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ABSTRACT
A computational approach to approximate the probability density function of ran-
dom differential equations is based on transformation of random variables and finite
difference schemes. The theoretical analysis of this computational method has not
been performed in the extant literature. In this paper, we deal with a particular
random differential equation: a random diffusion-reaction Poisson-type problem of
the form −u′′(x) + αu(x) = φ(x), x ∈ [0, 1], with boundary conditions u(0) = A,
u(1) = B. Here, α, A and B are random variables and φ(x) is a stochastic process.
The term u(x) is a stochastic process that solves the random problem in the sample
path sense. Via a finite difference scheme, we approximate u(x) with a sequence
of stochastic processes in both the almost sure and Lp senses. This allows us to
find mild conditions under which the probability density function of u(x) can be
approximated. Illustrative examples are included.

KEYWORDS
Random diffusion-reaction Poisson-type problem; Finite difference scheme;
Probability density function; Numerical methods.

1. Introduction

Random differential equations are differential equations where the input coefficients
and initial/boundary conditions are random variables/stochastic processes [17, 18].
The solution is a stochastic process. To completely understand the random behaviour
of the solution, one needs to find its joint finite-dimensional distributions, however,
in general, this is an impracticable task. A more feasible target consists in finding,
or at least approximating, its probability density function (first finite-dimensional
distributions) [17, Ch. 3]. Some recent contributions dealing with the computation of
the probability density function of the solution of random differential equations can
be found in [6, 9]. A computational method to approximate the density function is
based on finite difference schemes [7]. The theoretical analysis of this computational
approach has not been done in the extant literature. In this paper, we want to perform
a comprehensive theoretical analysis for a particular random differential equation: a
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randomized diffusion-reaction Poisson-type problem [15, p. 433],{
−u′′(x) + αu(x) = φ(x), x ∈ [0, 1],

u(0) = A, u(1) = B.
(1)

The term −u′′ models diffusion, the term αu models reaction and φ represents an
external source [15, p. 432]. We assume an underlying complete probability space
(Ω,F ,P), where Ω is the sample space, which consists of outcomes that will be generi-
cally denoted by ω; F is the σ-algebra of events; and P is the probability measure. The
term α ≥ 0 and the boundary values A and B are random variables in our probability
space. The source term φ(x) is a stochastic process. We will omit the evaluation at
the outcome ω, however, when necessary, we will write α(ω), A(ω), B(ω) and φ(x, ω).
The term u(x) is a stochastic process that solves (1) in the sample path sense. When
evaluating at the outcome ω, we will write u(x, ω).

Notation 1. Given a measure space (S,F , µ), where F is the σ-algebra and µ is the
measure, we will use the notation Lp(S) for the p-integrable measurable mappings
in the Lebesgue sense: f : S → R such that ‖f‖Lp(S) := (

∫
S |f |

p dµ)1/p < ∞ for
1 ≤ p < ∞ and ‖f‖L∞(S) = inf{sup{|f(x)| : x ∈ S\N} : µ(N) = 0} < ∞ for
p = ∞. The shorten notation a.e. and a.s. will stand for “almost every” or “almost
everywhere” and “almost surely”, respectively.

Given an interval I ⊆ R, the notation Cp(I), p ∈ N ∪ {∞}, means p times contin-
uously differentiable on I. When p = 0, it means continuous on I, and we will write
C(I). For 0 < β ≤ 1, the notation Cβ(I) stands for the Hölder class: f ∈ Cβ(I) if
there exists a constant k > 0 such that |f(x)− f(y)| ≤ k|x− y|β, for all x, y ∈ I. Do
not confound C1(I) (continuously differentiable) with C1(I) (Lipschitz continuous).
For p ∈ N and 0 < β ≤ 1, the notation Cp,β(I) means being Cp(I), with the p-th
derivative being in Cβ(I).

Given a matrix A, we will denote its p-norm as ‖A‖p, 1 ≤ p ≤ ∞. The j-th column
of the matrix will be denoted by A(:, j), and its transpose will be written as AT . The
identity matrix of size M will be denoted by IM .

Finally, given an absolutely continuous random variable X, its density function will
be denoted by fX .

For the sake of completeness, below we give sufficient conditions on the external
source φ in order to guarantee that the random problem (1) has a unique solution in
different stochastic senses, commonly used in the extant literature.

Proposition 1.1. The following holds:

(i) If φ has sample paths in L2([0, 1]), then there is a unique process u with sample
paths in the Sobolev space H2(0, 1) [3, Ch. 8] that solve (1).

(ii) If φ has sample paths in C([0, 1]), then there is a unique process u with sample
paths in C2([0, 1]) that solve (1).

