
. (5.5)

6. First probability density function of the approximate solution stochastic process114

115

In the previous section, we have constructed approximations to the mean (E [Xn]) and the
variance (V [Xn]) of the solution stochastic process, X(t), to the random fractional IVP (1.1)
at any point tn ∈ [a, b] prefixed. Taking advantage of this minimum probability information
(position and variability), in this section we will show how to apply the Maximum Entropy
Principle (MEP) [20] in order to calculate an approximation of the probability density function
(PDF), say fXn (x), of the random variable Xn. Since this can be done for any point tn ∈ [a, b],
the set { fXn (x) : n ≥ 0} approximates what is usually termed the first probability density function
(1-PDF), f1(x, t), of X(t), t ∈ [a, b]. We point out that computing approximations to f1(x, t) is
advantageous, since from its integration one can calculate any one-dimensional moments, as well
as to evaluate the probability that an event lies within any interval of specific interest, say [c1, c2],

E[(X(t))m] =

∫ ∞

−∞

xm f1(x, t) dx, m = 1, 2, . . . , P[{ω ∈ Ω : c1 ≤ X(t)(ω) ≤ c2}] =

∫ c2

c1

f1(x, t) dx.

So, via the computation of the 1-PDF, further information of the solution is achieved.116

Entropy is said to be a measure of uncertainty constructed on the basis of incomplete data117

(for instance, the knowledge of a few moments as the mean and the variance). Here, we will used118

the so-called differential entropy or Shannon’s entropy, S A, which, for a given random variable,119

say A, is defined by120

S A = −

∫
D(A)

fA(a) log ( fA(a)) da,

whereD(A) denotes the domain of A. The larger, the uncertainty of A, the larger its entropy [20,121

Section 2.2]. In our setting, entropy will be used to construct approximations of the PDF, fXn (x),122

of approximation the Xn from the information provided by its available probabilistic information,123

namely, E [Xn] and V [Xn] (or equivalently E[(Xn)2] = V [Xn] + E [Xn]2) calculated by (5.1) and124

(5.3)–(5.5), respectively. Specifically, let Xn be the continuous random variable, defined by the125

numerical scheme (3.2), that approximates the solution X(t) at t = tn. Then, the MEP consists126

of seeking fXn (x) such that, satisfying the condition to be a PDF (i.e., its integral on the domain127
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of Xn is the unit), the two first theoretical moments of Xn, calculated via the PDF, also match the128

corresponding values of E [Xn] and E[(Xn)2] (obtained via the numerical approximations), i.e.,129 ∫
D(Xn)

fXn (x)dx = 1,
∫
D(Xn)

x fXn (x)dx = E [Xn] ,
∫
D(Xn)

x2 fXn (x)dx = E[(Xn)2],

where D(Xn) denotes the domain of the random variable Xn, which is in practice unknown.
To overcome this lack of information in the domain of integration, here we use the Bienaymé-
Chebysshev’s inequality [21, p. 122] to approximate D(Xn). According to this important re-
sult, we can assure that the interval [a1, a2], with a1 = E [Xn] − 10

√
V [Xn] and a2 = E [Xn] +

10
√
V [X(n], will contain all the outcomes of Xn with a probability of 99.9%, regardless the dis-

tribution of Xn. So, in our subsequent numerical computations we will take D(Xn) ≈ [a1, a2].
The PDF fXn (x) is calculated by maximumazing Shannon entropy of the random variable Xn. To
this end, we apply the variational extension of classical Lagrange multiplier method [20]. Hence,
we search a function, fXn : [a1, a2] −→ R, such that

L( fXn , λ0, λ1, λ2) = −

∫ a2

a1

fXn (x) log
(
fXn (x)

)
dx + λ0

(
1 −

∫ a2

a1

fXn (x) dx
)

+λ1

(
E [Xn] −

∫ a2

a1

x fXn (x) dx
)

+ λ2

(
E[(Xn)2] −

∫ a2

a1

x2 fXn (x) dx
)

= −

∫ a2

a1

fXn (x)

log( fXn (x)) +

2∑
i=0

λixi

 dx + λ0 + λ1E [Xn] + λ2E[(Xn)2],

where λi, i = 0, 1, 2, are the so-called Lagrange multipliers. Using variational calculus, we130

impose the four conditions:131

∂L( fXn , λ0, λ1, λ2)
∂ fXn

= 0,
∂L( fXn , λ0, λ1, λ2)

∂λ0
= 0,

∂L( fXn , λ0, λ1, λ2)
∂λ1

= 0,
∂L( fXn , λ0, λ1, λ2)

∂λ2
= 0.

