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ABSTRACT 

Railway interaction is characterised by the coupling between the train and the track introduced through 

the wheel/rail contact. The introduction of the flexibility in the wheelset and the track through the 

Finite Element (FE) method in the last four decades has permitted to study high-frequency phenomena 

such as rolling noise and squeal, whose origin lies in the strongly non-steady state and non-linear 

behaviour of the contact forces that arise from the small contact area. In order to address models with 

a large number of degrees of freedom, innovative Eulerian-modal models for wheelsets with rotation 

and cyclic tracks have been developed in recent years. The aim of this paper is to extend the resulting 

formulation to an uncoupled linear matrix equation of motion that allows solving each equation 

independently for each time step, considerably reducing the associated computational cost. The 

decoupling integration method proposed is compared in terms of computational performance with 
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Newmark and Runge-Kutta schemes, commonly used in vehicle dynamics, for simulations with the 

leading wheelset negotiating a tangent track and accounting the rail roughness. 
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1 INTRODUCTION 

Train/track interaction consists of the coupled vibration of a railway vehicle and a track coupling by 

the contact area between both wheels and the corresponding rails. From the small contact patch, non-

steady state contact forces emerge in the normal and tangential directions characterised by its high 

levels and strong non-linear behaviour. Unwanted phenomena such as high levels of noise and 

vibration1, damage of the rolling surfaces in the form of corrugation2 or rolling contact fatigue3 occur 

due to large levels of vibration and dynamic fluctuations of the contact forces. 

In favour of getting closer to better understanding of the physics behind these phenomena, a large 

effort has been spent over the last forty years to develop suitable railway interaction models. Although 

early models simplify the vehicle as a rigid wheelset resting on a Hertzian stiffness4, the incorporation 

of the flexibility1,5 has led to widen the frequency range of analysis so as to get a more realistic 

representation of wheel/rail interaction effects at higher frequencies. Finite Element (FE) models have 

strongly entered in railways research to extend the frequency range above 1 kHz to address the rolling 

noise6. These models mesh the wheelset (or just the wheels) with a higher refinement around the 

contact zone, where the forces and displacements reach more significant values to obtain accurate 

results in the high-frequency domain. Only very recently, a further model enhance was introduced in 

the wheelset to consider the inertial effects due to wheelset rotation7,8, which is revealed crucial for 

rail corrugation9. 

The rails have been widely represented by means of a continuous horizontal Bernoulli-Euler beams 

on periodic discrete elastic supports subjected to a moving load10,11. More sophisticated models make 

use of Timoshenko beam elements to include rotational inertia and shear deformation, but its 

frequency range is limited up to 1.5 kHz for the tangential vibrations since it does not account the 

cross-sectional deformation of the rail1. The mobile nature of the contact force along the rail leads to 

refine uniformly the entire solid in the longitudinal direction, accumulating a number of degrees of 

freedom computationally unviable. In order to extend the frequency range maintaining an acceptable 

number of degrees of freedom, the Moving Element (ME) method12 is applied in the rail formulation. 

From an Eulerian approach, this technique permits to fix the contact force applied in the same node of 

the mesh and thus to refine the mesh just around this node. 



Numerical strategies need to be applied in order to reduce the number of differential equations and the 

associated unknowns of the complete system. In general, a modal synthesis is introduced to lower the 

size of the problem5. Through the calculation of the natural frequencies and the mode shape functions 

matrices of each substructure, the physical coordinates are replaced by a reduced number of modal 

coordinates as unknowns. The resulting linear differential equations are coupled. 

At this point, the aim of this paper is to propose a mathematical strategy that permits to decouple the 

equations of motion and allows solving each one independently for each time step, optimising the 

numerical time integration. Additionally, this formulation will be extended to the particular case of a 

linearised contact model, simplification widely used in the literature13. With the aim of reducing the 

computational complexity of the problem, one single flexible wheelset is considered instead of one 

complete bogie, and gravitational forces are prescribed at the primary suspension seats. A cyclic finite 

and flexible rail supported by a Winkler base using the ME method is also implemented. 

Results for the proposed decoupling technique consist of the evaluation of the time consumption and 

the discrepancy associated with this method compared with other integration schemes commonly 

adopted in vehicle dynamics: Newmark and ode45. Newmark method14 is an algorithm commonly 

used in rigid solid dynamic applications that has been extended for flexible substructures in the railway 

field with the aim that the user is able to set a constant time step suitable for the conditions and the 

frequency domain of the dynamic problem. ode45 is a medium order method with variable time step 

based on Runge-Kutta scheme15 recommended in the literature for solving equations of motion 

associated with flexible substructures. These schemes are used for simulations run with a growing 

number of modes, permitting to corroborate the computational advantages of the proposed strategy for 

railway interaction models. 

The paper presents the formulation of the flexible and rotating wheelset model and the ME technique 

applied to a cyclic rail (both in modal coordinates) in Section 2. Section 3 develops the decoupling 

technique for the complete dynamic interaction so as to obtain a reduced set of independent linear 

differential equations; this formulation is extended to the case of linear contact model. The 

computational performance of the proposed solver is evaluated through the discrepancy, the time 

consumption and the number of modal coordinates in Section 4. The paper closes with conclusive 

remarks in Section 5. 