(iii) If φ has sample paths in Cβ([0, 1]), for some 0 < β ≤ 1, then there exists a
unique process u with sample paths in C2,β([0, 1]) that solve (1).

Proof. The three statements are direct consequence of the deterministic theory for dif-
ferential equations. Part (i) is a consequence of [15, Prop. 8.1] [3, Prop. 8.16]. Part (ii)
is a consequence of part (i) and [3, Remark 6, p. 204]. Part (iii) is a consequence of
[10, Th. 11.3.2].
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The main goal of this paper is to analyze when u(x) is an absolutely continuous
random variable, for each x, and then to compute its probability density function.
For this purpose, we will use a finite difference scheme to approximate the solution
stochastic process u(x).

2. Random finite difference scheme

Divide [0, 1] into M equidistant interior points x1, . . . , xM : 0 = x0 < x1 < . . . < xM <
xM+1 = 1, xi = xMi = i/(M+1). Denote h = 1/(M+1). The numerical scheme, based
on discretizations of the second derivative, is − 1

h2uMi+1 + ( 2
h2 +α)uMi − 1

h2uMi−1 = φ(xi),

for 1 ≤ i ≤ M , uM0 = A and uMM+1 = B. One expects uMi ≈ u(xi). In matrix form,

AuM = c, where

uM =

u
M
1
...
uMM

 , c =


φ(x1) +A/h2

φ(x2)
...

φ(xM−1)
φ(xM ) +B/h2

 ,

A = αIM +
1

h2
L, L =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 .

Although not explicitly written, A, L, c, xi and h depend on M . Since α ≥ 0, then A
is invertible. Thus, uM = A−1c.

Lemma 2.1. The matrix A satisfies ‖A−1‖∞ ≤ 1/8.

Proof. The matrix A is an M-matrix, in the sense of [13, p. 10]: A has its offdiagonal
entries nonpositive and, for r = (ri)

M
i=1 with ri = 1/4 − (xi − 1/2)2 > 0, one has

(Ar)i = 2 + αri ≥ 2, 1 ≤ i ≤ M . By [13, Lemma 5.3], ‖A−1‖∞ ≤ ‖r‖∞/mini(Ar)i ≤
1/4
2 = 1/8.

Proposition 2.2. Suppose φ has sample paths in Cβ([0, 1]), for certain 0 < β ≤ 1.
Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈ {1, . . . ,M}, such that
limM→∞ iM/(M + 1) = x0. Then limM→∞ u

M
iM

= u(x0) a.s. Moreover, the following

rate of convergence holds: |u(xiM , ω)−uMiM (ω)| ≤ C(ω)/8·hβ, where C(ω) is the Hölder
constant of u′′(·, ω) on [0, 1].

Proof. By Proposition 1.1 (iii), the sample paths of u belong to C2,β([0, 1]): |u′′(x, ω)−
u′′(y, ω)| ≤ C(ω)|x− y|β, for all x, y ∈ [0, 1]. Using Taylor’s expansions,

u(x+ h) = u(x) + u′(x)h+ u′′(ξx,h)h2/2, u(x− h) = u(x)− u′(x)h+ u′′(ηx,h)h2/2,
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where ξx,h ∈ (x, x+ h) and ηx,h ∈ (x− h, x). The local error of the numerical scheme
is given by

EL(x, h) =
−u(x− h) + 2u(x)− u(x+ h)

h2
+ αu(x)− φ(x)

= − 1

2
(u′′(ξx,h) + u′′(ηx,h)) + u′′(x)

=
u′′(x)− u′′(ξx,h)

2
+
u′′(x)− u′′(ηx,h)

2
.

Using the triangular inequality and Hölder’s condition,

|EL(x, h)| ≤ C(ω)

2
|x− ξx,h|β +

C(ω)

2
|x− ηx,h|β ≤ C(ω)hβ.

Let us = (u(xi))
M
i=1, fh = (EL(xi, h))Mi=1 and the error eh = us − uM . From

AuM = c and Aus − c = fh, we derive that Aeh = fh. Thus, if we denote by
‖ · ‖∞ the infinity norm for matrices, ‖eh‖∞ ≤ ‖A−1‖∞‖fh‖∞ ≤ ‖A−1‖∞C(ω)hβ.
By Lemma 2.1, ‖A−1‖∞ ≤ 1/8, therefore ‖eh‖∞ ≤ C(ω)/8 · hβ. This implies

|u(xiM , ω)− uMiM (ω)| ≤ C(ω)
8 hβ. By continuity of the sample paths of u,

lim
M→∞

u(xiM , ω) = lim
M→∞

u(iM/(M + 1), ω) = u(x0, ω),

so we conclude that limM→∞ u
M
iM

(ω) = u(x0, ω), as wanted.

