

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/161853

Cerdán Soriano, JM.; Guerrero, D.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2020).
Preconditioners for rank deficient least squares problems. Journal of Computational and
Applied Mathematics. 372:1-11. https://doi.org/10.1016/j.cam.2019.112621

https://doi.org/10.1016/j.cam.2019.112621

Elsevier

Preconditioners for rank deficient least squares
problems ?

J. Cerdán1, D. Guerrero2, J. Maŕın1, J. Mas1

Abstract

In this paper we present a method for computing sparse preconditioners for iter-

atively solving rank deficient least squares problems (LS) by the LSMR method.

The main idea of the method proposed is to update an incomplete factoriza-

tion computed for a regularized problem to recover the solution of the original

one. The numerical experiments for a wide set of matrices arising from differ-

ent science and engineering applications show that the preconditioner proposed,

in most cases, can be successfully applied to accelerate the convergence of the

iterative Krylov subspace method.

Keywords: Iterative methods, rank deficient, sparse linear systems,

preconditioning, linear least squares problems.

2000 MSC: , 65F08, 65F10, 65F50, 65N22

1. Introduction

Linear least squares (LS) problems arise in many large-scale applications of

the science and engineering as neural networks, linear programming, exploration

seismology or image processing, among others. The LS problem considered is

?This work was supported by the Spanish Ministerio de Economı́a, Industria y Competi-
tividad under grants MTM2017-85669-P and MTM2017-90682-REDT.

Email addresses: jcerdan@imm.upv.es (J. Cerdán), danguefl@doctor.upv.es
(D. Guerrero), jmarinma@imm.upv.es (J. Maŕın), jmasm@imm.upv.es (J. Mas)

1Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, 46022
València, España.

2Departamento de Ciencias Matemáticas, Universidad Pedagógica Nacional Francisco
Morazán, Honduras.

Preprint submitted to Journal of Comp. and Applied Math. November 28, 2019

formulated as

min
x
‖b−Ax‖2, (1)

where A ∈ Rm×n (m ≥ n) is large and sparse and b ∈ Rm. This problem can

be also formulated with the mathematically equivalent n× n normal equations

system:

ATAx = AT b. (2)

Two types of methods are usually used to solve these linear systems, direct

and iterative methods. Direct methods, in spite of their robustness, require the

computation of an explicit factorization of the coefficient matrix of the linear

system, that implies large computational time and memory storage. In contrast,

iterative Krylov subspace methods may be preferred when the system matrix is

large and sparse because they often are less demanding in memory requirements

than their direct counterparts. In this case, Equation (2) is solved iteratively

using conjugate gradient like methods. Basically, these methods implicitly apply

the conjugate gradient or minimal residual method to the normal equations.

The CGLS [1] and LSQR methods implicitly apply the conjugate gradient

to the normal equations. In exact arithmetic, both methods generate the same

sequence of approximation. The LSQR was presented in [2, 3]. It is based on

the Golub-Kahan bidiagonalization developed in [4]. LSQR has the property

of reducing ||rk||2 monotonically, where rk = b − Axk is the residual for the

approximate solution xk.

Another alternative is the least squares minimal residual method (LSMR)

presented in [5]. LSMR, as LSQR, also uses the Golub-Kahan bidiagonalization

of A. But in contrast to the LSQR, LSMR is equivalent to MINRES applied to

the normal equations. One of the characteristics of the LSMR method is that

the norm of the residual ||rk||2 decreases monotonically, and is never very far

behind the corresponding value for LSQR. Hence, although LSQR and LSMR

ultimately converge to similar points, it is safer to use LSMR in situations where

the solver must be terminated early.