2 WHEELSET AND TRACK MODELS 

2.1 Modal synthesis 

A substructuring technique is followed in this paper for the vehicle/track interaction model16,17, 

permitting to divide the whole system into two substructures: the vehicle and the track, being the 

wheel/rail contact forces that couple the equations of motion of both substructure. The physical matrix 

equation of motion for both of them can be written as 

 ,    , ,i i i i i i i
eq eq eq i w r+ + = =M w C w K w F   (1) 

where i
eqM , i

eqC  and i
eqK are the mass, damping and stiffness equivalent matrices, iF  is the external 

force vector and i is referred to the wheelset (w) or the rails (r). The dimension of the equation of 

motion corresponds to the number of degrees of freedom of each substructure Ni, three times 

(longitudinal, lateral and vertical displacements) the number of nodes of the mesh. 

A modal synthesis approach is applied to the previous equation, permitting to reduce the dimension to 

a significantly lower number of modal coordinates mi. In order to address this approach, the 

eigenproblem associated with the undamped and non-excited system is solved for the wheelset 

subjected by the primary suspensions and the rail supported by a Winkler bedding. It allows calculating 

the first mi eigenvalues (the square of the first natural frequencies of the system) and their 

corresponding eigenvectors (or mode shape functions). The eigenvectors form the respective mode 

shape functions matrices iΦ  with dimension Ni×mi. Both modal equations of motion are written as 

 ,    , ,i i i i i i
eq eq i w r+ + = =q C q K q Q 

   (2) 

where the modal matrices are: 

 T ,i i i i
eq eq=K Φ K Φ  (3) 

 T ,i i i i
eq eq=C Φ C Φ  (4) 

 T .i i i=Q Φ F  (5) 

Therefore, both modal matrices present mi×mi dimension and Equation (2) is a differential system of 

mi equations. Since the physical matrix i
eqK  from which the eigenproblem was solved is not 

symmetric, i
eqK  is not a diagonal matrix; i

eqC  is a general damping matrix and its corresponding modal 

matrix i
eqC  is also not diagonal. Therefore, it leads to a system of mi coupled modal differential 

equations, which is computationally more costly to solve. 



2.2 Wheelset model 

The wheelsets confined in a bogie are mostly subjected to dynamic forces from the train/track 

interaction in a range above 20 Hz, frequency range in which the mechanical filter introduced by the 

suspensions effectively isolates the sprung masses (bogie frame and carbody) from the motion of the 

unsprung masses (wheelsets and axle boxes). This permits simplifying the modelling of the vehicle 

through one single flexible wheelset instead of one complete vehicle so as to simplify the 

computational problem, together with the primary suspension (where the forces are prescribed) 

represented using viscoelastic lumped parameter elements. 

In order to model the kinematics of the flexible wheelset, two configurations (undeformed and 

deformed) are defined (see Figure 1). The undeformed configuration is associated with the spinning 

velocity of the wheelset (at constant angular velocity). The deformed configuration considers the 

flexibility and small rigid solid displacements. The displacement field relates the deformed 

configuration with the undeformed configuration as it will be shown in Equation (6). The coordinates 

that are implemented in the wheelset model do not follow the material points of the solid which is the 

commonest procedure in Mechanics, nevertheless they are associated with spatial points (Eulerian 

approach). Let u an Eulerian vector coordinate in a fixed coordinate frame. Any property of the solid 

corresponds to the material point of the solid whose undeformed configuration is in the spatial point 

u at instant t. Following this criterion, the displacement field is defined by means of the following 

formula: 

 ( ), ,t= +r u w u  (6) 

where r is the final position of the particle, and w is the displacements associated with flexibility and 

small rigid body displacements. Due to the axisymmetric geometry of the wheelset, this methodology 

permits to represent the displacements in the spatial points from the non-deformed configuration using 

the vibration modes as basis in the fixed reference frame. These modes are calculated through the 

Finite Elements (FE) method. The resulting modal equation of motion for the selected wheelset is18: 

 ( )( )2 22 ,w w w w w w w w w w
c sΩ Ω Ω+ + − + = + +q V q A C D q c Q Q    

    (7) 

where wq  is the modal coordinate vector and Ω  the angular velocity of the wheelset. The matrix wV  

can be identified as inertial force due to Coriolis acceleration associated with the convective velocity; 
wA  is related to convective acceleration; wC  is associated with centrifugal forces that appear after 

deformation of the solid; the diagonal matrix ( )2diagw
rω=D  is the modal stiffness matrix that 

contains the square of the undamped natural frequencies of the free-boundary wheelset; column vector 
wc  corresponds to constant centrifugal forces; finally, w

cQ  and w
sQ  are the column vectors of the 



modal generalised forces acting on the flexible wheelset resulting respectively from wheel/rail contact 

forces and from the forces applied by the primary suspension. A complete description of the wheelset 

formulation can be found in Reference18. 

 
FIGURE 1 Undeformed and deformed configuration of the wheelset negotiating a tangent track 

2.3 Track model 

A track model with cyclic conditions was developed in Reference19 adopting the ME technique12. This 

method takes a moving frame attached to the vehicle, defining a new class of finite elements that 

makes the material of the rail ‘flow’ into the mesh. This model avoids the moving vehicle exceeding 

the ‘downstream’ boundary end since the vehicle (and the contact patch) remains fixed on a unique 

moving rail element instead of crossing from one element into another, hence avoiding the update of 

the force or displacement vectors. Furthermore, a fixed contact area permits to implement a mesh with 

greater refinement only around this area, where forces and displacements are more pronounced, 

avoiding to refine the entire head rail surface. As a finite element technique, ME method permits to 

account the cross-sectional deformation unlike beam models, hence widening the frequency range of 

validity. 

The track model follows a cyclic approach16, in which an infinite track negotiated by an infinite 

number of identical vehicles separated uniformly by a distance L (set large enough to avoid the 

dynamic interaction between the vehicles) and travels at the same velocity V. Therefore, the study of 

the infinite track is reduced to a single section with finite length L due to the periodicity of the structure 

and load conditions. Cyclic boundary conditions set same displacements and derivatives at the model 

edges of the finite rail. 