Proposition 2.3. Suppose that φ has sample paths in Cβ([0, 1]), for certain
0 < β ≤ 1. Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈
{1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0. Let 1 ≤ p < ∞. If S :=
max{‖A‖Lp+ε(Ω), ‖B‖Lp+ε(Ω), supx∈[0,1] ‖φ(x)‖Lp+ε(Ω)} < ∞ for some ε > 0, then

u(x0) ∈ Lp(Ω) and limM→∞ u
M
iM

= u(x0) in Lp(Ω).

Proof. By Proposition 2.2, limM→∞ u
M
iM

= u(x0) a.s. Then, by [20, Th. 2.4], it suffices
to check that

sup
M≥1
‖uMiM‖Lp+ε(Ω) <∞. (2)

Write A = (α+ 2/h2)IM −H, where

H =
1

h2


0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

 .

Let T = 1/(α+ 2/h2)H. Then A = (α+ 2/h2)(IM −T ). The eigenvalues of A, µk, are
well-known [16, p. 59]: µk = α + 2/h2 · (1 − cos(kπh)), k = 1, . . . ,M . From this, the
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eigenvalues of T are easily computable:

ηk =
2
h2 cos(kπh)

α+ 2
h2

, k = 1, . . . ,M.

Since | cos(kπh)| < 1, we deduce that

‖T‖2 = max{|ηk| : k = 1, . . . ,M} < 2/h2

α+ 2/h2
≤ 1.

The inequality ‖T‖2 < 1 implies that the matrix IM−T is invertible, with (IM−T )−1 =∑∞
k=0 T

k. As a consequence,

A−1 =
1

α+ 2
h2

(IM − T )−1 =
1

α+ 2
h2

∞∑
k=0

T k =
1

α+ 2
h2

∞∑
k=0

Hk(
α+ 2

h2

)k .
We derive that each entry (A−1)ij =

∑∞
k=0(Hk)ij/(α + 2/h2)k+1 increases when α

decreases, therefore (A−1)ij takes its maximum value at α = 0. On the other hand,

uMiM = (A−1c)iM =

M∑
j=1

(A−1)iM jcj =
A

h2
(A−1)iM1︸ ︷︷ ︸
V1

+
B

h2
(A−1)iMM︸ ︷︷ ︸

V2

+

M∑
j=1

(A−1)iM jφ(xj)︸ ︷︷ ︸
V3

.

Taking into account (2), we bound V1, V2 and V3 in Lp+ε(Ω). First, we bound the third
term:

‖V3‖Lp+ε(Ω) ≤
M∑
j=1

‖(A−1)iM jφ(xj)‖Lp+ε(Ω) ≤
M∑
j=1

(A−1)iM j |α=0‖φ(xj)‖Lp+ε(Ω)

≤ S
M∑
j=1

(A−1)iM j |α=0 ≤ S‖A−1|α=0‖∞ ≤
S

8
,

by Lemma 2.1. Now we bound ‖V1‖Lp+ε(Ω) and ‖V2‖Lp+ε(Ω). Let xM = (xM1 , . . . , xMM )T ,

xMi = i/(M + 1). Let xM = (xMM , . . . , x
M
1 )T be the vector xM reversed. Notice

that LxM = (1, 0, . . . , 0)T and LxM = (0, . . . , 0, 1)T , therefore L−1(:, 1) = xM and

L−1(:,M) = xM . Since A|α=0 = (1/h2)L, we derive that A−1|α=0(:, 1) = h2xM and
A−1|α=0(:,M) = h2xM . Thus,

‖V1‖Lp+ε(Ω) =
1

h2
‖A(A−1)iM1‖Lp+ε(Ω) ≤

(A−1)iM1|α=0

h2
‖A‖Lp+ε(Ω) ≤

h2xMM+1−iM
h2

S

=

(
1− iM

M + 1

)
S ≤ C <∞, (3)

for some C > 0, since the sequence {iM/(M + 1)}∞M=1 is bounded. Analogously,
‖V2‖Lp+ε(Ω) <∞. This proves (2).
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Proposition 2.4. Suppose that φ has sample paths in Cβ([0, 1]), for certain 0 < β ≤
1. Let x0 ∈ [0, 1]. Let {iM}∞M=1 be a sequence of indexes, iM ∈ {1, . . . ,M}, such that
limM→∞ iM/(M + 1) = x0. Let 1 ≤ p <∞. If A,B ∈ Lp(Ω) and supx∈[0,1] |φ(x)| ≤ Y
a.s. for some random variable Y ∈ Lp(Ω), then u(x0) ∈ Lp(Ω) and limM→∞ u

M
iM

=
u(x0) in Lp(Ω).

