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Abstract 

Mathematical optimisation is widely used to find the optimal value for an objective 

function, subject to constraints that try to simulate reality, and is fundamental to 

improving industrial processes. In this paper, we compare different optimization 

approaches to solve the packaging problem in multihead weighing machines. In this 

problem, each package is made up from the loads in a subset of the multihead weigher’s 

hoppers. The total weight of the packed product must be as close to a specified target 

weight as possible. We designed and evaluated a set of algorithms for this problem, 

considering both single-objective and bi-objective optimization criteria. A new criterion 

for creating the packages is considered, and a different way of filling of the hoppers is 

studied with the aim of reducing process variability. Numerical experiments considering 

both a set of real data and the most important process performance parameters show the 

usefulness of our study. 

Keywords: optimisation; mathematical modeling; exhaustive search; reduction of 

variability; process improvement; packaging; multihead weighing process.  

1. Introduction  

Optimisation is a fundamental discipline in fields such as information technology, 

artificial intelligence, and operations research. Optimisation is the process of trying to 

find the best possible solution to a problem, usually in a limited amount of time (Cook et 

al., 1998; Nemhauser and Wolsey, 1988). In an optimisation problem, there are many 

possible solutions and some clear way of comparing them to find the best one. In fact, 

such problems can be defined by the presence of a set of different candidate solutions that 

can be compared (Duarte et al., 2007). Depending on their algorithmic complexity, these 

problems can be categorized as either P, NP, NP-complete, or NP-hard (Bierlaire, 2015; 

Blum et al., 2008; Erdogdu, 2009; Marler, 2009). 

For an important subset of optimisation problems, no exact algorithm is available 

that can find the optimal solution in a reasonable time. However, an alternative approach 

to solve these problems, is to design approximate algorithms that can find high-quality 

(though not necessarily optimal) solutions in a given time. Each problem is represented 

as a mathematical model comprising of an objective function and a set of constraints that 

somehow encode the optimisation problem (Bierlaire, 2015). 

In this paper, we design and evaluate a set of approximate algorithms to solve the 

packaging problem for multihead weighing machines (i.e., the multihead weighing 

process). The algorithms are executed based on data obtained from real studies, following 

a proposed strategy for the filling of hoppers (Pulido-Rojano and García-Díaz, 2016).  

Also, our proposal encompasses both single-objective and bi-objective optimisation 

approaches. 

 From the point of view of improving the processes, to authors as Montgomery 

(2009), the improvement of the quality is the reduction of the variability in the processes 

and products. This definition implies that if the variability of the important characteristics 

of a product, process or service decreases, the quality of the product, process or service 

increases (Tejaskumar and Darshak, 2016; Sukrut and Mohammed, 2017). Therefore, 

increasing the competitiveness of a company is closely related to a continuous 

improvement of the quality in all its processes (Sasadhar and Indrajit, 2018; Selvam et 

al., 2018). In this sense, an important goal in this study is to analyse the performance of 

the proposed algorithms to improve the variability in the multihead weighing process. 



This paper is structured as follows. Section 2 presents the packaging problem for 

multihead weighing machines. In Section 3, the proposed optimisation approach is 

described. The results of the numerical experiments are then presented and analyzed in 

Section 4, followed by our conclusions in Section 5. 

2. Packaging problem 

2.1 Multihead weighing machines 

Multihead weighing machines are also known as combination weighing systems. They 

can be installed as part of an integrated weighing and packaging production line or 

interfaced with existing packaging equipment. They are ideally suited to precise and fast 

weighing of products, ranging in size from granulates to large and bulky products. 

Moreover, the machines can be used for almost all food products (dry, fresh, or deep 

frozen, such as snacks, crisps, sweets, fresh salad and vegetables), sea food, dog food, 

technical and pharmaceutical products. Multihead weighing machines use several 

different weighing techniques to obtain a total package weight (𝑊) that is closer to the 

desired target weight (𝑇) than can be achieved with conventional weighing techniques. 

These weighing systems comprise three elements: a (linear) vibratory feeder 

system to automatically feed the product to the weighing stations; a system to collect the 

products and feed them to the feed hoppers; and a set of weighing hoppers that statically 

weigh the products, calculate all possible weight combinations, and dispense the best 

combination (closest match to the target weight) to a packaging machine.  A detailed 

description of the arrangement of feeders and hoppers in a typical multihead weighing 

system can be found in (Pulido-Rojano et al., 2015), and Figure 1 shows the basic 

components of such a system. 

 
Figure 1. Basic components of a multihead weighing system. Source: García-

Díaz and Pulido-Rojano (2017). 



2.2. Multihead weighing process 

In the multihead packaging process, a subset 𝐻′ is chosen from the set 𝐻 of products in 

the 𝑛 current weighing hoppers to make up package. A quantity 𝑥𝑖 of food is placed in 

each weighing hopper 𝑖 (𝑖 = 1,2, … , 𝑛), and the weight signals from each hopper are 

transmitted to the built-in computer in the system’s control unit. The computer then 

calculates all possible weights combinations, and the products in the subset that exceeds 

the desired weight 𝑇 by the minimum possible amount are ejected from their 

corresponding hoppers. The resulting empty hoppers are then supplied with new 

quantities of food. The computer repeats this process until it has produced the number 

required of packages (𝑄). The number of different possible hopper subsets 𝐻′ depends on 

the number 𝑘 of hoppers that are selected for each packaging operation. This is equivalent 

to the NP-complete subset-sum combinatorial problem (Garey and Johnson, 1979) when 

𝑘 is neither predetermined nor constant. 