The successful application of an iterative method, often needs a good pre-

2

conditioner to achieve fast convergence rates. When the matrix A has full

rank, typically an incomplete Cholesky factorization (IC) of the symmetric and

positive definite matrix C = ATA is used as preconditioner. An extended re-

view of a variety of preconditioners already available in the repositories can be

found in [6]. For instance, diagonal preconditioning, limited memory incomplete

Cholesky factorization developed for the HSL mathemathical software library,

[7], the Multilevel Incomplete QR (MIQR) factorization [8], the Robust Incom-

plete Factorization [9], the BA-GMRES for solving least squares problems [10]

and incomplete Cholesky based on BIF preconditioner [11]. If the matrix A is

rank deficient then, C is a semidefinite positive matrix and the Cholesky factor-

ization may suffer breakdown because negative or zero pivots are encountered.

Thus, rank deficient LS problems are in general much more harder to solve.

Basically, there are two types of approaches for solving this case iteratively.

The first one consists of computing an incomplete factorization of a regularized

matrix which can be used as a preconditioner for the original LS problem. The

second type computes the solution of a mathematically equivalent augmented

linear system of order m+n [1, 12]. Both strategies are extensively analyzed in

[12]. In this work, IC preconditioners for the regularized problem are compared

with a direct solver used as preconditioner. It is concluded that the IC factor-

ization is less efficient. However, an advantage is that the IC factors are con-

siderably sparse, giving it the potential to be used successfully for much larger

problems. The technique proposed in this work follows this line of research. It

consists of updating an IC factorization computed for the regularized system

which is used as preconditioner for solving the original problem iteratively.

The paper is organized as follows. In Section 2, we describe the bordering

technique used to update an existing preconditioner by using an equivalent

augmented system. In Section 3, we describe the test environment, and present

the set of problems used for the numerical experiments. Then, we report the

results of the tests in Section 4. Finally, the main conclusions are presented.

3

2. Updated preconditioner method

When the matrix A in (1) is rank deficient, one of the approaches for solving

the LS problem is based on the computation of a Cholesky factorization of the

normal equations associated to the regularized matrix A

α1/2I

 , (3)

which are given by

Cα = ATA+ αI. (4)

The shift α is known as Tikhonov regularization parameter. If α is choosen

large enough the computation of an IC for the matrix Cα can be done easily

and without breakdowns. On the other hand, since the final purpose is to use

this incomplete factorization as a preconditioner for the original (unregularized)

linear system, the parameter α should be chosen as small as possible. Both re-

quirements make difficult the choice of the appropriate α. In practice, one starts

with a very small value for α, typically O(10−14), and if a breakdown occurs

then α is increased successively until a successful incomplete factorization is

computed. This iterative process may be expensive since multiple incomplete

factorizations must be computed before solving the least squares problem. More-

over, the density of the preconditioners often is quite large. One of the goals of

this work is to avoid this process by choosing a large enough value of the shift α,

and then update the preconditioner in order to obtain a better approximation of

the original problem. Moreover, with larger values of α the regularized matrix

is more diagonal dominant and the computed preconditioners tend to be more

sparse. The technique used is based on the work presented in [13] in which the

authors study how to update a preconditioner for LS problems when the linear

system is modified by adding or removing equations.

The idea is to compute a preconditioner for the regularized matrix Cα in

(4), with α large enough, and then update the preconditioner for the original

problem. Consider the matrix

Cα − βI (5)

4

which is an update of the shifted matrix Cα in (4). Clearly, the closer β is to

α, the closer this update is to the normal equations ATA.

Our technique consists of updating an incomplete Cholesky factorization

obtained for Cα. It relies on the relations that one can stablish between the

augmented matrix  Cα β1/2I

β1/2I I

 , (6)

and the matrix in (5). Observe that

Cα − βI=
[
I O

] Cα β1/2I

β1/2I I

 I

−β1/2I

 , (7)

and

(Cα − βI)−1=
[
I O

] Cα β1/2I

β1/2I I

−1 I

O

 . (8)

Thus, an IC factorization computed for the augmented matrix (6) can be

used to approximate the matrix Cα−βI, and its inverse. Hence, it can be used

as a preconditioner for the original normal equations if it is applied properly.