Proof. As in (3), |V1| ≤ |A|(1 − iM/(M + 1)) ≤ C1|A|, for some constant C1 > 0.
Similarly, |V2| ≤ |B|(iM/(M + 1)) ≤ C2|B|, for some constant C2 > 0. On the other
hand,

|V3| ≤
M∑
j=1

(A−1)iM j |φ(xj)| ≤ Y
M∑
j=1

(A−1)iM j ≤ Y ‖A−1‖∞ ≤
Y

8
,

by Lemma 2.1. Thus, |uMiM | ≤ |V1| + |V2| + |V3| ≤ C1|A| + C2|B| + Y/8 ∈ Lp(Ω). By

the Dominated Convergence Theorem [14, p. 321], u(x0) ∈ Lp(Ω) and limM→∞ u
M
iM

=
u(x0) in Lp(Ω), as wanted.

3. Probability density function of the solution stochastic process

Write c = Ad+ g, where d = (1/h2, 0, . . . , 0)T and g = (φ(x1), . . . , φ(xM−1), φ(xM ) +
B/h2)T . Then uMi = (A−1c)i = (A−1d)iA+ (A−1g)i. Our next task is to compute the
probability density function of uMi .

Lemma 3.1. Let A be an absolutely continuous random variable, independent of the
random vector (Z1, Z2), where Z1 6= 0 a.s. Then Z1A + Z2 is absolutely continuous,
with density function fZ1A+Z2

(z) = E[fA((z − Z2)/Z1)/|Z1|].

Proof. Let C be a Borel set in R. Then

P(Z1A+ Z2 ∈ C) =

∫
R2

P(Z1A+ Z2 ∈ C|Z1 = z1, Z2 = z2)P(Z1,Z2)(dz1,dz2)

=

∫
R2

P(z1A+ z2 ∈ C)P(Z1,Z2)(dz1,dz2) =

∫
R2

∫
(C−z2)/z1

fA(a) daP(Z1,Z2)(dz1, dz2)

=

∫
R2

∫
C
fA

(
a− z2

z1

)
1

|z1|
daP(Z1,Z2)(dz1, dz2)

=

∫
C

∫
R2

fA

(
a− z2

z1

)
1

|z1|
P(Z1,Z2)(dz1,dz2) da

=

∫
C
E
[
fA

(
a− z2

z1

)
1

|z1|

]
da.

Suppose that A is absolutely continuous, and that A and (α,B, φ) are independent
(i.e., for all 0 ≤ y1, . . . , ym ≤ 1, m ∈ N, A and (α,B, φ(y1), . . . , φ(ym)) are indepen-
dent). By [13, Th. 5.2], A−1 has nonnegative entries, so (A−1d)i ≥ 0. In fact, A is an
irreducible matrix, because its entries on the superdiagonal and on the subdiagonal
are nonzero. By [1, Th. 2.7, p. 141], the entries of A−1 are positive, so (A−1d)i > 0.
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By Lemma 3.1,

fuMi (u) = E
[
fA

(
1

(A−1d)i

{
u− (A−1g)i

}) 1

(A−1d)i

]
.

In practice, we can use an explicit expression for fuMi (u) that does not require the

computation of A−1. The set of eigenvalues, µk, and eigenvectors, sk, of A are known
[16, p. 59]: µk = α + 2/h2 · (1 − cos(kπh)), sk = (sin(kπjh))Mj=1, k = 1, . . . ,M . Let

D = diag(µ1, . . . , µM ) and P = [s1 . . . sM ]. Since s1, . . . , sM are pairwise orthogonal

and ‖si‖2 =
√

(M + 1)/2, the matrix R =
√

2/(M + 1)P is orthogonal. We have the
decomposition A = RDRT . Its inverse is given by A−1 = RD−1RT . In the end, fuMi
can be expressed as follows:

fuMi (u) = E

[
fA

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)
α+2/h2(1−cos(kπh))

·

·

{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φ(xj)

− 2

M + 1

B

h2

M∑
k=1

sin(kπih) sin(kπMh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)
α+2/h2(1−cos(kπh))

]
. (4)

Theorem 3.2. Suppose that φ has sample paths in Cβ([0, 1]) (certain 0 < β ≤ 1),
A is absolutely continuous, A and (B,α, φ) are independent, fA is continuous and
bounded on R and ‖α‖L∞(Ω) < ∞. Let x0 ∈ (0, 1). Let {iM}∞M=1 be a sequence of
indexes, iM ∈ {1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0. Then the sequence
{fuMiM (u)}∞M=1, defined in (4), converges to a density fu(x0)(u) of u(x0), for all u ∈ R.

Proof. By Proposition 1.1, let v and w be two stochastic processes with sample paths
in C2,β([0, 1]) that solve{

−v′′(x) + αv(x) = 0, x ∈ [0, 1],

v(0) = 1, v(1) = 0,

{
−w′′(x) + αw(x) = φ(x), x ∈ [0, 1],

w(0) = 0, w(1) = B.