A UIC60 profile is meshed and longitudinally extruded as seen in Figure 2 (out of scale). The 

governing equation is formulated in a relative reference system attached to the vehicle moving with 

velocity V. Again, an Eulerian-modal approach is adopted, so that the global displacement vector can 

be expressed through superposition of mode shapes. It must be pointed out that the mode shape 

functions do not depend on time since the ‘flow’ of the mesh through the material coordinates does 



not change the mode shape functions in spatial coordinates because the cross-sectional area remains 

invariable after the extrusion of the UIC60 profile. 

 

FIGURE 2 Finite element mesh of the UIC60 rail (out of scale). Deformed and undeformed 

configuration 

An Eulerian position vector u defined through the coordinate system 321 xxx  is considered. Vector u 

defines the position of a spatial point and it does not depend on time. Vector ( )t,uww ≡  is the 

displacement of a material point that occupies the position u at the instant t with respect the 

undeformed configuration. The position vector of the material point is 

 ( ), .t= +r u w u  (8) 

The equation of motion in modal coordinates that governs the dynamic of the rail is the following: 

 ( ) ( )22  .r r r r r r r r r r r
wink wink wink cV V Vζ+ + − + + − + =Cq C C C q D K A K q Q      

   (9) 

rq  is the modal coordinate vector, rD  is the modal stiffness, r
ζC  is a modal damping matrix included 

as recommended in the literature1, rA  is related to the convective acceleration, rC  is a term associated 

with the convective velocity, r
winkK , r

winkCK  and r
winkC  are terms that add the contribution of the 

Winkler bedding, and r
cQ  is the modal generalised force vector from wheel/rail contact. A complete 

description of the rail formulation can be found in Reference19. 

2.4 Wheelset/track interaction model 

The wheelset and the rails are in contact (see Figure 3) and its equations of motion (7) and (9) are 

coupled through the wheel/rail contact forces in modal coordinates, identified as w
cQ  and r

cQ , 

respectively. The position and velocity of the contact points on the surfaces of both inner and outer 



wheels and rails are determined in each time step to calculate the relative wheel/rail motion required 

for the computation of the normal and tangential contact force. This force expressed in Eulerian modal 

coordinates is applied on the wheel and the rail surfaces at the contact point. The general contact 

formulation for a generic track is detailed above. 

 

FIGURE 3 Reference system used in the contact 

2.4.1 Normal contact model 

The normal contact problem is solved using an incremental approach. A pre-processor of a commercial 

vehicle/track interaction software based on multibody techniques is used to compute the quasi-static 

solution of the railway interaction model and the corresponding contact force applied to the contact 

point. This software considers elastic contact, permitting to determine a single contact point on each 

wheel/rail pair assuming both wheel and rail undeformable and computing the relative lateral 

displacement of the wheel on the rail. The lateral displacement will be considered as mean value 

around which the contact point will oscillate during the numerical integration assuming small 

variations. 

The contact displacements associated with the wheel and the rail, w
cw  and r

cw , respectively, are 

calculated through the modal superposition principle. The wheel/rail incremental distance vector is 

computed assuming that both surfaces are undeformable: 

 .r w
c c= −Δ w w  (10) 

The quasi-static normal contact force permits to estimate the corresponding approach δ  through 

Hertzian theory20: 

 ,
32

3








=

HK
Fδ  (11) 



where HK  is a contact stiffness estimated from the material properties and curvatures in the contact 

point21, and 3F  is the quasi-static normal contact force. The incremental approach is obtained by 

projecting the distance Δ  along the direction normal to the contact plane: 

 T
3 ,δ∆ = Δ x  (12) 

where 3x  is the unit normal vector (see Figure 3). The total normal force in the contact area 3F  at 

each time step for the numerical integration can finally be estimated using again Equation (11) after 

adding the incremental approach to the quasi-static one: 

 ( ) ( )
( )





≤∆+
>∆+∆+=∆+=

.0 if                        0
,0 if   23

333
δδ
δδδδHKFFF  (13) 

The contact area and the normal traction distribution are obtained by means of the Hertzian contact 

model20 from the normal force 3F . 

2.4.2 Tangential contact model 

The tangential contact problem is solved by implementing Kalker’s algorithm CONTACT22. Again, 

an incremental approach is adopted assuming small variations of the creepages around the quasi-static 

longitudinal 1ξ , lateral 2ξ  and spin spξ  values provided by the multibody software: 

 ,1
11

T
1 ξξ += xΔ

V
 (14) 

 ,1
22

T
2 ξξ += xΔ

V
 (15) 

 ,spsp ξξ =  (16) 

where 1x  and 2x  are unit vectors in the rolling and lateral direction, respectively (see Figure 3). 

Following the non-steady CONTACT algorithm, the computation of the tangential traction 

distribution also depends on the displacements produced in the present mesh by the computed traction 

in the previous instant of the numerical integration. The longitudinal and lateral contact forces, 1F  and 

2F  respectively, are estimated and, together with the normal one 3F , projected along the inertial 

coordinate system for the wheelset and the track, accounting for the inclination of the wheel/rail 

contact plane. Finally, the resulting projections are applied in both wheels and the rails (with opposite 

sign) in the corresponding contact points as external actions, providing the generalised force vectors 



in modal coordinates associated with the contact forces, w
cQ  and r

cQ , included in Equations (7) and 

(9), respectively. 