Note that the modification introduced by the update in equation (5), makes the

choice of the shift α less restrictive since with the update we somehow neutralize

the bad effect of the regularization, that is, the computation of a preconditioner

that may be far from the original problem. The only condition needed now is

to select a large enough value to avoid breakdown during the computation of

an IC factorization. We found experimentally that a value of α = 1 was good

for the majority of the problems tested.

With respect to the choice of β we recall that the ideal choice should be

α = β in order to obtain the closest preconditioner to the original problem.

But, since we are dealing with rank defficient LS problems, i.e., rankA = k <

n, theoretically one should choose β 6= α. Otherwise, the square augmented

matrix in (6) is singular. To see this, let us do a symmetric permutation to the

5

augmented matrix as follows O I

I O

 Cα β1/2I

β1/2I I

 O I

I O

 =

 I β1/2I

β1/2I Cα

 .
After eliminating the left bottom block by Gaussian elimination we obtain I β1/2I

0 Cα − βI

 =

 I β1/2I

0 ATA+ (α− β)I

 , (9)

which has no full rank if β = α. The interval 0 ≤ β < α may be a good choice

from this point of view. However, we found experimentally that taking β equals

to α did not produce breakdown during the preconditioner computation and

often it performed the best. To illustrate this, Figure 1 shows the number of

iterations and time for different values of β.

A possible explanation is that to obtain the factorization (10) which is used

as preconditioner, we are computing incomplete factorization of Cα and also

for an approximated Schur complement R ≈ I − βC−1α , (see Algorithm 1). As

a consequence, block (2,2) in equation (9) for α = β is not exactly ATA but

ATA+ E that has full rank.

2.1. Preconditioner computation

The preconditioner is obtained from the incomplete block Cholesky factor-

ization of the augmented matrix in (6) given by Cα β1/2I

β1/2I I

 =

 Lα 0

β1/2L−Tα LR

 LTα β1/2L−1α

0 LTR

 (10)

where Lα is the incomplete Cholesky factor of Cα and LR is the incomplete

Cholesky factor of the Schur complement of Cα in the augmented matrix,

R = I − βL−Tα L−1α . The preconditioner is computed in four steps, which are

summarized in Algorithm 1.

To keep the preconditioner sparse, the amount of fill-in may be limited by

dropping small elements in steps 2 and 3, so an approximate Schur complement

it is computed. Besides, in step 4 either an exact or an incomplete factorization

of the Schur complement R may be computed depending on its size.

6

Figure 1: DBIR1 matrix. Effect of different values of β in the number of iterations and time for

α = 1.

7

Algorithm 1 Preconditioner update computation

1. Compute LαL
T
α ≈ Cα.

2. Compute T = β1/2L−1α .

3. Compute R = I − TTT .

4. Compute LRL
T
R ≈ R.

2.2. Preconditioner application

The preconditioning step for a Krylov subspace iterative method involves

the solution of systems of the form Ms = r where M is the preconditioner and

r is the residual. Thus, the preconditioning strategy proposed computes the

preconditioned residual by applying equation (8) with an incomplete factoriza-

tion of the augmented matrix. That is, the preconditioned residual s is given

by

s =
[
I O

] Cα β1/2I

β1/2I I

−1  I

O

 r,
and it is computed from the solution of the block linear system Lα 0

β1/2L−Tα LR

 LTα β1/2L−1α

0 LTR

 s

s1

 =

 r

0

 .

The preconditioning step is summarized in Algorithm 2.

Algorithm 2 Preconditioner update application

Input: β, matrices Lα, LR and residual vector r.

Output: Preconditioned vector s

1. s← L−Tα (L−1α r).

2. sR ← L−TR (L−1R r̄).

3. s← s+ βL−Tα (L−1α sR).