By Proposition 2.2, (A−1d)iM → v(x0) and (A−1g)iM → w(x0) a.s. as M →∞. Since
fA is continuous,

lim
M→∞

fA

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

(A−1d)iM

= fA

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)
a.s. (5)

Note that it makes sense to divide by v(x0), since by the Strong maximum principle
for elliptic PDEs [8, Th. 4, p. 333], 0 < v(x) < 1 for all x ∈ (0, 1), a.s.

Claim: there exists M0 (independent of ω) such that, for all M ≥M0,

(A−1d)iM ≥ v(x0)/2 a.s.
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We prove the claim. The random boundary value problem satisfied by v can be solved
analytically. Indeed, fixed ω ∈ Ω, we distinguish two cases according to α(ω) > 0 or
α(ω) = 0.

Case α(ω) > 0: The solution is v(x) = sinh(
√
α(1 − x))/ sinh(

√
α). Then v′′(x) = αv(x) =

α sinh(
√
α(1 − x))/ sinh(

√
α). By the Mean Value Theorem, |v′′(x) − v′′(y)| =

α
sinh(

√
α)
| sinh(

√
α(1−x))− sinh(

√
α(1− y))| = α2

sinh(
√
α)

cosh(ξx,y,ω)|x− y|, where

ξx,y,ω ≤ max{
√
α(1− x),

√
α(1− y)} ≤

√
α. Hence,

|v′′(x)− v′′(y)| ≤ α2 cosh(
√
α)

sinh(
√
α)
|x− y| ≤

‖α‖2L∞(Ω) cosh(
√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

|x− y|.

Case α(ω) = 0: The solution is v(x) = 1− x, so |v′′(x)− v′′(y)| = 0 · |x− y|.

Let

K =


‖α‖2L∞(Ω) cosh(

√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

, ‖α‖L∞(Ω) > 0,

0, ‖α‖L∞(Ω) = 0.

Thus, |v′′(x)−v′′(y)| ≤ K|x−y|. Therefore, the Hölder constant C(ω) of v′′(·, ω) can be
taken independently of ω: C(ω) = K. By Proposition 2.2, |v(xiM , ω)−vMiM (ω)| ≤ K/8·h
a.s., where vMiM = (A−1d)iM . On the other hand, using the Mean Value Theorem to
estimate |v(x0)−v(xiM )| as we did before, we obtain |v(x0, ω)−v(xiM , ω)| ≤ L|x0−xiM |
a.s., where

L =


‖α‖L∞(Ω) cosh(

√
‖α‖L∞(Ω))

sinh(
√
‖α‖L∞(Ω))

, ‖α‖L∞(Ω) > 0,

1, ‖α‖L∞(Ω) = 0.

By the triangular inequality,

|v(x0, ω)− vMiM (ω)| ≤ |v(x0, ω)− v(xiM , ω)|+ |v(xiM , ω)− vMiM (ω)|
≤ K/8 · h+ L|x0 − xiM | a.s.

Now, if α(ω) > 0, we know that v(x0) = sinh(
√
α(1−x0))/ sinh(

√
α). As a function of

α, it has a lower bound m > 0. Then, v(x0, ω) ≥ m a.s. To conclude, take M0 such that,
for all M ≥M0, K/8 · h+L|x0 − xiM | ≤ m/2. This implies that |v(x0, ω)− vMiM (ω)| ≤
m/2 ≤ v(x0, ω)/2, therefore vMiM (ω) ≥ v(x0, ω)/2 a.s. This concludes the proof of the
claim.

Hence, for M ≥M0,

fA

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

(A−1d)iM
≤ ‖fA‖L∞(R)

2

v(x0)
≤ ‖fA‖L∞(R)

2

m
.

Since ‖fA‖L∞(R)2/m is constant, it belongs to L1(Ω). By the Dominated Convergence
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Theorem [14, p. 321],

lim
M→∞

fuMiM
(u) = E

[
fA

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)

]
=: f̄(u).

Finally, we prove that f̄ is a density of u(x0). Let G be a random variable with
density function given by f̄ . By Scheffé’s Lemma [21, p. 55], uMiM → G in law as

M →∞. On the other hand, by Proposition 2.2, uMiM → u(x0) a.s., so uMiM → u(x0) in

law, as M → ∞. Then u(x0) and G are equal in distribution, so fu(x0)(u) = f̄(u), as
wanted.