(6.1)
The first condition yields

∂L( fXn , λ0, λ1, λ2)
∂ fXn

= −

∫ a2

a1

1 + log( fXn (x))) +

2∑
i=0

λixi

 dx = 0.

Obviously, this condition holds when 1 + log( fXn (x))) +
∑2

i=0 λixi = 0. This yields132

fXn (x) = 1[a1,a2]e−1−λ0−λ1 x−λ2 x2
, (6.2)

where 1[a1,a2] denotes the characteristic function on the interval [a1, a2] ≈ D(Xn). On the other133

hand, with the remaining conditions of (6.1), we can compute the values of Lagrange multipliers134

λ0, λ1, λ2, solving the nonlinear system135 

∂L( fXn , λ0, λ1, λ2)
∂λ0

= 0 −→
∫ a2

a1

e−1−λ0−λ1 x−λ2 x2
dx = 1,

∂L( fXn , λ0, λ1, λ2)
∂λ1

= 0 −→
∫ a2

a1

xe−1−λ0−λ1 x−λ2 x2
dx = E[Xn],

∂L( fXn , λ0, λ1, λ2)
∂λ2

= 0 −→
∫ a2

a1

x2e−1−λ0−λ1 x−λ2 x2
dx = E[(Xn)2].

(6.3)
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7. Numerical examples136

The aim of this section is to present some examples in order to illustrate the random fractional137

forward Euler-like method developed in the previous sections. To check its accuracy, the first ex-138

ample have been chosen so that the exact values for the mean and the variance can be determined,139

and then we can compare them against the ones provide by approximations obtained via the ran-140

dom fractional numerical scheme. Additionally, a similar comparitive analysis is performed for141

the 1-PDF, which is calculated in two ways, namely, via the Random Variable Transformation142

technique [22], which is exact, and by the approximate method exhibited in Section 6, which143

combines the MEP and the random fractional numerical scheme. To analyse the accuracy of the144

approximations for the mean and the variance, we will use of the absolute error (AE) for the145

mean and for the variance,146

AE(Mean)(t, n) = |E[Xn] − E[X(tn)]| ,
AE(Variance)(t, n) = |V[Xn] − V[X(tn)]| ,

(7.1)

where E[X(tn)] and V[X(tn)] are the exact mean and variance of the solution at time tn, re-147

spectively, and E[Xn] and V[Xn] denote their corresponding approximations given by (5.1) and148

(5.3)–(5.5), respectively. As we will see later, we have chosen the absolute error as error measure149

since in our examples the mean values of the solutions and their variances are close to zero.150

Example 7.1. Let us consider the following random fractional IVP151 { (
C Dα

0+ X
)

(t) = −X(t) + At2 + X0 + 2A
Γ(3−α) t

2−α, t ∈ [0, 0.5], 0 < α ≤ 1,
X(0) = X0,

(7.2)

where A and X0 are independent second-order random variables. According to the IVP (1.1),152

f (X, t) = −X + At2 + X0 + 2A
Γ(3−α) t

2−α and is straightforward to check that f (X, t) verifies H1 and153

H2. Thus, the numerical scheme (3.2) is given by154

Xn = X0 +
hα

Γ(α + 1)

n−1∑
j=0

((n − j)α − (n − j − 1)α)
(
−X j + At2

j + X0 +
2A

Γ(3 − α)
t2−α

j

)
.