The weights 𝑥𝑖 (𝑖 = 1,2, … , 𝑛) in the hoppers follow a normal probability 

distribution. Based on a study that analysed real data, several authors (Beretta and 

Semeraro, 2012; Beretta et al., 2016; del Castillo et al., 2017) have noted that the weights 

𝑥𝑖 were normally distributed 𝑥𝑖 ∼ N(µ, 𝜎), where μ is the average weight of product 

supplied to the hoppers and σ is its standard deviation. When using a vibratory feeder, 

these quantities are correlated, in a way that depends on the form and weight of the 

product concerned. Some authors (Beretta and Semeraro, 2012; Beretta et al., 2016; del 

Castillo et al., 2017) have investigated these correlations and found that σ depends 

linearly on the mean weight μ, according to σ = γμ, where γ (0 < γ < 1) is the 

proportionality coefficient for μ and σ, and depends on the product being packaged. 

Note that if all the hoppers are filled independently according to the same 

distribution 𝑁(μ, σ = 𝛾μ), and the 𝑘 hoppers used for each packaging operation are 

randomly selected (to make up a total weight around 𝑇), then the packages weights will 

also follow a normal distribution 𝑁(𝑘𝜇, √𝑘𝜎), where the mean package weight 𝑘𝜇 is 

expected to equal the target 𝑇.   

An additional point to consider is that a given quantity of product can remain in 

its corresponding hopper for a long time before being chosen for packaging. This can be 

a problem when handling products that can deteriorate quickly, such as, frozen goods. 

One possible way to tackle this problem is to monitor and control the time products spend 

in each hopper, which can be done by assigning a priority coefficient 𝑃𝑖 to each hopper 

(Karuno et al., 2007). The priority 𝑃𝑖 measures the time the current load has spent in 

hopper 𝑖 and can be calculated as follows. Let ℓ denote the current iteration number of 

the packaging process, and let ℓ𝑖 denote the iteration at which the current load was sent 

to the 𝑖-th hopper (i.e., the last time it was empty). Then, 𝑃𝑖 = ℓ − ℓ𝑖 + 1 represents the 

time (number of packaging operations) the load has spent in hopper 𝑖. Note that 1 ≤ ℓ ≤
Q. In this context, we now require the packaging process to meet two objectives: make 

𝑊 as close to 𝑇 as possible and minimize the total time the food in each package has 

spent in the packaging system. 

This paper proposes to solve this problem by implementing approximate 

algorithms for cases where 𝑘 is constant and predetermined. This means the average 

weight of product 𝜇 supplied to the 𝑛 hoppers must be 𝜇 =  𝑇 / 𝑘. In particular, we 

consider two problems: minimizing the absolute difference between 𝑊 and 𝑇 and 

minimizing this value while also considering the residence time 𝑃𝑖 . These problems are 

handled using a single-objective and bi-objective approaches, respectively, and evaluated 

considering a set of real data. Multihead weighing system manufacturers can then select 

and configure the approach that best fits their needs. Our goal is to demonstrate the 



usefulness of this approach for minimizing excess weight in the packages produced. The 

packaging problem will be formulated in terms of an allocation model, using binary 

variables to select the hoppers to use for each package (see Section 3.4). 

The approach of minimizing of the absolute difference between 𝑊 and 𝑇, and the 

idea of evaluating a fixed number of combined 𝑘-hoppers have already been studied by 

Pulido-Rojano and García-Díaz (2016) and García-Díaz et al. (2017), however, the 

authors assumed that the variability of the weights in the hoppers does not depend on the 

coefficient of proportionality γ, which would not be in line with industry practice. In 

addition, the authors presented this problem assuming the 𝜎 values to each hopper. 

2.3. Related work 

Several researchers have studied the possibility of improving multihead weighing and 

packaging processes through mathematical optimisation or approximate methods. For 

example, a percentage variability reduction index has been proposed (Barreiro et al., 

1998; Salicrú et al., 1996) to reduce and control production process variability. The 

optimal scheme for determining the operation time of line feeders in automatic 

combination weighers has also been investigated (Keraita and Kim, 2006). A weighing 

algorithm for multihead weighers has been proposed (Keraita and Kim, 2007) that is 

based on bitwise operations. An additional objective, known as “priority” has also been 

introduced (Karuno et al., 2007). Here the problem was formulated as a bi-objective 

optimisation problem, and a dynamic programming algorithm was proposed for its 

solution. This algorithm aimed to minimize the maximum time items spent in the system 

heuristically, while also keeping the total weight of each package as close to the target 

weight as possible. Some authors (Imahori et al., 2011, 2012; Karuno et al., 2013; Karuno 

and Tateishi, 2014; Karuno and Saito, 2017) have studied the possibility of improving 

this bi-objective optimisation model. Other authors, such as (Imahori et al., 2012; Karuno 

et al., 2010), have investigated different types of packaging operations, developing 

several algorithms for double-layered and duplex packaging systems. Several 

optimisation algorithms have been proposed (Beretta et al., 2016) for determining the 

optimal flow rates for a set of radial feeders, with the objective of minimizing the 

expected production cost per “conforming” package over a fixed time period. The way 

the hoppers are filled has also been studied (Pulido-Rojano and García-Díaz, 2016) with 

the aim of reducing variability in the packaging process. An heuristic optimisation model 

has been developed (del Castillo et al., 2017), on the basis of a detailed characterization 

of what constitutes a near optimal solution to the multihead weigher setup problem. The 

idea was to find the set points for the hoppers that minimized the mean squared error of 

the package weight. The optimal operational conditions for the packaging process have 

also been obtained (García-Díaz et al., 2017) using a bi-objective algorithm. Finally, a 

modified control chart has been proposed (García-Díaz and Pulido-Rojano, 2017) for 

monitoring and controlling the multihead weighing process. 