It will be referenced as updated preconditioner method (UPD). In this al-

gorithm, steps 2 and 3 represent the extra cost in the application of the pre-

conditioner with respect to standard preconditioning with the IC factorization

of the regularized matrix, i.e., the non-updated preconditioner. We recall that

8

the inverses of the triangular factors are applied by solving the corresponding

triangular systems. If Lα and LR are kept sparse, the additional cost is small

and can be amortized even for moderate reductions on the number of iterations,

as pointed out in [14].

3. Numerical environment

The experiments were done with MATLAB version 2016a running on an In-

tel 5 CPU with 8 Gb of RAM. For the solution of each problem we set a limit of

600 seconds and 50,000 iterations for the total CPU time and number of itera-

tions, respectively. As recommended in MATLAB’s documentation, CPU times

reported are the mean value of 10 successive runs of the experiment performed

after 3 initial runs that were discarded. The maximum standard deviation ob-

served relative to the mean value for the different runs was insignificant.

Table 1 shows the set of tested matrices from the Florida Sparse Matrix

Collection [15], arising in different areas of scientific computing. The matrices

were cleaned by removing the null rows and columns before solving the LS

problem. The number of rows and columns, number of nonzeros (nnz) and

nullity of the matrix (estimated null space rank) are also reported.

If a matrix has less rows than columns, then it is transposed. Each ma-

trix was permuted using the MATLAB’s function dmperm() that obtains the

Dulmage-Mendelsohn decomposition [16]. This decomposition estimates an up-

per bound of the structural rank of the matrices, that allows for the approx-

imation of their nullity. The values obtained are in agreement with the ones

reported in [6]. The columns of the matrix corresponding to the normal equa-

tions C = ATA were normalised by their 2-norm. As result, the regularized

normal equations matrix is

Cα = SPCPTST + αI.

An IC factorization LαL
T
α of Cα was computed with the MATLAB’s function

ichol(). With respect to the Schur complementR in Algorithm 1, small elements

9

Matrix m n nnz nullity Application

BAXTER 27441 30733 111576 3055 Linear programming

DBIR1 18804 45775 1077025 2 Linear programming

DBIR2 18906 45877 1158159 2 Linear programming

NSCT1 22901 37461 678739 1 Linear programming

NSCT2 23003 37563 697738 1 Linear programming

beaflw 492 500 53403 32 Economic

Pd rhs 5804 4371 6323 3 Counter-example

162bit 3606 3476 37118 16 Combinatorial

176bit 7441 7150 82270 40 Combinatorial

192bit 13691 13093 154303 87 Combinatorial

208bit 24430 23191 299756 210 Combinatorial

wheel 601 902103 723605 2170814 600 Combinatorial

12month1 12471 872622 22624727 53 Bipartite graph

ND actors 383640 127823 1470404 13061 Bipartite graph

IMDB 303617 896302 3782463 53101 Bipartite graph

Maragal 6 21251 10144 537694 92 Least squares

Maragal 7 46845 26525 1200537 659 Least squares

Maragal 8 33093 60845 1308415 14637 Least squares

mri1 65536 114637 589824 1019 graphics/vision

mri2 63240 104597 569160 14919 graphics/vision

tomographic1 142752 1014301 11537419 3700 graphics/vision

Table 1: Set of tested matrices

10

were dropped in step 2 before computing step 3, and finally an incomplete LU

factorization using MATLAB’s function ilu() was computed in step 4. For the

updated preconditioner, a value of α = β = 1 was used for all the matrices,

except for the matrices BAXTER and BEAFLW for which a value of α = β =

10−3 was needed. We have found that in practice, choosing α = β, has given

the best results. The right-hand side b was the vector of all ones.

The LSMR method was used to solve the normal equations because its nice

property mentioned in the Section 1, that is, the residual norm decreases mono-

tonically. The Matlab’s impletation of LSMR was downloaded from [17]. Since

our method does not compute an explicit factorization of the normal equations,

applying two side preconditioning is not possible as suggested by the authors.