To calculate approximations of the mean, we apply expression (5.1), taking into account that155

E
[
f (X j, t j)

]
= −E

[
X j

]
+ t2

jE [A] + E [X0] +
2t2−α

j

Γ(3 − α)
E [A] , (7.3)

while to determine approximations of the variance, we use expression (5.3)–(5.5), taking into156

account that157

Cov
[
X0, f (X j, t j)

]
= − Cov

[
X0, X j

]
+ V [X0] ,

Cov
[
f (X j, t j), f (Xi, ti)

]
=V[X0] + V[A]

t2
j t

2
i +

2t2
j t

2−α
i

Γ(3 − α)
+

2t2−α
j t2

i

Γ(3 − α)
+ 4

t2−α
j t2−α

i

Γ(3 − α)2


+ Cov[X j, A]

−t2
i − 2

t2−α
i

Γ(3 − α)


+ Cov[Xi, A]

−t2
j − 2

t2−α
j

Γ(3 − α)


+ Cov[X j, Xi] + Cov[X j, X0] + Cov[Xi, X0].

(7.4)
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t = 0.1 t = 0.2 t = 0.3 t = 0.4
n = 100 4.77208e-03 1.95806e-02 4.44101e-02 7.92553e-02
n = 200 4.88730e-03 1.97919e-02 4.47069e-02 7.96296e-02
n = 400 4.94406e-03 1.98965e-02 4.48540e-02 7.98154e-02
n = 800 4.97217e-03 1.99484e-02 4.49272e-02 7.99079e-02

n = 1600 4.98613e-03 1.99743e-02 4.49637e-02 7.99540e-02
n = 3200 4.99308e-03 1.99871e-02 4.49818e-02 7.99770e-02

Table 1: Approximations of the mean calculated by expressions (5.1) and (7.3) for different values of n and different time
instants t. Example 7.1.

t = 0.1 t = 0.2 t = 0.3 t = 0.4
n = 100 1.00323e-02 1.00596e-02 1.00990e-02 1.01698e-02
n = 200 1.00197e-02 1.00364e-02 1.00633e-02 1.01186e-02
n = 400 1.00074e-02 1.00161e-02 1.00373e-02 1.00897e-02
n = 800 1.00670e-02 1.01184e-02 1.01790e-02 1.02686e-02

n = 1600 9.96446e-03 9.94269e-03 9.93635e-03 9.96339e-03
n = 3200 9.99630e-03 9.99561e-03 1.00056e-02 1.00436e-02

Table 2: Approximations of the variance calculated by expressions (5.3) and (7.4) for different values of n and different
time instants t. Example 7.1.

It is easy to check that the solution stochastic process to the random fractional IVP (7.2) is given158

by159

X(t) = At2 + X0. (7.5)

Consequently, since A and X0 are independent, the mean and the variance of X(t) is given by

E[X] = t2E[A] + E[X0],

V[X] = t4V[A] + V[X0].

To carry out computations, let us consider that A has a beta distribution A ∼ Be(80; 80) and X0160

has a Gaussian distribution with zero mean and standard deviation 0.1, X0 ∼ N(0; 0.12). In this161

example, we will take as fractional order α = 0.7 ∈ (0, 1]. Tables 1 and 2 collect the values of162

the approximations for the mean and for the variance, respectively, of the solution computed via163

(5.1) and (7.3) for the mean, and via (5.3) and (7.4) for the variance, at the final times instants t =164

0.1, 0.2, 0.3, 0.4 and different nodes of discretization M = 100, 200, 400, 800, 1600, 3200. So, for165

t fixed, the step size h = t/M decreases as N increases. In Tables 3 and 4, we show the absolute166

errors, defined in (7.1), for the approximations of the mean and the variance, respectively. From167

the figures collected in these tables, we can observe that for t fixed, the errors decrease as M168

increases as expected.169

So far, we have computed approximations for the main statistical moments, namely the mean170

and the variance, of the solution X(t) via the random numerical scheme, and they have been171

compared with their exact values. On the one hand, using the MEP described in Section 6172

together with these approximations for the mean and for the variance, we can approximate the173