3. Optimisation approach 

This section discusses the objectives considered for optimising the packaging process, 

the proposed method for determining the way the products are supplied to the weighing 

hoppers, the proposed algorithms for the packaging process itself, and the designed 

mathematical optimisation models. 



3.1. Packaging process objectives 

We use two optimisation approaches to address the packaging problem. The first, a 

single-objective approach, aims to minimize the absolute difference between the real 

package weight 𝑊 = ∑ 𝑥𝑖𝑖∈𝐻′  and its target weight 𝑇. This can be expressed as: 𝑧1 =
𝑚𝑖𝑛| 𝑇 − ∑ 𝑥𝑖𝑖∈𝐻′  |, where 𝑧1 is the first objective.  

In order to make this approach more realistic, we also include the following 

constraint proposed by Pulido-Rojano and García-Díaz (2016): | 𝑇 − ∑ 𝑥𝑖𝑖∈𝐻′  | ≤

Z𝛼 2⁄ √𝑘𝜎,  where Z𝛼 2⁄  represents the critical value of the standard normal probability 

distribution 𝑁(0,1) for a significance of 𝛼. This constraint (known as the confidence level 

constraint) avoids 𝑘-hopper subsets that would produce a package too far from the target  

𝑇. In our case, the 𝑊 value selected for each package must be within a confidence level 

of 99.73% of 𝑇, i.e., 𝑍𝛼
2⁄ = 3.0. 

In the second (bi-objective) approach, we aim to minimize the difference between 

𝑊 and 𝑇 as before (𝑧1 = 𝑚𝑖𝑛| 𝑇 − ∑ 𝑥𝑖𝑖∈𝐻′  |), while also maximizing the residence time 

𝑃𝑖, as follows: 𝑧2 = 𝑚𝑎𝑥 ∑ 𝑃𝑖𝑖∈𝐻′ . The goal of the second objective 𝑧2 is to encourage 

the selection of hoppers that have not been emptied for a long time (i.e., with long 

residence times). To control how long the loads stay in the hoppers, we use 𝑃𝑚𝑎𝑥 as the 

maximum number of packaging operations (i.e., the maximum allowed priority) for 

which any load is allowed to remain in its hopper (García-Díaz et al., 2017). For instance, 

if 𝑃𝑚𝑎𝑥 = 100, the maximum time a load could remain in a multihead weigher with a 

capacity of fifty packages per minute can be calculated as follows: 50 packages / 60 s is 

equivalent to 1.2 s/package; thus, 1.2 s/package × 100 packages = 120 s. Based on this, a 

𝑘-hopper subset is said to be valid if it does not involve any hoppers whose priorities are 

greater than the maximum allowed priority 𝑃𝑚𝑎𝑥 and the total weight is in the range 𝑇 ±

𝑍𝛼
2⁄ √𝑘σ. 

For the bi-objective approach, we propose to use a single weighted performance 

function that combines information about the two objectives being considered, and 

dynamically adjust the relative weight or importance of each objective at each iteration 

of the packaging process, as suggested by García-Díaz et al. (2017). So, for each package 

we look for the 𝑘-hopper subset that minimizes the distance to the so-called utopia or 

ideal point (z1
min, 𝑧2

max) in criterion space, where 𝑧1
min is the minimum possible (absolute) 

difference between 𝑇 and 𝑊, and 𝑧2
max is the maximum possible aggregate (total) priority.  

Essentially,  𝑧1
min and  𝑧2

max are the optimal values for the two objectives being 

considered for the current hopper’s contents optimised separately. Prior to calculating the 

Euclidean distance (𝐷) from a given solution to the ideal point, both values are 

normalized and then assigned relative weights of  (1 − 𝜃) and 𝜃, respectively, so that the 

final form of the function to be minimized is:    

𝐷 =  √(1 − 𝜃) (
𝑧1−𝑧1

min

𝑧1
max−𝑧1

min)
2

+ 𝜃 (
𝑧2−𝑧2

max

𝑧2
max−𝑧2

min)
2

  ,        (1) 

     Here 𝑧1
max and 𝑧2

min are the maximum difference from the target weight and 

the minimum total priority, respectively, for the current set of valid 𝑘-hopper subsets. 

The parameter 𝜃 is updated at each packaging iteration. The idea is that selecting 

a 𝑘-hopper subset with a high aggregate priority becomes more important as the current 

maximum hopper priority approaches the maximum allowed priority 𝑃𝑚𝑎𝑥.  The 𝜃 value 

is defined as: 



𝜃 =  
1

 𝑃𝑚𝑎𝑥 −max
𝑖∈𝐻

𝑃𝑖 + 1 
.                              (2) 

So, during the first iterations, the value of  𝜃 will remain relatively small and, 

therefore, the objective of minimizing the difference to target packet weight will be 

assigned a higher importance. As packages production progresses and the maximum 

hopper priority approaches 𝑃𝑚𝑎𝑥, 𝜃 will increase and so will the importance of the priority 

objective increase. 

The combination of hoppers that minimizes the distance to the ideal point is 

known to be an efficient or nondominated solution (Marler, 2009), which means that there 

is no other valid 𝑘-hopper subset that is at least as good with respect to (at least) one of 

the objectives (weight or priority) and strictly better with respect to the other objective 

(Ehrgott, 2005). 

3.2. How to fill the hoppers 

In this paper, we consider the general case where each hopper 𝑖 is filled with a different 

average quantity of food µ𝑖 (instead of a common value 𝜇). The degree of variability 

among the average hopper weights µ1… µ𝑛 is believed to be related to the final package 

variability. Here, we evaluate the case where groups of hoppers share the same µ𝑖 value, 

as this has been shown to be an efficient strategy for reducing package variability 

(Barreiro et al., 1998; Keraita and Kim, 2007; Pulido-Rojano and García-Díaz, 2016). 