2.4.3 Coupled wheelset/track equations of motion 

The equations of motion for the coupled wheelset/track system are assembled by considering Equation 

(7) for the rotating wheelset and Equation (9) for both inner and outer rails supported by a uniform 

viscoelastic Winkler bedding: 

 

( )2

2

2

2  
2

2

+

w w w

r r r r r
inn wink inn
r r r r r
out wink out

w w w

r r r r
wink wink

r r r r
wink wink

Ω
V

V

Ω

V V
V V

ζ

ζ

    
    

+ − + +    
    − + +    

 −

+







− + + 
− + + 

C

C

q V 0 0 q
q 0 C C C 0 q
q 0 0 C C C q

A C D

0
0

0 0 q
D A K K 0

0 D A K K



 

  

 

  

 

  

  

  

,

w

r
inn
r
out

w w w w w
eq eq

r r r r r
inn eq inn eq inn
r r r r r
out eq out eq out

wr wr wr wr wr wr
c

 
 

= 
 
 

       
       

+ +       
        

      
= + + =

q
q

q C 0 0 q K 0 0 q
q 0 C 0 q 0 K 0 q
q 0 0 C q 0 0 K q

q C q K q Q

 

 

 

 

 

 

 

 

 (17) 

where ( )T
, ,wr w r r

inn out=q q q q  and ( )T2
, ,, , .wr w w w r r

c c s c inn c outΩ= + +Q c Q Q Q Q    

  The subscripts inn and out 

refer to the internal and external rail, respectively. 

3 EFFICIENT NUMERICAL STRATEGY 

3.1 Decoupling technique 

Equation (17) is a linear differential system coupled by the generalised contact forces wr
cQ . The 

following strategy permits to obtain uncoupled linear differential equations through an efficient modal 

mechanism based on two variable transformations applied in the pre-process. Equation (17) is cast 

into first-order (state-space) form as: 

 ,
wr

wr wr wr wr c  + =  
  

QA θ B θ
0



    (18) 



where 

 ,
wr

wr  
=  
 

C IA
I 0



  ,
wr

wr  
=  

− 

K 0B
0 I



  .
wr

wr
wr

 
=  
 

q
θ

q
 (19) 

The new variable wrθ  is a vector of length 2m, where rw mmm 2+=  is the number of modal 

coordinates considered for the wheelset/track system. Note that ( ) 1wr wr−
A B   is 

 ( ) 1
.wr wr

wr wr

− − 
=  
 

0 I
A B

K C
 



 (20) 

Solving the eigenproblem from the matrix ( ) 1wr wr−
A B   without truncation, it is obtained m conjugated 

pairs of eigenvectors { }iξ  and eigenvalues iλ . The eigenmatrix results { } { }( )*, ,...i iξ ξ=Ξ   and the 

eigenvalues diagonal matrix  ( )*diag , , ...i iλ λ=λ , where 1, ...i m= . From the definition of the 

eigenvectors calculated: 

 ( )( )11  .wr wr−− =Ξ A B Ξ λ   (21) 

A new transformation is adopted at this point, so that the modal vector wrθ  can be expressed through 

the eigenvectors matrix Ξ  and a new modal coordinates vector s: 

 .wr =θ Ξ s  (22) 

Replacing Equation (22) in Equation (18), pre-multiplying by 1−Ξ  and considering the relationship 

expressed in Equation (21), the linear first-order coupled equation system becomes in a decoupled 

equation system since λ  is a diagonal matrix: 

  ,+ =s λ s G  (23) 

where 

 ( ) 11 .
wr

wr c−−   =  
  

QG Ξ A
0



   (24) 

The unknowns of Equation (23) can be separated in 2m independent equations, simplifying hugely the 

solving procedure: 



  * * ,    1, ... .
s s G

m
s s G
ι ι ι ι

ι ι ι ι

λ
ι

λ
+ =  =

+ = 









 (25) 

At this point, the computational cost can be halved by removing the conjugated pairs of 

{ } { }( )*, , ...i iξ ξ=Ξ  and ( )*diag , , ...i iλ λ=λ : 

 { } { }( )1 , ... ,mξ ξ=Θ  (26) 

 ( )1diag , ... .mλ λ=Γ  (27) 

Hence, instead of the transformation expressed in Equation (22), an equivalent transformation after 

discarding the conjugated pairs is adopted: 

 ,wr =θ Θp  (28) 

being p the new modal coordinates vector. Finally, Equation (25) of 2m independent equations is 

reduced to m independent equations system: 

 ,  1, ... ,p p H mι ι ι ιλ ι+ = =

  (29) 

where 

 ( ) ( ) ,
~~ pinv~ 1













=
−

0
QAΘH

wr
cwr  (30) 

and pinv is the Moore-Penrose pseudoinverse for the non-square matrix Θ . The main advantage of 

getting a diagonalised formulation and, hence, decoupled linear first-order equations is that they can 

be solved analytically time step by time step through 

 ( ) ( ) ( ) ( )1 1 ,    1, ... ,jt t
j j

i

H t
p t p t e e mι ι

ιλ λ
ι ι ι

λ
− ∆ − ∆

+ = + − =


 (31) 

where 1 .j jt t t+ = + ∆  

3.2 Static modal correction 

This section presents the formulation of a technique considered in this work that corrects the static 

gain shift of the solution from the truncation effectuated in the modal approach, hence leading to a 

loss of information as a consequence of the reduction of the number of state variables (modal 



coordinates). This technique estimates the deviation in the static solution between the non-reduced 

procedure and the modal transformation. 