1-PDF of X(t) according to (6.2) where the parameters λi, i = 0, 1, 2 solve (6.3). In Figure 1,174

we show the approximation of 1-PDF at the time interval [0, 0.4]. The values of λ0, λ1 and λ2,175

corresponding to the time instants t = 0.1, 0.2, 0.3, 0.4 are collected in Table 5.176
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t = 0.1 t = 0.2 t = 0.3 t = 0.4
n = 100 2.27923e-04 4.19409e-04 5.89888e-04 7.44651e-04
n = 200 1.12701e-04 2.08060e-04 2.93103e-04 3.70370e-04
n = 400 5.59350e-05 1.03507e-04 1.45974e-04 1.84577e-04
n = 800 2.78325e-05 5.15880e-05 7.28065e-05 9.20999e-05

n = 1600 1.38729e-05 2.57419e-05 3.63469e-05 4.59913e-05
n = 3200 6.92263e-06 1.28546e-05 1.81559e-05 2.29775e-05

Table 3: Absolute errors for the approximations of the mean collected in Table 1. Example 7.1.

t = 0.1 t = 0.2 t = 0.3 t = 0.4
n = 100 3.16109e-05 5.48771e-05 8.13128e-05 1.21075e-04
n = 200 1.89957e-05 3.16587e-05 4.56261e-05 6.98054e-05
n = 400 6.65378e-06 1.13590e-05 1.96601e-05 4.09081e-05
n = 800 6.62481e-05 1.13694e-04 1.61319e-04 2.19851e-04

n = 1600 3.62636e-05 6.20514e-05 8.12956e-05 8.53784e-05
n = 3200 4.41900e-06 9.12639e-06 1.20779e-05 5.20279e-06

Table 4: Absolute errors for the approximations of the variance collected in Table 2. Example 7.1.

λ0 λ1 λ2

t = 0.1 -2.38238e+00 -4.99982e-01 4.99982e+01
t = 0.2 -2.36349e+00 -1.99934e+00 4.99835e+01
t = 0.3 -2.28182e+00 -4.49353e+00 4.99281e+01
t = 0.4 -2.06287e+00 -7.96575e+00 4.97859e+01

Table 5: Values of parameters λ0, λ1 and λ2 that, according to (6.2), determine the approximate 1-PDF using MEP to the
random fractional IVP (1.1) at different time instants t = 0.1, 0.2, 0.3, 0.4. Example 7.1.

Figure 1: Approximate 1-PDF for the random fractional IVP (1.1) obtained via the combination of the MEP and the
random numerical scheme. Example 7.1.
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Error Norm
t = 0.1 1.47402e-05
t = 0.2 5.89410e-05
t = 0.3 1.32434e-04
t = 0.4 2.34549e-04

Table 6: Values of the error (via the 2-norm) between the exact 1-PDF, given in (7.6), and its approximations obtained
via MEP at different times t = 0.1, 0.2, 0.3, 0.4. Example 7.1.

On the other hand, as the solution stochastic process of the random fractional IVP (7.2) is177

given by (7.5), its 1-PDF can be exactly calculated by applying the Random Variable Transfor-178

mation technique [22]. To this end, let us fix t and define the injective mapping r : R2 −→ R2
179

whose components are180

Y1 = r1(X0, A) = At2 + X0, Y2 = r2(X0, A) = A.

Its inverse mapping, s : R2 −→ R2, is given by181

X0 = s1(Y1,Y2) = Y1 − Y2t2, A = s2(Y1,Y2) = Y2.

The Jacobian of this transformation is 1. Therefore, taking into account that X0 and A are182

independent random variables, the joint PDF of the random vector Y = (Y1,Y2) is given by183

fY(y1, y2) =

 1
√

2π0.12
e
− 1

2

(
y1−y2 t2

0.1

)2 (y2)79(1 − y2)79

Be(80, 80)
,

where Be(β1, β2) denotes the deterministic beta special function of parameters β1, β2 > 0. Since184

the solution X(t) is the first component of vector Y, to obtain the 1-PDF of X(t) we marginalize185

fY(y1, y2) with respect to Y2. This yields186

fX(t)(x) =
1

0.1
√

2πBe(80, 80)

∫ 1

0
a79(1 − a)79e

− 1
2

(
x−at2

0.1

)2

da. (7.6)