To set the average amounts of product supplied to the weighing hoppers, we use 

shifts in the mean amount, given by the parameter δ. The parameter ensures that different 

average amounts are supplied to different hoppers. The purpose of introducing these 

deliberate shifts is to study the effect of changing the way the hoppers are filled. 

As a strategy for setting the average amounts of product supplied to the hoppers, 

we propose to divide the 𝑛 weighing hoppers into three subgroups (𝑛1, 𝑛2, and 𝑛3 with 

𝑛 = ∑ 𝑛𝑗
3
𝑗=1 ) and supply different average amounts of product to each subgroup (𝜇1, 𝜇2 

and 𝜇3, respectively) (Pulido-Rojano and García-Díaz, 2016). The average amounts 

supplied to each subgroup will depend on δ, as follows: μ1 = µ − 𝛿𝜎, μ2 = µ and μ3 =
µ + 𝛿𝜎, respectively. Thus, shifts in the product supply will occur when δ > 0, while if δ 

= 0 then all the hoppers will be filled at the same rate, namely µ𝑗 = 𝜇, i.e., μ1 = μ2 =

μ3 = 𝑇/𝑘. In our case, the values of 𝜇1, 𝜇2 and 𝜇3 will also depend on 𝜇 =  𝑇/𝑘 and 𝜎 =
𝛾𝜇. Once the µ𝑗values have been set, we can calculate the σ𝑗 values as follows: σ𝑗 = 𝛾μ𝑗. 

So far, no research has tested this filling strategy in a bi-objective approach. Authors as 

García-Díaz et al. (2017) tested a filling strategy for five subgroups. 

 The proportionality coefficient 𝛾 is used to calculate the standard deviations 𝜎𝑗 

of the weights supplied to each hopper and is considered to be an input to the packaging 

process. In our numerical experiments, we will use the values given in Beretta and 

Semeraro (2012) for two specific products: "ravioli" (a type of dried pasta) with γ = 0.331 

and "fusilli" (a type of fresh pasta) with γ = 0.123. 

As an example of calculating the µ𝑗 and σ𝑗 values, suppose  𝑇 = 250 g, 𝑘 = 5, 𝜎 = 

16.55 g (for 𝛾 = 0.331, i.e., the ravioli) and δ = 2.0. In addition, suppose the total number 

of hoppers 𝑛 = 16, with 𝑛1 = 5, 𝑛2  = 6 and 𝑛3  = 5. Then, the µ𝑗 values would be as 

follows: μ1 = 250/5 - 2.0(16.55) = 16.90 g, μ2 = 250/5 = 50 g, and μ3 = 250/5 + 2.0(16.55) 

= 83.10 g. In this case, the σ𝑗 values would be σ1 = 𝛾μ1 = 0.331 · 16.90 = 5.59 g, σ2 =

𝛾μ2 = 0.331 · 50 = 16.55 g and σ3 = 𝛾μ3 = 0.331 · 83.10 = 27.51 g. 



3.3. Packaging algorithms 

In this section, we introduce the proposed package production algorithms. These 

procedures, both single-objective and bi-objective, are performed for each package in 

order to find the 𝑘-hopper subset 𝐻′ for which the total weight 𝑊 is as close to the target 

weight 𝑇 as possible (either above or below). As previously discussed, manufacturers 

could adapt this packaging algorithm for implementation in the control unit software of 

multihead weighers.  

3.3.1 Single-objective packaging algorithm 

• Input: 

o 𝑛:  Total number of hoppers (𝑛 > 0). 

o 𝑘:  Number of hoppers involved in each packaging operation (2 ≤ 𝑘 < 𝑛). 

o 𝑇:  Target weight (𝑇 > 0). 

o 𝑛1, … , 𝑛3: Number of hoppers in each hopper subgroup (𝑛𝑗 ≥ 0, ∀𝑗 =

1, … ,3;  ∑ 𝑛𝑗
3
𝑗=1 = 𝑛). 

o 𝜎:  Standard deviation of the weights supplied to each hopper (𝜎 > 0). 

o 𝛿: Shift in the mean weights supplied to hoppers in subgroups 1 and 3 

compared with subgroup 2 (𝛿 > 0). 

o 𝑄:  Total number of packages to be produced (𝑄 ≥ 1). 

• Step 1. Initialization. 

o Assign each hopper to a subgroup, such that the number of hoppers in 

subgroup 𝑗 is 𝑛𝑗 , for all. 

o Calculate the average weights to supply to each hopper subgroup: μ1 = µ −
𝛿𝜎, μ2 = µ and μ3 = µ + 𝛿𝜎. 

o Initialize the contents of each hopper:  𝑥𝑖 = 0, ∀𝑖 = 1, … , 𝑛. 
o Initialize the number of packages produced so far:  𝑞 = 0. 

• Step 2. New packaging operation.  Initialize  𝑧1
min = +∞ , 𝐻min

′ = ∅. 

• Step 3. Refill all empty hoppers.  For each hopper 𝑖 in subgroup 𝑗 for which 𝑥𝑖 =

0,  let  𝑥𝑖 = a random value chosen from the distribution 𝑁(𝜇𝑗, 𝜎 = 𝛾μ𝑗). 