The solving methodology based on the modal approach gives an approximated stiffness matrix ,m
i
eqK

, introducing a small but non-negligible deviation with respect to the original stiffness matrix in 

physical coordinates i
eqK  (see Equation (1)). This deviation is the responsible for the static 

discrepancy introduced by the modal approach in the solution. The equivalent stiffness matrix ,m
i
eqK  

in physical coordinates can be computed from the modal stiffness matrix (see Equation (3)):  

 T
,m ,    , .i i i i

eq eq i w r= =K Φ K Φ  (32) 

From the previous expression, the static response in physical coordinates from the modal one is 

computed as 

 ( ) 1

,m ,m ,    , ,i i i
st eq i w r

−
= =w K F  (33) 

while the static response from the original stiffness matrix in physical coordinates is 

 ( ) 1
,    , .i i i

st eq i w r
−

= =w K F  (34) 

The static modal correction, 
iϑ , is simply estimated as the difference between both approaches: 

 ( ) ( )1 1

,m ,m  ,    , .i i i i i i
st st eq eq i w rϑ

− − = − = − =  
w w K K F  (35) 

This deviation can be easily corrected by adding the static modal correction in the computed solution 

from the modal technique: 

 m .i i i
corr ϑ= +w w  (36) 

Figure 4 shows how this term works satisfactorily for a 1D ME cyclic rail model based on Koh et al. 

formulation12, implemented for UIC60 rail of 42 m of length supported by a uniform viscoelastic 

Winkler bedding (see Table 1). The model is uniformly meshed along the longitudinal direction using 

100 beam elements. The rail is subjected to a vertical constant moving force of 56.1 kN applied in the 

contact point, corresponding to the middle node; no wheel/rail interaction is considered in this case.  

The 1D mesh is longitudinally uniform and it consists of 200 nodes. The vertical displacement in the 

contact node is plotted for 0.05 s: the dashed line has been simulated by solving the corresponding 

equation of motion for physic coordinates; the continuous line shows the solution solving the modal 

equation of motion using 50 vibration modes; the deviation in the steady-state response reached for 



both simulations is compensated by the static modal correction vector, which adjusts the modal 

solution to the physic one (light-grey line). 

 

FIGURE 4 Vertical displacement of the central node on the upper side of the 1D ME rail model. 

Results from: physic coordinates, 200 nodes ( ); modal coordinates, 50 modes ( ); modal 

coordinates, 50 modes, and compensated by the static modal correction ϑ ( ) 

 

3.3 Contact linearisation 

At this point, a numerical strategy is proposed in order to linearise and decouple the previous modal 

equations that describe the wheelset/track dynamic interaction. The contact force that couples both 

equations of motion for the wheelset and the rails is linearised around the quasi-static curving 

condition. Linearising Equation (13) around a mean value δ : 

 , 3 δlinHKF =  (37) 

where: 
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2 2H Hlin

dF FK K
d δ

δ
δ δ

= = =  (38) 

The normal contact stiffness H lin
K  corresponds to the slope of the force-displacement curve obtained 

with the normal contact model at the vertical preload and it depends on the curvatures of wheel and 

rail surfaces at the contact. In order for Equation (37) to be introduced into modal equations, it is 

transformed into a generalised force vector. From Newton’s third law, the following is obtained for 

the coupled wheel/rail system: 

 
T

, , ,
,

, , ,

,
w w r w
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c n H r w r rlin
c n c n c n

K
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where r
cc

r
nc ΦnΦ T

, = , w
cc

w
nc ΦnΦ T

, = , r
cΦ  and w

cΦ  are the mode shapes in the degrees of freedom 

corresponding with the contact nodes of the rail and the wheel, cn  is the direction normal to the contact 

node and ,c nQ  contains the generalised normal contact forces in the wheel and the rail. The external 

tangential generalised force vector is then calculated as: 
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where r
cc

r
tc ΦtΦ T

, = , w
cc

w
tc ΦtΦ T
, =  and ct  is a unit vector acting in the plane of the wheel/rail contact 

in the direction given by the angle of attack. Taking into account that 
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  and considering the inner and outer rails, the 

homogenous equations of motion for the coupled wheel/rail system from Equation (17) are assembled: 
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where ( )T
, ,wr w r r

inn out=q q q q  and 

 ( ) ( )( ) ( )

T
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, , , , , , , , , , ,,    ;    ;    .i j i i j

c k H k c n k c t k c n klinlin
w r w r inn outK i j kµ= − + = = =k Φ Φ Φ  (42) 

Equation (41) represents a linear non-symmetric (caused by inertia effects due to convective terms 

and the friction coupling) homogeneus matrix differential equation that can be computed as eigenvalue 

problem that is solved in the considered frequency range. Unstable eigenmodes of the coupled 



train/track system are indicated by positive real-parts of the associated eigenvalues. The positive real-

part gives the rate of growth of the vibration amplitude of the corresponding eigenmode. 

This linearised formulation permits the computation of the wheelset/track system receptances from 

Equation (41) since the interaction between both substructures is included in the compact stiffness 

matrix. Additionally, the integration of Equation (41) in the time domain can be solved through an 

analytic expression after following the decoupling technique presented in Section 3.1. Nevertheless, 

it should be noted that the linearisation of the contact model is an unrealistic simplification only valid 

for low-medium frequency phenomena; problems associated with the high-frequency domain require 

a detailed 3D non-steady state and non-linear contact model so as to capture and reproduce their 

characteristics. Therefore, its computation is limited to a first approximation of the behaviour of the 

system considering the flexibility of its substructures in the low-medium frequency range. 