Figure 2 shows a graphical comparison between the exact 1-PDF, fX(t)(x), and its approximation187

at the times t = 0.1, 0.2, 0.3, 0.4. We can observe that approximations are very good. As a188

measure of the accuracy of these approximations, in Table 6 we show values of the 2-norm of the189

difference between fX(t)(x) and approximations fXn (x) at the above-mentioned time instants. We190

observe that these figures increase at time increases as expected.191

Example 7.2. Let us consider the following random fractional IVP192 { (
C Dα

0+ X
)

(t) = λX(t) + A t ∈ [0, 1], 0 < α ≤ 1,
X(0) = X0,

(7.7)

where λ ∈ R and X0 and A are independent second-order random variables. It is easy to prove193

that f (X, t) = λX + A fulfils hypotheses H1 and H2. In [23], the solution of this particular IVP194

is obtained using a generalized version of the Frobenius method. This approach leads to the195

following generalized power series196

X(t) = X0

∞∑
m=0

λm

Γ(αm + 1)
tαm + A

∞∑
m=1

λm−1

Γ(αm + 1)
tαm,
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Figure 2: Graphical comparison between the exact 1-PDF given in (7.6) and its approximations obtained via MEP at
different times t = 0.1, 0.2, 0.3, 0.4. Example 7.1.
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consequently its mean and its second order moment are given by ([23, Eq. 21,23])

E [X(t)] = E [X0]
∞∑

m=0

λm

Γ(αm + 1)
tαm + E [A]

∞∑
m=1

λm−1

Γ(αm + 1)
tαm,

E
[
X(t)2

]
= E[X2

0]
∞∑

m=0

λ2m

Γ(αm + 1)2 t2αm

+ 2E[X2
0]
∞∑

m=0

m−1∑
n=0

λm+n

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

+ E[A2]
∞∑

m=1

λ2(m−1)

Γ(αm + 1)2 t2αm

+ 2E[A2]
∞∑

m=2

m−1∑
n=1

λm+n−2

Γ(αm + 1)Γ(αn + 1)
tα(m+n)

+ 2E [X0]E [A]
∞∑

m=0

m−1∑
n=1

λm+n−1

Γ(αm + 1)Γ(αn + 1)
tα(m+n).

Taking into account that V[X(t)] = E[X(t)2] − E[X(t)]2, the variance is easily obtained from the197

two previous expressions.198

On the other hand, the numerical scheme (3.2) is given by the following expression199

Xn = X0 +
hα

Γ(α + 1)

n−1∑
j=0

[
(n − j)α − (n − ( j + 1))α

] (
λX j + A

)
.

To compute the approximations for the mean and for the variance of the numerical solution given200

by expressions (5.1) and (5.3)–(5.5), respectively, we need the following expressions201

E
[
f (X j, t j)

]
= λE[X j] + E[A], (7.8)

and202

Cov
[
X0, f (X j, t j)

]
= λCov[X0, X j],

Cov
[
f (X j, t j), f (Xi, ti)

]
= λ2Cov[X j, Xi] + λCov[X j, A] + λCov[Xi, A] + Var[A],

(7.9)

where in the second identity we have used that Cov[X0, A] = 0, since X0 and A are assumed203

to be independent. To carry out the numerical example, let us consider that A ∼ Ga(1, 1/2),204

B0 ∼ Exp(2), α = 0.7 and λ = 0.75. In Tables 7 and 8, the values of the approximations for the205

mean and for the variance, respectively, for different t = 0.2, 0.4, 0.6, 0.8 and for different nodes206

of discretization n = 100, 200, 400, 800, 1600, 3200 are shown. In Tables 9 and 10, we collect207

the values of the absolute errors for the mean and for the variance, respectively. These figures208

show strong agreement between both approaches, validating the approximations obtained by the209

numerical scheme.210

Once reliable approximations for the mean and for the variance have been computed, we can211

take advantage for the MEP explained in Section 6, to compute approximations of the 1-PDF of212

the solution for the IVP (7.7). The values of λ0, λ1 and λ2 for t = 0.2, 0.4, 0.6, 0.8, are collected213

in Table 11. In Figure 3, we have plotted the approximate 1-PDF on the interval 0 ≤ t ≤ 0.8.214
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t = 0.2 t = 0.4 t = 0.6 t = 0.8
n = 100 8.79545e-01 1.19617e+00 1.53429e+00 1.90780e+00
n = 200 8.79084e-01 1.19710e+00 1.53707e+00 1.91297e+00
n = 400 8.73584e-01 1.19045e+00 1.52909e+00 1.90346e+00
n = 800 8.85815e-01 1.20441e+00 1.54454e+00 1.92030e+00

n = 1600 8.73489e-01 1.18991e+00 1.52785e+00 1.90127e+00
n = 3200 8.76741e-01 1.19452e+00 1.53416e+00 1.90966e+00