Following the ideas in [18] where a left preconditioned LSQR algorithm is de-

rived, we implemented a left preconditioned version of the LSMR which is pre-

sented in Algorithm 3. The application of the preconditioner is done in the

initialization and bidiagonalization steps.

11

Algorithm 3 Left preconditioned LSMR

1. Initialize

β1u1 = b p̃ = ATu1 v1 = M−1p̃ α1 = (v1, p̃)
1/2

v1 = v1/α1 ᾱ1 = α1 ζ̄1 = α1β1 ρ0 = ρ̄0 = c̄0 = 1

s̄0 = 0 h1 = v1 h̄0 = x0 =
−→
0

2. For k = 1, 2, 3, . . . , until convergence Repeat steps 3-6:

3. Continue the bidiagonalization

βk+1uk+1 = Avk − αkuk

p̃ = ATuk+1 − βk+1p̃, vi+1 = M−1p̃, αi+1 = (vi+1, p̃)
1/2, p̃ = p̃/αi+1,

vi+1 = vi+1/αi+1

4. (Construct and apply rotation Qk,k+1)

ρk = (ᾱ2
k + β2

k+1)1/2

ck = ᾱk/ρk sk = βk+1/ρk

θk+1 = skαk+1 ᾱk+1 = ckαk+1

5. (Construct and apply rotation Q̄k,k+1)

θ̄k = s̄k−1ρk ρ̄k = ((c̄k−1ρk)2 + θ2k+1)1/2

c̄k = c̄k−1ρk/ρ̄k s̄k = θk+1/ρ̄k

ζk = c̄k ζ̄k ζ̄k+1 = −s̄k ζ̄k

6. (Update h, h̄ and x)

h̄k = hk − (θ̄kρk/(ρk−1ρ̄k−1))h̄k−1

xk = xk−1 + (ζ/(ρkρ̄k))h̄k

hk+1 = vk+1 − (θk+1/ρk)hk

4. Numerical experiments

In this section we study the numerical performance of the preconditioner

update method proposed. The method has been compared with an IC factor-

ization of the regularized matrix Cα. Before analysing the performance of the

12

preconditioner, we study the convergence criteria for the LSMR method and

the choice of the Tikhonov regularization parameter.

4.1. On the convergence criteria and the choice of α

We have done an extensive study concerning the stopping criteria for the

convergence of the LSMR method. Different convergence criteria are proposed

in the bibliography.

FS: Fong and Saunders in [5] propose the following stopping rule

||AT rk||2
||A||2||rk||2

< ε. (11)

GS: Gould and Scott in [12] proposed a different criterion defined

||AT rk||2||r0||2
||AT r0||2||rk||2

< ε, (12)

that reduces to
||AT rk||2||b||2
||AT b||2||rk||2

< ε,

when the initial solution guess is x0 = 0.

It can be easily observed the following relation between both criteria

||AT rk||2
||A||2||rk||2

=
||AT rk||2||b||2
||AT ||2||b||2||rk||2

≤ ||A
T rk||2||b||2

||AT b||2||rk||2
.

Thus, the LSMR method might reach convergence early with the FS criterion,

as we will see below.

We remark that the convergence rule programmed by default in the LSMR

implementation of Fong and Saunders depends on the preconditioner M applied,

since it evaluates the norm ||(AM−1)T r||2. To remove this dependency in the

sense of Gould and Scott, we modify the FS criterion by computing instead the

norm ||(A)T r||2. Moreover, as the authors did in [12], we exclude the additional

computational time needed to computed the corresponding residuals from the

total solution time.