4 NUMERICAL RESULTS 

This section intends to exploit the computational advantages of the uncoupled linearised and non-

linear formulations developed in Section 3 through a parametric study of time-domain simulations of 

a high-frequency railway interaction model implemented from the formulations described in Section 

2 for the wheelset and the track. The model is evaluated for a vehicle running at 300 km/h through a 

tangent track. The case studied here refers to the trailed car of a concentrated power train for high 

speed passenger service. Only the leading wheelset is selected in this work, which is equipped with a 

solid axle wheelset with monobloc, the brake discs and light S1002 design wheels. The track 

considered features UIC60 (60 kg/m) rails and track parameters are based on the EUROBALT 

project23, considering a “stiff” track. The friction coefficient is set at 0.40, which can be considered 

constant along the simulation24. Table 1 summarises the input data used to set up the simulation model. 

TABLE 1 Simulation parameters and properties 

Wheelset model data Track model data 

Mass of wheelset 1375 kg Rail section UIC60 

Axle load 120 kN Rail length 42 m 

Primary suspension longitudinal stiffness 7.5 MN/m Track vertical bed stiffness 43.7 MN/m 

Primary suspension lateral stiffness 7.1 MN/m Track vertical bed damping 12.6 kN s/m 

Primary suspension vertical stiffness 0.81 MN/m   

Primary suspension longitudinal damping 100 kN s/m   

Primary suspension lateral damping 100 kN s/m   

Primary suspension vertical damping 30 kN s/m   

 



The numerical time integration scheme Equation (31) deduced from the matrix equation of motion 

(17) for the wheelset/track interaction is evaluated in terms of computational performance by 

comparison with two different methods widely used in vehicle dynamics: Newmark scheme and a 

particular Runge-Kutta implementation. Newmark method has been adopted in previous works 

focused on high-frequency railway phenomena such as rail corrugation and wheelflats18. In agreement 

with simulations run, time integration strongly required small time steps to ensure the robustness of 

the numerical convergence due to the complexity of the instationary and non-linear contact model 

adopted, so that a fixed time step of 5×10-6 s is used25. The Runge-Kutta method is applied through 

the ode45 solver provided by Matlab© with adaptive time steps. Its numerical solution is set as the 

reference one so as to evaluate the error of the previous schemes in terms of discrepancy between 

solutions. The discrepancy is evaluated in the node in which the contact force is applied; the reference 

magnitude will be the norm of its displacement solution along the simulation, computed from ode45 

considering the maximum number of mode shapes for each case of study. Since the largest deformation 

field will be registered at this point, the registered discrepancy will be more appropriate for the 

numerical evaluation. 

These three schemes are used for solving the dynamics of the track through the numerical time 

integration of its equation of motion in modal coordinates (Equation (9)) and the wheelset/track 

dynamic interaction (Equation (17). The modal truncation, together with the static modal correction 

defined in Section 3.2, permits to reduce the system dimension, making the problem computationally 

approachable with a conventional PC. A parameter study for the three schemes under research is 

carried out, evaluating the time consumption for a total simulation time of 1 s and the discrepancy 

with respect to the reference solution. In this work, the simulations are run through a PC with the 

following specifications: Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz with 8.00 GB of RAM and 64-

bit computing. 

This section is divided into three subsections. Sections 4.1 and 4.2 show the simulation results 

computed for the numerical performance of the decoupling method proposed in Equation (31) 

compared to two other integration schemes for a 3D ME rail model subjected to a precalculated contact 

force and for a complete wheelset/track interaction model, respectively. Section 4.3 presents the 

potencialities of the linearised interaction model. 

4.1 Results for a 3D ME rail model subjected to a prescribed contact force 

The track is represented by a 3D ME rail model supported by a uniform viscoelastic Winkler bedding 

in which the vertical bed stiffness and damping values equivalent to discrete rail supports are gathered 

in Table 1. The values for the longitudinal and lateral directions are modelled as the 10% and 80% of 

the vertical ones, respectively. The UIC60 profile is extruded along 42 m, resulting a solid mesh of 

8452 solid quadratic elements with a total of 170175 degrees of freedom. The models consists of an 



adaptive longitudinal mesh in which the element length increases linearly from the central element to 

60% of the half-length of the rail on each side, while the remaining 40% presents uniform element 

lengths. The central element length is 1 cm. A mode shape functions matrix with 2000 mode shapes 

is computed, covering a frequency range up to 8.5 kHz.  

In the direction of making a first approximation to the computational performance of the decoupling 

solver, the simulations are carried out for one 3D ME rail model without considering the interaction 

with the wheel through the contact. The following study is focused on the rolling contact phenomenon 

with the wheel/rail roughness as external excitation, in line with the work carried out by Li et al. for a 

simply supported beam but using an adaptive algorithm in the time domain11. With this purpose, it is 

used a prescribed contact force applied in the contact node that has been previously calculated from a 

simulation in a tangent and randomly corrugated rail, assuming a corrugation spectrum corresponding 

to the ISO 3095 limit26, which establishes a third-octave band spectrum of the rail roughness. A first 

simulation is run for the maximum number of modes for the rail model (2000 modes); the ode45 

solution will be used as reference one to compute the discrepancies between approaches later. Figure 

5 plots the computed vertical displacement of the contact node along 0.2 s (instead of the 1 s simulated 

to a better visualisation) using the three integration schemes mentioned. As observed, the three 

methods obtain similar results and capture the same behaviour in relation to the roughness excitation 

introduced. The zoomed view points out that the decoupling method fits better the ode45 reference 

solution than the Newmark algorithm, a first indicator of the computational advantages of the proposed 

scheme. 