Table 7: Approximations for the mean calculated by expressions (5.1) and (7.8) for different values of n at different time
instants. Example 7.2.

t = 0.2 t = 0.4 t = 0.6 t = 0.8
n = 100 4.73540e-01 7.32315e-01 1.07587e+00 1.53917e+00
n = 200 4.83486e-01 7.48728e-01 1.10215e+00 1.58059e+00
n = 400 4.58941e-01 7.13128e-01 1.05240e+00 1.51228e+00
n = 800 4.76056e-01 7.39889e-01 1.09176e+00 1.56789e+00
n = 1600 4.60671e-01 7.19230e-01 1.06591e+00 1.53717e+00
n = 3200 4.77874e-01 7.42555e-01 1.09631e+00 1.57625e+00

Table 8: Approximations for the variance calculated by expressions (5.3) and (7.9) for different values of n at different
time instants. Example 7.2.

t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 3.86683e-03 4.05048e-03 4.38730e-03 4.79608e-03
M = 200 3.40606e-03 4.97333e-03 7.16724e-03 9.97200e-03
M = 400 2.09392e-03 1.67543e-03 8.12368e-04 4.57895e-04
M = 800 1.01376e-02 1.22837e-02 1.46425e-02 1.72940e-02

M = 1600 2.18919e-03 2.21026e-03 2.05022e-03 1.73005e-03
M = 3200 1.06352e-03 2.39790e-03 4.25688e-03 6.65941e-03

Table 9: Absolute errors for the mean. Example 7.2.

t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 1.00640e-02 1.36111e-02 1.77728e-02 2.26666e-02
M = 200 2.00101e-02 3.00239e-02 4.40562e-02 6.40841e-02
M = 400 4.53483e-03 5.57630e-03 5.69099e-03 4.21865e-03
M = 800 1.25798e-02 2.11850e-02 3.36613e-02 5.13880e-02

M = 1600 2.80493e-03 5.26002e-04 7.81413e-03 2.06665e-02
M = 3200 1.43977e-02 2.38508e-02 3.82108e-02 5.97441e-02

Table 10: Absolute error for the variance. Example 7.2.
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Figure 3: Approximate 1-PDF for the IVP (7.7) using MEP combined wit the approximations of the mean and the
variance obtained via the random fractional numerical scheme.

λ0 λ1 λ2

t=0.2 3.61678e-01 -1.88937e+00 1.07880e+00
t=0.4 7.42481e-01 -1.65871e+00 6.95697e-01
t=0.6 1.05322e+00 -1.44590e+00 4.72548e-01
t=0.8 1.32114e+00 -1.25486e+00 3.29706e-01

Table 11: Values of the parameters λ0, λ1 and λ2 to construct the approximate 1-PDF using MEP for the IVP (7.7) at
different t = 0.2, 0.4, 0.6, 0.8.
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8. Conclusions215

In this paper we have studied the fractional forward Euler-like numerical method to random216

fractional differential equations. The study has been conducted by means of the so-called mean217

square calculus. We have given mild sufficient condition in order to guarantee the mean square218

convergence. This type of stochastic convergence guarantees the mean and the variance of the219

approximations will converge to the corresponding exact values. This results very useful since220

these probabilistic moments are not known in practice. This key probabilistic information has221

been utilized to go further and to calculate reliable approximations of the first probability density222

function of the solution stochastic process of random fractional differential equations by applying223

the Maximum Entropy Principle (MEP). Our numerical examples show very satisfactory results.224

This contribution provides a new approach to approximate the density of random fractional dif-225

ferential equations via the combination of numerical schemes and MEP. We plan to extend our226

ideas to other types of numerical schemes.227
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