To study the effect of the stopping criteria on the convergence of the LSMR

method, we consider for instance, the matrix DBIR1. The convergence tol-

erance was set to ε = 10−6. For the Tikhonov parameter α, values in the

13

interval [0.01, 2] were considered. We note that, for very small values of α, the

MATLAB’s function ichol() produced very dense preconditioners. Therefore,

to study the effect of α the IC factorization LαL
T
α of Cα was obtained with the

MATLAB’s function ilu() and drop tolerance 0.01. With this function sparser

factorizations were obtained with a considerable reduction of the computational

time.

Figure 2 shows the CPU time and the number of iterations that the LSMR

method takes to converge with both stopping rules and both preconditioning

strategies, i.e., an IC Cholesky factorization of Cα and the updated precondi-

tioner. One can observe that the best results are obtained for values of α in

the interval [0.1, 1]. But, an advantage of taking the largest value α = 1 is that

sparser incomplete Cholesky factors are often obtained since the regularized

matrix is more diagonal dominant.

In general, we may recommend a value of α = 1 since it peformed quite

well for the majority of the problems tested. The results presented below are

obtained with this value, with some exceptions.

With respect to the convergence criteria it is observed that the LSMR

method with the FS stopping rule needed less number of iterations and compu-

tational time to converge for all the values of α.

Figure 3 shows the evolution of the FS and GS criteria for a fixed value of

α = 1 during the iterative solution process. As mentioned before, the FS rule

converges in less iterations, specially with the non-updated preconditioner.

Figure 4 shows the evolution of the residuals ||rk||2 and ||AT rk||2. It can be

observed that the final residual norms are of the same order for both criteria,

and a very small reduction on the norms is obtained with the GS rule at the cost

of more iterations, that for some problems the difference can be considerably

high.

Finally, Figure 5 compares the evolution of ||rk||2 for the non-updated and

updated preconditioners and both convergence criteria. It can be observed that

the UPD preconditioner converges in less iterations than the non-updated one.

After this study, in the next subsection the results will be presented with

14

Figure 2: DBIR1 matrix. Number of iterations and total solution time, for the LSMR method

with FS and GS criteria, and for the non updated (M) and updated (UPD) preconditioners, α

in [0.01, 2].

15

Figure 3: DBIR1 matrix. Evolution of the FS and GS criteria with respect to the number of

iterations; y axis represents the value of the FS and GS criteria at each iteration.

the FS stopping criterion and with a value of α = 1.

4.2. Results

Table 2 shows the results of the numerical experiments for the different matri-

ces tested. In this table, timet, ||r||2 and itn represent the total time (in seconds,

including computation of the preconditioner), residual norm (||b − Ax||2) and

the number of iterations needed to converge, respectively. The number of nonze-

ros of the Cholesky factor Lα is represented by nnz(Lα), and nnz(Lα ∧ LR) =

nnz(Lα)+nnz(LR) represents the number the nonzero elements of the updated

preconditioner. The column M corresponds to the results obtained with the IC

factorization of Cα, while UPD corresponds to the ones obtained with the pro-

posed updated preconditioning technique. The iterative method was stopped

when the stopping rule FS was reduced to 10−6. The IC factor Lα was calculated

with drop tolerance 0.1, except for the matrices MRI1, MRI2 and BAXTER,

BEAFLW for which a value of 0.2 and 10−5 were used, respectively.

The problems are classified into three blocks mainly taking into account the

field of application. The best results for every problem, in total solution time

16

Figure 4: DBIR1 matrix. Evolution of ||rk||2 and ||AT rk||2.

17

Figure 5: DBIR1 matrix. Evolution of ||rk||2 for the non updated and updated preconditioner.