• Step 4. Evaluate all valid subsets to calculate 𝒛𝟏
min.  For all 𝑘-hopper subsets 𝐻′ 

such that obey | 𝑇 − ∑ 𝑥𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎, proceed as follows. 

o Calculate  𝑧1 = |  𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′   |.  (i.e., the difference from the target weight) 

o If  𝑧1 < 𝑧1
min,  then  𝑧1

min = 𝑧1 and 𝐻min
′ = 𝐻′. 

• Step 5. Check that the set of valid subsets is not empty. If  𝑧1
min = +∞  (i.e., 

there are no valid subsets) then all hoppers must be emptied and refilled. If so, let 

𝑥𝑖 = 0 for each hopper 𝑖, then go to Step 2.  Otherwise, continue to Step 6. 

• Step 6. Select the 𝒌-hopper combination that minimizes | 𝑻 − ∑ 𝒙𝒊𝒊∈𝑯′  |. 
Return  𝐻min

′  (as the hopper subset for creating the (𝑞 + 1)-th package).  Then, 

for each hopper 𝑖 in 𝐻min
′ , let 𝑥𝑖 = 0 (as it has been emptied to create the package). 

• Step 7. Update the number of packages produced and check whether the 

process is complete.  Let 𝑞 = 𝑞 + 1.  If 𝑞 < 𝑄 then go to Step 2. Otherwise, 

END. 

 



3.3.2 Bi-objective packaging algorithm 

• Input: 

o 𝑛:  Total number of hoppers (𝑛 > 0). 

o 𝑘:  Number of hoppers involved in each packaging operation (2 ≤ 𝑘 < 𝑛). 

o 𝑇:  Target weight (𝑇 > 0). 

o 𝑛1, … , 𝑛3:  Number of hoppers in each hopper subgroup (𝑛𝑗 ≥ 0, ∀𝑗 =

1, … ,3;  ∑ 𝑛𝑗
3
𝑗=1 = 𝑛). 

o 𝜎:  Standard deviation of the weights supplied to each hopper (𝜎 > 0). 

o 𝛿:  Shift in the mean weights supplied to hoppers in subgroups 1 and 3 

compared with subgroup 2 (𝛿 > 0). 

o 𝑃𝑚𝑎𝑥:  Maximum allowed priority (number of iterations without being chosen) 

for any hopper (𝑃𝑚𝑎𝑥 ≥ 1). 

o 𝑄:  Total number of packages to be produced (𝑄 ≥ 1). 

• Step 1. Initialization. 

o Assign each hopper to a subgroup, so that the number of hoppers in subgroup  

𝑗  is  𝑛𝑗 , for all. 

o Calculate the average weights to supply to each hopper subgroup: μ1 = µ −
𝛿𝜎, μ2 = µ and μ3 = µ + 𝛿𝜎. 

o Initialize the contents and priorities for each hopper: 𝑥𝑖 = 0, 𝑃𝑖 = 0, ∀𝑖 =
1, … , 𝑛. 

o Initialize the number of packages produced so far:  𝑞 = 0. 

• Step 2. New packaging operation.  Initialize  𝑧1
min = +∞ , 𝑧1

max = −∞ , 𝑧2
min =

+∞ , 𝑧2
max = −∞ , 𝐷min = +∞ ,   𝐻min

′ = ∅. 

• Step 3. Refill all empty hoppers and update priorities. For each hopper 𝑖 in 

subgroup 𝑗 for which 𝑥𝑖 = 0, let 𝑥𝑖 = a random value chosen from the distribution 

𝑁(𝜇𝑗, 𝜎 = 𝛾μ𝑗).  Then, for each hopper 𝑖,  let 𝑃𝑖 = 𝑃𝑖 + 1. 

• Step 4. Empty any hopper that does not meet the priority constraint. For each 

hopper 𝑖 such that  𝑃𝑖 > 𝑃𝑚𝑎𝑥, let  𝑥𝑖 = 0, 𝑃𝑖 = 0. 

• Step 5. Evaluate of all valid subsets to calculate 𝐳𝟏
min , 𝐳𝟏

max , 𝐳𝟐
min , 𝐳𝟐

max.  For 

each 𝑘-hopper subset 𝐻′ such that does not contain a hopper 𝑖 with 𝑃𝑖 = 0 and 

obeys | 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎, proceed as follows. 

o Calculate  𝑧1 = |  𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′   |.  (i.e., the difference from the target weight) 

o Calculate  𝑧2 = ∑ 𝑃𝑖𝑖∈𝐻′ .  (i.e., the sum of priorities) 

o If  𝑧1 < 𝑧1
min,  then  𝑧1

min = 𝑧1. 

o If  𝑧1 > 𝑧1
max,  then  𝑧1

max = 𝑧1. 

o If  𝑧2 < 𝑧2
min,  then  𝑧2

min = 𝑧2. 

o If  𝑧2 > 𝑧2
max,  then  𝑧2

max = 𝑧2. 

• Step 6. Check that the set of valid subsets is not empty. If  𝑧1
min = +∞  (i.e., 

there are no valid subsets) then all hoppers must be emptied and refilled.  If so, let 

𝑥𝑖 = 0, 𝑃𝑖 = 0 for each hopper 𝑖, then go to Step 2.  Otherwise, continue to Step 

7. 

• Step 7. Calculate 𝜽 =  
𝟏

 𝑷𝒎𝒂𝒙 −𝐦𝐚𝐱
𝒊∈𝑯

𝑷𝒊 + 𝟏 
, where 𝑯 is the set of all hoppers.  This 

sets the relative importance of the priority objective, and is recalculated before 

each packaging operation. 