 

FIGURE 5 Time series for the vertical displacement of the contact node of a 3D ME rail model using 

three schemes of integration: decoupling technique ( ), Newmark ( ) and ode45 ( ) 

The computational performance of the three schemes are now evaluated and compared. The 

simulations are run for different number of modes by truncating the mode shape functions matrix 

previously computed for the rail model. Increments of 40 modes are considered, selecting square 

matrices of this dimension from the reference matrix of 2000 modes; in total, 50 cases are run for each 

scheme. The computational time required for a simulation time of 1 s and the discrepancy computed 

from the reference solution are gathered for each simulation and plotted in Figures 6. Figure 6(a) 

shows that both constant-step decoupling and Newmark schemes reduce drastically the time 

consumption required for the simulation compared with the ode45 scheme. It is observed that the 

decoupling method requires lower computational times than Newmark (82.5 vs. 114.6 s for 2000 

modes) without compromising the accuracy of the solution as seen in Figure 6(b): the three schemes 

follows a similar decreasing curve with the number of modes. Figure 6(c) synthesises the previous 

figures, showing that the decoupling technique permits to reach an accurate solution for lower 

computational times, then enhancing the numerical efficiency of the time integration. 
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(c) 

FIGURE 6 Comparison of the computational performance of the numerical integration of a 3D ME 

track model subjected to a precalculated contact force applied in the contact node through the 

decoupling ( ), Newmark ( ) and ode45 ( ) schemes. (a) Number of modal 

coordinates vs. computational time required for a simulation time of 1 s; (b) number of modal 

coordinates vs. discrepancy with respect to the reference solution; (c) computational time vs. 

discrepancy 

4.2 Results for the wheelset/track interaction model 

The wheelset is incorporated to the following simulation. Two rails are now considered to interact 

with both wheels of the wheelset. The interaction model corresponding to Equation (17) is solved for 

tangent and randomly corrugated rails, assuming a corrugation spectrum defined by the ISO 3095 

limit. In this case, the normal and tangential contact forces are computed through an instationary and 

non-linear contact model based on Kalker's variational theory22 with a potential contact area 

discretised into 20×20 boundary elements. The spatial resolution for the mesh of the potential contact 

area considered is 0.25 and 1 mm in longitudinal and lateral directions, respectively. This refinement 

permits to capture the contact dynamics arisen for high-frequency phenomena such as the rolling 
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contact under study, hence introducing an additional high-consuming computational work that 

abruptly increases the required computational time25. 

The wheelset model is meshed with 12340 solid quadratic elements (20-nodes) and includes a total of 

260145 degrees of freedom. A mode shape functions matrix with 400 mode shapes is computed for 

the wheelset model, covering a frequency range up to 8.5 kHz. The reference solution is computed for 

400 vibration modes for the wheelset and 2000 modes for both rails, thus handling a problem 

dimension of 4800 unknowns. The simulations are run for different number of modes by truncating 

the mode shape functions matrix previously computed for the wheelset and the rail. Increments of 8 

modes are considered for the wheelset and 40 modes for the rail, selecting square matrices of the 

corresponding dimensions from the reference matrices of 400 and 2000 modes for the wheelset and 

the track (both rails), respectively; in total, 50 cases are run for each scheme up to 4400 modes. The 

time simulated is 1 s. Figure 7 plots the computed vertical displacement of the contact node along the 

simulation time using the three integration schemes, which give approximate results in line with the 

previous observations. 

 

FIGURE 7 Time series for the vertical displacement of a contact node of a wheelset/track interaction 

model using three schemes of integration: decoupling technique ( ), Newmark ( ) and 

ode45 ( ) 
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ode45 was run only once in a PC with better computer specifications to get the reference solution 

shown above; its evaluation for different number of modes with the conventional PC used in the first 

set of simulations was unadressable, so only the decoupling and Newmarck schemes are run in this 

section. The increase of the system dimension and the need of the resolution of the contact algorithm 

involve much larger times (hours) as seen in Figure 8(a). It is observed a better performance of the 

decoupling integration, more significant than the results gathered in Figures 6 as expected for a more 

complex system with larger dimension. Its computational velocity is 2.4 times faster than Newmark 

again without compromising the discrepancy as seen in Figure 8(b). This numerical behaviour is 

summarised in Figure 8(c), which shows how the decoupling algorithm reduces to zero the discrepancy 

associated with the truncation for 4.5 h while Newmark method needs 10.6 h. These results are in 

agreement with Section 4.1, thus revealing the proposed algorithm as a more efficient constant-step 

integration method than the Newmark scheme. 
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 (c) 

FIGURE 8 Comparison of the computational performance of the numerical integration of the 

complete wheelset/track dynamic interaction model through the decoupling ( ) and Newmark 

( ) schemes. (a) Number of modal coordinates vs. computational time required for a simulation 

time of 1 s; (b) number of modal coordinates vs. discrepancy with respect to the reference solution; 

(c) computational time vs. discrepancy 

4.3 Linearised interaction model 

The computational potentialities of the linearised model described in Section 3.3 are now under study. 