The continuity of fA on R is satisfied, for instance, by the density function of
the distributions Normal(µ, σ2), µ ∈ R and σ2 > 0; Beta(a, b), a > 1 and b > 1;
Gamma(a, b), a > 1 and b > 0; etc. However, it would be desirable to require only
a.e. continuity for fA, since the class of applicable density functions would be larger:
Beta(a, b), a ≥ 1 and b ≥ 1; Uniform(a, b), a < b; Gamma(a, b), a ≥ 1 and b > 0 (in
particular, Exponential(b)); truncated normal distribution; etc. This is the purpose of
the following theorem.

Theorem 3.3. Suppose that φ has sample paths in Cβ([0, 1]) (certain 0 < β ≤ 1), A,
B and α are absolutely continuous, A, B and (α, φ) are independent, ‖α‖L∞(Ω) <∞,
fA is a.e. continuous and essentially bounded on R. Let x0 ∈ (0, 1). Let {iM}∞M=1 be
a sequence of indexes, iM ∈ {1, . . . ,M}, such that limM→∞ iM/(M + 1) = x0. Then
the sequence {fuMiM (u)}∞M=1, defined in (4), converges to a density fu(x0)(u) of u(x0),

for all u ∈ R.

Proof. The proof is analogous to Theorem 3.2. Since α(ω) > 0 a.s. (because
P(α = 0) = 0), we have v(x0) = sinh(

√
α(1−x0))/ sinh(

√
α) a.s. By the Random Vari-

able Transformation (RVT) technique [5, Th. 1] (briefly, it is a method that consists in
computing the probability density function of a transformation of an absolutely con-
tinuous random variable/vector), v(x0) is absolutely continuous. On the other hand,
w can also be explicitly found using the theory of linear differential equations, and
one obtains that w(x0) can be written as Z1B + Z2, where B and (Z1, Z2) are in-
dependent and Z1 6= 0 a.s. By Lemma 3.1, w(x0) is absolutely continuous. By the
RVT technique, 1/v(x0) · {u−w(x0)} is absolutely continuous. Then, the probability
that 1/v(x0) · {u− w(x0)} belongs to the discontinuity set of fA is 0. By the Contin-
uous Mapping Theorem [19, p. 7, Th. 2.3], (5) holds. The rest of the proof is as in
Theorem 3.2.

In the following two propositions, we study whether the finite difference scheme
preserves the pointwise convergence of the derivatives.

Proposition 3.4. Assume the conditions of Theorem 3.2. If the n-th derivative f
(n)
A

exists on R and f
(j)
A is bounded on R for each 1 ≤ j ≤ n, then fuMiM

and fu(x0) have

bounded n-th derivatives on R. Moreover, if f
(n)
A is continuous on R, then the sequence

{f (n)
uMiM

(u)}∞M=1 converges to f
(n)
u(x0)(u), for all u ∈ R.

Proof. Both fuMiM
and fu(x0) possess n-th derivatives on R because of the differentia-

9



bility of fA and the Dominated Convergence Theorem. Indeed, fix u ∈ R. We have

fA

(
u+h−w(x0)

v(x0)

)
1

v(x0) − fA
(
u−w(x0)
v(x0)

)
1

v(x0)

h

h→0−→ f ′A

(
u− w(x0)

v(x0)

)
1

v(x0)2
, (6)

by definition of derivative. Now, by the deterministic Mean Value Theorem,∣∣∣∣∣∣
fA

(
u+h−w(x0)

v(x0)

)
1

v(x0) − fA
(
u−w(x0)
v(x0)

)
1

v(x0)

h

∣∣∣∣∣∣ =

∣∣∣∣f ′A(u+ ξh − w(x0)

v(x0)

)∣∣∣∣ 1

v(x0)2

≤ ‖f ′A‖L∞(R)
1

m2
, (7)

where ξh depends on ω and |ξh| < |h|. Notice that the inequality v(x0) ≥ m a.s. from
the proof of Theorem 3.2 has been utilized. The Dominated Convergence Theorem
thus applies to ensure the existence of

f ′u(x0)(u) = E
[
f ′A

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)2

]
. (8)

Analogously one justifies that

f ′uMiM
(u) = E

[
f ′A

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

((A−1d)iM )2

]
(9)

exists, by using the fact that (A−1d)iM ≥ v(x0)/2 ≥ m/2 a.s. For higher derivatives,
the procedure works analogously and one proves

f
(n)
u(x0)(u) = E

[
f

(n)
A

(
1

v(x0)
{u− w(x0)}

)
1

v(x0)n

]
, (10)

f
(n)
uMiM

(u) = E
[
f

(n)
A

(
1

(A−1d)iM

{
u− (A−1g)iM

}) 1

((A−1d)iM )n

]
. (11)

When f
(n)
A is continuous on R, the proof of Theorem 3.2 works with f

(n)
A instead of

fA, so that one concludes that {f (n)
uMiM

(u)}∞M=1 converges to f
(n)
u(x0)(u), for all u ∈ R.