• Step 8. Evaluate all valid subsets again, and select the one that minimizes the 

performance function 𝑫.  For each 𝑘-hopper subset 𝐻′ that does not contain a 

hopper 𝑖 with  𝑃𝑖 = 0 and obeys | 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎, proceed as follows. 

o Retrieve the 𝑧1 and 𝑧2values that were calculated for 𝐻′ at Step 5. 

o Calculate 𝐷 =  √(1 − 𝜃) (
𝑧1−𝑧1

min

𝑧1
max−𝑧1

min)
2

+ 𝜃 (
𝑧2−𝑧2

max

𝑧2
max−𝑧2

min)
2

. 

o If  𝐷 < 𝐷min,  then 𝐷min = 𝐷 , 𝐻min
′ = 𝐻′. 

• Step 9. Select the 𝒌-hopper subset that minimizes 𝑫.  Return 𝐻min
′  as the hopper 

subset for creating the (𝑞 + 1)-th package.  For each hopper 𝑖 in 𝐻min
′ , let 𝑥𝑖 =

0, 𝑃𝑖 = 0 (as it has been emptied to create the package). 

• Step 10. Update the number of packages produced and check whether the 

process is complete.  Let  𝑞 = 𝑞 + 1.  If 𝑞 < 𝑄 then go to Step 2. Otherwise, 

END. 

In these enumerative (exhaustive) algorithms, every feasible solution (i.e., valid 

𝑘-hopper subset) is evaluated at each iteration. In particular, the number of subsets to be 

evaluated for each packaging operation is at most (𝑛
𝑘

) = 𝑛! (𝑘! (𝑛 − 𝑘)!)⁄  (less for the bi-

objective algorithm when hoppers are discarded at Step 4 due to the priority constraint). 

Although it is a simple strategy, it means our algorithms conduct exact (not heuristic) 

searches (Michalewicz and Fogel, 2004). 

Both algorithms consider the situation where all hoppers have to be emptied to 

avoid producing packages that would not meet the quality requirements in terms of 

weight. However, the emptied products could, for example, be taken and reused. In 

addition, we will calculate how often this happens, which we call the confidence level 

(DCL), as a performance measure.  Figure 2 shows the application’s user interface for the 

bi-objective case and 𝑘 = 3. 

 

Figure 2. Our application’s user interface, for the bi-objective case and 𝑘 = 3. 

Source: Authors. 

3.4. Mathematical optimisation  

Solutions to the packaging problem can be described in terms of binary vectors. For three 

groups, we have [𝑦 1
1, … , 𝑦 𝑛1

1 ], [𝑦 1
2, … , 𝑦 𝑛2

2 ] y [𝑦 1
3, … , 𝑦 𝑛3

3 ], where the value of each 

component indicates whether the corresponding weight was selected (1) or not (0). In 



terms of these vectors, the solutions to the bi-objective problem can be described as 

follows: 

𝑦𝑖
1 =  {

1  𝑖𝑓 𝑤𝑒𝑖𝑔ℎ𝑡  𝑖 ∊ 𝑛1 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐ℎ𝑜𝑠𝑒𝑛
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

𝑦𝑙
2 =  {

1  𝑖𝑓 𝑤𝑒𝑖𝑔ℎ𝑡 𝑙 ∊ 𝑛2 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐ℎ𝑜𝑠𝑒𝑛
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            

 

𝑦𝑟
3 =  {

1 𝑖𝑓 𝑤𝑒𝑖𝑔ℎ𝑡  𝑟 ∊ 𝑛3 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑐ℎ𝑜𝑠𝑒𝑛
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

Objective 1          𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑧1 

Objective 2         𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑧2 =  ∑ 𝑃𝑖
1𝑦𝑖

1 + ∑ 𝑃𝑙
2𝑦𝑙

2 + ∑ 𝑃𝑟
3𝑦𝑟

3𝑛3
𝑟=1

𝑛2
𝑙=1

𝑛1
𝑖=1   

Subject to   

𝑧1  ≥ 0                                                  (3) 

 𝑧1  ≥  𝑇 − ∑ 𝑥𝑖
1𝑦𝑖

1 + ∑ 𝑥𝑙
2𝑦𝑙

2 + ∑ 𝑥𝑟
3𝑦𝑟

3𝑛3
𝑟=1

𝑛2
𝑙=1

𝑛1
𝑖=1                       (4) 

  𝑧1  ≥ ∑ 𝑥𝑖
1𝑦𝑖

1 + ∑ 𝑥𝑙
2𝑦𝑙

2 + ∑ 𝑥𝑟
3𝑦𝑟

3𝑛3
𝑟=1

𝑛2
𝑙=1

𝑛1
𝑖=1 – 𝑇                        (5) 

𝑇 − 𝑍𝛼
2⁄ √𝑘𝜎 ≤ ∑ 𝑥𝑖

1𝑦𝑖
1 + ∑ 𝑥𝑙

2𝑦𝑙
2 + ∑ 𝑥𝑟

3𝑦𝑟
3𝑛3

𝑟=1
𝑛2
𝑙=1

𝑛1
𝑖=1                    (6) 

𝑇 + 𝑍𝛼
2⁄ √𝑘𝜎 ≥ ∑ 𝑥𝑖

1𝑦𝑖
1 + ∑ 𝑥𝑙

2𝑦𝑙
2 + ∑ 𝑥𝑟

3𝑦𝑟
3𝑛3

𝑟=1
𝑛2
𝑙=1

𝑛1
𝑖=1                 (7) 

∀ 𝑃𝑖∈𝐻′
1 ≤ 𝑃𝑚𝑎𝑥                           (8) 

∀ 𝑃𝑙∈ 𝐻′
2 ≤ 𝑃𝑚𝑎𝑥                                                      (9) 

∀ 𝑃𝑟∈𝐻′ 
3 ≤ 𝑃𝑚𝑎𝑥                         (10) 