Figure 9(a) shows the time series of the normal contact force corresponding to one wheel, computed 

through: (1) the numerical integration of the complete non-linear interaction model; (2) the analytic 

solution given by the linearised interaction model deduced in Equation (41). It is observed that both 

models give a mean value about 40 kN and amplitudes of similar order for the case studied. As 

expected, Figure 9(b) shows that the simplified model is not able to represent well the high-frequency 

content arisen for the complex boundary-element based contact algorithm used. Nevertheless, it 

appears as a promising tool for a first insight in preliminary stages with practically no time cost. 
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(b) 

FIGURE 9 Normal contact force through numerical integration ( ) and the linearised interaction 

model described in Equation (41) ( ). (a) Time series; (b) frequency content 

As seen in Equation (41), the compact linear formulation includes the contact force terms in the 

stiffness matrix, so making the resulting matrix equation of motion homogeneous. This leads to an 

additional and very important numerical advantage: the receptance diagram of the entire 

wheelset/track system can be computed in contrast to the non-linear model, which are plotted in 

Figures 10. The first one shows the corresponding direct and cross point receptances at the contact 

node up to 3 kHz, whereas the second figure evaluates the influence of the wheelset and the track 

receptances in the wheelset/track system in the vertical point receptance. The linearised model also 

enables to get the mode shape of the wheelset and the rails in contact as a unique system, adding a 

new potentiality for the developed formulation. Figure 11 represents the mode shape corresponding to 

the resonance peak marked in Figure 10(b) at 2.1 Hz, where the deformed configuration of the 

substructures are clearly visualised. It corresponds to an axial mode for the wheelset, in which both 

wheels present a mode deformed displacement corresponding with an axial disc mode of two nodal 

diameter and zero nodal circles; the rails show a bending mode for this frequency. 
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FIGURE 10 (a) Point receptance at the contact node of the linearised wheelset/track interaction model 

in the vertical ( ), lateral ( ) and crossing ( ) directions; (b) direct vertical point 

receptances at the contact node for the interaction ( ), wheelset ( ) and track ( ) models 

 

FIGURE 11 Mode shape configuration for the wheelset/track railway system at the resonance peak 

corresponding to 2.1 kHz  

5. CONCLUSIONS 

A new scheme of constant time-step integration based on a decoupling technique is proposed in this 

work for high-frequency railway dynamics. The matrices associated with the equations of motion in 

modal coordinates are diagonalised through a new modal variable vector, obtaining uncoupled first-

order linear differential equations in modal coordinates. Simulations in tangent conditions with head-

rail roughness excitation have been run with this scheme for a growing number of modes. Its 

computational performance has been compared with the constant time-step Newmark and adaptive 

Runge-Kutta-based ode45 schemes, widely used in vehicle dynamics. Results show that the 

decoupling scheme considerably reduces the time consumption of the simulation without 

compromising the accuracy of the solution. The proposed method is revealed more adequate in terms 

of efficiency for high-frequency domain problems than generic variable time-step Runge-Kutta 

methods commonly used in this field. The deduced formulation is extended to a case of linearised 

wheel/rail contact, permitting to calculate the receptance of the complete wheelset/track system in an 

efficient way. 
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TABLE 1 Simulation parameters and properties 

Wheelset model data Track model data 

Mass of wheelset 1375 kg Rail section UIC60 

Axle load 120 kN Rail length 42 m 

Primary suspension longitudinal stiffness 7.5 MN/m Track vertical bed stiffness 43.7 MN/m 

Primary suspension lateral stiffness 7.1 MN/m Track vertical bed damping 12.6 kN s/m 

Primary suspension vertical stiffness 0.81 MN/m   

Primary suspension longitudinal damping 100 kN s/m   

Primary suspension lateral damping 100 kN s/m   

Primary suspension vertical damping 30 kN s/m   

 

 

  



FIGURE CAPTIONS 

FIGURE 1 Reference frames and position vectors. The undeformed configuration of the wheelset is 

shown in dashed trace; a generic position of the flexible wheelset is sketched in solid colours 

FIGURE 2 Finite element mesh of the UIC60 rail (out of scale). Deformed and undeformed 

configuration 

FIGURE 3 Reference system used in the contact 

FIGURE 4 Vertical displacement of the central node on the upper side of the 1D ME rail model. 

Results from: physic coordinates, 200 nodes ( ); modal coordinates, 50 modes ( ); modal 

coordinates, 50 modes, and compensated by the static modal correction ϑ ( ) 

FIGURE 5 Time series for the vertical displacement of the contact node of a 3D ME rail model using 

three schemes of integration: decoupling technique ( ), Newmark ( ) and ode45 ( ) 

FIGURE 6 Comparison of the computational performance of the numerical integration of a 3D ME 

track model subjected to a precalculated contact force applied in the contact node through the 

decoupling ( ), Newmark ( ) and ode45 ( ) schemes. (a) Number of modal 

coordinates vs. computational time required for a simulation time of 1 s; (b) number of modal 

coordinates vs. discrepancy with respect to the reference solution; (c) computational time vs. 

discrepancy 

FIGURE 7 Time series for the vertical displacement of a contact node of a wheelset/track interaction 

model using three schemes of integration: decoupling technique ( ), Newmark ( ) and 

ode45 ( ) 

FIGURE 8 Comparison of the computational performance of the numerical integration of the 

complete wheelset/track dynamic interaction model through the decoupling ( ) and Newmark 

( ) schemes. (a) Number of modal coordinates vs. computational time required for a simulation 

time of 1 s; (b) number of modal coordinates vs. discrepancy with respect to the reference solution; 

(c) computational time vs. discrepancy 

FIGURE 9 Normal contact force through numerical integration ( ) and the linearised interaction 

model described in Equation (41) ( ). (a) Time series; (b) frequency content 

FIGURE 10 (a) Point receptance at the contact node of the linearised wheelset/track interaction model 

in the vertical ( ), lateral ( ) and crossing ( ) directions; (b) direct vertical point 

receptances at the contact node for the interaction ( ), wheelset ( ) and track ( ) models 

FIGURE 11 Mode shape configuration for the wheelset/track railway system at the resonance peak 

corresponding to 2.1 kHz 