Proposition 3.5. Assume the conditions of Theorem 3.3. If the n-th derivative f
(n)
A

exists a.e. on R and ‖f (j)
A ‖L∞(R) < ∞ for each 1 ≤ j ≤ n, then fuMiM

and fu(x0) have

bounded n-th derivatives on the whole R. Moreover, if f
(n)
A is a.e. continuous on R,

then the sequence {f (n)
uMiM

(u)}∞M=1 converges to f
(n)
u(x0)(u), for all u ∈ R.

Proof. As demonstrated in Theorem 3.3, 1/v(x0) · {u− w(x0)} is absolutely contin-
uous. Therefore, the probability that 1/v(x0) · {u − w(x0)} belongs to the null set of

10



non-existence of f
(n)
A is 0. Thus, expression (6) remains being valid a.s. Bound (7)

is also valid now a.s. Hence, for each u ∈ R, the use of the Dominated Convergence
Theorem is justified and (8)–(11) are correct.

When f
(n)
A is a.e. continuous on R, the proof of Theorem 3.3 is applicable with

f
(n)
A in lieu of fA. One concludes that {f (n)

uMiM
(u)}∞M=1 converges to f

(n)
u(x0)(u), for every

u ∈ R.

Remark 1. The same analysis can be performed if B is absolutely continuous and B
and (A,α, φ) are independent. In such a case,

fuMi (u) = E

[
fB

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπMh)
α+2/h2(1−cos(kπh))

·

·

{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φ(xj)

− 2

M + 1

A

h2

M∑
k=1

sin(kπih) sin(kπh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπMh)
α+2/h2(1−cos(kπh))

]
.

One could think of performing the same analysis by isolating φ(x1), instead of A or
B. In such a case, one would assume that φ(x1) is absolutely continuous, and that
(α,A,B, φ(x2), . . . , φ(xM )) and φ(x1) are independent. To achieve this independence,
one may require φ(y1), . . . φ(ym) to be independent, for every y1, . . . , ym ∈ [0, 1], m ≥ 1.
A process φ of this type exists by Kolmogorov’s Extension Theorem [2, Th. 36.2,
p. 486]. However, by [11, Example 1.2.5, p. 10], this process φ is not jointly measurable
on [0, 1] × Ω. This implies that its sample paths cannot be right-continuous nor left
continuous, so φ does not have enough regularity to apply our results.

Remark 2. The theoretical expression of fuMi (u) is

fuMi (u) =

∫
RM+2

fA

(
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)
α+2/h2(1−cos(kπh))

·

·

{
u− 2

M + 1

M∑
j=1

(
M∑
k=1

sin(kπih) sin(kπjh)

α+ 2/h2(1− cos(kπh))

)
φj

− 2

M + 1

b

h2

M∑
k=1

sin(kπih) sin(kπMh)

α+ 2/h2(1− cos(kπh))

})
h2

2
M+1

∑M
k=1

sin(kπih) sin(kπh)
α+2/h2(1−cos(kπh))

·P(α,B,φ(x1),...,φ(xM ))(dα,db,dφ1, . . . ,dφM ).

However, in practice, we use Monte Carlo simulations to compute the expectation (4),
by sampling from α, B and φ.
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4. Examples and Conclusions

Example 4.1. Consider (1) with A ∼ Gamma(2, 1), B ∼ Poisson(3), α ∼
Uniform(1, 2) and φ(x) = arctan(ecos(Dx) + 1), where D ∼ Binomial(20, 0.2). The
random variables are assumed to be independent. Notice that φ has sample paths in
C∞([0, 1]), therefore in Cβ([0, 1]). Then there is a solution process u in C2,β([0, 1]) (in
fact, in C∞([0, 1])). On the other hand, fA is continuous and bounded on R. Then The-
orem 3.2 allows us to approximate the density function of u(x), x ∈ (0, 1). In fact, by
Proposition 3.4, we know that fu(x) ∈ C∞(R) and that its derivatives can be approxi-
mated by the finite difference scheme. Also, since A and B have moments of all orders
and |φ(x)| ≤ π/2 a.s., both Proposition 2.3 and Proposition 2.4 ensure that u(x) has
moments of all orders and, moreover, they can be approximated. In particular, the
expectation and variance of u(x), E[u(x)] and V[u(x)], can be approximated.