𝑦𝑖
1 ∈  {0, 1},     𝑖 = 1,2, … , 𝑛1.                                        (11) 

𝑦𝑙
2 ∈  {0, 1},    𝑙 = 1,2, … , 𝑛2.                                         (12) 

𝑦𝑟
3 ∈  {0, 1},     𝑟 = 1,2, … , 𝑛3.                                        (13) 

Eqs. (3) – (5) ensure that 𝑧1 is non-negative. The confidence level constraint is 

represented by Eqs. (6) and (7). Eqs. (8) – (10) ensure that the 𝑘-hopper subset selected 

to form 𝐻′ does not exceed the maximum allowed priority. The binary constraints on the 

variables 𝑦𝑖
1, 𝑦𝑙

2 and 𝑦𝑟
3 are represented by Eqs. (11) – (13). This model can be adapted 

for the single-objective approach by only considering the objective 𝑧1 and omitting the 

constraints expressed in Eqs. (8) – (10). 

4. Results and analysis 

Here, we use a series of numerical experiments to demonstrate the effectiveness of our 

algorithms for reducing package weight variability, in terms of the most important 



performance parameters for the packaging process: The average weight 𝜇package and 

standard deviation 𝜎package of the packages produced, the number of hoppers emptied for 

package weight reasons (i.e., the DCL), the number of hoppers emptied for priority 

reasons at each iteration (which we call the HDP), and the average maximum priority for 

each hopper (which we call the AMP).   

The parameters for the first experiment were as followings: the total number of 

hoppers 𝑛 = 16; the number of hoppers in each subset 𝑘: ranged from 2 – 8; the target 

weight 𝑇 = 250 g; the sizes of the hopper subgroups were 𝑛1 = 5, 𝑛2 = 6, and 𝑛3 = 5; the 

proportionality coefficients 𝛾 were 0.123 and 0.331;  the shift value δ = 2.0; and the 

maximum allowed priorities 𝑃𝑚𝑎𝑥 were 10, 50, and 100.  

Table 1 shows the results when these packaging process parameters were used on 

the evaluated approaches (single-objective and bi-objective). To show the effectiveness 

of our algorithms more clearly, results for a single-objective optimisation approach that 

does not divide the hoppers into subgroups are presented for comparison. It should also 

be emphasized that the results of our experiments are not compared with García-Díaz et 

al. (2017), because, as we have already highlighted, these authors assumed the 𝜎 values 

to each hopper and used different input values, leading to very different outcomes. 

The results show that, for the bi-objective approach, the 𝜎package values decreased 

and the APM values increased as the 𝑃𝑚𝑎𝑥 value increased. The 𝜎package values were only 

greater than the expected value √𝑘σ for 𝑘 = 2, regardless of the product type. 

For 𝛾 = 0.123, the AMP values decreased as 𝑘 is increased, and the HDP was 

always zero, except for 𝑘 = 2 and 𝑃𝑚𝑎𝑥 = 10. The optimal value of 𝑘 was 7.  

For 𝛾 = 0.331, 𝜎package was minimized for 𝑘 = 7 (for 𝑃𝑚𝑎𝑥 = 50 or 100) and 𝑘 = 

8 (for 𝑃𝑚𝑎𝑥 = 10). There were also cases where increases in 𝑘 and 𝑃𝑚𝑎𝑥 produced 

increases in the 𝜎package , HDP, and AMP values. Taken together, these results show that 

increases in 𝛾 can lead to hopper weights that are difficult to combine, affecting the 

variability of the process.  

When 𝑘 = 2, the base line single-objective approach (where the hoppers were not 

divided into subgroups) produced the best 𝜎package  results. In all other cases, however, 

our alternative approaches, with the right 𝑘, were able to improve process variability.  

In general, the best results were obtained by the single-objective approach with 

three hopper subgroups and 𝑘 = 6 (for γ = 0.123) or  𝑘 = 5 (for γ = 0.331). However, the 

highest AMP values were obtained by this approach with 𝑘 = 2. In addition, using high 𝑘 

values (up to 𝑘 = 8) did not guarantee the lowest 𝜎package values. Products were never 

emptied from hoppers due to the confidence level constraint for any of the approaches 

tested. 

5. Conclusions 

Optimisation allows us to discover the best alternatives for problems that can be modeled 

mathematically and is fundamental to improving the quality of industrial processes. In 

this paper, we have presented both a single-objective approach and a bi-objective 

approach to optimising the multihead weighing process. These approaches were 

expressed in terms of both mathematical models and algorithms. 



Table 1. Results for packaging parameters 𝜇package, 𝜎package , DCL(%), HDP and APM for 𝑃𝑚𝑎𝑥: {10,50,100}, 𝑘:{2,3,4,5,6,7,8}, 𝛾: {0.123,0.331}, 

𝛿:{2.0}, and 𝑛:{16}.