18

Matrix UPD M

nnz(Lα ∧ LR) timet ||r||2 itn nnz(Lα) timet ||r||2 itn

BAXTER 58908 42.1 74.99 2115 31467 39.6 74.99 2114

DBIR1 40462 1.7 88.44 294 21658 107.2 88.44 22163

DBIR2 40236 2.8 87.57 477 21330 16.7 87.57 3434

NSCT1 49511 1.2 93.80 261 26610 2.0 93.80 554

NSCT2 49696 3.0 88.59 701 26693 25.1 88.59 6939

BEAFLW 73211 6.1 4.53 4074 72712 9.6 4.53 6504

PD RHS 8860 0.1 34.62 186 4489 0.2 34.62 830

162BIT 7276 0.2 0.62 389 3800 0.2 0.62 397

176BIT 14916 0.3 0.80 383 7766 0.3 0.80 394

192BIT 27566 0.6 1.28 360 14473 0.6 1.28 373

208BIT 48552 1.0 1.62 321 25361 1.0 1.62 336

WHEEL 601 1808409 2.9 497.51 32 1084804 3.8 497.51 45

12MONTH1 24991 24.3 679.32 154 12520 30.9 679.32 182

ND ACTORS 260367 133.4 301.65 6491 132544 140.5 301.65 7188

IMDB 6212233 113.7 497.65 1442 317616 112.1 497.65 1427

MARAGAL 6 21728 5.8 93.98 1637 11584 5.6 93.98 1771

MARAGAL 7 57532 5.2 133.13 496 31007 4.5 133.13 492

MARAGAL 8 78965 141.6 238.90 15724 45872 129.5 238.90 15683

MRI1 131131 16.4 26.74 2616 65595 13.8 26.74 2537

MRI2 150829 11.3 141.26 1692 87589 9.7 141.26 1583

TOMOGRAPHIC1 104753 10.7 42.18 1309 58845 13.1 42.18 1983

Table 2: Results for LSMR with the non-updated (M) and with the updated (UPD) precondition-

ers.

19

and number of iterations are emphasized with bold type.

The first block of matrices were not cleaned because deleting null columns

and rows was not necessary. For these matrices the UPD preconditioner was

able to reduce the time spent with the IC preconditioner considerably. Specially

significant are the cases of the DBIR1 and NSCT2 matrices. For the second

block we can observe that the UPD method is also competitive, although the

improvement with respect to the IC factorization is not so big as in the previous

block of matrices. In the last block, the results were not so clear, and there were

cases for which the UPD preconditioner performed better, and others where it

was observed the opposite.

We recall that the preconditioners used were quite sparse, that is very im-

portant for solving much larger problems.

In conclusion, the results show that the updated preconditioner method is

competitive and robust for solving rank deficient least squares problems. The

number of iterations and time spent was the best, or close to it, for all the

problems tested.

5. Conclusions

We have presented a method for preconditioning rank deficient least squares

problems that can be viewed as an update preconditioning technique for the

regularized normal equations. With the regularization step a factorized precon-

ditioner can be computed without breakdown, and with the update the precon-

ditioner approximates better the original problem. From the numerical results

conducted it has been observed that the proposed preconditioner is competi-

tive in terms of solution time and number of iterations spent for most of the

tested problems. Furthermore, a fixed value α = 1 was large enough to avoid

breakdown during the preconditioner computation and thus, recomputing the

preconditioner for different values of α was not necessary. In this sense, the

proposed method simplifies the choice of the Tikhonov regularization parame-

ter. Also, with this choice we were able to compute very sparse preconditioners.

20

Thus, we think that the preconditioner proposed can be successfully applied to

accelerate the convergence rate of the LSMR method.

References

[1] A. Bjorck, Numerical Methods for Least Squares Problems, Siam Philadel-

phia, 1996.

[2] C. C. Paige, M. A. Saunders, LSQR: An Algorithm for Sparse Lin-

ear Equations and Sparse Least Squares, ACM Trans. Math. Softw.

8 (1) (1982) 43–71, ISSN 0098-3500, doi:10.1145/355984.355989, URL

http://doi.acm.org/10.1145/355984.355989.

[3] C. C. Paige, M. A. Saunders, Algorithm 583: LSQR: Sparse Lin-

ear Equations and Least Squares Problems, ACM Trans. Math. Softw.