We will do so for x = 0.5. Let iM = (M + 1)/2, for M odd. Then {fuMiM (u)}M odd,

defined in (4), tends to fu(0.5)(u), u ∈ R. In Figure 1, we show the graph of fuMiM
(u)

for M = 9, 11, 13. In Table 1, we compute

E[uMiM ] =

∫
R
ufuMiM

(u) du, V[uMiM ] =

∫
R
u2fuMiM

(u) du−
(
E[uMiM ]

)2
,

for M = 9, 11, 13. We observe that there is convergence, which agrees with our theo-
retical findings, and moreover it is rapid. The expectation in (4) has been computed
via Monte Carlo simulation, as explained in Remark 2, with 100, 000 samples of the
involved random variables for each M .

2 4 6
u

0.1

0.2

0.3

0.4

f

M=9

M=11

M=13

Figure 1. Graph of fuMiM
(u) for M = 9 (green), M = 11 (thick dashed red) and M = 13 (tiny dashed blue).

Example 4.1.

M 9 11 13

E[uMiM ] 2.22 2.21 2.21

V[uMiM ] 0.89 0.88 0.88
Table 1. Expectation and variance of uMiM , for M = 9, 11, 13. Example 4.1.
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Example 4.2. We deal with (1) having as random inputs A ∼ Uniform(−1, 1),
B ∼ Gamma(4, 1), α ∼ Uniform(1, 2) and φ(x) a standard Brownian motion on [0, 1]
(φ(x) ∼ Normal(0, x)) [12, Ch. 5]. The random variables/process are assumed to be
independent. Brownian motion has Cβ([0, 1]) sample paths, for 0 < β < 1/2. By
Proposition 1.1, there exists a solution process u in C2,β([0, 1]). On the other hand,
fA is a.e. continuous (two points of discontinuity, −1 and 1) and bounded on R,
and A, B and α are absolutely continuous. Then Theorem 3.3 allows us to approx-
imate the density function of u(x), x ∈ (0, 1). By Proposition 3.5, fu(x) is smooth
and its derivatives can be approximated pointwise by the finite difference scheme.
In addition, since A and B have moments of all orders and supx∈[0,1] ‖φ(x)‖Lp(Ω) =

supx∈[0,1](
1√
π

(2x)p/2Γ(p+1
2 ))1/p ≤ ( 1√

π
2p/2Γ(p+1

2 ))1/p < ∞ for each p ≥ 1, Proposi-

tion 2.3 entails that u(x) has moments of all orders and, moreover, they can be ap-
proximated. In particular, the expectation and variance of u(x), E[u(x)] and V[u(x)],
can be approximated.

We work at the point x = 0.5 again. Let iM = (M + 1)/2, for M odd. Then
{fuMiM (u)}M odd, defined in (4), tends to fu(0.5)(u), u ∈ R. In Figure 2, we depict

the graph of fuMiM
(u) for M = 9, 11, 13. In Table 2, we calculate the expectation and

variance for M = 9, 11, 13. We observe convergence, which agrees with our theoretical
findings, and furthermore this convergence is fast. The expectation in (4) has been
determined via Monte Carlo simulation, see Remark 2, with 100, 000 realizations of
the involved random variables for each M . To sample from a Brownian motion, we use
its Karhunen-Loève expansion on [0, 1] with a sufficiently large order of truncation.

-1 1 2 3 4 5 6
u

0.1

0.2

0.3

0.4

0.5

f

M=9

M=11

M=13

Figure 2. Graph of fuMiM
(u) for M = 9 (green), M = 11 (thick dashed red) and M = 13 (tiny dashed blue).

Example 4.2.

M 9 11 13

E[uMiM ] 1.68 1.68 1.68

V[uMiM ] 0.77 0.77 0.77
Table 2. Expectation and variance of uMiM , for M = 9, 11, 13. Example 4.2.

Finally, we want to point out that this study seeks to contribute to the field of
random differential equations, where a main goal is to compute the mean and variance
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of the solution stochastic process. In this article we have shown a novel method to
go beyond the computation of these statistical moments. Indeed, we have rigorously
addressed the computation of the probability density function of an important ran-
dom diffusion-reaction problem with random boundary conditions, by using a finite
difference numerical scheme. The proposed approach can be very useful to deal with
other significant random differential equations.

Research on the rate of convergence of the approximating density functions to the
target density function could be conducted in the future. An issue that should be
resolved in such a case is the fact that our reasoning is entirely based on existing
results of convergence in Probability and Analysis (Dominated Convergence Theorem,
Continuous Mapping Theorem, [20, Th. 2.4], etc.), which, at least to our knowledge, do
not usually provide rates of convergence. Thus, in order to obtain optimal or at least
sub-optimal bounds, we should proceed with step-by-step inequalities. We believe that
this might be achievable by assuming fA to be Lipschitz continuous on R and by finding
the constants involved in the proof of Theorem 3.2. See our recent contribution [4], in
which some theoretical rates of convergence for the approximating density functions
were found in the setting of a random parabolic partial differential equation. These
ideas raise new research lines for the future.
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