    Bi-objective approach (3 hopper subgroups)   
Single-objective approach (3  

hopper subgroups) 
  

Single-objective approach 

(all hoppers in one group)  

       𝑷𝒎𝒂𝒙 = 10   𝑷𝒎𝒂𝒙 = 50   𝑷𝒎𝒂𝒙= 100              

𝛾 𝑘 √𝑘σ  𝜇package 𝜎package  DCL HDP APM  𝜇package 𝜎package  DCL HDP APM  𝜇package 𝜎package  DCL HDP APM  𝜇package 𝜎package  DCL APM  𝜇package 𝜎package  DCL APM 

0.123 

2 21.74  250.22 27.83 0.00 0.0044 9.02  252.71 23.12 0.00 0.00 19.67  253.33 22.21 0.00 0.00 28.94  249.27 6.72 0.00 3955.77  249.72 4.08 0.00 289.27 

3 17.75  250.05 3.17 0.00 0.00 6.64  249.99 1.09 0.00 0.00 7.40  250.00 0.834 0.00 0.00 7.75  250.00 0.198 0.00 33.07  249.74 3.07 0.00 80.94 

4 15.38  249.99 1.48 0.00 0.00 5.11  250.00 0.642 0.00 0.00 5.35  250.01 0.490 0.00 0.00 5.45  249.99 0.035 0.00 14.32  249.87 2.92 0.00 41.60 

5 13.75  249.99 0.967 0.00 0.00 4.14  250.00 0.448 0.00 0.00 4.27  250.00 0.343 0.00 0.00 4.33  250.00 0.011 0.00 10.47  249.86 3.04 0.00 30.87 

6 12.55  249.99 0.684 0.00 0.00 3.45  249.99 0.337 0.00 0.00 3.63  249.99 0.264 0.00 0.00 3,69  250.00 0.0051 0.00 8.16  249.91 3.01 0.00 21.33 

7 11.62  249.99 0.602 0.00 0.00 3.06  249.99 0.262 0.00 0.00 3.11  249.99 0.201 0.00 0.00 3.13  249.99 0.011 0.00 6.74  249.83 3.04 0.00 16.60 

8 10.87   249.99 0.615 0.00 0.00 2.94   250.00 0.314 0.00 0.00 2.98   250.00 0.242 0.00 0.00 2.99   249.99 0.012 0.00 5.58   249.92 3.09 0.00 13.76 

0.331 

2 58.51  253.61 82.27 0.00 0.0082 9.05  273.15 80.70 0.00 0.0026 22.22  271.29 77.09 0.00 0.0026 35.71  243.88 24.73 0.00 4613.31  249.24 10.98 0.00 289.27 

3 47.78  251.54 15.72 0.00 0.0039 6.83  250.74 8.61 0.00 0.0039 16.81  250.59 8.17 0.00 0.0039 39.15  249.76 6.01 0.00 2994.73  249.33 8.31 0.00 87.54 

4 41.38  250.11 6.99 0.00 0.0055 5.24  250.22 6.23 0.00 0.0055 10.78  250.20 5.90 0.00 0.0055 26.65  249.99 0.171 0.00 157.14  249.66 7.85 0.00 41.60 

5 37.01  250.00 6.18 0.00 0.0072 4.32  250.07 5.40 0.00 0.0072 11.41  250.19 5.74 0.00 0.0071 30.79  250.00 0.036 0.00 11.02  249.63 8.17 0.00 30.87 

6 33.78  250.27 6.38 0.00 0.0083 3.71  250.28 5.99 0.00 0.0082 11.93  250.24 6.09 0.00 0.0082 33.81  249.99 0.434 0.00 8.24  249.73 8.18 0.00 20.82 

7 31.28  250.07 5.27 0.00 0.0095 3.34  250.17 5.40 0.00 0.0095 12.57  250.22 5.48 0.00 0.0094 36.65  249.99 0.088 0.00 6.72  249.59 8.17 0.00 18.23 

8 29.26   250.18 5.24 0.00 0.0108 3.24   250.28 5.86 0.00 0.0107 13.49   250.12 6.35 0.00 0.0106 39.37   249,99 0.322 0.00 5.67   249.78 8.32 0.00 13.76 



The single-objective approach aims to minimize the absolute difference between 

each real package weight and the target weight, while the bi-objective approach also aims 

to maximize the total priority of the chosen hopper subset. Both approaches aim to 

improve the quality of the packages produced by adjusting the way the weighing hoppers 

are filled and dividing them in subgroups. 

Bi-objective algorithm combines information about these two objectives, 

dynamically adjusting the relative weight or importance of each objective for each 

iteration (packaging operation). 

We have also investigated the effectiveness of the solutions produced by our 

approaches, comparing them with a more traditional approach. Based on these results, we 

have concluded that dividing the hoppers into subgroups is effective even when there is 

a limit to how long each load can be allowed to remain in its hopper. The average highest 

observed priority (AMP) for the bi-objective algorithm was significantly lower than for 

the single-objective approach. However, we have found that products with a high 

coefficient of proportionality affect process variability and increase the average time 

loads spend in the hoppers. We also found that using large hopper subsets to create each 

package does not guarantee reduced variability.  

For the setup of the process and guarantee the least variability, we recommend in 

the single-objective approach dividing the hoppers in three subgroups with 𝑛1 = 5, 𝑛2 = 

6, 𝑛3 = 5, 𝛿 = 2.0, 𝑃𝑚𝑎𝑥 = 100 and 𝑘 = 6 (for 𝛾 = 0.123) or  𝑘 = 5 (for 𝛾 0.331). For the 

bi-objective approach, we recommend dividing the hoppers in three subgroups with 𝑛1 = 

5, 𝑛2 = 6, 𝑛3 = 5, 𝛿 = 2.0, 𝑃𝑚𝑎𝑥 = 100 and 𝑘 = 7 (for 𝛾 = 0.123) or 𝑃𝑚𝑎𝑥 = 10 and 𝑘 = 8 

(for 𝛾 = 0.331). 

In future research, we propose to study further the reason for the increase in the 

𝜎package , HDP, and AMP values when the γ, 𝑘 and 𝑃𝑚𝑎𝑥 values increase. In addition, we 

propose to implement different multi-objective optimisation approach for this problem, 

considering different packaging algorithms and objectives of economic character 

(product packaging costs, cost of rejection and rework of the “non- conforming” 

package). Likewise, we intend to study the relationships among all the factors that may 

influence the packaging process. 
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