8 (2) (1982) 195–209, ISSN 0098-3500, doi:10.1145/355993.356000, URL

http://doi.acm.org/10.1145/355993.356000.

[4] G. Golub, W. Kahan, Calculating the Singular Values and Pseudo-Inverse

of a Matrix, Journal of the Society for Industrial and Applied Mathematics

Series B Numerical Analysis 2 (2) (1965) 205–224, doi:10.1137/0702016,

URL https://doi.org/10.1137/0702016.

[5] D. C.-L. Fong, M. Saunders, LSMR: An Iterative Algorithm for Sparse

Least-Squares Problems, SIAM J. Sci. Comput. 33 (5) (2011) 2950–2971,

ISSN 1064-8275.

[6] J. Scott, On Using Cholesky-based Factorizations for Solving Rank-

deficient Sparse Linear Least-squares Problems., SIAM J. Sci. Comput.

39 (4) (2017) C319–C339,.

[7] HSL, A collection of Fortran codes for large scale scientific computation,

http://www.hsl.rl.ac.uk/ .

21

[8] N. Li, Y. Saad, MIQR: A Multilevel Incomplete QR Preconditioner for

Large Sparse Least-Squares Problems, SIAM Journal on Matrix Analy-

sis and Applications 28 (2) (2006) 524–550, doi:10.1137/050633032, URL

https://doi.org/10.1137/050633032.

[9] M. Benzi, M. Tůma, A robust incomplete factorization preconditioner

for positive definite matrices, Numerical Linear Algebra with Applica-

tions 10 (5-6) (2003) 385–400, ISSN 1099-1506, doi:10.1002/nla.320, URL

http://dx.doi.org/10.1002/nla.320.

[10] K. Hayami, J-F. Yin, T. Ito, GMRES Methods for Least Squares Problems.,

SIAM J. Matrix Anal. Appl., 31 (5) (2010) 2400–2430.

[11] R. Bru, J. Maŕın, J. Mas, M. Tuma, Preconditioned Iterative Methods

for Solving Linear Least Squares Problems, SIAM J. Scientific Computing

36 (4).

[12] N. Gould, J. Scott, The State-of-the-Art of Preconditioners for Sparse Lin-

ear Least-Squares Problems, ACM Trans. Math. Softw. 43 (4) (2017) 36:1–

36:35, ISSN 0098-3500.

[13] J. Maŕın, J. Mas, D. Guerrero, K. Hayami, Updating preconditioners for

modified least squares problems, Num. Alg. (2017) 1–18, ISSN 1572-9265,

doi:10.1007/s11075-017-0315-z.

[14] J. Cerdán, J. Maŕın, J. Mas, Low-rank updates of balanced incomplete

factorization preconditioners, Numerical Algorithms 74 (2) (2017) 337–370.

[15] T. A. Davis, Y. Hu, The University of Florida Sparse Matrix Collection,

ACM Trans. Math. Softw. 38 (1) (2011) 1:1–1:25, ISSN 0098-3500.

[16] A. Pothen, C.-J. Fan, Computing the Block Triangular

Form of a Sparse Matrix, ACM Trans. Math. Softw. 16 (4)

(1990) 303–324, ISSN 0098-3500, doi:10.1145/98267.98287, URL

http://doi.acm.org/10.1145/98267.98287.

22

[17] LSMR SOFTWARE FOR LINEAR SYSTEMS AND LEAST SQUARES,

URL http://web.stanford.edu/group/SOL/software/lsmr/, 2010.

[18] S. R. Arridge, M. M. Betcke, L. Harhanen, Iterated pre-

conditioned LSQR method for inverse problems on unstruc-

tured grids, Inverse Problems 30 (7) (2014) 075009, URL

http://stacks.iop.org/0266-5611/30/i=7/a=075009.

23

